Commit 3bc1ad25 authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'spi/topic/delay', 'spi/topic/dw',...

Merge remote-tracking branches 'spi/topic/delay', 'spi/topic/dw', 'spi/topic/fsl-dspi' and 'spi/topic/fsl-espi' into spi-next
......@@ -380,7 +380,6 @@ config SPI_FSL_DSPI
config SPI_FSL_ESPI
tristate "Freescale eSPI controller"
depends on FSL_SOC
select SPI_FSL_LIB
help
This enables using the Freescale eSPI controllers in master mode.
From MPC8536, 85xx platform uses the controller, and all P10xx,
......
......@@ -502,6 +502,7 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
master->handle_err = dw_spi_handle_err;
master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node;
master->flags = SPI_MASTER_GPIO_SS;
/* Basic HW init */
spi_hw_init(dev, dws);
......
......@@ -15,6 +15,8 @@
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
......@@ -40,6 +42,7 @@
#define TRAN_STATE_WORD_ODD_NUM 0x04
#define DSPI_FIFO_SIZE 4
#define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
#define SPI_MCR 0x00
#define SPI_MCR_MASTER (1 << 31)
......@@ -72,6 +75,11 @@
#define SPI_SR_TCFQF 0x80000000
#define SPI_SR_CLEAR 0xdaad0000
#define SPI_RSER_TFFFE BIT(25)
#define SPI_RSER_TFFFD BIT(24)
#define SPI_RSER_RFDFE BIT(17)
#define SPI_RSER_RFDFD BIT(16)
#define SPI_RSER 0x30
#define SPI_RSER_EOQFE 0x10000000
#define SPI_RSER_TCFQE 0x80000000
......@@ -109,6 +117,8 @@
#define SPI_TCR_TCNT_MAX 0x10000
#define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
struct chip_data {
u32 mcr_val;
u32 ctar_val;
......@@ -118,6 +128,7 @@ struct chip_data {
enum dspi_trans_mode {
DSPI_EOQ_MODE = 0,
DSPI_TCFQ_MODE,
DSPI_DMA_MODE,
};
struct fsl_dspi_devtype_data {
......@@ -126,7 +137,7 @@ struct fsl_dspi_devtype_data {
};
static const struct fsl_dspi_devtype_data vf610_data = {
.trans_mode = DSPI_EOQ_MODE,
.trans_mode = DSPI_DMA_MODE,
.max_clock_factor = 2,
};
......@@ -140,6 +151,23 @@ static const struct fsl_dspi_devtype_data ls2085a_data = {
.max_clock_factor = 8,
};
struct fsl_dspi_dma {
/* Length of transfer in words of DSPI_FIFO_SIZE */
u32 curr_xfer_len;
u32 *tx_dma_buf;
struct dma_chan *chan_tx;
dma_addr_t tx_dma_phys;
struct completion cmd_tx_complete;
struct dma_async_tx_descriptor *tx_desc;
u32 *rx_dma_buf;
struct dma_chan *chan_rx;
dma_addr_t rx_dma_phys;
struct completion cmd_rx_complete;
struct dma_async_tx_descriptor *rx_desc;
};
struct fsl_dspi {
struct spi_master *master;
struct platform_device *pdev;
......@@ -166,8 +194,11 @@ struct fsl_dspi {
u32 waitflags;
u32 spi_tcnt;
struct fsl_dspi_dma *dma;
};
static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
static inline int is_double_byte_mode(struct fsl_dspi *dspi)
{
unsigned int val;
......@@ -177,6 +208,255 @@ static inline int is_double_byte_mode(struct fsl_dspi *dspi)
return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
}
static void dspi_tx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
complete(&dma->cmd_tx_complete);
}
static void dspi_rx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
int rx_word;
int i;
u16 d;
rx_word = is_double_byte_mode(dspi);
if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
for (i = 0; i < dma->curr_xfer_len; i++) {
d = dspi->dma->rx_dma_buf[i];
rx_word ? (*(u16 *)dspi->rx = d) :
(*(u8 *)dspi->rx = d);
dspi->rx += rx_word + 1;
}
}
complete(&dma->cmd_rx_complete);
}
static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
int time_left;
int tx_word;
int i;
tx_word = is_double_byte_mode(dspi);
for (i = 0; i < dma->curr_xfer_len; i++) {
dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
if ((dspi->cs_change) && (!dspi->len))
dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
}
dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
dma->tx_dma_phys,
dma->curr_xfer_len *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->tx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->tx_desc->callback = dspi_tx_dma_callback;
dma->tx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
dma->rx_dma_phys,
dma->curr_xfer_len *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->rx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->rx_desc->callback = dspi_rx_dma_callback;
dma->rx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
reinit_completion(&dspi->dma->cmd_rx_complete);
reinit_completion(&dspi->dma->cmd_tx_complete);
dma_async_issue_pending(dma->chan_rx);
dma_async_issue_pending(dma->chan_tx);
time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA tx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA rx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
return 0;
}
static int dspi_dma_xfer(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
int curr_remaining_bytes;
int bytes_per_buffer;
int word = 1;
int ret = 0;
if (is_double_byte_mode(dspi))
word = 2;
curr_remaining_bytes = dspi->len;
bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
while (curr_remaining_bytes) {
/* Check if current transfer fits the DMA buffer */
dma->curr_xfer_len = curr_remaining_bytes / word;
if (dma->curr_xfer_len > bytes_per_buffer)
dma->curr_xfer_len = bytes_per_buffer;
ret = dspi_next_xfer_dma_submit(dspi);
if (ret) {
dev_err(dev, "DMA transfer failed\n");
goto exit;
} else {
curr_remaining_bytes -= dma->curr_xfer_len * word;
if (curr_remaining_bytes < 0)
curr_remaining_bytes = 0;
}
}
exit:
return ret;
}
static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
{
struct fsl_dspi_dma *dma;
struct dma_slave_config cfg;
struct device *dev = &dspi->pdev->dev;
int ret;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->chan_rx = dma_request_slave_channel(dev, "rx");
if (!dma->chan_rx) {
dev_err(dev, "rx dma channel not available\n");
ret = -ENODEV;
return ret;
}
dma->chan_tx = dma_request_slave_channel(dev, "tx");
if (!dma->chan_tx) {
dev_err(dev, "tx dma channel not available\n");
ret = -ENODEV;
goto err_tx_channel;
}
dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
&dma->tx_dma_phys, GFP_KERNEL);
if (!dma->tx_dma_buf) {
ret = -ENOMEM;
goto err_tx_dma_buf;
}
dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
&dma->rx_dma_phys, GFP_KERNEL);
if (!dma->rx_dma_buf) {
ret = -ENOMEM;
goto err_rx_dma_buf;
}
cfg.src_addr = phy_addr + SPI_POPR;
cfg.dst_addr = phy_addr + SPI_PUSHR;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 1;
cfg.dst_maxburst = 1;
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &cfg);
if (ret) {
dev_err(dev, "can't configure rx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &cfg);
if (ret) {
dev_err(dev, "can't configure tx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
dspi->dma = dma;
init_completion(&dma->cmd_tx_complete);
init_completion(&dma->cmd_rx_complete);
return 0;
err_slave_config:
dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
dma->rx_dma_buf, dma->rx_dma_phys);
err_rx_dma_buf:
dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
dma->tx_dma_buf, dma->tx_dma_phys);
err_tx_dma_buf:
dma_release_channel(dma->chan_tx);
err_tx_channel:
dma_release_channel(dma->chan_rx);
devm_kfree(dev, dma);
dspi->dma = NULL;
return ret;
}
static void dspi_release_dma(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
if (dma) {
if (dma->chan_tx) {
dma_unmap_single(dev, dma->tx_dma_phys,
DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
dma_release_channel(dma->chan_tx);
}
if (dma->chan_rx) {
dma_unmap_single(dev, dma->rx_dma_phys,
DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
dma_release_channel(dma->chan_rx);
}
}
}
static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
unsigned long clkrate)
{
......@@ -425,6 +705,12 @@ static int dspi_transfer_one_message(struct spi_master *master,
regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
dspi_tcfq_write(dspi);
break;
case DSPI_DMA_MODE:
regmap_write(dspi->regmap, SPI_RSER,
SPI_RSER_TFFFE | SPI_RSER_TFFFD |
SPI_RSER_RFDFE | SPI_RSER_RFDFD);
status = dspi_dma_xfer(dspi);
break;
default:
dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
trans_mode);
......@@ -432,9 +718,13 @@ static int dspi_transfer_one_message(struct spi_master *master,
goto out;
}
if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
if (trans_mode != DSPI_DMA_MODE) {
if (wait_event_interruptible(dspi->waitq,
dspi->waitflags))
dev_err(&dspi->pdev->dev,
"wait transfer complete fail!\n");
dspi->waitflags = 0;
}
if (transfer->delay_usecs)
udelay(transfer->delay_usecs);
......@@ -740,6 +1030,13 @@ static int dspi_probe(struct platform_device *pdev)
if (ret)
goto out_master_put;
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
if (dspi_request_dma(dspi, res->start)) {
dev_err(&pdev->dev, "can't get dma channels\n");
goto out_clk_put;
}
}
master->max_speed_hz =
clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
......@@ -768,6 +1065,7 @@ static int dspi_remove(struct platform_device *pdev)
struct fsl_dspi *dspi = spi_master_get_devdata(master);
/* Disconnect from the SPI framework */
dspi_release_dma(dspi);
clk_disable_unprepare(dspi->clk);
spi_unregister_master(dspi->master);
......
......@@ -23,8 +23,6 @@
#include <linux/pm_runtime.h>
#include <sysdev/fsl_soc.h>
#include "spi-fsl-lib.h"
/* eSPI Controller registers */
#define ESPI_SPMODE 0x00 /* eSPI mode register */
#define ESPI_SPIE 0x04 /* eSPI event register */
......@@ -54,8 +52,11 @@
#define CSMODE_AFT(x) ((x) << 8)
#define CSMODE_CG(x) ((x) << 3)
#define FSL_ESPI_FIFO_SIZE 32
#define FSL_ESPI_RXTHR 15
/* Default mode/csmode for eSPI controller */
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
| CSMODE_AFT(0) | CSMODE_CG(1))
......@@ -90,219 +91,342 @@
#define AUTOSUSPEND_TIMEOUT 2000
static inline u32 fsl_espi_read_reg(struct mpc8xxx_spi *mspi, int offset)
struct fsl_espi {
struct device *dev;
void __iomem *reg_base;
struct list_head *m_transfers;
struct spi_transfer *tx_t;
unsigned int tx_pos;
bool tx_done;
struct spi_transfer *rx_t;
unsigned int rx_pos;
bool rx_done;
bool swab;
unsigned int rxskip;
spinlock_t lock;
u32 spibrg; /* SPIBRG input clock */
struct completion done;
};
struct fsl_espi_cs {
u32 hw_mode;
};
static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
{
return ioread32be(mspi->reg_base + offset);
return ioread32be(espi->reg_base + offset);
}
static inline u8 fsl_espi_read_reg8(struct mpc8xxx_spi *mspi, int offset)
static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
{
return ioread8(mspi->reg_base + offset);
return ioread16be(espi->reg_base + offset);
}
static inline void fsl_espi_write_reg(struct mpc8xxx_spi *mspi, int offset,
u32 val)
static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
{
iowrite32be(val, mspi->reg_base + offset);
return ioread8(espi->reg_base + offset);
}
static inline void fsl_espi_write_reg8(struct mpc8xxx_spi *mspi, int offset,
u8 val)
static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
u32 val)
{
iowrite8(val, mspi->reg_base + offset);
iowrite32be(val, espi->reg_base + offset);
}
static void fsl_espi_copy_to_buf(struct spi_message *m,
struct mpc8xxx_spi *mspi)
static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
u16 val)
{
struct spi_transfer *t;
u8 *buf = mspi->local_buf;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->tx_buf)
memcpy(buf, t->tx_buf, t->len);
else
memset(buf, 0, t->len);
buf += t->len;
}
iowrite16be(val, espi->reg_base + offset);
}
static void fsl_espi_copy_from_buf(struct spi_message *m,
struct mpc8xxx_spi *mspi)
static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
u8 val)
{
struct spi_transfer *t;
u8 *buf = mspi->local_buf;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->rx_buf)
memcpy(t->rx_buf, buf, t->len);
buf += t->len;
}
iowrite8(val, espi->reg_base + offset);
}
static int fsl_espi_check_message(struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
struct spi_transfer *t, *first;
if (m->frame_length > SPCOM_TRANLEN_MAX) {
dev_err(mspi->dev, "message too long, size is %u bytes\n",
dev_err(espi->dev, "message too long, size is %u bytes\n",
m->frame_length);
return -EMSGSIZE;
}
first = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
list_for_each_entry(t, &m->transfers, transfer_list) {
if (first->bits_per_word != t->bits_per_word ||
first->speed_hz != t->speed_hz) {
dev_err(mspi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
return -EINVAL;
}
}
/* ESPI supports MSB-first transfers for word size 8 / 16 only */
if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
first->bits_per_word != 16) {
dev_err(espi->dev,
"MSB-first transfer not supported for wordsize %u\n",
first->bits_per_word);
return -EINVAL;
}
return 0;
}
static void fsl_espi_change_mode(struct spi_device *spi)
static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs *cs = spi->controller_state;
u32 tmp;
unsigned long flags;
/* Turn off IRQs locally to minimize time that SPI is disabled. */
local_irq_save(flags);
/* Turn off SPI unit prior changing mode */
tmp = fsl_espi_read_reg(mspi, ESPI_SPMODE);
fsl_espi_write_reg(mspi, ESPI_SPMODE, tmp & ~SPMODE_ENABLE);
fsl_espi_write_reg(mspi, ESPI_SPMODEx(spi->chip_select),
cs->hw_mode);
fsl_espi_write_reg(mspi, ESPI_SPMODE, tmp);
struct spi_transfer *t;
unsigned int i = 0, rxskip = 0;
local_irq_restore(flags);
/*
* prerequisites for ESPI rxskip mode:
* - message has two transfers
* - first transfer is a write and second is a read
*
* In addition the current low-level transfer mechanism requires
* that the rxskip bytes fit into the TX FIFO. Else the transfer
* would hang because after the first FSL_ESPI_FIFO_SIZE bytes
* the TX FIFO isn't re-filled.
*/
list_for_each_entry(t, &m->transfers, transfer_list) {
if (i == 0) {
if (!t->tx_buf || t->rx_buf ||
t->len > FSL_ESPI_FIFO_SIZE)
return 0;
rxskip = t->len;
} else if (i == 1) {
if (t->tx_buf || !t->rx_buf)
return 0;
}
i++;
}
return i == 2 ? rxskip : 0;
}
static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
{
u32 data;
u16 data_h;
u16 data_l;
const u32 *tx = mpc8xxx_spi->tx;
u32 tx_fifo_avail;
unsigned int tx_left;
const void *tx_buf;
/* if events is zero transfer has not started and tx fifo is empty */
tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
start:
tx_left = espi->tx_t->len - espi->tx_pos;
tx_buf = espi->tx_t->tx_buf;
while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
if (tx_left >= 4) {
if (!tx_buf)
fsl_espi_write_reg(espi, ESPI_SPITF, 0);
else if (espi->swab)
fsl_espi_write_reg(espi, ESPI_SPITF,
swahb32p(tx_buf + espi->tx_pos));
else
fsl_espi_write_reg(espi, ESPI_SPITF,
*(u32 *)(tx_buf + espi->tx_pos));
espi->tx_pos += 4;
tx_left -= 4;
tx_fifo_avail -= 4;
} else if (tx_left >= 2 && tx_buf && espi->swab) {
fsl_espi_write_reg16(espi, ESPI_SPITF,
swab16p(tx_buf + espi->tx_pos));
espi->tx_pos += 2;
tx_left -= 2;
tx_fifo_avail -= 2;
} else {
if (!tx_buf)
fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
else
fsl_espi_write_reg8(espi, ESPI_SPITF,
*(u8 *)(tx_buf + espi->tx_pos));
espi->tx_pos += 1;
tx_left -= 1;
tx_fifo_avail -= 1;
}
}
if (!tx)
return 0;
if (!tx_left) {
/* Last transfer finished, in rxskip mode only one is needed */
if (list_is_last(&espi->tx_t->transfer_list,
espi->m_transfers) || espi->rxskip) {
espi->tx_done = true;
return;
}
espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
espi->tx_pos = 0;
/* continue with next transfer if tx fifo is not full */
if (tx_fifo_avail)
goto start;
}
}
static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
{
u32 rx_fifo_avail = SPIE_RXCNT(events);
unsigned int rx_left;
void *rx_buf;
start:
rx_left = espi->rx_t->len - espi->rx_pos;
rx_buf = espi->rx_t->rx_buf;
while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
if (rx_left >= 4) {
u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
if (rx_buf && espi->swab)
*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
else if (rx_buf)
*(u32 *)(rx_buf + espi->rx_pos) = val;
espi->rx_pos += 4;
rx_left -= 4;
rx_fifo_avail -= 4;
} else if (rx_left >= 2 && rx_buf && espi->swab) {
u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
espi->rx_pos += 2;
rx_left -= 2;
rx_fifo_avail -= 2;
} else {
u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
data = *tx++ << mpc8xxx_spi->tx_shift;
data_l = data & 0xffff;
data_h = (data >> 16) & 0xffff;
swab16s(&data_l);
swab16s(&data_h);
data = data_h | data_l;
if (rx_buf)
*(u8 *)(rx_buf + espi->rx_pos) = val;
espi->rx_pos += 1;
rx_left -= 1;
rx_fifo_avail -= 1;
}
}
mpc8xxx_spi->tx = tx;
return data;
if (!rx_left) {
if (list_is_last(&espi->rx_t->transfer_list,
espi->m_transfers)) {
espi->rx_done = true;
return;
}
espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
espi->rx_pos = 0;
/* continue with next transfer if rx fifo is not empty */
if (rx_fifo_avail)
goto start;
}
}
static void fsl_espi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_espi *espi = spi_master_get_devdata(spi->master);
int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
u32 hz = t ? t->speed_hz : spi->max_speed_hz;
u8 pm;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
cs->rx_shift = 0;
cs->tx_shift = 0;
cs->get_rx = mpc8xxx_spi_rx_buf_u32;
cs->get_tx = mpc8xxx_spi_tx_buf_u32;
if (bits_per_word <= 8) {
cs->rx_shift = 8 - bits_per_word;
} else {
cs->rx_shift = 16 - bits_per_word;
if (spi->mode & SPI_LSB_FIRST)
cs->get_tx = fsl_espi_tx_buf_lsb;
}
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
u32 hw_mode_old = cs->hw_mode;
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
if ((mpc8xxx_spi->spibrg / hz) > 64) {
cs->hw_mode |= CSMODE_DIV16;
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
if (pm > 33)
pm = 33;
} else {
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
if (pm > 15) {
cs->hw_mode |= CSMODE_DIV16;
pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
}
if (pm)
pm--;
if (pm < 2)
pm = 2;
cs->hw_mode |= CSMODE_PM(pm);
fsl_espi_change_mode(spi);
/* don't write the mode register if the mode doesn't change */
if (cs->hw_mode != hw_mode_old)
fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
cs->hw_mode);
}
static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
u32 word;
struct fsl_espi *espi = spi_master_get_devdata(spi->master);
unsigned int rx_len = t->len;
u32 mask, spcom;
int ret;
mpc8xxx_spi->len = t->len;
mpc8xxx_spi->count = roundup(t->len, 4) / 4;
mpc8xxx_spi->tx = t->tx_buf;
mpc8xxx_spi->rx = t->rx_buf;
reinit_completion(&mpc8xxx_spi->done);
reinit_completion(&espi->done);
/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM,
(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
spcom = SPCOM_CS(spi->chip_select);
spcom |= SPCOM_TRANLEN(t->len - 1);
/* configure RXSKIP mode */
if (espi->rxskip) {
spcom |= SPCOM_RXSKIP(espi->rxskip);
rx_len = t->len - espi->rxskip;
if (t->rx_nbits == SPI_NBITS_DUAL)
spcom |= SPCOM_DO;
}
fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
/* enable rx ints */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, SPIM_RNE);
/* enable interrupts */
mask = SPIM_DON;
if (rx_len > FSL_ESPI_FIFO_SIZE)
mask |= SPIM_RXT;
fsl_espi_write_reg(espi, ESPI_SPIM, mask);
/* transmit word */
word = mpc8xxx_spi->get_tx(mpc8xxx_spi);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPITF, word);
/* Prevent filling the fifo from getting interrupted */
spin_lock_irq(&espi->lock);
fsl_espi_fill_tx_fifo(espi, 0);
spin_unlock_irq(&espi->lock);
/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ);
ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
if (ret == 0)
dev_err(mpc8xxx_spi->dev,
"Transaction hanging up (left %d bytes)\n",
mpc8xxx_spi->count);
dev_err(espi->dev, "Transfer timed out!\n");
/* disable rx ints */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(espi, ESPI_SPIM, 0);
return mpc8xxx_spi->count > 0 ? -EMSGSIZE : 0;
return ret == 0 ? -ETIMEDOUT : 0;
}
static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
struct spi_device *spi = m->spi;
int ret;
fsl_espi_copy_to_buf(m, mspi);
/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
espi->m_transfers = &m->transfers;
espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
espi->tx_pos = 0;
espi->tx_done = false;
espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
espi->rx_pos = 0;
espi->rx_done = false;
espi->rxskip = fsl_espi_check_rxskip_mode(m);
if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
return -EINVAL;
}
/* In RXSKIP mode skip first transfer for reads */
if (espi->rxskip)
espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
fsl_espi_setup_transfer(spi, trans);
ret = fsl_espi_bufs(spi, trans);
......@@ -310,19 +434,13 @@ static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
if (trans->delay_usecs)
udelay(trans->delay_usecs);
fsl_espi_setup_transfer(spi, NULL);
if (!ret)
fsl_espi_copy_from_buf(m, mspi);
return ret;
}
static int fsl_espi_do_one_msg(struct spi_master *master,
struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
unsigned int delay_usecs = 0;
unsigned int delay_usecs = 0, rx_nbits = 0;
struct spi_transfer *t, trans = {};
int ret;
......@@ -333,6 +451,8 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->delay_usecs > delay_usecs)
delay_usecs = t->delay_usecs;
if (t->rx_nbits > rx_nbits)
rx_nbits = t->rx_nbits;
}
t = list_first_entry(&m->transfers, struct spi_transfer,
......@@ -342,8 +462,7 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
trans.speed_hz = t->speed_hz;
trans.bits_per_word = t->bits_per_word;
trans.delay_usecs = delay_usecs;
trans.tx_buf = mspi->local_buf;
trans.rx_buf = mspi->local_buf;
trans.rx_nbits = rx_nbits;
if (trans.len)
ret = fsl_espi_trans(m, &trans);
......@@ -360,12 +479,9 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
static int fsl_espi_setup(struct spi_device *spi)
{
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_espi *espi;
u32 loop_mode;
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
if (!spi->max_speed_hz)
return -EINVAL;
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
if (!cs) {
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
......@@ -374,12 +490,11 @@ static int fsl_espi_setup(struct spi_device *spi)
spi_set_ctldata(spi, cs);
}
mpc8xxx_spi = spi_master_get_devdata(spi->master);
espi = spi_master_get_devdata(spi->master);
pm_runtime_get_sync(mpc8xxx_spi->dev);
pm_runtime_get_sync(espi->dev);
cs->hw_mode = fsl_espi_read_reg(mpc8xxx_spi,
ESPI_SPMODEx(spi->chip_select));
cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
| CSMODE_REV);
......@@ -392,115 +507,74 @@ static int fsl_espi_setup(struct spi_device *spi)
cs->hw_mode |= CSMODE_REV;
/* Handle the loop mode */
loop_mode = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
loop_mode &= ~SPMODE_LOOP;
if (spi->mode & SPI_LOOP)
loop_mode |= SPMODE_LOOP;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, loop_mode);
fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
fsl_espi_setup_transfer(spi, NULL);
pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
pm_runtime_mark_last_busy(espi->dev);
pm_runtime_put_autosuspend(espi->dev);
return 0;
}
static void fsl_espi_cleanup(struct spi_device *spi)
{
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
kfree(cs);
spi_set_ctldata(spi, NULL);
}
static void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
{
/* We need handle RX first */
if (events & SPIE_RNE) {
u32 rx_data, tmp;
u8 rx_data_8;
int rx_nr_bytes = 4;
int ret;
/* Spin until RX is done */
if (SPIE_RXCNT(events) < min(4, mspi->len)) {
ret = spin_event_timeout(
!(SPIE_RXCNT(events =
fsl_espi_read_reg(mspi, ESPI_SPIE)) <
min(4, mspi->len)),
10000, 0); /* 10 msec */
if (!ret)
dev_err(mspi->dev,
"tired waiting for SPIE_RXCNT\n");
}
if (!espi->rx_done)
fsl_espi_read_rx_fifo(espi, events);
if (mspi->len >= 4) {
rx_data = fsl_espi_read_reg(mspi, ESPI_SPIRF);
} else if (mspi->len <= 0) {
dev_err(mspi->dev,
"unexpected RX(SPIE_RNE) interrupt occurred,\n"
"(local rxlen %d bytes, reg rxlen %d bytes)\n",
min(4, mspi->len), SPIE_RXCNT(events));
rx_nr_bytes = 0;
} else {
rx_nr_bytes = mspi->len;
tmp = mspi->len;
rx_data = 0;
while (tmp--) {
rx_data_8 = fsl_espi_read_reg8(mspi,
ESPI_SPIRF);
rx_data |= (rx_data_8 << (tmp * 8));
}
if (!espi->tx_done)
fsl_espi_fill_tx_fifo(espi, events);
rx_data <<= (4 - mspi->len) * 8;
}
mspi->len -= rx_nr_bytes;
if (rx_nr_bytes && mspi->rx)
mspi->get_rx(rx_data, mspi);
}
if (!espi->tx_done || !espi->rx_done)
return;
if (!(events & SPIE_TNF)) {
int ret;
/* we're done, but check for errors before returning */
events = fsl_espi_read_reg(espi, ESPI_SPIE);
/* spin until TX is done */
ret = spin_event_timeout(((events = fsl_espi_read_reg(
mspi, ESPI_SPIE)) & SPIE_TNF), 1000, 0);
if (!ret) {
dev_err(mspi->dev, "tired waiting for SPIE_TNF\n");
complete(&mspi->done);
return;
}
}
if (!(events & SPIE_DON))
dev_err(espi->dev,
"Transfer done but SPIE_DON isn't set!\n");
mspi->count -= 1;
if (mspi->count) {
u32 word = mspi->get_tx(mspi);
if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
fsl_espi_write_reg(mspi, ESPI_SPITF, word);
} else {
complete(&mspi->done);
}
complete(&espi->done);
}
static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
{
struct mpc8xxx_spi *mspi = context_data;
struct fsl_espi *espi = context_data;
u32 events;
spin_lock(&espi->lock);
/* Get interrupt events(tx/rx) */
events = fsl_espi_read_reg(mspi, ESPI_SPIE);
if (!events)
events = fsl_espi_read_reg(espi, ESPI_SPIE);
if (!events) {
spin_unlock(&espi->lock);
return IRQ_NONE;
}
dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
fsl_espi_cpu_irq(mspi, events);
fsl_espi_cpu_irq(espi, events);
/* Clear the events */
fsl_espi_write_reg(mspi, ESPI_SPIE, events);
fsl_espi_write_reg(espi, ESPI_SPIE, events);
spin_unlock(&espi->lock);
return IRQ_HANDLED;
}
......@@ -509,12 +583,12 @@ static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
static int fsl_espi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi *espi = spi_master_get_devdata(master);
u32 regval;
regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
regval &= ~SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
return 0;
}
......@@ -522,12 +596,12 @@ static int fsl_espi_runtime_suspend(struct device *dev)
static int fsl_espi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi *espi = spi_master_get_devdata(master);
u32 regval;
regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
regval |= SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
return 0;
}
......@@ -538,96 +612,105 @@ static size_t fsl_espi_max_message_size(struct spi_device *spi)
return SPCOM_TRANLEN_MAX;
}
static void fsl_espi_init_regs(struct device *dev, bool initial)
{
struct spi_master *master = dev_get_drvdata(dev);
struct fsl_espi *espi = spi_master_get_devdata(master);
struct device_node *nc;
u32 csmode, cs, prop;
int ret;
/* SPI controller initializations */
fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
fsl_espi_write_reg(espi, ESPI_SPIM, 0);
fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for_each_available_child_of_node(master->dev.of_node, nc) {
/* get chip select */
ret = of_property_read_u32(nc, "reg", &cs);
if (ret || cs >= master->num_chipselect)
continue;
csmode = CSMODE_INIT_VAL;
/* check if CSBEF is set in device tree */
ret = of_property_read_u32(nc, "fsl,csbef", &prop);
if (!ret) {
csmode &= ~(CSMODE_BEF(0xf));
csmode |= CSMODE_BEF(prop);
}
/* check if CSAFT is set in device tree */
ret = of_property_read_u32(nc, "fsl,csaft", &prop);
if (!ret) {
csmode &= ~(CSMODE_AFT(0xf));
csmode |= CSMODE_AFT(prop);
}
fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
if (initial)
dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
}
/* Enable SPI interface */
fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
}
static int fsl_espi_probe(struct device *dev, struct resource *mem,
unsigned int irq)
unsigned int irq, unsigned int num_cs)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master;
struct mpc8xxx_spi *mpc8xxx_spi;
struct device_node *nc;
const __be32 *prop;
u32 regval, csmode;
int i, len, ret;
struct fsl_espi *espi;
int ret;
master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
master = spi_alloc_master(dev, sizeof(struct fsl_espi));
if (!master)
return -ENOMEM;
dev_set_drvdata(dev, master);
mpc8xxx_spi_probe(dev, mem, irq);
master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
SPI_LSB_FIRST | SPI_LOOP;
master->dev.of_node = dev->of_node;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->setup = fsl_espi_setup;
master->cleanup = fsl_espi_cleanup;
master->transfer_one_message = fsl_espi_do_one_msg;
master->auto_runtime_pm = true;
master->max_message_size = fsl_espi_max_message_size;
master->num_chipselect = num_cs;
mpc8xxx_spi = spi_master_get_devdata(master);
espi = spi_master_get_devdata(master);
spin_lock_init(&espi->lock);
mpc8xxx_spi->local_buf =
devm_kmalloc(dev, SPCOM_TRANLEN_MAX, GFP_KERNEL);
if (!mpc8xxx_spi->local_buf) {
ret = -ENOMEM;
espi->dev = dev;
espi->spibrg = fsl_get_sys_freq();
if (espi->spibrg == -1) {
dev_err(dev, "Can't get sys frequency!\n");
ret = -EINVAL;
goto err_probe;
}
/* determined by clock divider fields DIV16/PM in register SPMODEx */
master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
init_completion(&espi->done);
mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
if (IS_ERR(mpc8xxx_spi->reg_base)) {
ret = PTR_ERR(mpc8xxx_spi->reg_base);
espi->reg_base = devm_ioremap_resource(dev, mem);
if (IS_ERR(espi->reg_base)) {
ret = PTR_ERR(espi->reg_base);
goto err_probe;
}
/* Register for SPI Interrupt */
ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
0, "fsl_espi", mpc8xxx_spi);
ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
if (ret)
goto err_probe;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
mpc8xxx_spi->rx_shift = 16;
mpc8xxx_spi->tx_shift = 24;
}
/* SPI controller initializations */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for_each_available_child_of_node(master->dev.of_node, nc) {
/* get chip select */
prop = of_get_property(nc, "reg", &len);
if (!prop || len < sizeof(*prop))
continue;
i = be32_to_cpup(prop);
if (i < 0 || i >= pdata->max_chipselect)
continue;
csmode = CSMODE_INIT_VAL;
/* check if CSBEF is set in device tree */
prop = of_get_property(nc, "fsl,csbef", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_BEF(0xf));
csmode |= CSMODE_BEF(be32_to_cpup(prop));
}
/* check if CSAFT is set in device tree */
prop = of_get_property(nc, "fsl,csaft", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_AFT(0xf));
csmode |= CSMODE_AFT(be32_to_cpup(prop));
}
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODEx(i), csmode);
dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
}
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_init_regs(dev, true);
pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(dev);
......@@ -639,8 +722,7 @@ static int fsl_espi_probe(struct device *dev, struct resource *mem,
if (ret < 0)
goto err_pm;
dev_info(dev, "at 0x%p (irq = %d)\n", mpc8xxx_spi->reg_base,
mpc8xxx_spi->irq);
dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
......@@ -659,20 +741,16 @@ static int fsl_espi_probe(struct device *dev, struct resource *mem,
static int of_fsl_espi_get_chipselects(struct device *dev)
{
struct device_node *np = dev->of_node;
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
const u32 *prop;
int len;
u32 num_cs;
int ret;
prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
if (!prop || len < sizeof(*prop)) {
ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
if (ret) {
dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
return -EINVAL;
return 0;
}
pdata->max_chipselect = *prop;
pdata->cs_control = NULL;
return 0;
return num_cs;
}
static int of_fsl_espi_probe(struct platform_device *ofdev)
......@@ -680,16 +758,17 @@ static int of_fsl_espi_probe(struct platform_device *ofdev)
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct resource mem;
unsigned int irq;
unsigned int irq, num_cs;
int ret;
ret = of_mpc8xxx_spi_probe(ofdev);
if (ret)
return ret;
if (of_property_read_bool(np, "mode")) {
dev_err(dev, "mode property is not supported on ESPI!\n");
return -EINVAL;
}
ret = of_fsl_espi_get_chipselects(dev);
if (ret)
return ret;
num_cs = of_fsl_espi_get_chipselects(dev);
if (!num_cs)
return -EINVAL;
ret = of_address_to_resource(np, 0, &mem);
if (ret)
......@@ -699,7 +778,7 @@ static int of_fsl_espi_probe(struct platform_device *ofdev)
if (!irq)
return -EINVAL;
return fsl_espi_probe(dev, &mem, irq);
return fsl_espi_probe(dev, &mem, irq, num_cs);
}
static int of_fsl_espi_remove(struct platform_device *dev)
......@@ -721,38 +800,15 @@ static int of_fsl_espi_suspend(struct device *dev)
return ret;
}
ret = pm_runtime_force_suspend(dev);
if (ret < 0)
return ret;
return 0;
return pm_runtime_force_suspend(dev);
}
static int of_fsl_espi_resume(struct device *dev)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi;
u32 regval;
int i, ret;
mpc8xxx_spi = spi_master_get_devdata(master);
/* SPI controller initializations */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for (i = 0; i < pdata->max_chipselect; i++)
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODEx(i),
CSMODE_INIT_VAL);
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
int ret;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_init_regs(dev, false);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
......
......@@ -28,10 +28,6 @@ struct mpc8xxx_spi {
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
#if IS_ENABLED(CONFIG_SPI_FSL_ESPI)
int len;
u8 *local_buf;
#endif
int subblock;
struct spi_pram __iomem *pram;
......
......@@ -1042,8 +1042,14 @@ static int spi_transfer_one_message(struct spi_master *master,
if (msg->status != -EINPROGRESS)
goto out;
if (xfer->delay_usecs)
udelay(xfer->delay_usecs);
if (xfer->delay_usecs) {
u16 us = xfer->delay_usecs;
if (us <= 10)
udelay(us);
else
usleep_range(us, us + DIV_ROUND_UP(us, 10));
}
if (xfer->cs_change) {
if (list_is_last(&xfer->transfer_list,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment