Commit 3ac27afe authored by Jonathan Cameron's avatar Jonathan Cameron

iio:dac:ad5755: Switch to generic firmware properties and drop pdata

Lars pointed out that platform data can also be supported via the
generic properties interface, so there is no point in continuing to
support it separately.  Hence squish the linux/platform_data/ad5755.h
header into the c file and drop accessing the platform data directly.

Done by inspection only.  Mostly completely mechanical with the
exception of a few places where default value handling is
cleaner done by first setting the value, then calling the
firmware reading function but and not checking the return value,
as opposed to reading firmware then setting the default if an error
occurs.

Part of general attempt to move all of IIO over to generic
device properties, both to enable other firmware types and
to remove drivers that can be the source of of_ specific
behaviour in new drivers.
Suggested-by: default avatarLars-Peter Clausen <lars@metafoo.de>
Signed-off-by: default avatarJonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: default avatarAndy Shevchenko <andy.shevchenko@gmail.com>
parent 9020ef65
...@@ -13,10 +13,10 @@ ...@@ -13,10 +13,10 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/sysfs.h> #include <linux/sysfs.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/of.h> #include <linux/property.h>
#include <linux/iio/iio.h> #include <linux/iio/iio.h>
#include <linux/iio/sysfs.h> #include <linux/iio/sysfs.h>
#include <linux/platform_data/ad5755.h>
#define AD5755_NUM_CHANNELS 4 #define AD5755_NUM_CHANNELS 4
...@@ -63,6 +63,101 @@ ...@@ -63,6 +63,101 @@
#define AD5755_SLEW_RATE_SHIFT 3 #define AD5755_SLEW_RATE_SHIFT 3
#define AD5755_SLEW_ENABLE BIT(12) #define AD5755_SLEW_ENABLE BIT(12)
enum ad5755_mode {
AD5755_MODE_VOLTAGE_0V_5V = 0,
AD5755_MODE_VOLTAGE_0V_10V = 1,
AD5755_MODE_VOLTAGE_PLUSMINUS_5V = 2,
AD5755_MODE_VOLTAGE_PLUSMINUS_10V = 3,
AD5755_MODE_CURRENT_4mA_20mA = 4,
AD5755_MODE_CURRENT_0mA_20mA = 5,
AD5755_MODE_CURRENT_0mA_24mA = 6,
};
enum ad5755_dc_dc_phase {
AD5755_DC_DC_PHASE_ALL_SAME_EDGE = 0,
AD5755_DC_DC_PHASE_A_B_SAME_EDGE_C_D_OPP_EDGE = 1,
AD5755_DC_DC_PHASE_A_C_SAME_EDGE_B_D_OPP_EDGE = 2,
AD5755_DC_DC_PHASE_90_DEGREE = 3,
};
enum ad5755_dc_dc_freq {
AD5755_DC_DC_FREQ_250kHZ = 0,
AD5755_DC_DC_FREQ_410kHZ = 1,
AD5755_DC_DC_FREQ_650kHZ = 2,
};
enum ad5755_dc_dc_maxv {
AD5755_DC_DC_MAXV_23V = 0,
AD5755_DC_DC_MAXV_24V5 = 1,
AD5755_DC_DC_MAXV_27V = 2,
AD5755_DC_DC_MAXV_29V5 = 3,
};
enum ad5755_slew_rate {
AD5755_SLEW_RATE_64k = 0,
AD5755_SLEW_RATE_32k = 1,
AD5755_SLEW_RATE_16k = 2,
AD5755_SLEW_RATE_8k = 3,
AD5755_SLEW_RATE_4k = 4,
AD5755_SLEW_RATE_2k = 5,
AD5755_SLEW_RATE_1k = 6,
AD5755_SLEW_RATE_500 = 7,
AD5755_SLEW_RATE_250 = 8,
AD5755_SLEW_RATE_125 = 9,
AD5755_SLEW_RATE_64 = 10,
AD5755_SLEW_RATE_32 = 11,
AD5755_SLEW_RATE_16 = 12,
AD5755_SLEW_RATE_8 = 13,
AD5755_SLEW_RATE_4 = 14,
AD5755_SLEW_RATE_0_5 = 15,
};
enum ad5755_slew_step_size {
AD5755_SLEW_STEP_SIZE_1 = 0,
AD5755_SLEW_STEP_SIZE_2 = 1,
AD5755_SLEW_STEP_SIZE_4 = 2,
AD5755_SLEW_STEP_SIZE_8 = 3,
AD5755_SLEW_STEP_SIZE_16 = 4,
AD5755_SLEW_STEP_SIZE_32 = 5,
AD5755_SLEW_STEP_SIZE_64 = 6,
AD5755_SLEW_STEP_SIZE_128 = 7,
AD5755_SLEW_STEP_SIZE_256 = 8,
};
/**
* struct ad5755_platform_data - AD5755 DAC driver platform data
* @ext_dc_dc_compenstation_resistor: Whether an external DC-DC converter
* compensation register is used.
* @dc_dc_phase: DC-DC converter phase.
* @dc_dc_freq: DC-DC converter frequency.
* @dc_dc_maxv: DC-DC maximum allowed boost voltage.
* @dac: Per DAC instance parameters.
* @dac.mode: The mode to be used for the DAC output.
* @dac.ext_current_sense_resistor: Whether an external current sense resistor
* is used.
* @dac.enable_voltage_overrange: Whether to enable 20% voltage output overrange.
* @dac.slew.enable: Whether to enable digital slew.
* @dac.slew.rate: Slew rate of the digital slew.
* @dac.slew.step_size: Slew step size of the digital slew.
**/
struct ad5755_platform_data {
bool ext_dc_dc_compenstation_resistor;
enum ad5755_dc_dc_phase dc_dc_phase;
enum ad5755_dc_dc_freq dc_dc_freq;
enum ad5755_dc_dc_maxv dc_dc_maxv;
struct {
enum ad5755_mode mode;
bool ext_current_sense_resistor;
bool enable_voltage_overrange;
struct {
bool enable;
enum ad5755_slew_rate rate;
enum ad5755_slew_step_size step_size;
} slew;
} dac[4];
};
/** /**
* struct ad5755_chip_info - chip specific information * struct ad5755_chip_info - chip specific information
* @channel_template: channel specification * @channel_template: channel specification
...@@ -111,7 +206,6 @@ enum ad5755_type { ...@@ -111,7 +206,6 @@ enum ad5755_type {
ID_AD5737, ID_AD5737,
}; };
#ifdef CONFIG_OF
static const int ad5755_dcdc_freq_table[][2] = { static const int ad5755_dcdc_freq_table[][2] = {
{ 250000, AD5755_DC_DC_FREQ_250kHZ }, { 250000, AD5755_DC_DC_FREQ_250kHZ },
{ 410000, AD5755_DC_DC_FREQ_410kHZ }, { 410000, AD5755_DC_DC_FREQ_410kHZ },
...@@ -154,7 +248,6 @@ static const int ad5755_slew_step_table[][2] = { ...@@ -154,7 +248,6 @@ static const int ad5755_slew_step_table[][2] = {
{ 2, AD5755_SLEW_STEP_SIZE_2 }, { 2, AD5755_SLEW_STEP_SIZE_2 },
{ 1, AD5755_SLEW_STEP_SIZE_1 }, { 1, AD5755_SLEW_STEP_SIZE_1 },
}; };
#endif
static int ad5755_write_unlocked(struct iio_dev *indio_dev, static int ad5755_write_unlocked(struct iio_dev *indio_dev,
unsigned int reg, unsigned int val) unsigned int reg, unsigned int val)
...@@ -604,30 +697,29 @@ static const struct ad5755_platform_data ad5755_default_pdata = { ...@@ -604,30 +697,29 @@ static const struct ad5755_platform_data ad5755_default_pdata = {
}, },
}; };
#ifdef CONFIG_OF static struct ad5755_platform_data *ad5755_parse_fw(struct device *dev)
static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
{ {
struct device_node *np = dev->of_node; struct fwnode_handle *pp;
struct device_node *pp;
struct ad5755_platform_data *pdata; struct ad5755_platform_data *pdata;
unsigned int tmp; unsigned int tmp;
unsigned int tmparray[3]; unsigned int tmparray[3];
int devnr, i; int devnr, i;
if (!dev_fwnode(dev))
return NULL;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) if (!pdata)
return NULL; return NULL;
pdata->ext_dc_dc_compenstation_resistor = pdata->ext_dc_dc_compenstation_resistor =
of_property_read_bool(np, "adi,ext-dc-dc-compenstation-resistor"); device_property_read_bool(dev, "adi,ext-dc-dc-compenstation-resistor");
if (!of_property_read_u32(np, "adi,dc-dc-phase", &tmp))
pdata->dc_dc_phase = tmp;
else
pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE; pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE;
device_property_read_u32(dev, "adi,dc-dc-phase", &pdata->dc_dc_phase);
pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ; pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ;
if (!of_property_read_u32(np, "adi,dc-dc-freq-hz", &tmp)) { if (!device_property_read_u32(dev, "adi,dc-dc-freq-hz", &tmp)) {
for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) { for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) {
if (tmp == ad5755_dcdc_freq_table[i][0]) { if (tmp == ad5755_dcdc_freq_table[i][0]) {
pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1]; pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1];
...@@ -641,7 +733,7 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev) ...@@ -641,7 +733,7 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
} }
pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V; pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V;
if (!of_property_read_u32(np, "adi,dc-dc-max-microvolt", &tmp)) { if (!device_property_read_u32(dev, "adi,dc-dc-max-microvolt", &tmp)) {
for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) { for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) {
if (tmp == ad5755_dcdc_maxv_table[i][0]) { if (tmp == ad5755_dcdc_maxv_table[i][0]) {
pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1]; pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1];
...@@ -654,25 +746,23 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev) ...@@ -654,25 +746,23 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
} }
devnr = 0; devnr = 0;
for_each_child_of_node(np, pp) { device_for_each_child_node(dev, pp) {
if (devnr >= AD5755_NUM_CHANNELS) { if (devnr >= AD5755_NUM_CHANNELS) {
dev_err(dev, dev_err(dev,
"There are too many channels defined in DT\n"); "There are too many channels defined in DT\n");
goto error_out; goto error_out;
} }
if (!of_property_read_u32(pp, "adi,mode", &tmp))
pdata->dac[devnr].mode = tmp;
else
pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA; pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA;
fwnode_property_read_u32(pp, "adi,mode", &pdata->dac[devnr].mode);
pdata->dac[devnr].ext_current_sense_resistor = pdata->dac[devnr].ext_current_sense_resistor =
of_property_read_bool(pp, "adi,ext-current-sense-resistor"); fwnode_property_read_bool(pp, "adi,ext-current-sense-resistor");
pdata->dac[devnr].enable_voltage_overrange = pdata->dac[devnr].enable_voltage_overrange =
of_property_read_bool(pp, "adi,enable-voltage-overrange"); fwnode_property_read_bool(pp, "adi,enable-voltage-overrange");
if (!of_property_read_u32_array(pp, "adi,slew", tmparray, 3)) { if (!fwnode_property_read_u32_array(pp, "adi,slew", tmparray, 3)) {
pdata->dac[devnr].slew.enable = tmparray[0]; pdata->dac[devnr].slew.enable = tmparray[0];
pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k; pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
...@@ -715,18 +805,11 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev) ...@@ -715,18 +805,11 @@ static struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
devm_kfree(dev, pdata); devm_kfree(dev, pdata);
return NULL; return NULL;
} }
#else
static
struct ad5755_platform_data *ad5755_parse_dt(struct device *dev)
{
return NULL;
}
#endif
static int ad5755_probe(struct spi_device *spi) static int ad5755_probe(struct spi_device *spi)
{ {
enum ad5755_type type = spi_get_device_id(spi)->driver_data; enum ad5755_type type = spi_get_device_id(spi)->driver_data;
const struct ad5755_platform_data *pdata = dev_get_platdata(&spi->dev); const struct ad5755_platform_data *pdata;
struct iio_dev *indio_dev; struct iio_dev *indio_dev;
struct ad5755_state *st; struct ad5755_state *st;
int ret; int ret;
...@@ -751,13 +834,10 @@ static int ad5755_probe(struct spi_device *spi) ...@@ -751,13 +834,10 @@ static int ad5755_probe(struct spi_device *spi)
mutex_init(&st->lock); mutex_init(&st->lock);
if (spi->dev.of_node)
pdata = ad5755_parse_dt(&spi->dev);
else
pdata = spi->dev.platform_data;
pdata = ad5755_parse_fw(&spi->dev);
if (!pdata) { if (!pdata) {
dev_warn(&spi->dev, "no platform data? using default\n"); dev_warn(&spi->dev, "no firmware provided parameters? using default\n");
pdata = &ad5755_default_pdata; pdata = &ad5755_default_pdata;
} }
......
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright 2012 Analog Devices Inc.
*/
#ifndef __LINUX_PLATFORM_DATA_AD5755_H__
#define __LINUX_PLATFORM_DATA_AD5755_H__
enum ad5755_mode {
AD5755_MODE_VOLTAGE_0V_5V = 0,
AD5755_MODE_VOLTAGE_0V_10V = 1,
AD5755_MODE_VOLTAGE_PLUSMINUS_5V = 2,
AD5755_MODE_VOLTAGE_PLUSMINUS_10V = 3,
AD5755_MODE_CURRENT_4mA_20mA = 4,
AD5755_MODE_CURRENT_0mA_20mA = 5,
AD5755_MODE_CURRENT_0mA_24mA = 6,
};
enum ad5755_dc_dc_phase {
AD5755_DC_DC_PHASE_ALL_SAME_EDGE = 0,
AD5755_DC_DC_PHASE_A_B_SAME_EDGE_C_D_OPP_EDGE = 1,
AD5755_DC_DC_PHASE_A_C_SAME_EDGE_B_D_OPP_EDGE = 2,
AD5755_DC_DC_PHASE_90_DEGREE = 3,
};
enum ad5755_dc_dc_freq {
AD5755_DC_DC_FREQ_250kHZ = 0,
AD5755_DC_DC_FREQ_410kHZ = 1,
AD5755_DC_DC_FREQ_650kHZ = 2,
};
enum ad5755_dc_dc_maxv {
AD5755_DC_DC_MAXV_23V = 0,
AD5755_DC_DC_MAXV_24V5 = 1,
AD5755_DC_DC_MAXV_27V = 2,
AD5755_DC_DC_MAXV_29V5 = 3,
};
enum ad5755_slew_rate {
AD5755_SLEW_RATE_64k = 0,
AD5755_SLEW_RATE_32k = 1,
AD5755_SLEW_RATE_16k = 2,
AD5755_SLEW_RATE_8k = 3,
AD5755_SLEW_RATE_4k = 4,
AD5755_SLEW_RATE_2k = 5,
AD5755_SLEW_RATE_1k = 6,
AD5755_SLEW_RATE_500 = 7,
AD5755_SLEW_RATE_250 = 8,
AD5755_SLEW_RATE_125 = 9,
AD5755_SLEW_RATE_64 = 10,
AD5755_SLEW_RATE_32 = 11,
AD5755_SLEW_RATE_16 = 12,
AD5755_SLEW_RATE_8 = 13,
AD5755_SLEW_RATE_4 = 14,
AD5755_SLEW_RATE_0_5 = 15,
};
enum ad5755_slew_step_size {
AD5755_SLEW_STEP_SIZE_1 = 0,
AD5755_SLEW_STEP_SIZE_2 = 1,
AD5755_SLEW_STEP_SIZE_4 = 2,
AD5755_SLEW_STEP_SIZE_8 = 3,
AD5755_SLEW_STEP_SIZE_16 = 4,
AD5755_SLEW_STEP_SIZE_32 = 5,
AD5755_SLEW_STEP_SIZE_64 = 6,
AD5755_SLEW_STEP_SIZE_128 = 7,
AD5755_SLEW_STEP_SIZE_256 = 8,
};
/**
* struct ad5755_platform_data - AD5755 DAC driver platform data
* @ext_dc_dc_compenstation_resistor: Whether an external DC-DC converter
* compensation register is used.
* @dc_dc_phase: DC-DC converter phase.
* @dc_dc_freq: DC-DC converter frequency.
* @dc_dc_maxv: DC-DC maximum allowed boost voltage.
* @dac.mode: The mode to be used for the DAC output.
* @dac.ext_current_sense_resistor: Whether an external current sense resistor
* is used.
* @dac.enable_voltage_overrange: Whether to enable 20% voltage output overrange.
* @dac.slew.enable: Whether to enable digital slew.
* @dac.slew.rate: Slew rate of the digital slew.
* @dac.slew.step_size: Slew step size of the digital slew.
**/
struct ad5755_platform_data {
bool ext_dc_dc_compenstation_resistor;
enum ad5755_dc_dc_phase dc_dc_phase;
enum ad5755_dc_dc_freq dc_dc_freq;
enum ad5755_dc_dc_maxv dc_dc_maxv;
struct {
enum ad5755_mode mode;
bool ext_current_sense_resistor;
bool enable_voltage_overrange;
struct {
bool enable;
enum ad5755_slew_rate rate;
enum ad5755_slew_step_size step_size;
} slew;
} dac[4];
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment