Commit 3a185ec4 authored by Linus Torvalds's avatar Linus Torvalds

Merge bk://kernel.bkbits.net/davem/net-2.5

into home.osdl.org:/home/torvalds/v2.5/linux
parents e7d4d40e b84c5126
......@@ -238,7 +238,7 @@ acpi_suspend (
/* do we have a wakeup address for S2 and S3? */
/* Here, we support only S4BIOS, those we set the wakeup address */
/* S4OS is only supported for now via swsusp.. */
if (state == ACPI_STATE_S2 || state == ACPI_STATE_S3 || ACPI_STATE_S4) {
if (state == ACPI_STATE_S2 || state == ACPI_STATE_S3 || state == ACPI_STATE_S4) {
if (!acpi_wakeup_address)
return AE_ERROR;
acpi_set_firmware_waking_vector((acpi_physical_address) acpi_wakeup_address);
......
......@@ -2070,7 +2070,7 @@ static irqreturn_t rtl8139_interrupt (int irq, void *dev_instance,
RTL_W16 (IntrStatus, ackstat);
DPRINTK ("%s: interrupt status=%#4.4x ackstat=%#4.4x new intstat=%#4.4x.\n",
dev->name, ackstat, status, RTL_R16 (IntrStatus));
dev->name, status, ackstat, RTL_R16 (IntrStatus));
if (netif_running (dev) && (status & RxAckBits))
rtl8139_rx_interrupt (dev, tp, ioaddr);
......
......@@ -224,6 +224,5 @@ struct e1000_adapter {
uint32_t pci_state[16];
char ifname[IFNAMSIZ];
};
#endif /* _E1000_H_ */
......@@ -1112,8 +1112,9 @@ e1000_ethtool_test(struct e1000_adapter *adapter,
if(if_running)
e1000_down(adapter);
else
e1000_reset(adapter);
if(e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
......
......@@ -135,6 +135,41 @@ e1000_phy_init_script(struct e1000_hw *hw)
e1000_write_phy_reg(hw,IGP01E1000_PHY_PAGE_SELECT,0x0000);
e1000_write_phy_reg(hw,0x0000,0x3300);
if(hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_ANALOG_REGS_PAGE);
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
/* Return to first page of registers */
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_IEEE_REGS_PAGE);
}
}
}
......@@ -259,10 +294,20 @@ e1000_reset_hw(struct e1000_hw *hw)
msec_delay(5);
}
if(hw->mac_type > e1000_82543)
switch(hw->mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82546:
case e1000_82541:
/* These controllers can't ack the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround to issue the reset */
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
else
break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
}
/* Force a reload from the EEPROM if necessary */
if(hw->mac_type < e1000_82540) {
......@@ -687,7 +732,8 @@ e1000_setup_fiber_link(struct e1000_hw *hw)
static int32_t
e1000_setup_copper_link(struct e1000_hw *hw)
{
uint32_t ctrl, led_ctrl;
uint32_t ctrl;
uint32_t led_ctrl;
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
......@@ -2249,7 +2295,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
void
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint32_t ctrl, ctrl_ext, led_ctrl;
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
DEBUGFUNC("e1000_phy_hw_reset");
......
......@@ -1668,6 +1668,7 @@ struct e1000_hw {
#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
#define IGP01E1000_IEEE_REGS_PAGE 0x0000
/* IGP01E1000 Specific Registers */
#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
......@@ -1690,6 +1691,7 @@ struct e1000_hw {
* speed = 1000 Mbps. */
#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
......@@ -1980,6 +1982,22 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
* on Link-Up */
#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
/* IGP01E1000 Analog Register */
#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x0011
#define IGP01E1000_ANALOG_FUSE_STATUS 0x0010
#define IGP01E1000_ANALOG_FUSE_CONTROL 0x001C
#define IGP01E1000_ANALOG_FUSE_BYPASS 0x001E
#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
/* Bit definitions for valid PHY IDs. */
#define M88E1000_E_PHY_ID 0x01410C50
......
......@@ -29,6 +29,14 @@
#include "e1000.h"
/* Change Log
*
* 5.1.13 5/28/03
* o Bug fix: request_irq() failure resulted in freeing resources twice!
* [Don Fry (brazilnut@us.ibm.com)]
* o Bug fix: fix VLAN support on ppc64 [Mark Rakes (mrakes@vivato.net)]
* o Bug fix: missing Tx cleanup opportunities during interrupt handling.
* o Bug fix: alloc_etherdev failure didn't cleanup regions in probe.
* o Cleanup: s/int/unsigned int/ for descriptor ring indexes.
*
* 5.1.11 5/6/03
* o Feature: Added support for 82546EB (Quad-port) hardware.
......@@ -38,26 +46,11 @@
* o Bug fix: TSO bug fixes.
*
* 5.0.42 3/5/03
* o Feature: Added support for 82541 and 82547 hardware.
* o Feature: Added support for Intel Gigabit PHY (IGP) and a variety of
* eeproms.
* o Feature: Added support for TCP Segmentation Offload (TSO).
* o Feature: Added MII ioctl.
* o Feature: Added support for statistics reporting through ethtool.
* o Cleanup: Removed proprietary hooks for ANS.
* o Cleanup: Miscellaneous code changes to improve CPU utilization.
* - Replaced "%" with conditionals and "+-" operators.
* - Implemented dynamic Interrupt Throttle Rate (ITR).
* - Reduced expensive PCI reads of ICR in interrupt.
* o Bug fix: Request IRQ after descriptor ring setup to avoid panic in
* shared interrupt instances.
*
* 4.4.18 11/27/02
*/
char e1000_driver_name[] = "e1000";
char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
char e1000_driver_version[] = "5.1.11-k1";
char e1000_driver_version[] = "5.1.13-k1";
char e1000_copyright[] = "Copyright (c) 1999-2003 Intel Corporation.";
/* e1000_pci_tbl - PCI Device ID Table
......@@ -128,6 +121,7 @@ static void e1000_update_stats(struct e1000_adapter *adapter);
static inline void e1000_irq_disable(struct e1000_adapter *adapter);
static inline void e1000_irq_enable(struct e1000_adapter *adapter);
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
#ifdef CONFIG_E1000_NAPI
static int e1000_clean(struct net_device *netdev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
......@@ -135,7 +129,6 @@ static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
#endif
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
......@@ -248,12 +241,8 @@ e1000_up(struct e1000_adapter *adapter)
e1000_alloc_rx_buffers(adapter);
if(request_irq(netdev->irq, &e1000_intr, SA_SHIRQ | SA_SAMPLE_RANDOM,
netdev->name, netdev)) {
e1000_reset_hw(&adapter->hw);
e1000_free_tx_resources(adapter);
e1000_free_rx_resources(adapter);
netdev->name, netdev))
return -1;
}
mod_timer(&adapter->watchdog_timer, jiffies);
e1000_irq_enable(adapter);
......@@ -504,9 +493,9 @@ e1000_probe(struct pci_dev *pdev,
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
pci_release_regions(pdev);
kfree(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
return -ENOMEM;
}
......@@ -981,35 +970,38 @@ e1000_free_tx_resources(struct e1000_adapter *adapter)
static void
e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
struct e1000_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
int i;
unsigned int i;
/* Free all the Tx ring sk_buffs */
for(i = 0; i < adapter->tx_ring.count; i++) {
if(adapter->tx_ring.buffer_info[i].skb) {
for(i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
if(buffer_info->skb) {
pci_unmap_page(pdev,
adapter->tx_ring.buffer_info[i].dma,
adapter->tx_ring.buffer_info[i].length,
buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
dev_kfree_skb(adapter->tx_ring.buffer_info[i].skb);
dev_kfree_skb(buffer_info->skb);
adapter->tx_ring.buffer_info[i].skb = NULL;
buffer_info->skb = NULL;
}
}
size = sizeof(struct e1000_buffer) * adapter->tx_ring.count;
memset(adapter->tx_ring.buffer_info, 0, size);
size = sizeof(struct e1000_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(adapter->tx_ring.desc, 0, adapter->tx_ring.size);
memset(tx_ring->desc, 0, tx_ring->size);
adapter->tx_ring.next_to_use = 0;
adapter->tx_ring.next_to_clean = 0;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
E1000_WRITE_REG(&adapter->hw, TDH, 0);
E1000_WRITE_REG(&adapter->hw, TDT, 0);
......@@ -1025,17 +1017,17 @@ e1000_clean_tx_ring(struct e1000_adapter *adapter)
static void
e1000_free_rx_resources(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
struct pci_dev *pdev = adapter->pdev;
e1000_clean_rx_ring(adapter);
kfree(adapter->rx_ring.buffer_info);
adapter->rx_ring.buffer_info = NULL;
kfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
pci_free_consistent(pdev, adapter->rx_ring.size,
adapter->rx_ring.desc, adapter->rx_ring.dma);
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
adapter->rx_ring.desc = NULL;
rx_ring->desc = NULL;
}
/**
......@@ -1046,35 +1038,38 @@ e1000_free_rx_resources(struct e1000_adapter *adapter)
static void
e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
int i;
unsigned int i;
/* Free all the Rx ring sk_buffs */
for(i = 0; i < adapter->rx_ring.count; i++) {
if(adapter->rx_ring.buffer_info[i].skb) {
for(i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if(buffer_info->skb) {
pci_unmap_single(pdev,
adapter->rx_ring.buffer_info[i].dma,
adapter->rx_ring.buffer_info[i].length,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(adapter->rx_ring.buffer_info[i].skb);
dev_kfree_skb(buffer_info->skb);
adapter->rx_ring.buffer_info[i].skb = NULL;
buffer_info->skb = NULL;
}
}
size = sizeof(struct e1000_buffer) * adapter->rx_ring.count;
memset(adapter->rx_ring.buffer_info, 0, size);
size = sizeof(struct e1000_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(adapter->rx_ring.desc, 0, adapter->rx_ring.size);
memset(rx_ring->desc, 0, rx_ring->size);
adapter->rx_ring.next_to_clean = 0;
adapter->rx_ring.next_to_use = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
E1000_WRITE_REG(&adapter->hw, RDH, 0);
E1000_WRITE_REG(&adapter->hw, RDT, 0);
......@@ -1324,7 +1319,7 @@ e1000_watchdog(unsigned long data)
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
struct net_device *netdev = adapter->netdev;
struct e1000_desc_ring *txdr = &adapter->tx_ring;
int i;
unsigned int i;
e1000_check_for_link(&adapter->hw);
......@@ -1410,7 +1405,7 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
{
#ifdef NETIF_F_TSO
struct e1000_context_desc *context_desc;
int i;
unsigned int i;
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
uint16_t ipcse, tucse, mss;
......@@ -1461,7 +1456,7 @@ static inline boolean_t
e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
struct e1000_context_desc *context_desc;
int i;
unsigned int i;
uint8_t css, cso;
if(skb->ip_summed == CHECKSUM_HW) {
......@@ -1494,18 +1489,21 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
unsigned int first)
{
struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
int len = skb->len, offset = 0, size, count = 0, i;
struct e1000_buffer *buffer_info;
int len = skb->len;
unsigned int offset = 0, size, count = 0, i;
#ifdef NETIF_F_TSO
int tso = skb_shinfo(skb)->tso_size;
unsigned int tso = skb_shinfo(skb)->tso_size;
#endif
int nr_frags = skb_shinfo(skb)->nr_frags;
int f;
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int f;
len -= skb->data_len;
i = tx_ring->next_to_use;
while(len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, E1000_MAX_DATA_PER_TXD);
#ifdef NETIF_F_TSO
/* Workaround for premature desc write-backs
......@@ -1513,13 +1511,13 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
if(tso && !nr_frags && size == len && size > 4)
size -= 4;
#endif
tx_ring->buffer_info[i].length = size;
tx_ring->buffer_info[i].dma =
buffer_info->length = size;
buffer_info->dma =
pci_map_single(adapter->pdev,
skb->data + offset,
size,
PCI_DMA_TODEVICE);
tx_ring->buffer_info[i].time_stamp = jiffies;
buffer_info->time_stamp = jiffies;
len -= size;
offset += size;
......@@ -1535,6 +1533,7 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
offset = 0;
while(len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, E1000_MAX_DATA_PER_TXD);
#ifdef NETIF_F_TSO
/* Workaround for premature desc write-backs
......@@ -1542,14 +1541,14 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
if(tso && f == (nr_frags-1) && size == len && size > 4)
size -= 4;
#endif
tx_ring->buffer_info[i].length = size;
tx_ring->buffer_info[i].dma =
buffer_info->length = size;
buffer_info->dma =
pci_map_page(adapter->pdev,
frag->page,
frag->page_offset + offset,
size,
PCI_DMA_TODEVICE);
tx_ring->buffer_info[i].time_stamp = jiffies;
buffer_info->time_stamp = jiffies;
len -= size;
offset += size;
......@@ -1557,7 +1556,7 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
if(++i == tx_ring->count) i = 0;
}
}
if(--i < 0) i = tx_ring->count - 1;
i = (i == 0) ? tx_ring->count - 1 : i - 1;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[first].next_to_watch = i;
......@@ -1569,8 +1568,9 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
{
struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info;
uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
int i;
unsigned int i;
if(tx_flags & E1000_TX_FLAGS_TSO) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
......@@ -1591,10 +1591,11 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
i = tx_ring->next_to_use;
while(count--) {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data =
cpu_to_le32(txd_lower | tx_ring->buffer_info[i].length);
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
if(++i == tx_ring->count) i = 0;
}
......@@ -1660,7 +1661,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev->priv;
unsigned int first;
int tx_flags = 0;
unsigned int tx_flags = 0;
if(skb->len <= 0) {
dev_kfree_skb_any(skb);
......@@ -1972,7 +1973,7 @@ e1000_intr(int irq, void *data, struct pt_regs *regs)
struct e1000_adapter *adapter = netdev->priv;
uint32_t icr = E1000_READ_REG(&adapter->hw, ICR);
#ifndef CONFIG_E1000_NAPI
int i;
unsigned int i;
#endif
if(!icr)
......@@ -1996,7 +1997,7 @@ e1000_intr(int irq, void *data, struct pt_regs *regs)
}
#else
for(i = 0; i < E1000_MAX_INTR; i++)
if(!e1000_clean_rx_irq(adapter) &&
if(!e1000_clean_rx_irq(adapter) &
!e1000_clean_tx_irq(adapter))
break;
#endif
......@@ -2044,7 +2045,8 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
struct pci_dev *pdev = adapter->pdev;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info;
int i, eop, cleaned = FALSE;
unsigned int i, eop;
boolean_t cleaned = FALSE;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
......@@ -2110,16 +2112,19 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned long flags;
uint32_t length;
uint8_t last_byte;
int i, cleaned = FALSE;
unsigned int i;
boolean_t cleaned = FALSE;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC(*rx_ring, i);
while(rx_desc->status & E1000_RXD_STAT_DD) {
buffer_info = &rx_ring->buffer_info[i];
#ifdef CONFIG_E1000_NAPI
if(*work_done >= work_to_do)
......@@ -2131,11 +2136,11 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
cleaned = TRUE;
pci_unmap_single(pdev,
rx_ring->buffer_info[i].dma,
rx_ring->buffer_info[i].length,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
skb = rx_ring->buffer_info[i].skb;
skb = buffer_info->skb;
length = le16_to_cpu(rx_desc->length);
if(!(rx_desc->status & E1000_RXD_STAT_EOP)) {
......@@ -2146,7 +2151,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
dev_kfree_skb_irq(skb);
rx_desc->status = 0;
rx_ring->buffer_info[i].skb = NULL;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
......@@ -2174,7 +2179,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
dev_kfree_skb_irq(skb);
rx_desc->status = 0;
rx_ring->buffer_info[i].skb = NULL;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
......@@ -2193,14 +2198,16 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
#ifdef CONFIG_E1000_NAPI
if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
(rx_desc->special & E1000_RXD_SPC_VLAN_MASK));
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
} else {
netif_receive_skb(skb);
}
#else /* CONFIG_E1000_NAPI */
if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
vlan_hwaccel_rx(skb, adapter->vlgrp,
(rx_desc->special & E1000_RXD_SPC_VLAN_MASK));
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
} else {
netif_rx(skb);
}
......@@ -2208,7 +2215,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
netdev->last_rx = jiffies;
rx_desc->status = 0;
rx_ring->buffer_info[i].skb = NULL;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
......@@ -2234,13 +2241,15 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
int reserve_len = 2;
int i;
unsigned int i;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while(!rx_ring->buffer_info[i].skb) {
while(!buffer_info->skb) {
rx_desc = E1000_RX_DESC(*rx_ring, i);
skb = dev_alloc_skb(adapter->rx_buffer_len + reserve_len);
......@@ -2258,15 +2267,15 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
skb->dev = netdev;
rx_ring->buffer_info[i].skb = skb;
rx_ring->buffer_info[i].length = adapter->rx_buffer_len;
rx_ring->buffer_info[i].dma =
buffer_info->skb = skb;
buffer_info->length = adapter->rx_buffer_len;
buffer_info->dma =
pci_map_single(pdev,
skb->data,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
if((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i) {
/* Force memory writes to complete before letting h/w
......@@ -2279,6 +2288,7 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
}
if(++i == rx_ring->count) i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
rx_ring->next_to_use = i;
......
......@@ -2,6 +2,8 @@
/*
Written 1998-2001 by Donald Becker.
Current Maintainer: Roger Luethi <rl@hellgate.ch>
This software may be used and distributed according to the terms of
the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on or derived from this code fall under the GPL and must
......@@ -10,7 +12,8 @@
system is licensed under the GPL.
This driver is designed for the VIA VT86C100A Rhine-I.
It also works with the 6102 Rhine-II, and 6105/6105M Rhine-III.
It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
and management NIC 6105M).
The author may be reached as becker@scyld.com, or C/O
Scyld Computing Corporation
......@@ -115,11 +118,15 @@
- Force flushing for PCI posted writes
- More reset code changes
LK1.1.18 (Roger Luethi)
- No filtering multicast in promisc mode (Edward Peng)
- Fix for Rhine-I Tx timeouts
*/
#define DRV_NAME "via-rhine"
#define DRV_VERSION "1.1.17"
#define DRV_RELDATE "March-1-2003"
#define DRV_VERSION "1.1.18-2.5"
#define DRV_RELDATE "July-4-2003"
/* A few user-configurable values.
......@@ -395,7 +402,7 @@ static struct pci_device_id via_rhine_pci_tbl[] __devinitdata =
{
{0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, VT86C100A},
{0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, VT6102},
{0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, VT6105},
{0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, VT6105}, /* 6105{,L,LOM} */
{0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, VT6105M},
{0,} /* terminate list */
};
......@@ -441,7 +448,7 @@ enum intr_status_bits {
IntrRxWakeUp=0x8000,
IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
IntrTxErrSummary=0x082210,
IntrTxErrSummary=0x082218,
};
/* The Rx and Tx buffer descriptors. */
......@@ -1655,7 +1662,14 @@ static void via_rhine_error(struct net_device *dev, int intr_status)
printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
dev->name);
}
if (intr_status & ( IntrTxAborted | IntrTxUnderrun | IntrTxDescRace ))
if ((intr_status & IntrTxError) && ~( IntrTxAborted | IntrTxUnderrun |
IntrTxDescRace )) {
if (debug > 2)
printk(KERN_INFO "%s: Unspecified error.\n",
dev->name);
}
if (intr_status & ( IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
IntrTxError ))
via_rhine_restart_tx(dev);
if (intr_status & ~( IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
......
......@@ -1490,8 +1490,7 @@ uart_block_til_ready(struct file *filp, struct uart_state *state)
return -ERESTARTSYS;
if (!info->tty || tty_hung_up_p(filp))
return (port->flags & UPF_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS;
return -EAGAIN;
return 0;
}
......@@ -1596,8 +1595,7 @@ static int uart_open(struct tty_struct *tty, struct file *filp)
* If the port is in the middle of closing, bail out now.
*/
if (tty_hung_up_p(filp)) {
retval = (state->port->flags & UPF_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS;
retval = -EAGAIN;
state->count--;
up(&state->sem);
goto fail;
......
......@@ -18,6 +18,7 @@
*/
#include <linux/types.h>
#include <linux/compiler.h>
#if BITS_PER_LONG == 64
......@@ -31,12 +32,12 @@
#elif BITS_PER_LONG == 32
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor) __attribute_pure__;
# define do_div(n,base) ({ \
uint32_t __base = (base); \
uint32_t __rem; \
if (((n) >> 32) == 0) { \
if (likely(((n) >> 32) == 0)) { \
__rem = (uint32_t)(n) % __base; \
(n) = (uint32_t)(n) / __base; \
} else \
......
......@@ -56,6 +56,24 @@
#define __attribute_used__ __attribute__((__unused__))
#endif
/*
* From the GCC manual:
*
* Many functions have no effects except the return value and their
* return value depends only on the parameters and/or global
* variables. Such a function can be subject to common subexpression
* elimination and loop optimization just as an arithmetic operator
* would be.
* [...]
* The attribute `pure' is not implemented in GCC versions earlier
* than 2.96.
*/
#if (__GNUC__ == 2 && __GNUC_MINOR >= 96) || __GNUC__ > 2
#define __attribute_pure__ __attribute__((pure))
#else
#define __attribute_pure__ /* unimplemented */
#endif
/* This macro obfuscates arithmetic on a variable address so that gcc
shouldn't recognize the original var, and make assumptions about it */
#define RELOC_HIDE(ptr, off) \
......
......@@ -12,13 +12,17 @@
* The fast case for (n>>32 == 0) is handled inline by do_div().
*
* Code generated for this function might be very inefficient
* for some CPUs. div64_32() can be overridden by linking arch-specific
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
*/
#include <linux/types.h>
#include <linux/module.h>
#include <asm/div64.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
uint32_t __div64_32(uint64_t *n, uint32_t base)
{
uint32_t low, low2, high, rem;
......@@ -43,3 +47,6 @@ uint32_t __div64_32(uint64_t *n, uint32_t base)
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif /* BITS_PER_LONG == 32 */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment