Commit 3d9f0739 authored by Dan Christian's avatar Dan Christian Committed by Greg Kroah-Hartman

Staging: comedi: add rtd520 driver

This adds the rtd520 comedi driver to the build.

From: Dan Christian <dac@ptolemy.arc.nasa.gov>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 11e865c1
......@@ -11,6 +11,7 @@ obj-$(CONFIG_COMEDI) += comedi_parport.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += mite.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += icp_multi.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += rtd520.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += s626.o
# Comedi USB drivers
......
/* plx9080.h
*
* Copyright (C) 2002,2003 Frank Mori Hess <fmhess@users.sourceforge.net>
*
* I modified this file from the plx9060.h header for the
* wanXL device driver in the linux kernel,
* for the register offsets and bit definitions. Made minor modifications,
* added plx9080 registers and
* stripped out stuff that was specifically for the wanXL driver.
* Note: I've only made sure the definitions are correct as far
* as I make use of them. There are still various plx9060-isms
* left in this header file.
*
********************************************************************
*
* Copyright (C) 1999 RG Studio s.c., http://www.rgstudio.com.pl/
* Written by Krzysztof Halasa <khc@rgstudio.com.pl>
*
* Portions (C) SBE Inc., used by permission.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef __COMEDI_PLX9080_H
#define __COMEDI_PLX9080_H
// descriptor block used for chained dma transfers
struct plx_dma_desc {
volatile uint32_t pci_start_addr;
volatile uint32_t local_start_addr;
/* transfer_size is in bytes, only first 23 bits of register are used */
volatile uint32_t transfer_size;
/* address of next descriptor (quad word aligned), plus some
* additional bits (see PLX_DMA0_DESCRIPTOR_REG) */
volatile uint32_t next;
};
/**********************************************************************
** Register Offsets and Bit Definitions
**
** Note: All offsets zero relative. IE. Some standard base address
** must be added to the Register Number to properly access the register.
**
**********************************************************************/
#define PLX_LAS0RNG_REG 0x0000 /* L, Local Addr Space 0 Range Register */
#define PLX_LAS1RNG_REG 0x00f0 /* L, Local Addr Space 1 Range Register */
#define LRNG_IO 0x00000001 /* Map to: 1=I/O, 0=Mem */
#define LRNG_ANY32 0x00000000 /* Locate anywhere in 32 bit */
#define LRNG_LT1MB 0x00000002 /* Locate in 1st meg */
#define LRNG_ANY64 0x00000004 /* Locate anywhere in 64 bit */
#define LRNG_MEM_MASK 0xfffffff0 // bits that specify range for memory io
#define LRNG_IO_MASK 0xfffffffa // bits that specify range for normal io
#define PLX_LAS0MAP_REG 0x0004 /* L, Local Addr Space 0 Remap Register */
#define PLX_LAS1MAP_REG 0x00f4 /* L, Local Addr Space 1 Remap Register */
#define LMAP_EN 0x00000001 /* Enable slave decode */
#define LMAP_MEM_MASK 0xfffffff0 // bits that specify decode for memory io
#define LMAP_IO_MASK 0xfffffffa // bits that specify decode bits for normal io
/* Mode/Arbitration Register.
*/
#define PLX_MARB_REG 0x8 /* L, Local Arbitration Register */
#define PLX_DMAARB_REG 0xac
enum marb_bits {
MARB_LLT_MASK = 0x000000ff, /* Local Bus Latency Timer */
MARB_LPT_MASK = 0x0000ff00, /* Local Bus Pause Timer */
MARB_LTEN = 0x00010000, /* Latency Timer Enable */
MARB_LPEN = 0x00020000, /* Pause Timer Enable */
MARB_BREQ = 0x00040000, /* Local Bus BREQ Enable */
MARB_DMA_PRIORITY_MASK = 0x00180000,
MARB_LBDS_GIVE_UP_BUS_MODE = 0x00200000, /* local bus direct slave give up bus mode */
MARB_DS_LLOCK_ENABLE = 0x00400000, /* direct slave LLOCKo# enable */
MARB_PCI_REQUEST_MODE = 0x00800000,
MARB_PCIv21_MODE = 0x01000000, /* pci specification v2.1 mode */
MARB_PCI_READ_NO_WRITE_MODE = 0x02000000,
MARB_PCI_READ_WITH_WRITE_FLUSH_MODE = 0x04000000,
MARB_GATE_TIMER_WITH_BREQ = 0x08000000, /* gate local bus latency timer with BREQ */
MARB_PCI_READ_NO_FLUSH_MODE = 0x10000000,
MARB_USE_SUBSYSTEM_IDS = 0x20000000,
};
#define PLX_BIGEND_REG 0xc
enum bigend_bits {
BIGEND_CONFIG = 0x1, /* use big endian ordering for configuration register accesses */
BIGEND_DIRECT_MASTER = 0x2,
BIGEND_DIRECT_SLAVE_LOCAL0 = 0x4,
BIGEND_ROM = 0x8,
BIGEND_BYTE_LANE = 0x10, /* use byte lane consisting of most significant bits instead of least significant */
BIGEND_DIRECT_SLAVE_LOCAL1 = 0x20,
BIGEND_DMA1 = 0x40,
BIGEND_DMA0 = 0x80,
};
/* Note: The Expansion ROM stuff is only relevant to the PC environment.
** This expansion ROM code is executed by the host CPU at boot time.
** For this reason no bit definitions are provided here.
*/
#define PLX_ROMRNG_REG 0x0010 /* L, Expn ROM Space Range Register */
#define PLX_ROMMAP_REG 0x0014 /* L, Local Addr Space Range Register */
#define PLX_REGION0_REG 0x0018 /* L, Local Bus Region 0 Descriptor */
#define RGN_WIDTH 0x00000002 /* Local bus width bits */
#define RGN_8BITS 0x00000000 /* 08 bit Local Bus */
#define RGN_16BITS 0x00000001 /* 16 bit Local Bus */
#define RGN_32BITS 0x00000002 /* 32 bit Local Bus */
#define RGN_MWS 0x0000003C /* Memory Access Wait States */
#define RGN_0MWS 0x00000000
#define RGN_1MWS 0x00000004
#define RGN_2MWS 0x00000008
#define RGN_3MWS 0x0000000C
#define RGN_4MWS 0x00000010
#define RGN_6MWS 0x00000018
#define RGN_8MWS 0x00000020
#define RGN_MRE 0x00000040 /* Memory Space Ready Input Enable */
#define RGN_MBE 0x00000080 /* Memory Space Bterm Input Enable */
#define RGN_READ_PREFETCH_DISABLE 0x00000100
#define RGN_ROM_PREFETCH_DISABLE 0x00000200
#define RGN_READ_PREFETCH_COUNT_ENABLE 0x00000400
#define RGN_RWS 0x003C0000 /* Expn ROM Wait States */
#define RGN_RRE 0x00400000 /* ROM Space Ready Input Enable */
#define RGN_RBE 0x00800000 /* ROM Space Bterm Input Enable */
#define RGN_MBEN 0x01000000 /* Memory Space Burst Enable */
#define RGN_RBEN 0x04000000 /* ROM Space Burst Enable */
#define RGN_THROT 0x08000000 /* De-assert TRDY when FIFO full */
#define RGN_TRD 0xF0000000 /* Target Ready Delay /8 */
#define PLX_REGION1_REG 0x00f8 /* L, Local Bus Region 1 Descriptor */
#define PLX_DMRNG_REG 0x001C /* L, Direct Master Range Register */
#define PLX_LBAPMEM_REG 0x0020 /* L, Lcl Base Addr for PCI mem space */
#define PLX_LBAPIO_REG 0x0024 /* L, Lcl Base Addr for PCI I/O space */
#define PLX_DMMAP_REG 0x0028 /* L, Direct Master Remap Register */
#define DMM_MAE 0x00000001 /* Direct Mstr Memory Acc Enable */
#define DMM_IAE 0x00000002 /* Direct Mstr I/O Acc Enable */
#define DMM_LCK 0x00000004 /* LOCK Input Enable */
#define DMM_PF4 0x00000008 /* Prefetch 4 Mode Enable */
#define DMM_THROT 0x00000010 /* Assert IRDY when read FIFO full */
#define DMM_PAF0 0x00000000 /* Programmable Almost fill level */
#define DMM_PAF1 0x00000020 /* Programmable Almost fill level */
#define DMM_PAF2 0x00000040 /* Programmable Almost fill level */
#define DMM_PAF3 0x00000060 /* Programmable Almost fill level */
#define DMM_PAF4 0x00000080 /* Programmable Almost fill level */
#define DMM_PAF5 0x000000A0 /* Programmable Almost fill level */
#define DMM_PAF6 0x000000C0 /* Programmable Almost fill level */
#define DMM_PAF7 0x000000D0 /* Programmable Almost fill level */
#define DMM_MAP 0xFFFF0000 /* Remap Address Bits */
#define PLX_CAR_REG 0x002C /* L, Configuration Address Register */
#define CAR_CT0 0x00000000 /* Config Type 0 */
#define CAR_CT1 0x00000001 /* Config Type 1 */
#define CAR_REG 0x000000FC /* Register Number Bits */
#define CAR_FUN 0x00000700 /* Function Number Bits */
#define CAR_DEV 0x0000F800 /* Device Number Bits */
#define CAR_BUS 0x00FF0000 /* Bus Number Bits */
#define CAR_CFG 0x80000000 /* Config Spc Access Enable */
#define PLX_DBR_IN_REG 0x0060 /* L, PCI to Local Doorbell Register */
#define PLX_DBR_OUT_REG 0x0064 /* L, Local to PCI Doorbell Register */
#define PLX_INTRCS_REG 0x0068 /* L, Interrupt Control/Status Reg */
#define ICS_AERR 0x00000001 /* Assert LSERR on ABORT */
#define ICS_PERR 0x00000002 /* Assert LSERR on Parity Error */
#define ICS_SERR 0x00000004 /* Generate PCI SERR# */
#define ICS_MBIE 0x00000008 // mailbox interrupt enable
#define ICS_PIE 0x00000100 /* PCI Interrupt Enable */
#define ICS_PDIE 0x00000200 /* PCI Doorbell Interrupt Enable */
#define ICS_PAIE 0x00000400 /* PCI Abort Interrupt Enable */
#define ICS_PLIE 0x00000800 /* PCI Local Int Enable */
#define ICS_RAE 0x00001000 /* Retry Abort Enable */
#define ICS_PDIA 0x00002000 /* PCI Doorbell Interrupt Active */
#define ICS_PAIA 0x00004000 /* PCI Abort Interrupt Active */
#define ICS_LIA 0x00008000 /* Local Interrupt Active */
#define ICS_LIE 0x00010000 /* Local Interrupt Enable */
#define ICS_LDIE 0x00020000 /* Local Doorbell Int Enable */
#define ICS_DMA0_E 0x00040000 /* DMA #0 Interrupt Enable */
#define ICS_DMA1_E 0x00080000 /* DMA #1 Interrupt Enable */
#define ICS_LDIA 0x00100000 /* Local Doorbell Int Active */
#define ICS_DMA0_A 0x00200000 /* DMA #0 Interrupt Active */
#define ICS_DMA1_A 0x00400000 /* DMA #1 Interrupt Active */
#define ICS_BIA 0x00800000 /* BIST Interrupt Active */
#define ICS_TA_DM 0x01000000 /* Target Abort - Direct Master */
#define ICS_TA_DMA0 0x02000000 /* Target Abort - DMA #0 */
#define ICS_TA_DMA1 0x04000000 /* Target Abort - DMA #1 */
#define ICS_TA_RA 0x08000000 /* Target Abort - Retry Timeout */
#define ICS_MBIA(x) (0x10000000 << ((x) & 0x3)) // mailbox x is active
#define PLX_CONTROL_REG 0x006C /* L, EEPROM Cntl & PCI Cmd Codes */
#define CTL_RDMA 0x0000000E /* DMA Read Command */
#define CTL_WDMA 0x00000070 /* DMA Write Command */
#define CTL_RMEM 0x00000600 /* Memory Read Command */
#define CTL_WMEM 0x00007000 /* Memory Write Command */
#define CTL_USERO 0x00010000 /* USERO output pin control bit */
#define CTL_USERI 0x00020000 /* USERI input pin bit */
#define CTL_EE_CLK 0x01000000 /* EEPROM Clock line */
#define CTL_EE_CS 0x02000000 /* EEPROM Chip Select */
#define CTL_EE_W 0x04000000 /* EEPROM Write bit */
#define CTL_EE_R 0x08000000 /* EEPROM Read bit */
#define CTL_EECHK 0x10000000 /* EEPROM Present bit */
#define CTL_EERLD 0x20000000 /* EEPROM Reload Register */
#define CTL_RESET 0x40000000 /* !! Adapter Reset !! */
#define CTL_READY 0x80000000 /* Local Init Done */
#define PLX_ID_REG 0x70 // hard-coded plx vendor and device ids
#define PLX_REVISION_REG 0x74 // silicon revision
#define PLX_DMA0_MODE_REG 0x80 // dma channel 0 mode register
#define PLX_DMA1_MODE_REG 0x94 // dma channel 0 mode register
#define PLX_LOCAL_BUS_16_WIDE_BITS 0x1
#define PLX_LOCAL_BUS_32_WIDE_BITS 0x3
#define PLX_LOCAL_BUS_WIDTH_MASK 0x3
#define PLX_DMA_EN_READYIN_BIT 0x40 // enable ready in input
#define PLX_EN_BTERM_BIT 0x80 // enable BTERM# input
#define PLX_DMA_LOCAL_BURST_EN_BIT 0x100 // enable local burst mode
#define PLX_EN_CHAIN_BIT 0x200 // enables chaining
#define PLX_EN_DMA_DONE_INTR_BIT 0x400 // enables interrupt on dma done
#define PLX_LOCAL_ADDR_CONST_BIT 0x800 // hold local address constant (don't increment)
#define PLX_DEMAND_MODE_BIT 0x1000 // enables demand-mode for dma transfer
#define PLX_EOT_ENABLE_BIT 0x4000
#define PLX_STOP_MODE_BIT 0x8000
#define PLX_DMA_INTR_PCI_BIT 0x20000 // routes dma interrupt to pci bus (instead of local bus)
#define PLX_DMA0_PCI_ADDRESS_REG 0x84 // pci address that dma transfers start at
#define PLX_DMA1_PCI_ADDRESS_REG 0x98
#define PLX_DMA0_LOCAL_ADDRESS_REG 0x88 // local address that dma transfers start at
#define PLX_DMA1_LOCAL_ADDRESS_REG 0x9c
#define PLX_DMA0_TRANSFER_SIZE_REG 0x8c // number of bytes to transfer (first 23 bits)
#define PLX_DMA1_TRANSFER_SIZE_REG 0xa0
#define PLX_DMA0_DESCRIPTOR_REG 0x90 // descriptor pointer register
#define PLX_DMA1_DESCRIPTOR_REG 0xa4
#define PLX_DESC_IN_PCI_BIT 0x1 // descriptor is located in pci space (not local space)
#define PLX_END_OF_CHAIN_BIT 0x2 // end of chain bit
#define PLX_INTR_TERM_COUNT 0x4 // interrupt when this descriptor's transfer is finished
#define PLX_XFER_LOCAL_TO_PCI 0x8 // transfer from local to pci bus (not pci to local)
#define PLX_DMA0_CS_REG 0xa8 // command status register
#define PLX_DMA1_CS_REG 0xa9
#define PLX_DMA_EN_BIT 0x1 // enable dma channel
#define PLX_DMA_START_BIT 0x2 // start dma transfer
#define PLX_DMA_ABORT_BIT 0x4 // abort dma transfer
#define PLX_CLEAR_DMA_INTR_BIT 0x8 // clear dma interrupt
#define PLX_DMA_DONE_BIT 0x10 // transfer done status bit
#define PLX_DMA0_THRESHOLD_REG 0xb0 // command status register
/*
* Accesses near the end of memory can cause the PLX chip
* to pre-fetch data off of end-of-ram. Limit the size of
* memory so host-side accesses cannot occur.
*/
#define PLX_PREFETCH 32
/*
* The PCI Interface, via the PCI-9060 Chip, has up to eight (8) Mailbox
* Registers. The PUTS (Power-Up Test Suite) handles the board-side
* interface/interaction using the first 4 registers. Specifications for
* the use of the full PUTS' command and status interface is contained
* within a separate SBE PUTS Manual. The Host-Side Device Driver only
* uses a subset of the full PUTS interface.
*/
/*****************************************/
/*** MAILBOX #(-1) - MEM ACCESS STS ***/
/*****************************************/
#define MBX_STS_VALID 0x57584744 /* 'WXGD' */
#define MBX_STS_DILAV 0x44475857 /* swapped = 'DGXW' */
/*****************************************/
/*** MAILBOX #0 - PUTS STATUS ***/
/*****************************************/
#define MBX_STS_MASK 0x000000ff /* PUTS Status Register bits */
#define MBX_STS_TMASK 0x0000000f /* register bits for TEST number */
#define MBX_STS_PCIRESET 0x00000100 /* Host issued PCI reset request */
#define MBX_STS_BUSY 0x00000080 /* PUTS is in progress */
#define MBX_STS_ERROR 0x00000040 /* PUTS has failed */
#define MBX_STS_RESERVED 0x000000c0 /* Undefined -> status in transition.
We are in process of changing
bits; we SET Error bit before
RESET of Busy bit */
#define MBX_RESERVED_5 0x00000020 /* FYI: reserved/unused bit */
#define MBX_RESERVED_4 0x00000010 /* FYI: reserved/unused bit */
/******************************************/
/*** MAILBOX #1 - PUTS COMMANDS ***/
/******************************************/
/*
* Any attempt to execute an unimplement command results in the PUTS
* interface executing a NOOP and continuing as if the offending command
* completed normally. Note: this supplies a simple method to interrogate
* mailbox command processing functionality.
*/
#define MBX_CMD_MASK 0xffff0000 /* PUTS Command Register bits */
#define MBX_CMD_ABORTJ 0x85000000 /* abort and jump */
#define MBX_CMD_RESETP 0x86000000 /* reset and pause at start */
#define MBX_CMD_PAUSE 0x87000000 /* pause immediately */
#define MBX_CMD_PAUSEC 0x88000000 /* pause on completion */
#define MBX_CMD_RESUME 0x89000000 /* resume operation */
#define MBX_CMD_STEP 0x8a000000 /* single step tests */
#define MBX_CMD_BSWAP 0x8c000000 /* identify byte swap scheme */
#define MBX_CMD_BSWAP_0 0x8c000000 /* use scheme 0 */
#define MBX_CMD_BSWAP_1 0x8c000001 /* use scheme 1 */
#define MBX_CMD_SETHMS 0x8d000000 /* setup host memory access window
size */
#define MBX_CMD_SETHBA 0x8e000000 /* setup host memory access base
address */
#define MBX_CMD_MGO 0x8f000000 /* perform memory setup and continue
(IE. Done) */
#define MBX_CMD_NOOP 0xFF000000 /* dummy, illegal command */
/*****************************************/
/*** MAILBOX #2 - MEMORY SIZE ***/
/*****************************************/
#define MBX_MEMSZ_MASK 0xffff0000 /* PUTS Memory Size Register bits */
#define MBX_MEMSZ_128KB 0x00020000 /* 128 kilobyte board */
#define MBX_MEMSZ_256KB 0x00040000 /* 256 kilobyte board */
#define MBX_MEMSZ_512KB 0x00080000 /* 512 kilobyte board */
#define MBX_MEMSZ_1MB 0x00100000 /* 1 megabyte board */
#define MBX_MEMSZ_2MB 0x00200000 /* 2 megabyte board */
#define MBX_MEMSZ_4MB 0x00400000 /* 4 megabyte board */
#define MBX_MEMSZ_8MB 0x00800000 /* 8 megabyte board */
#define MBX_MEMSZ_16MB 0x01000000 /* 16 megabyte board */
/***************************************/
/*** MAILBOX #2 - BOARD TYPE ***/
/***************************************/
#define MBX_BTYPE_MASK 0x0000ffff /* PUTS Board Type Register */
#define MBX_BTYPE_FAMILY_MASK 0x0000ff00 /* PUTS Board Family Register */
#define MBX_BTYPE_SUBTYPE_MASK 0x000000ff /* PUTS Board Subtype */
#define MBX_BTYPE_PLX9060 0x00000100 /* PLX family type */
#define MBX_BTYPE_PLX9080 0x00000300 /* PLX wanXL100s family type */
#define MBX_BTYPE_WANXL_4 0x00000104 /* wanXL400, 4-port */
#define MBX_BTYPE_WANXL_2 0x00000102 /* wanXL200, 2-port */
#define MBX_BTYPE_WANXL_1s 0x00000301 /* wanXL100s, 1-port */
#define MBX_BTYPE_WANXL_1t 0x00000401 /* wanXL100T1, 1-port */
/*****************************************/
/*** MAILBOX #3 - SHMQ MAILBOX ***/
/*****************************************/
#define MBX_SMBX_MASK 0x000000ff /* PUTS SHMQ Mailbox bits */
/***************************************/
/*** GENERIC HOST-SIDE DRIVER ***/
/***************************************/
#define MBX_ERR 0
#define MBX_OK 1
/* mailbox check routine - type of testing */
#define MBXCHK_STS 0x00 /* check for PUTS status */
#define MBXCHK_NOWAIT 0x01 /* dont care about PUTS status */
/* system allocates this many bytes for address mapping mailbox space */
#define MBX_ADDR_SPACE_360 0x80 /* wanXL100s/200/400 */
#define MBX_ADDR_MASK_360 (MBX_ADDR_SPACE_360-1)
static inline int plx9080_abort_dma(void *iobase, unsigned int channel)
{
void *dma_cs_addr;
uint8_t dma_status;
const int timeout = 10000;
unsigned int i;
if (channel)
dma_cs_addr = iobase + PLX_DMA1_CS_REG;
else
dma_cs_addr = iobase + PLX_DMA0_CS_REG;
// abort dma transfer if necessary
dma_status = readb(dma_cs_addr);
if ((dma_status & PLX_DMA_EN_BIT) == 0) {
return 0;
}
// wait to make sure done bit is zero
for (i = 0; (dma_status & PLX_DMA_DONE_BIT) && i < timeout; i++) {
comedi_udelay(1);
dma_status = readb(dma_cs_addr);
}
if (i == timeout) {
rt_printk
("plx9080: cancel() timed out waiting for dma %i done clear\n",
channel);
return -ETIMEDOUT;
}
// disable and abort channel
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);
// wait for dma done bit
dma_status = readb(dma_cs_addr);
for (i = 0; (dma_status & PLX_DMA_DONE_BIT) == 0 && i < timeout; i++) {
comedi_udelay(1);
dma_status = readb(dma_cs_addr);
}
if (i == timeout) {
rt_printk
("plx9080: cancel() timed out waiting for dma %i done set\n",
channel);
return -ETIMEDOUT;
}
return 0;
}
#endif /* __COMEDI_PLX9080_H */
/*
comedi/drivers/rtd520.c
Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2001 David A. Schleef <ds@schleef.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: rtd520
Description: Real Time Devices PCI4520/DM7520
Author: Dan Christian
Devices: [Real Time Devices] DM7520HR-1 (rtd520), DM7520HR-8,
PCI4520, PCI4520-8
Status: Works. Only tested on DM7520-8. Not SMP safe.
Configuration options:
[0] - PCI bus of device (optional)
If bus/slot is not specified, the first available PCI
device will be used.
[1] - PCI slot of device (optional)
*/
/*
Created by Dan Christian, NASA Ames Research Center.
The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
Both have:
8/16 12 bit ADC with FIFO and channel gain table
8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
2 12 bit DACs with FIFOs
2 bits output
2 bits input
bus mastering DMA
timers: ADC sample, pacer, burst, about, delay, DA1, DA2
sample counter
3 user timer/counters (8254)
external interrupt
The DM7520 has slightly fewer features (fewer gain steps).
These boards can support external multiplexors and multi-board
synchronization, but this driver doesn't support that.
Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
Call them and ask for the register level manual.
PCI chip: http://www.plxtech.com/products/toolbox/9080.htm
Notes:
This board is memory mapped. There is some IO stuff, but it isn't needed.
I use a pretty loose naming style within the driver (rtd_blah).
All externally visible names should be rtd520_blah.
I use camelCase for structures (and inside them).
I may also use upper CamelCase for function names (old habit).
This board is somewhat related to the RTD PCI4400 board.
I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
das1800, since they have the best documented code. Driver
cb_pcidas64.c uses the same DMA controller.
As far as I can tell, the About interrupt doesnt work if Sample is
also enabled. It turns out that About really isn't needed, since
we always count down samples read.
There was some timer/counter code, but it didn't follow the right API.
*/
/*
driver status:
Analog-In supports instruction and command mode.
With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
(single channel, 64K read buffer). I get random system lockups when
using DMA with ALI-15xx based systems. I haven't been able to test
any other chipsets. The lockups happen soon after the start of an
acquistion, not in the middle of a long run.
Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
(with a 256K read buffer).
Digital-IO and Analog-Out only support instruction mode.
*/
#include <linux/delay.h>
#include "../comedidev.h"
#include "comedi_pci.h"
#define DRV_NAME "rtd520"
/*======================================================================
Driver specific stuff (tunable)
======================================================================*/
/* Enable this to test the new DMA support. You may get hard lock ups */
/*#define USE_DMA*/
/* We really only need 2 buffers. More than that means being much
smarter about knowing which ones are full. */
#define DMA_CHAIN_COUNT 2 /* max DMA segments/buffers in a ring (min 2) */
/* Target period for periodic transfers. This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000 /* 10 ms (in nanoseconds) */
/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST 128 /* max channel list that we allow */
/* tuning for ai/ao instruction done polling */
#ifdef FAST_SPIN
#define WAIT_QUIETLY /* as nothing, spin on done bit */
#define RTD_ADC_TIMEOUT 66000 /* 2 msec at 33mhz bus rate */
#define RTD_DAC_TIMEOUT 66000
#define RTD_DMA_TIMEOUT 33000 /* 1 msec */
#else
/* by delaying, power and electrical noise are reduced somewhat */
#define WAIT_QUIETLY comedi_udelay (1)
#define RTD_ADC_TIMEOUT 2000 /* in usec */
#define RTD_DAC_TIMEOUT 2000 /* in usec */
#define RTD_DMA_TIMEOUT 1000 /* in usec */
#endif
/*======================================================================
Board specific stuff
======================================================================*/
/* registers */
#define PCI_VENDOR_ID_RTD 0x1435
/*
The board has three memory windows: las0, las1, and lcfg (the PCI chip)
Las1 has the data and can be burst DMAed 32bits at a time.
*/
#define LCFG_PCIINDEX 0
/* PCI region 1 is a 256 byte IO space mapping. Use??? */
#define LAS0_PCIINDEX 2 /* PCI memory resources */
#define LAS1_PCIINDEX 3
#define LCFG_PCISIZE 0x100
#define LAS0_PCISIZE 0x200
#define LAS1_PCISIZE 0x10
#define RTD_CLOCK_RATE 8000000 /* 8Mhz onboard clock */
#define RTD_CLOCK_BASE 125 /* clock period in ns */
/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED 1625 /* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1 875 /* if single channel, in nanoseconds */
#define RTD_MIN_SPEED 2097151875 /* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1 5000000 /* 200Hz, in nanoseconds */
#include "rtd520.h"
#include "plx9080.h"
/* Setup continuous ring of 1/2 FIFO transfers. See RTD manual p91 */
#define DMA_MODE_BITS (\
PLX_LOCAL_BUS_16_WIDE_BITS \
| PLX_DMA_EN_READYIN_BIT \
| PLX_DMA_LOCAL_BURST_EN_BIT \
| PLX_EN_CHAIN_BIT \
| PLX_DMA_INTR_PCI_BIT \
| PLX_LOCAL_ADDR_CONST_BIT \
| PLX_DEMAND_MODE_BIT)
#define DMA_TRANSFER_BITS (\
/* descriptors in PCI memory*/ PLX_DESC_IN_PCI_BIT \
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */ | PLX_XFER_LOCAL_TO_PCI)
/*======================================================================
Comedi specific stuff
======================================================================*/
/*
The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
*/
static const comedi_lrange rtd_ai_7520_range = { 18, {
/* +-5V input range gain steps */
BIP_RANGE(5.0),
BIP_RANGE(5.0 / 2),
BIP_RANGE(5.0 / 4),
BIP_RANGE(5.0 / 8),
BIP_RANGE(5.0 / 16),
BIP_RANGE(5.0 / 32),
/* +-10V input range gain steps */
BIP_RANGE(10.0),
BIP_RANGE(10.0 / 2),
BIP_RANGE(10.0 / 4),
BIP_RANGE(10.0 / 8),
BIP_RANGE(10.0 / 16),
BIP_RANGE(10.0 / 32),
/* +10V input range gain steps */
UNI_RANGE(10.0),
UNI_RANGE(10.0 / 2),
UNI_RANGE(10.0 / 4),
UNI_RANGE(10.0 / 8),
UNI_RANGE(10.0 / 16),
UNI_RANGE(10.0 / 32),
}
};
/* PCI4520 has two more gains (6 more entries) */
static const comedi_lrange rtd_ai_4520_range = { 24, {
/* +-5V input range gain steps */
BIP_RANGE(5.0),
BIP_RANGE(5.0 / 2),
BIP_RANGE(5.0 / 4),
BIP_RANGE(5.0 / 8),
BIP_RANGE(5.0 / 16),
BIP_RANGE(5.0 / 32),
BIP_RANGE(5.0 / 64),
BIP_RANGE(5.0 / 128),
/* +-10V input range gain steps */
BIP_RANGE(10.0),
BIP_RANGE(10.0 / 2),
BIP_RANGE(10.0 / 4),
BIP_RANGE(10.0 / 8),
BIP_RANGE(10.0 / 16),
BIP_RANGE(10.0 / 32),
BIP_RANGE(10.0 / 64),
BIP_RANGE(10.0 / 128),
/* +10V input range gain steps */
UNI_RANGE(10.0),
UNI_RANGE(10.0 / 2),
UNI_RANGE(10.0 / 4),
UNI_RANGE(10.0 / 8),
UNI_RANGE(10.0 / 16),
UNI_RANGE(10.0 / 32),
UNI_RANGE(10.0 / 64),
UNI_RANGE(10.0 / 128),
}
};
/* Table order matches range values */
static const comedi_lrange rtd_ao_range = { 4, {
RANGE(0, 5),
RANGE(0, 10),
RANGE(-5, 5),
RANGE(-10, 10),
}
};
/*
Board descriptions
*/
typedef struct rtdBoard_struct {
const char *name; /* must be first */
int device_id;
int aiChans;
int aiBits;
int aiMaxGain;
int range10Start; /* start of +-10V range */
int rangeUniStart; /* start of +10V range */
} rtdBoard;
static const rtdBoard rtd520Boards[] = {
{
name: "DM7520",
device_id:0x7520,
aiChans: 16,
aiBits: 12,
aiMaxGain:32,
range10Start:6,
rangeUniStart:12,
},
{
name: "PCI4520",
device_id:0x4520,
aiChans: 16,
aiBits: 12,
aiMaxGain:128,
range10Start:8,
rangeUniStart:16,
},
};
static DEFINE_PCI_DEVICE_TABLE(rtd520_pci_table) = {
{PCI_VENDOR_ID_RTD, 0x7520, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_RTD, 0x4520, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0}
};
MODULE_DEVICE_TABLE(pci, rtd520_pci_table);
/*
* Useful for shorthand access to the particular board structure
*/
#define thisboard ((const rtdBoard *)dev->board_ptr)
/*
This structure is for data unique to this hardware driver.
This is also unique for each board in the system.
*/
typedef struct {
/* memory mapped board structures */
void *las0;
void *las1;
void *lcfg;
unsigned long intCount; /* interrupt count */
long aiCount; /* total transfer size (samples) */
int transCount; /* # to tranfer data. 0->1/2FIFO */
int flags; /* flag event modes */
/* PCI device info */
struct pci_dev *pci_dev;
int got_regions; /* non-zero if PCI regions owned */
/* channel list info */
/* chanBipolar tracks whether a channel is bipolar (and needs +2048) */
unsigned char chanBipolar[RTD_MAX_CHANLIST / 8]; /* bit array */
/* read back data */
lsampl_t aoValue[2]; /* Used for AO read back */
/* timer gate (when enabled) */
u8 utcGate[4]; /* 1 extra allows simple range check */
/* shadow registers affect other registers, but cant be read back */
/* The macros below update these on writes */
u16 intMask; /* interrupt mask */
u16 intClearMask; /* interrupt clear mask */
u8 utcCtrl[4]; /* crtl mode for 3 utc + read back */
u8 dioStatus; /* could be read back (dio0Ctrl) */
#ifdef USE_DMA
/* Always DMA 1/2 FIFO. Buffer (dmaBuff?) is (at least) twice that size.
After transferring, interrupt processes 1/2 FIFO and passes to comedi */
s16 dma0Offset; /* current processing offset (0, 1/2) */
uint16_t *dma0Buff[DMA_CHAIN_COUNT]; /* DMA buffers (for ADC) */
dma_addr_t dma0BuffPhysAddr[DMA_CHAIN_COUNT]; /* physical addresses */
struct plx_dma_desc *dma0Chain; /* DMA descriptor ring for dmaBuff */
dma_addr_t dma0ChainPhysAddr; /* physical addresses */
/* shadow registers */
u8 dma0Control;
u8 dma1Control;
#endif /* USE_DMA */
unsigned fifoLen;
} rtdPrivate;
/* bit defines for "flags" */
#define SEND_EOS 0x01 /* send End Of Scan events */
#define DMA0_ACTIVE 0x02 /* DMA0 is active */
#define DMA1_ACTIVE 0x04 /* DMA1 is active */
/* Macros for accessing channel list bit array */
#define CHAN_ARRAY_TEST(array,index) \
(((array)[(index)/8] >> ((index) & 0x7)) & 0x1)
#define CHAN_ARRAY_SET(array,index) \
(((array)[(index)/8] |= 1 << ((index) & 0x7)))
#define CHAN_ARRAY_CLEAR(array,index) \
(((array)[(index)/8] &= ~(1 << ((index) & 0x7))))
/*
* most drivers define the following macro to make it easy to
* access the private structure.
*/
#define devpriv ((rtdPrivate *)dev->private)
/* Macros to access registers */
/* Reset board */
#define RtdResetBoard(dev) \
writel (0, devpriv->las0+LAS0_BOARD_RESET)
/* Reset channel gain table read pointer */
#define RtdResetCGT(dev) \
writel (0, devpriv->las0+LAS0_CGT_RESET)
/* Reset channel gain table read and write pointers */
#define RtdClearCGT(dev) \
writel (0, devpriv->las0+LAS0_CGT_CLEAR)
/* Reset channel gain table read and write pointers */
#define RtdEnableCGT(dev,v) \
writel ((v > 0) ? 1 : 0, devpriv->las0+LAS0_CGT_ENABLE)
/* Write channel gain table entry */
#define RtdWriteCGTable(dev,v) \
writel (v, devpriv->las0+LAS0_CGT_WRITE)
/* Write Channel Gain Latch */
#define RtdWriteCGLatch(dev,v) \
writel (v, devpriv->las0+LAS0_CGL_WRITE)
/* Reset ADC FIFO */
#define RtdAdcClearFifo(dev) \
writel (0, devpriv->las0+LAS0_ADC_FIFO_CLEAR)
/* Set ADC start conversion source select (write only) */
#define RtdAdcConversionSource(dev,v) \
writel (v, devpriv->las0+LAS0_ADC_CONVERSION)
/* Set burst start source select (write only) */
#define RtdBurstStartSource(dev,v) \
writel (v, devpriv->las0+LAS0_BURST_START)
/* Set Pacer start source select (write only) */
#define RtdPacerStartSource(dev,v) \
writel (v, devpriv->las0+LAS0_PACER_START)
/* Set Pacer stop source select (write only) */
#define RtdPacerStopSource(dev,v) \
writel (v, devpriv->las0+LAS0_PACER_STOP)
/* Set Pacer clock source select (write only) 0=external 1=internal */
#define RtdPacerClockSource(dev,v) \
writel ((v > 0) ? 1 : 0, devpriv->las0+LAS0_PACER_SELECT)
/* Set sample counter source select (write only) */
#define RtdAdcSampleCounterSource(dev,v) \
writel (v, devpriv->las0+LAS0_ADC_SCNT_SRC)
/* Set Pacer trigger mode select (write only) 0=single cycle, 1=repeat */
#define RtdPacerTriggerMode(dev,v) \
writel ((v > 0) ? 1 : 0, devpriv->las0+LAS0_PACER_REPEAT)
/* Set About counter stop enable (write only) */
#define RtdAboutStopEnable(dev,v) \
writel ((v > 0) ? 1 : 0, devpriv->las0+LAS0_ACNT_STOP_ENABLE)
/* Set external trigger polarity (write only) 0=positive edge, 1=negative */
#define RtdTriggerPolarity(dev,v) \
writel ((v > 0) ? 1 : 0, devpriv->las0+LAS0_ETRG_POLARITY)
/* Start single ADC conversion */
#define RtdAdcStart(dev) \
writew (0, devpriv->las0+LAS0_ADC)
/* Read one ADC data value (12bit (with sign extend) as 16bit) */
/* Note: matches what DMA would get. Actual value >> 3 */
#define RtdAdcFifoGet(dev) \
readw (devpriv->las1+LAS1_ADC_FIFO)
/* Read two ADC data values (DOESNT WORK) */
#define RtdAdcFifoGet2(dev) \
readl (devpriv->las1+LAS1_ADC_FIFO)
/* FIFO status */
#define RtdFifoStatus(dev) \
readl (devpriv->las0+LAS0_ADC)
/* pacer start/stop read=start, write=stop*/
#define RtdPacerStart(dev) \
readl (devpriv->las0+LAS0_PACER)
#define RtdPacerStop(dev) \
writel (0, devpriv->las0+LAS0_PACER)
/* Interrupt status */
#define RtdInterruptStatus(dev) \
readw (devpriv->las0+LAS0_IT)
/* Interrupt mask */
#define RtdInterruptMask(dev,v) \
writew ((devpriv->intMask = (v)),devpriv->las0+LAS0_IT)
/* Interrupt status clear (only bits set in mask) */
#define RtdInterruptClear(dev) \
readw (devpriv->las0+LAS0_CLEAR)
/* Interrupt clear mask */
#define RtdInterruptClearMask(dev,v) \
writew ((devpriv->intClearMask = (v)), devpriv->las0+LAS0_CLEAR)
/* Interrupt overrun status */
#define RtdInterruptOverrunStatus(dev) \
readl (devpriv->las0+LAS0_OVERRUN)
/* Interrupt overrun clear */
#define RtdInterruptOverrunClear(dev) \
writel (0, devpriv->las0+LAS0_OVERRUN)
/* Pacer counter, 24bit */
#define RtdPacerCount(dev) \
readl (devpriv->las0+LAS0_PCLK)
#define RtdPacerCounter(dev,v) \
writel ((v) & 0xffffff,devpriv->las0+LAS0_PCLK)
/* Burst counter, 10bit */
#define RtdBurstCount(dev) \
readl (devpriv->las0+LAS0_BCLK)
#define RtdBurstCounter(dev,v) \
writel ((v) & 0x3ff,devpriv->las0+LAS0_BCLK)
/* Delay counter, 16bit */
#define RtdDelayCount(dev) \
readl (devpriv->las0+LAS0_DCLK)
#define RtdDelayCounter(dev,v) \
writel ((v) & 0xffff, devpriv->las0+LAS0_DCLK)
/* About counter, 16bit */
#define RtdAboutCount(dev) \
readl (devpriv->las0+LAS0_ACNT)
#define RtdAboutCounter(dev,v) \
writel ((v) & 0xffff, devpriv->las0+LAS0_ACNT)
/* ADC sample counter, 10bit */
#define RtdAdcSampleCount(dev) \
readl (devpriv->las0+LAS0_ADC_SCNT)
#define RtdAdcSampleCounter(dev,v) \
writel ((v) & 0x3ff, devpriv->las0+LAS0_ADC_SCNT)
/* User Timer/Counter (8254) */
#define RtdUtcCounterGet(dev,n) \
readb (devpriv->las0 \
+ ((n <= 0) ? LAS0_UTC0 : ((1 == n) ? LAS0_UTC1 : LAS0_UTC2)))
#define RtdUtcCounterPut(dev,n,v) \
writeb ((v) & 0xff, devpriv->las0 \
+ ((n <= 0) ? LAS0_UTC0 : ((1 == n) ? LAS0_UTC1 : LAS0_UTC2)))
/* Set UTC (8254) control byte */
#define RtdUtcCtrlPut(dev,n,v) \
writeb (devpriv->utcCtrl[(n) & 3] = (((n) & 3) << 6) | ((v) & 0x3f), \
devpriv->las0 + LAS0_UTC_CTRL)
/* Set UTCn clock source (write only) */
#define RtdUtcClockSource(dev,n,v) \
writew (v, devpriv->las0 \
+ ((n <= 0) ? LAS0_UTC0_CLOCK : \
((1 == n) ? LAS0_UTC1_CLOCK : LAS0_UTC2_CLOCK)))
/* Set UTCn gate source (write only) */
#define RtdUtcGateSource(dev,n,v) \
writew (v, devpriv->las0 \
+ ((n <= 0) ? LAS0_UTC0_GATE : \
((1 == n) ? LAS0_UTC1_GATE : LAS0_UTC2_GATE)))
/* User output N source select (write only) */
#define RtdUsrOutSource(dev,n,v) \
writel (v,devpriv->las0+((n <= 0) ? LAS0_UOUT0_SELECT : LAS0_UOUT1_SELECT))
/* Digital IO */
#define RtdDio0Read(dev) \
(readw (devpriv->las0+LAS0_DIO0) & 0xff)
#define RtdDio0Write(dev,v) \
writew ((v) & 0xff, devpriv->las0+LAS0_DIO0)
#define RtdDio1Read(dev) \
(readw (devpriv->las0+LAS0_DIO1) & 0xff)
#define RtdDio1Write(dev,v) \
writew ((v) & 0xff, devpriv->las0+LAS0_DIO1)
#define RtdDioStatusRead(dev) \
(readw (devpriv->las0+LAS0_DIO_STATUS) & 0xff)
#define RtdDioStatusWrite(dev,v) \
writew ((devpriv->dioStatus = (v)), devpriv->las0+LAS0_DIO_STATUS)
#define RtdDio0CtrlRead(dev) \
(readw (devpriv->las0+LAS0_DIO0_CTRL) & 0xff)
#define RtdDio0CtrlWrite(dev,v) \
writew ((v) & 0xff, devpriv->las0+LAS0_DIO0_CTRL)
/* Digital to Analog converter */
/* Write one data value (sign + 12bit + marker bits) */
/* Note: matches what DMA would put. Actual value << 3 */
#define RtdDacFifoPut(dev,n,v) \
writew ((v), devpriv->las1 +(((n) == 0) ? LAS1_DAC1_FIFO : LAS1_DAC2_FIFO))
/* Start single DAC conversion */
#define RtdDacUpdate(dev,n) \
writew (0, devpriv->las0 +(((n) == 0) ? LAS0_DAC1 : LAS0_DAC2))
/* Start single DAC conversion on both DACs */
#define RtdDacBothUpdate(dev) \
writew (0, devpriv->las0+LAS0_DAC)
/* Set DAC output type and range */
#define RtdDacRange(dev,n,v) \
writew ((v) & 7, devpriv->las0 \
+(((n) == 0) ? LAS0_DAC1_CTRL : LAS0_DAC2_CTRL))
/* Reset DAC FIFO */
#define RtdDacClearFifo(dev,n) \
writel (0, devpriv->las0+(((n) == 0) ? LAS0_DAC1_RESET : LAS0_DAC2_RESET))
/* Set source for DMA 0 (write only, shadow?) */
#define RtdDma0Source(dev,n) \
writel ((n) & 0xf, devpriv->las0+LAS0_DMA0_SRC)
/* Set source for DMA 1 (write only, shadow?) */
#define RtdDma1Source(dev,n) \
writel ((n) & 0xf, devpriv->las0+LAS0_DMA1_SRC)
/* Reset board state for DMA 0 */
#define RtdDma0Reset(dev) \
writel (0, devpriv->las0+LAS0_DMA0_RESET)
/* Reset board state for DMA 1 */
#define RtdDma1Reset(dev) \
writel (0, devpriv->las0+LAS0_DMA1_SRC)
/* PLX9080 interrupt mask and status */
#define RtdPlxInterruptRead(dev) \
readl (devpriv->lcfg+LCFG_ITCSR)
#define RtdPlxInterruptWrite(dev,v) \
writel (v, devpriv->lcfg+LCFG_ITCSR)
/* Set mode for DMA 0 */
#define RtdDma0Mode(dev,m) \
writel ((m), devpriv->lcfg+LCFG_DMAMODE0)
/* Set PCI address for DMA 0 */
#define RtdDma0PciAddr(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMAPADR0)
/* Set local address for DMA 0 */
#define RtdDma0LocalAddr(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMALADR0)
/* Set byte count for DMA 0 */
#define RtdDma0Count(dev,c) \
writel ((c), devpriv->lcfg+LCFG_DMASIZ0)
/* Set next descriptor for DMA 0 */
#define RtdDma0Next(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMADPR0)
/* Set mode for DMA 1 */
#define RtdDma1Mode(dev,m) \
writel ((m), devpriv->lcfg+LCFG_DMAMODE1)
/* Set PCI address for DMA 1 */
#define RtdDma1PciAddr(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMAADR1)
/* Set local address for DMA 1 */
#define RtdDma1LocalAddr(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMALADR1)
/* Set byte count for DMA 1 */
#define RtdDma1Count(dev,c) \
writel ((c), devpriv->lcfg+LCFG_DMASIZ1)
/* Set next descriptor for DMA 1 */
#define RtdDma1Next(dev,a) \
writel ((a), devpriv->lcfg+LCFG_DMADPR1)
/* Set control for DMA 0 (write only, shadow?) */
#define RtdDma0Control(dev,n) \
writeb (devpriv->dma0Control = (n), devpriv->lcfg+LCFG_DMACSR0)
/* Get status for DMA 0 */
#define RtdDma0Status(dev) \
readb (devpriv->lcfg+LCFG_DMACSR0)
/* Set control for DMA 1 (write only, shadow?) */
#define RtdDma1Control(dev,n) \
writeb (devpriv->dma1Control = (n), devpriv->lcfg+LCFG_DMACSR1)
/* Get status for DMA 1 */
#define RtdDma1Status(dev) \
readb (devpriv->lcfg+LCFG_DMACSR1)
/*
* The comedi_driver structure tells the Comedi core module
* which functions to call to configure/deconfigure (attac/detach)
* the board, and also about the kernel module that contains
* the device code.
*/
static int rtd_attach(comedi_device * dev, comedi_devconfig * it);
static int rtd_detach(comedi_device * dev);
static comedi_driver rtd520Driver = {
driver_name: DRV_NAME,
module:THIS_MODULE,
attach:rtd_attach,
detach:rtd_detach,
};
static int rtd_ai_rinsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int rtd_ao_winsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int rtd_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int rtd_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int rtd_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
comedi_insn * insn, lsampl_t * data);
static int rtd_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
comedi_cmd * cmd);
static int rtd_ai_cmd(comedi_device * dev, comedi_subdevice * s);
static int rtd_ai_cancel(comedi_device * dev, comedi_subdevice * s);
//static int rtd_ai_poll (comedi_device *dev,comedi_subdevice *s);
static int rtd_ns_to_timer(unsigned int *ns, int roundMode);
static irqreturn_t rtd_interrupt(int irq, void *d PT_REGS_ARG);
static int rtd520_probe_fifo_depth(comedi_device *dev);
/*
* Attach is called by the Comedi core to configure the driver
* for a particular board. If you specified a board_name array
* in the driver structure, dev->board_ptr contains that
* address.
*/
static int rtd_attach(comedi_device * dev, comedi_devconfig * it)
{ /* board name and options flags */
comedi_subdevice *s;
struct pci_dev *pcidev;
int ret;
resource_size_t physLas0; /* configuation */
resource_size_t physLas1; /* data area */
resource_size_t physLcfg; /* PLX9080 */
#ifdef USE_DMA
int index;
#endif
printk("comedi%d: rtd520 attaching.\n", dev->minor);
#if defined (CONFIG_COMEDI_DEBUG) && defined (USE_DMA)
/* You can set this a load time: modprobe comedi comedi_debug=1 */
if (0 == comedi_debug) /* force DMA debug printks */
comedi_debug = 1;
#endif
/*
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(rtdPrivate)) < 0)
return -ENOMEM;
/*
* Probe the device to determine what device in the series it is.
*/
for (pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, NULL);
pcidev != NULL;
pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, pcidev)) {
int i;
if (it->options[0] || it->options[1]) {
if (pcidev->bus->number != it->options[0]
|| PCI_SLOT(pcidev->devfn) !=
it->options[1]) {
continue;
}
}
for(i = 0; i < sizeof(rtd520Boards) / sizeof(rtd520Boards[0]); ++i)
{
if(pcidev->device == rtd520Boards[i].device_id)
{
dev->board_ptr = &rtd520Boards[i];
break;
}
}
if(dev->board_ptr) break; /* found one */
}
if (!pcidev) {
if (it->options[0] && it->options[1]) {
printk("No RTD card at bus=%d slot=%d.\n",
it->options[0], it->options[1]);
} else {
printk("No RTD card found.\n");
}
return -EIO;
}
devpriv->pci_dev = pcidev;
dev->board_name = thisboard->name;
if ((ret = comedi_pci_enable(pcidev, DRV_NAME)) < 0) {
printk("Failed to enable PCI device and request regions.\n");
return ret;
}
devpriv->got_regions = 1;
/*
* Initialize base addresses
*/
/* Get the physical address from PCI config */
physLas0 = pci_resource_start(devpriv->pci_dev, LAS0_PCIINDEX);
physLas1 = pci_resource_start(devpriv->pci_dev, LAS1_PCIINDEX);
physLcfg = pci_resource_start(devpriv->pci_dev, LCFG_PCIINDEX);
/* Now have the kernel map this into memory */
/* ASSUME page aligned */
devpriv->las0 = ioremap_nocache(physLas0, LAS0_PCISIZE);
devpriv->las1 = ioremap_nocache(physLas1, LAS1_PCISIZE);
devpriv->lcfg = ioremap_nocache(physLcfg, LCFG_PCISIZE);
if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg) {
return -ENOMEM;
}
DPRINTK("%s: LAS0=%llx, LAS1=%llx, CFG=%llx.\n", dev->board_name,
(unsigned long long)physLas0, (unsigned long long)physLas1,
(unsigned long long)physLcfg);
{ /* The RTD driver does this */
unsigned char pci_latency;
u16 revision;
/*uint32_t epld_version; */
pci_read_config_word(devpriv->pci_dev, PCI_REVISION_ID,
&revision);
DPRINTK("%s: PCI revision %d.\n", dev->board_name, revision);
pci_read_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency < 32) {
printk("%s: PCI latency changed from %d to %d\n",
dev->board_name, pci_latency, 32);
pci_write_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, 32);
} else {
DPRINTK("rtd520: PCI latency = %d\n", pci_latency);
}
/* Undocumented EPLD version (doesnt match RTD driver results) */
/*DPRINTK ("rtd520: Reading epld from %p\n",
devpriv->las0+0);
epld_version = readl (devpriv->las0+0);
if ((epld_version & 0xF0) >> 4 == 0x0F) {
DPRINTK("rtd520: pre-v8 EPLD. (%x)\n", epld_version);
} else {
DPRINTK("rtd520: EPLD version %x.\n", epld_version >> 4);
} */
}
/* Show board configuration */
printk("%s:", dev->board_name);
/*
* Allocate the subdevice structures. alloc_subdevice() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_subdevices(dev, 4) < 0) {
return -ENOMEM;
}
s = dev->subdevices + 0;
dev->read_subdev = s;
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags =
SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF |
SDF_CMD_READ;
s->n_chan = thisboard->aiChans;
s->maxdata = (1 << thisboard->aiBits) - 1;
if (thisboard->aiMaxGain <= 32) {
s->range_table = &rtd_ai_7520_range;
} else {
s->range_table = &rtd_ai_4520_range;
}
s->len_chanlist = RTD_MAX_CHANLIST; /* devpriv->fifoLen */
s->insn_read = rtd_ai_rinsn;
s->do_cmd = rtd_ai_cmd;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
/*s->poll = rtd_ai_poll; *//* not ready yet */
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = (1 << thisboard->aiBits) - 1;
s->range_table = &rtd_ao_range;
s->insn_write = rtd_ao_winsn;
s->insn_read = rtd_ao_rinsn;
s = dev->subdevices + 2;
/* digital i/o subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
/* we only support port 0 right now. Ignoring port 1 and user IO */
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
/* timer/counter subdevices (not currently supported) */
s = dev->subdevices + 3;
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 3;
s->maxdata = 0xffff;
/* initialize board, per RTD spec */
/* also, initialize shadow registers */
RtdResetBoard(dev);
comedi_udelay(100); /* needed? */
RtdPlxInterruptWrite(dev, 0);
RtdInterruptMask(dev, 0); /* and sets shadow */
RtdInterruptClearMask(dev, ~0); /* and sets shadow */
RtdInterruptClear(dev); /* clears bits set by mask */
RtdInterruptOverrunClear(dev);
RtdClearCGT(dev);
RtdAdcClearFifo(dev);
RtdDacClearFifo(dev, 0);
RtdDacClearFifo(dev, 1);
/* clear digital IO fifo */
RtdDioStatusWrite(dev, 0); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 0, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 1, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 2, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 3, 0); /* safe state, set shadow */
/* TODO: set user out source ??? */
/* check if our interrupt is available and get it */
if ((ret = comedi_request_irq(devpriv->pci_dev->irq, rtd_interrupt,
IRQF_SHARED, DRV_NAME, dev)) < 0) {
printk("Could not get interrupt! (%u)\n",
devpriv->pci_dev->irq);
return ret;
}
dev->irq = devpriv->pci_dev->irq;
printk("( irq=%u )", dev->irq);
ret = rtd520_probe_fifo_depth(dev);
if(ret < 0) {
return ret;
}
devpriv->fifoLen = ret;
printk("( fifoLen=%d )", devpriv->fifoLen);
#ifdef USE_DMA
if (dev->irq > 0) {
printk("( DMA buff=%d )\n", DMA_CHAIN_COUNT);
/* The PLX9080 has 2 DMA controllers, but there could be 4 sources:
ADC, digital, DAC1, and DAC2. Since only the ADC supports cmd mode
right now, this isn't an issue (yet) */
devpriv->dma0Offset = 0;
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Buff[index] =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
&devpriv->dma0BuffPhysAddr[index]);
if (devpriv->dma0Buff[index] == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/*DPRINTK ("buff[%d] @ %p virtual, %x PCI\n",
index,
devpriv->dma0Buff[index], devpriv->dma0BuffPhysAddr[index]); */
}
/* setup DMA descriptor ring (use cpu_to_le32 for byte ordering?) */
devpriv->dma0Chain =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) * DMA_CHAIN_COUNT,
&devpriv->dma0ChainPhysAddr);
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Chain[index].pci_start_addr =
devpriv->dma0BuffPhysAddr[index];
devpriv->dma0Chain[index].local_start_addr =
DMALADDR_ADC;
devpriv->dma0Chain[index].transfer_size =
sizeof(u16) * devpriv->fifoLen / 2;
devpriv->dma0Chain[index].next =
(devpriv->dma0ChainPhysAddr + ((index +
1) % (DMA_CHAIN_COUNT))
* sizeof(devpriv->dma0Chain[0]))
| DMA_TRANSFER_BITS;
/*DPRINTK ("ring[%d] @%lx PCI: %x, local: %x, N: 0x%x, next: %x\n",
index,
((long)devpriv->dma0ChainPhysAddr
+ (index * sizeof(devpriv->dma0Chain[0]))),
devpriv->dma0Chain[index].pci_start_addr,
devpriv->dma0Chain[index].local_start_addr,
devpriv->dma0Chain[index].transfer_size,
devpriv->dma0Chain[index].next); */
}
if (devpriv->dma0Chain == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
RtdDma0Mode(dev, DMA_MODE_BITS);
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL); /* set DMA trigger source */
} else {
printk("( no IRQ->no DMA )");
}
#endif /* USE_DMA */
if (dev->irq) { /* enable plx9080 interrupts */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
printk("\ncomedi%d: rtd520 driver attached.\n", dev->minor);
return 1;
#if 0
/* hit an error, clean up memory and return ret */
//rtd_attach_die_error:
#ifdef USE_DMA
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) { /* free buffer memory */
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc)
* DMA_CHAIN_COUNT,
devpriv->dma0Chain, devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
/* subdevices and priv are freed by the core */
if (dev->irq) {
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
comedi_free_irq(dev->irq, dev);
}
/* release all regions that were allocated */
if (devpriv->las0) {
iounmap(devpriv->las0);
}
if (devpriv->las1) {
iounmap(devpriv->las1);
}
if (devpriv->lcfg) {
iounmap(devpriv->lcfg);
}
if (devpriv->pci_dev) {
pci_dev_put(devpriv->pci_dev);
}
return ret;
#endif
}
/*
* _detach is called to deconfigure a device. It should deallocate
* resources.
* This function is also called when _attach() fails, so it should be
* careful not to release resources that were not necessarily
* allocated by _attach(). dev->private and dev->subdevices are
* deallocated automatically by the core.
*/
static int rtd_detach(comedi_device * dev)
{
#ifdef USE_DMA
int index;
#endif
DPRINTK("comedi%d: rtd520: removing (%ld ints)\n",
dev->minor, (devpriv ? devpriv->intCount : 0L));
if (devpriv && devpriv->lcfg) {
DPRINTK("(int status 0x%x, overrun status 0x%x, fifo status 0x%x)...\n", 0xffff & RtdInterruptStatus(dev), 0xffff & RtdInterruptOverrunStatus(dev), (0xffff & RtdFifoStatus(dev)) ^ 0x6666);
}
if (devpriv) {
/* Shut down any board ops by resetting it */
#ifdef USE_DMA
if (devpriv->lcfg) {
RtdDma0Control(dev, 0); /* disable DMA */
RtdDma1Control(dev, 0); /* disable DMA */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
#endif /* USE_DMA */
if (devpriv->las0) {
RtdResetBoard(dev);
RtdInterruptMask(dev, 0);
RtdInterruptClearMask(dev, ~0);
RtdInterruptClear(dev); /* clears bits set by mask */
}
#ifdef USE_DMA
/* release DMA */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) {
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) * DMA_CHAIN_COUNT,
devpriv->dma0Chain, devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
/* release IRQ */
if (dev->irq) {
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
comedi_free_irq(dev->irq, dev);
}
/* release all regions that were allocated */
if (devpriv->las0) {
iounmap(devpriv->las0);
}
if (devpriv->las1) {
iounmap(devpriv->las1);
}
if (devpriv->lcfg) {
iounmap(devpriv->lcfg);
}
if (devpriv->pci_dev) {
if (devpriv->got_regions) {
comedi_pci_disable(devpriv->pci_dev);
}
pci_dev_put(devpriv->pci_dev);
}
}
printk("comedi%d: rtd520: removed.\n", dev->minor);
return 0;
}
/*
Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(comedi_device * dev,
unsigned int comediChan, int chanIndex)
{ /* index in channel list */
unsigned int chan, range, aref;
unsigned short r = 0;
chan = CR_CHAN(comediChan);
range = CR_RANGE(comediChan);
aref = CR_AREF(comediChan);
r |= chan & 0xf;
/* Note: we also setup the channel list bipolar flag array */
if (range < thisboard->range10Start) { /* first batch are +-5 */
r |= 0x000; /* +-5 range */
r |= (range & 0x7) << 4; /* gain */
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else if (range < thisboard->rangeUniStart) { /* second batch are +-10 */
r |= 0x100; /* +-10 range */
r |= ((range - thisboard->range10Start) & 0x7) << 4; /* gain */
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else { /* last batch is +10 */
r |= 0x200; /* +10 range */
r |= ((range - thisboard->rangeUniStart) & 0x7) << 4; /* gain */
CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
}
switch (aref) {
case AREF_GROUND: /* on-board ground */
break;
case AREF_COMMON:
r |= 0x80; /* ref external analog common */
break;
case AREF_DIFF:
r |= 0x400; /* differential inputs */
break;
case AREF_OTHER: /* ??? */
break;
}
/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
chan, range, aref, r); */
return r;
}
/*
Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(comedi_device * dev,
unsigned int n_chan, unsigned int *list)
{
if (n_chan > 1) { /* setup channel gain table */
int ii;
RtdClearCGT(dev);
RtdEnableCGT(dev, 1); /* enable table */
for (ii = 0; ii < n_chan; ii++) {
RtdWriteCGTable(dev, rtdConvertChanGain(dev, list[ii],
ii));
}
} else { /* just use the channel gain latch */
RtdEnableCGT(dev, 0); /* disable table, enable latch */
RtdWriteCGLatch(dev, rtdConvertChanGain(dev, list[0], 0));
}
}
/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(comedi_device *dev)
{
lsampl_t chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned i;
static const unsigned limit = 0x2000;
unsigned fifo_size = 0;
RtdAdcClearFifo(dev);
rtd_load_channelgain_list(dev, 1, &chanspec);
RtdAdcConversionSource(dev, 0); /* software */
/* convert samples */
for (i = 0; i < limit; ++i) {
unsigned fifo_status;
/* trigger conversion */
RtdAdcStart(dev);
comedi_udelay(1);
fifo_status = RtdFifoStatus(dev);
if((fifo_status & FS_ADC_HEMPTY) == 0) {
fifo_size = 2 * i;
break;
}
}
if(i == limit)
{
rt_printk("\ncomedi: %s: failed to probe fifo size.\n", DRV_NAME);
return -EIO;
}
RtdAdcClearFifo(dev);
if(fifo_size != 0x400 || fifo_size != 0x2000)
{
rt_printk("\ncomedi: %s: unexpected fifo size of %i, expected 1024 or 8192.\n",
DRV_NAME, fifo_size);
return -EIO;
}
return fifo_size;
}
/*
"instructions" read/write data in "one-shot" or "software-triggered"
mode (simplest case).
This doesnt use interrupts.
Note, we don't do any settling delays. Use a instruction list to
select, delay, then read.
*/
static int rtd_ai_rinsn(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int n, ii;
int stat;
/* clear any old fifo data */
RtdAdcClearFifo(dev);
/* write channel to multiplexer and clear channel gain table */
rtd_load_channelgain_list(dev, 1, &insn->chanspec);
/* set conversion source */
RtdAdcConversionSource(dev, 0); /* software */
/* convert n samples */
for (n = 0; n < insn->n; n++) {
s16 d;
/* trigger conversion */
RtdAdcStart(dev);
for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
break;
WAIT_QUIETLY;
}
if (ii >= RTD_ADC_TIMEOUT) {
DPRINTK("rtd520: Error: ADC never finished! FifoStatus=0x%x\n", stat ^ 0x6666);
return -ETIMEDOUT;
}
/* read data */
d = RtdAdcFifoGet(dev); /* get 2s comp value */
/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0)) {
data[n] = d + 2048; /* convert to comedi unsigned data */
} else {
data[n] = d;
}
}
/* return the number of samples read/written */
return n;
}
/*
Get what we know is there.... Fast!
This uses 1/2 the bus cycles of read_dregs (below).
The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(comedi_device * dev, comedi_subdevice * s, int count)
{
int ii;
for (ii = 0; ii < count; ii++) {
sampl_t sample;
s16 d;
if (0 == devpriv->aiCount) { /* done */
d = RtdAdcFifoGet(dev); /* Read N and discard */
continue;
}
#if 0
if (0 == (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY)) { /* DEBUG */
DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
count);
break;
}
#endif
d = RtdAdcFifoGet(dev); /* get 2s comp value */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = d + 2048; /* convert to comedi unsigned data */
} else {
sample = d;
}
if (!comedi_buf_put(s->async, sample))
return -1;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
/*
unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(comedi_device * dev, comedi_subdevice * s)
{
while (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
sampl_t sample;
s16 d = RtdAdcFifoGet(dev); /* get 2s comp value */
if (0 == devpriv->aiCount) { /* done */
continue; /* read rest */
}
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = d + 2048; /* convert to comedi unsigned data */
} else {
sample = d;
}
if (!comedi_buf_put(s->async, sample))
return -1;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
#ifdef USE_DMA
/*
Terminate a DMA transfer and wait for everything to quiet down
*/
void abort_dma(comedi_device * dev, unsigned int channel)
{ /* DMA channel 0, 1 */
unsigned long dma_cs_addr; /* the control/status register */
uint8_t status;
unsigned int ii;
//unsigned long flags;
dma_cs_addr = (unsigned long)devpriv->lcfg
+ ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
// spinlock for plx dma control/status reg
//comedi_spin_lock_irqsave( &dev->spinlock, flags );
// abort dma transfer if necessary
status = readb(dma_cs_addr);
if ((status & PLX_DMA_EN_BIT) == 0) { /* not enabled (Error?) */
DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
channel, status);
goto abortDmaExit;
}
/* wait to make sure done bit is zero (needed?) */
for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) {
WAIT_QUIETLY;
status = readb(dma_cs_addr);
}
if (status & PLX_DMA_DONE_BIT) {
printk("rtd520: Timeout waiting for dma %i done clear\n",
channel);
goto abortDmaExit;
}
/* disable channel (required) */
writeb(0, dma_cs_addr);
comedi_udelay(1); /* needed?? */
/* set abort bit for channel */
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);
// wait for dma done bit to be set
status = readb(dma_cs_addr);
for (ii = 0;
(status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT;
ii++) {
status = readb(dma_cs_addr);
WAIT_QUIETLY;
}
if ((status & PLX_DMA_DONE_BIT) == 0) {
printk("rtd520: Timeout waiting for dma %i done set\n",
channel);
}
abortDmaExit:
//comedi_spin_unlock_irqrestore( &dev->spinlock, flags );
}
/*
Process what is in the DMA transfer buffer and pass to comedi
Note: this is not re-entrant
*/
static int ai_process_dma(comedi_device * dev, comedi_subdevice * s)
{
int ii, n;
s16 *dp;
if (devpriv->aiCount == 0) /* transfer already complete */
return 0;
dp = devpriv->dma0Buff[devpriv->dma0Offset];
for (ii = 0; ii < devpriv->fifoLen / 2;) { /* convert samples */
sampl_t sample;
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = (*dp >> 3) + 2048; /* convert to comedi unsigned data */
} else {
sample = *dp >> 3; /* low 3 bits are marker lines */
}
*dp++ = sample; /* put processed value back */
if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
s->async->cur_chan = 0;
++ii; /* number ready to transfer */
if (devpriv->aiCount > 0) { /* < 0, means read forever */
if (--devpriv->aiCount == 0) { /* done */
/*DPRINTK ("rtd520: Final %d samples\n", ii); */
break;
}
}
}
/* now pass the whole array to the comedi buffer */
dp = devpriv->dma0Buff[devpriv->dma0Offset];
n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
if (n < (ii * sizeof(s16))) { /* any residual is an error */
DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
ii - (n / sizeof(s16)));
s->async->events |= COMEDI_CB_ERROR;
return -1;
}
comedi_buf_memcpy_to(s->async, 0, dp, n);
comedi_buf_write_free(s->async, n);
/* always at least 1 scan -- 1/2 FIFO is larger than our max scan list */
s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) { /* next buffer */
devpriv->dma0Offset = 0;
}
return 0;
}
#endif /* USE_DMA */
/*
Handle all rtd520 interrupts.
Runs atomically and is never re-entered.
This is a "slow handler"; other interrupts may be active.
The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
void *d /* our data */
PT_REGS_ARG)
{ /* cpu context (ignored) */
comedi_device *dev = d; /* must be called "dev" for devpriv */
u16 status;
u16 fifoStatus;
comedi_subdevice *s = dev->subdevices + 0; /* analog in subdevice */
if (!dev->attached) {
return IRQ_NONE;
}
devpriv->intCount++; /* DEBUG statistics */
fifoStatus = RtdFifoStatus(dev);
/* check for FIFO full, this automatically halts the ADC! */
if (!(fifoStatus & FS_ADC_NOT_FULL)) { /* 0 -> full */
DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto abortTransfer;
}
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* Check DMA */
u32 istatus = RtdPlxInterruptRead(dev);
if (istatus & ICS_DMA0_A) {
if (ai_process_dma(dev, s) < 0) {
DPRINTK("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n", devpriv->aiCount);
RtdDma0Control(dev,
(devpriv->
dma0Control &
~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
goto abortTransfer;
}
/*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n",
devpriv->aiCount, istatus); */
RtdDma0Control(dev,
(devpriv->dma0Control & ~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (DMA).\n");
goto transferDone;
}
comedi_event(dev, s);
} else {
/*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */
}
}
/* Fall through and check for other interrupt sources */
#endif /* USE_DMA */
status = RtdInterruptStatus(dev);
/* if interrupt was not caused by our board, or handled above */
if (0 == status) {
return IRQ_HANDLED;
}
if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
/* since the priority interrupt controller may have queued a sample
counter interrupt, even though we have already finished,
we must handle the possibility that there is no data here */
if (!(fifoStatus & FS_ADC_HEMPTY)) { /* 0 -> 1/2 full */
/*DPRINTK("rtd520: Sample int, reading 1/2FIFO. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777); */
if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
DPRINTK("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n", devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto transferDone;
}
comedi_event(dev, s);
} else if (devpriv->transCount > 0) { /* read often */
/*DPRINTK("rtd520: Sample int, reading %d fifo_status 0x%x\n",
devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
if (fifoStatus & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
if (ai_read_n(dev, s, devpriv->transCount) < 0) {
DPRINTK("rtd520: comedi read buffer overflow (N) with %ld to go!\n", devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (N). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777);
goto transferDone;
}
comedi_event(dev, s);
}
} else { /* wait for 1/2 FIFO (old) */
DPRINTK("rtd520: Sample int. Wait for 1/2. fifo_status 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777);
}
} else {
DPRINTK("rtd520: unknown interrupt source!\n");
}
if (0xffff & RtdInterruptOverrunStatus(dev)) { /* interrupt overrun */
DPRINTK("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n", devpriv->aiCount, 0xffff & RtdInterruptOverrunStatus(dev));
goto abortTransfer;
}
/* clear the interrupt */
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
return IRQ_HANDLED;
abortTransfer:
RtdAdcClearFifo(dev); /* clears full flag */
s->async->events |= COMEDI_CB_ERROR;
devpriv->aiCount = 0; /* stop and don't transfer any more */
/* fall into transferDone */
transferDone:
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0); /* mask out SAMPLE */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/* if Using DMA, then we should have read everything by now */
if (devpriv->aiCount > 0) {
DPRINTK("rtd520: Lost DMA data! %ld remain\n",
devpriv->aiCount);
}
}
#endif /* USE_DMA */
if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
fifoStatus = RtdFifoStatus(dev);
DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777); /* should read all 0s */
ai_read_dregs(dev, s); /* read anything left in FIFO */
}
s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
comedi_event(dev, s);
/* clear the interrupt */
status = RtdInterruptStatus(dev);
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
fifoStatus = RtdFifoStatus(dev); /* DEBUG */
DPRINTK("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n", devpriv->intCount, status, 0xffff & RtdInterruptOverrunStatus(dev));
return IRQ_HANDLED;
}
#if 0
/*
return the number of samples available
*/
static int rtd_ai_poll(comedi_device * dev, comedi_subdevice * s)
{
/* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
/* Not sure what to do if DMA is active */
return s->async->buf_write_count - s->async->buf_read_count;
}
#endif
/*
cmdtest tests a particular command to see if it is valid.
Using the cmdtest ioctl, a user can create a valid cmd
and then have it executed by the cmd ioctl (asyncronously).
cmdtest returns 1,2,3,4 or 0, depending on which tests
the command passes.
*/
static int rtd_ai_cmdtest(comedi_device * dev,
comedi_subdevice * s, comedi_cmd * cmd)
{
int err = 0;
int tmp;
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src) {
err++;
}
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src) {
err++;
}
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->convert_src || tmp != cmd->convert_src) {
err++;
}
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src) {
err++;
}
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src) {
err++;
}
if (err)
return 1;
/* step 2: make sure trigger sources are unique
and mutually compatible */
/* note that mutual compatiblity is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT) {
err++;
}
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT) {
err++;
}
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE) {
err++;
}
if (err) {
return 2;
}
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Note: these are time periods, not actual rates */
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->scan_begin_arg < RTD_MAX_SPEED_1) {
cmd->scan_begin_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED_1) {
cmd->scan_begin_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->scan_begin_arg < RTD_MAX_SPEED) {
cmd->scan_begin_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED) {
cmd->scan_begin_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
}
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
if (cmd->scan_begin_arg > 9) {
cmd->scan_begin_arg = 9;
err++;
}
}
if (cmd->convert_src == TRIG_TIMER) {
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->convert_arg < RTD_MAX_SPEED_1) {
cmd->convert_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED_1) {
cmd->convert_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->convert_arg < RTD_MAX_SPEED) {
cmd->convert_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED) {
cmd->convert_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
}
} else {
/* external trigger */
/* see above */
if (cmd->convert_arg > 9) {
cmd->convert_arg = 9;
err++;
}
}
#if 0
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
#endif
if (cmd->stop_src == TRIG_COUNT) {
/* TODO check for rounding error due to counter wrap */
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
if (err) {
return 3;
}
/* step 4: fix up any arguments */
if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
cmd->chanlist_len = RTD_MAX_CHANLIST;
err++;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
rtd_ns_to_timer(&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg) {
err++;
}
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
rtd_ns_to_timer(&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg) {
err++;
}
if (cmd->scan_begin_src == TRIG_TIMER
&& (cmd->scan_begin_arg
< (cmd->convert_arg * cmd->scan_end_arg))) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
}
if (err) {
return 4;
}
return 0;
}
/*
Execute a analog in command with many possible triggering options.
The data get stored in the async structure of the subdevice.
This is usually done by an interrupt handler.
Userland gets to the data using read calls.
*/
static int rtd_ai_cmd(comedi_device * dev, comedi_subdevice * s)
{
comedi_cmd *cmd = &s->async->cmd;
int timer;
/* stop anything currently running */
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* make sure PACER is stopped */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0);
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* cancel anything running */
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
if (RtdPlxInterruptRead(dev) & ICS_DMA0_A) { /*clear pending int */
RtdDma0Control(dev, PLX_CLEAR_DMA_INTR_BIT);
}
}
RtdDma0Reset(dev); /* reset onboard state */
#endif /* USE_DMA */
RtdAdcClearFifo(dev); /* clear any old data */
RtdInterruptOverrunClear(dev);
devpriv->intCount = 0;
if (!dev->irq) { /* we need interrupts for this */
DPRINTK("rtd520: ERROR! No interrupt available!\n");
return -ENXIO;
}
/* start configuration */
/* load channel list and reset CGT */
rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
/* setup the common case and override if needed */
if (cmd->chanlist_len > 1) {
/*DPRINTK ("rtd520: Multi channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdBurstStartSource(dev, 1); /* PACER triggers burst */
RtdAdcConversionSource(dev, 2); /* BURST triggers ADC */
} else { /* single channel */
/*DPRINTK ("rtd520: single channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdAdcConversionSource(dev, 1); /* PACER triggers ADC */
}
RtdAboutCounter(dev, devpriv->fifoLen / 2 - 1); /* 1/2 FIFO */
if (TRIG_TIMER == cmd->scan_begin_src) {
/* scan_begin_arg is in nanoseconds */
/* find out how many samples to wait before transferring */
if (cmd->flags & TRIG_WAKE_EOS) {
/* this may generate un-sustainable interrupt rates */
/* the application is responsible for doing the right thing */
devpriv->transCount = cmd->chanlist_len;
devpriv->flags |= SEND_EOS;
} else {
/* arrange to transfer data periodically */
devpriv->transCount
=
(TRANS_TARGET_PERIOD * cmd->chanlist_len) /
cmd->scan_begin_arg;
if (devpriv->transCount < cmd->chanlist_len) {
/* tranfer after each scan (and avoid 0) */
devpriv->transCount = cmd->chanlist_len;
} else { /* make a multiple of scan length */
devpriv->transCount =
(devpriv->transCount +
cmd->chanlist_len - 1)
/ cmd->chanlist_len;
devpriv->transCount *= cmd->chanlist_len;
}
devpriv->flags |= SEND_EOS;
}
if (devpriv->transCount >= (devpriv->fifoLen / 2)) {
/* out of counter range, use 1/2 fifo instead */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
} else {
/* interrupt for each tranfer */
RtdAboutCounter(dev, devpriv->transCount - 1);
}
DPRINTK("rtd520: scanLen=%d tranferCount=%d fifoLen=%d\n scanTime(ns)=%d flags=0x%x\n", cmd->chanlist_len, devpriv->transCount, devpriv->fifoLen, cmd->scan_begin_arg, devpriv->flags);
} else { /* unknown timing, just use 1/2 FIFO */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
}
RtdPacerClockSource(dev, 1); /* use INTERNAL 8Mhz clock source */
RtdAboutStopEnable(dev, 1); /* just interrupt, dont stop */
/* BUG??? these look like enumerated values, but they are bit fields */
/* First, setup when to stop */
switch (cmd->stop_src) {
case TRIG_COUNT: /* stop after N scans */
devpriv->aiCount = cmd->stop_arg * cmd->chanlist_len;
if ((devpriv->transCount > 0)
&& (devpriv->transCount > devpriv->aiCount)) {
devpriv->transCount = devpriv->aiCount;
}
break;
case TRIG_NONE: /* stop when cancel is called */
devpriv->aiCount = -1; /* read forever */
break;
default:
DPRINTK("rtd520: Warning! ignoring stop_src mode %d\n",
cmd->stop_src);
}
/* Scan timing */
switch (cmd->scan_begin_src) {
case TRIG_TIMER: /* periodic scanning */
timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_NEAREST);
/* set PACER clock */
/*DPRINTK ("rtd520: loading %d into pacer\n", timer); */
RtdPacerCounter(dev, timer);
break;
case TRIG_EXT:
RtdPacerStartSource(dev, 1); /* EXTERNALy trigger pacer */
break;
default:
DPRINTK("rtd520: Warning! ignoring scan_begin_src mode %d\n",
cmd->scan_begin_src);
}
/* Sample timing within a scan */
switch (cmd->convert_src) {
case TRIG_TIMER: /* periodic */
if (cmd->chanlist_len > 1) { /* only needed for multi-channel */
timer = rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_NEAREST);
/* setup BURST clock */
/*DPRINTK ("rtd520: loading %d into burst\n", timer); */
RtdBurstCounter(dev, timer);
}
break;
case TRIG_EXT: /* external */
RtdBurstStartSource(dev, 2); /* EXTERNALy trigger burst */
break;
default:
DPRINTK("rtd520: Warning! ignoring convert_src mode %d\n",
cmd->convert_src);
}
/* end configuration */
/* This doesn't seem to work. There is no way to clear an interrupt
that the priority controller has queued! */
RtdInterruptClearMask(dev, ~0); /* clear any existing flags */
RtdInterruptClear(dev);
/* TODO: allow multiple interrupt sources */
if (devpriv->transCount > 0) { /* transfer every N samples */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every %d\n", devpriv->transCount);
} else { /* 1/2 FIFO transfers */
#ifdef USE_DMA
devpriv->flags |= DMA0_ACTIVE;
/* point to first transfer in ring */
devpriv->dma0Offset = 0;
RtdDma0Mode(dev, DMA_MODE_BITS);
RtdDma0Next(dev, /* point to first block */
devpriv->dma0Chain[DMA_CHAIN_COUNT - 1].next);
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL); /* set DMA trigger source */
RtdPlxInterruptWrite(dev, /* enable interrupt */
RtdPlxInterruptRead(dev) | ICS_DMA0_E);
/* Must be 2 steps. See PLX app note about "Starting a DMA transfer" */
RtdDma0Control(dev, PLX_DMA_EN_BIT); /* enable DMA (clear INTR?) */
RtdDma0Control(dev, PLX_DMA_EN_BIT | PLX_DMA_START_BIT); /*start DMA */
DPRINTK("rtd520: Using DMA0 transfers. plxInt %x RtdInt %x\n",
RtdPlxInterruptRead(dev), devpriv->intMask);
#else /* USE_DMA */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every 1/2 FIFO\n");
#endif /* USE_DMA */
}
/* BUG: start_src is ASSUMED to be TRIG_NOW */
/* BUG? it seems like things are running before the "start" */
RtdPacerStart(dev); /* Start PACER */
return 0;
}
/*
Stop a running data aquisition.
*/
static int rtd_ai_cancel(comedi_device * dev, comedi_subdevice * s)
{
u16 status;
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0);
devpriv->aiCount = 0; /* stop and don't transfer any more */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
}
#endif /* USE_DMA */
status = RtdInterruptStatus(dev);
DPRINTK("rtd520: Acquisition canceled. %ld ints, intStat=%x, overStat=%x\n", devpriv->intCount, status, 0xffff & RtdInterruptOverrunStatus(dev));
return 0;
}
/*
Given a desired period and the clock period (both in ns),
return the proper counter value (divider-1).
Sets the original period to be the true value.
Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec, /* desired period (in ns) */
int round_mode, int base)
{ /* clock period (in ns) */
int divider;
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/* Note: we don't check for max, because different timers
have different ranges */
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
/*
Given a desired period (in ns),
return the proper counter value (divider-1) for the internal clock.
Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
/*
Output one (or more) analog values to a single port as fast as possible.
*/
static int rtd_ao_winsn(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
int range = CR_RANGE(insn->chanspec);
/* Configure the output range (table index matches the range values) */
RtdDacRange(dev, chan, range);
/* Writing a list of values to an AO channel is probably not
* very useful, but that's how the interface is defined. */
for (i = 0; i < insn->n; ++i) {
int val = data[i] << 3;
int stat = 0; /* initialize to avoid bogus warning */
int ii;
/* VERIFY: comedi range and offset conversions */
if ((range > 1) /* bipolar */
&&(data[i] < 2048)) {
/* offset and sign extend */
val = (((int)data[i]) - 2048) << 3;
} else { /* unipolor */
val = data[i] << 3;
}
DPRINTK("comedi: rtd520 DAC chan=%d range=%d writing %d as 0x%x\n", chan, range, data[i], val);
/* a typical programming sequence */
RtdDacFifoPut(dev, chan, val); /* put the value in */
RtdDacUpdate(dev, chan); /* trigger the conversion */
devpriv->aoValue[chan] = data[i]; /* save for read back */
for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
/* 1 -> not empty */
if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY :
FS_DAC2_NOT_EMPTY))
break;
WAIT_QUIETLY;
}
if (ii >= RTD_DAC_TIMEOUT) {
DPRINTK("rtd520: Error: DAC never finished! FifoStatus=0x%x\n", stat ^ 0x6666);
return -ETIMEDOUT;
}
}
/* return the number of samples read/written */
return i;
}
/* AO subdevices should have a read insn as well as a write insn.
* Usually this means copying a value stored in devpriv. */
static int rtd_ao_rinsn(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
for (i = 0; i < insn->n; i++) {
data[i] = devpriv->aoValue[chan];
}
return i;
}
/*
Write a masked set of bits and the read back the port.
We track what the bits should be (i.e. we don't read the port first).
DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write
*/
static int rtd_dio_insn_bits(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
if (insn->n != 2)
return -EINVAL;
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
RtdDio0Write(dev, s->state);
}
/* on return, data[1] contains the value of the digital
* input lines. */
data[1] = RtdDio0Read(dev);
/*DPRINTK("rtd520:port_0 wrote: 0x%x read: 0x%x\n", s->state, data[1]); */
return 2;
}
/*
Configure one bit on a IO port as Input or Output (hence the name :-).
*/
static int rtd_dio_insn_config(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int chan = CR_CHAN(insn->chanspec);
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->io_bits |= 1 << chan; /* 1 means Out */
break;
case INSN_CONFIG_DIO_INPUT:
s->io_bits &= ~(1 << chan);
break;
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->
io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
break;
default:
return -EINVAL;
}
DPRINTK("rtd520: port_0_direction=0x%x (1 means out)\n", s->io_bits);
/* TODO support digital match interrupts and strobes */
RtdDioStatusWrite(dev, 0x01); /* make Dio0Ctrl point to direction */
RtdDio0CtrlWrite(dev, s->io_bits); /* set direction 1 means Out */
RtdDioStatusWrite(dev, 0); /* make Dio0Ctrl clear interrupts */
/* port1 can only be all input or all output */
/* there are also 2 user input lines and 2 user output lines */
return 1;
}
/*
* A convenient macro that defines init_module() and cleanup_module(),
* as necessary.
*/
COMEDI_PCI_INITCLEANUP(rtd520Driver, rtd520_pci_table);
/*
comedi/drivers/rtd520.h
Comedi driver defines for Real Time Devices (RTD) PCI4520/DM7520
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2001 David A. Schleef <ds@schleef.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Created by Dan Christian, NASA Ames Research Center.
See board notes in rtd520.c
*/
/*
LAS0 Runtime Area
Local Address Space 0 Offset Read Function Write Function
*/
#define LAS0_SPARE_00 0x0000 // - -
#define LAS0_SPARE_04 0x0004 // - -
#define LAS0_USER_IO 0x0008 // Read User Inputs Write User Outputs
#define LAS0_SPARE_0C 0x000C // - -
#define LAS0_ADC 0x0010 // Read FIFO Status Software A/D Start
#define LAS0_DAC1 0x0014 // - Software D/A1 Update
#define LAS0_DAC2 0x0018 // - Software D/A2 Update
#define LAS0_SPARE_1C 0x001C // - -
#define LAS0_SPARE_20 0x0020 // - -
#define LAS0_DAC 0x0024 // - Software Simultaneous D/A1 and D/A2 Update
#define LAS0_PACER 0x0028 // Software Pacer Start Software Pacer Stop
#define LAS0_TIMER 0x002C // Read Timer Counters Status HDIN Software Trigger
#define LAS0_IT 0x0030 // Read Interrupt Status Write Interrupt Enable Mask Register
#define LAS0_CLEAR 0x0034 // Clear ITs set by Clear Mask Set Interrupt Clear Mask
#define LAS0_OVERRUN 0x0038 // Read pending interrupts Clear Overrun Register
#define LAS0_SPARE_3C 0x003C // - -
/*
LAS0 Runtime Area Timer/Counter,Dig.IO
Name Local Address Function
*/
#define LAS0_PCLK 0x0040 // Pacer Clock value (24bit) Pacer Clock load (24bit)
#define LAS0_BCLK 0x0044 // Burst Clock value (10bit) Burst Clock load (10bit)
#define LAS0_ADC_SCNT 0x0048 // A/D Sample counter value (10bit) A/D Sample counter load (10bit)
#define LAS0_DAC1_UCNT 0x004C // D/A1 Update counter value (10 bit) D/A1 Update counter load (10bit)
#define LAS0_DAC2_UCNT 0x0050 // D/A2 Update counter value (10 bit) D/A2 Update counter load (10bit)
#define LAS0_DCNT 0x0054 // Delay counter value (16 bit) Delay counter load (16bit)
#define LAS0_ACNT 0x0058 // About counter value (16 bit) About counter load (16bit)
#define LAS0_DAC_CLK 0x005C // DAC clock value (16bit) DAC clock load (16bit)
#define LAS0_UTC0 0x0060 // 8254 TC Counter 0 User TC 0 value Load count in TC Counter 0
#define LAS0_UTC1 0x0064 // 8254 TC Counter 1 User TC 1 value Load count in TC Counter 1
#define LAS0_UTC2 0x0068 // 8254 TC Counter 2 User TC 2 value Load count in TC Counter 2
#define LAS0_UTC_CTRL 0x006C // 8254 TC Control Word Program counter mode for TC
#define LAS0_DIO0 0x0070 // Digital I/O Port 0 Read Port Digital I/O Port 0 Write Port
#define LAS0_DIO1 0x0074 // Digital I/O Port 1 Read Port Digital I/O Port 1 Write Port
#define LAS0_DIO0_CTRL 0x0078 // Clear digital IRQ status flag/read Clear digital chip/program Port 0
#define LAS0_DIO_STATUS 0x007C // Read Digital I/O Status word Program digital control register &
/*
LAS0 Setup Area
Name Local Address Function
*/
#define LAS0_BOARD_RESET 0x0100 // Board reset
#define LAS0_DMA0_SRC 0x0104 // DMA 0 Sources select
#define LAS0_DMA1_SRC 0x0108 // DMA 1 Sources select
#define LAS0_ADC_CONVERSION 0x010C // A/D Conversion Signal select
#define LAS0_BURST_START 0x0110 // Burst Clock Start Trigger select
#define LAS0_PACER_START 0x0114 // Pacer Clock Start Trigger select
#define LAS0_PACER_STOP 0x0118 // Pacer Clock Stop Trigger select
#define LAS0_ACNT_STOP_ENABLE 0x011C // About Counter Stop Enable
#define LAS0_PACER_REPEAT 0x0120 // Pacer Start Trigger Mode select
#define LAS0_DIN_START 0x0124 // High Speed Digital Input Sampling Signal select
#define LAS0_DIN_FIFO_CLEAR 0x0128 // Digital Input FIFO Clear
#define LAS0_ADC_FIFO_CLEAR 0x012C // A/D FIFO Clear
#define LAS0_CGT_WRITE 0x0130 // Channel Gain Table Write
#define LAS0_CGL_WRITE 0x0134 // Channel Gain Latch Write
#define LAS0_CG_DATA 0x0138 // Digital Table Write
#define LAS0_CGT_ENABLE 0x013C // Channel Gain Table Enable
#define LAS0_CG_ENABLE 0x0140 // Digital Table Enable
#define LAS0_CGT_PAUSE 0x0144 // Table Pause Enable
#define LAS0_CGT_RESET 0x0148 // Reset Channel Gain Table
#define LAS0_CGT_CLEAR 0x014C // Clear Channel Gain Table
#define LAS0_DAC1_CTRL 0x0150 // D/A1 output type/range
#define LAS0_DAC1_SRC 0x0154 // D/A1 update source
#define LAS0_DAC1_CYCLE 0x0158 // D/A1 cycle mode
#define LAS0_DAC1_RESET 0x015C // D/A1 FIFO reset
#define LAS0_DAC1_FIFO_CLEAR 0x0160 // D/A1 FIFO clear
#define LAS0_DAC2_CTRL 0x0164 // D/A2 output type/range
#define LAS0_DAC2_SRC 0x0168 // D/A2 update source
#define LAS0_DAC2_CYCLE 0x016C // D/A2 cycle mode
#define LAS0_DAC2_RESET 0x0170 // D/A2 FIFO reset
#define LAS0_DAC2_FIFO_CLEAR 0x0174 // D/A2 FIFO clear
#define LAS0_ADC_SCNT_SRC 0x0178 // A/D Sample Counter Source select
#define LAS0_PACER_SELECT 0x0180 // Pacer Clock select
#define LAS0_SBUS0_SRC 0x0184 // SyncBus 0 Source select
#define LAS0_SBUS0_ENABLE 0x0188 // SyncBus 0 enable
#define LAS0_SBUS1_SRC 0x018C // SyncBus 1 Source select
#define LAS0_SBUS1_ENABLE 0x0190 // SyncBus 1 enable
#define LAS0_SBUS2_SRC 0x0198 // SyncBus 2 Source select
#define LAS0_SBUS2_ENABLE 0x019C // SyncBus 2 enable
#define LAS0_ETRG_POLARITY 0x01A4 // External Trigger polarity select
#define LAS0_EINT_POLARITY 0x01A8 // External Interrupt polarity select
#define LAS0_UTC0_CLOCK 0x01AC // UTC0 Clock select
#define LAS0_UTC0_GATE 0x01B0 // UTC0 Gate select
#define LAS0_UTC1_CLOCK 0x01B4 // UTC1 Clock select
#define LAS0_UTC1_GATE 0x01B8 // UTC1 Gate select
#define LAS0_UTC2_CLOCK 0x01BC // UTC2 Clock select
#define LAS0_UTC2_GATE 0x01C0 // UTC2 Gate select
#define LAS0_UOUT0_SELECT 0x01C4 // User Output 0 source select
#define LAS0_UOUT1_SELECT 0x01C8 // User Output 1 source select
#define LAS0_DMA0_RESET 0x01CC // DMA0 Request state machine reset
#define LAS0_DMA1_RESET 0x01D0 // DMA1 Request state machine reset
/*
LAS1
Name Local Address Function
*/
#define LAS1_ADC_FIFO 0x0000 // Read A/D FIFO (16bit) -
#define LAS1_HDIO_FIFO 0x0004 // Read High Speed Digital Input FIFO (16bit) -
#define LAS1_DAC1_FIFO 0x0008 // - Write D/A1 FIFO (16bit)
#define LAS1_DAC2_FIFO 0x000C // - Write D/A2 FIFO (16bit)
/*
LCFG: PLX 9080 local config & runtime registers
Name Local Address Function
*/
#define LCFG_ITCSR 0x0068 // INTCSR, Interrupt Control/Status Register
#define LCFG_DMAMODE0 0x0080 // DMA Channel 0 Mode Register
#define LCFG_DMAPADR0 0x0084 // DMA Channel 0 PCI Address Register
#define LCFG_DMALADR0 0x0088 // DMA Channel 0 Local Address Reg
#define LCFG_DMASIZ0 0x008C // DMA Channel 0 Transfer Size (Bytes) Register
#define LCFG_DMADPR0 0x0090 // DMA Channel 0 Descriptor Pointer Register
#define LCFG_DMAMODE1 0x0094 // DMA Channel 1 Mode Register
#define LCFG_DMAPADR1 0x0098 // DMA Channel 1 PCI Address Register
#define LCFG_DMALADR1 0x009C // DMA Channel 1 Local Address Register
#define LCFG_DMASIZ1 0x00A0 // DMA Channel 1 Transfer Size (Bytes) Register
#define LCFG_DMADPR1 0x00A4 // DMA Channel 1 Descriptor Pointer Register
#define LCFG_DMACSR0 0x00A8 // DMA Channel 0 Command/Status Register
#define LCFG_DMACSR1 0x00A9 // DMA Channel 0 Command/Status Register
#define LCFG_DMAARB 0x00AC // DMA Arbitration Register
#define LCFG_DMATHR 0x00B0 // DMA Threshold Register
/*======================================================================
Resister bit definitions
======================================================================*/
// FIFO Status Word Bits (RtdFifoStatus)
#define FS_DAC1_NOT_EMPTY 0x0001 // D0 - DAC1 FIFO not empty
#define FS_DAC1_HEMPTY 0x0002 // D1 - DAC1 FIFO half empty
#define FS_DAC1_NOT_FULL 0x0004 // D2 - DAC1 FIFO not full
#define FS_DAC2_NOT_EMPTY 0x0010 // D4 - DAC2 FIFO not empty
#define FS_DAC2_HEMPTY 0x0020 // D5 - DAC2 FIFO half empty
#define FS_DAC2_NOT_FULL 0x0040 // D6 - DAC2 FIFO not full
#define FS_ADC_NOT_EMPTY 0x0100 // D8 - ADC FIFO not empty
#define FS_ADC_HEMPTY 0x0200 // D9 - ADC FIFO half empty
#define FS_ADC_NOT_FULL 0x0400 // D10 - ADC FIFO not full
#define FS_DIN_NOT_EMPTY 0x1000 // D12 - DIN FIFO not empty
#define FS_DIN_HEMPTY 0x2000 // D13 - DIN FIFO half empty
#define FS_DIN_NOT_FULL 0x4000 // D14 - DIN FIFO not full
// Timer Status Word Bits (GetTimerStatus)
#define TS_PCLK_GATE 0x0001
// D0 - Pacer Clock Gate [0 - gated, 1 - enabled]
#define TS_BCLK_GATE 0x0002
// D1 - Burst Clock Gate [0 - disabled, 1 - running]
#define TS_DCNT_GATE 0x0004
// D2 - Pacer Clock Delayed Start Trigger [0 - delay over, 1 - delay in
// progress]
#define TS_ACNT_GATE 0x0008
// D3 - Pacer Clock About Trigger [0 - completed, 1 - in progress]
#define TS_PCLK_RUN 0x0010
// D4 - Pacer Clock Shutdown Flag [0 - Pacer Clock cannot be start
// triggered only by Software Pacer Start Command, 1 - Pacer Clock can
// be start triggered]
// External Trigger polarity select
// External Interrupt polarity select
#define POL_POSITIVE 0x0 // positive edge
#define POL_NEGATIVE 0x1 // negative edge
// User Output Signal select (SetUout0Source, SetUout1Source)
#define UOUT_ADC 0x0 // A/D Conversion Signal
#define UOUT_DAC1 0x1 // D/A1 Update
#define UOUT_DAC2 0x2 // D/A2 Update
#define UOUT_SOFTWARE 0x3 // Software Programmable
// Pacer clock select (SetPacerSource)
#define PCLK_INTERNAL 1 // Internal Pacer Clock
#define PCLK_EXTERNAL 0 // External Pacer Clock
// A/D Sample Counter Sources (SetAdcntSource, SetupSampleCounter)
#define ADC_SCNT_CGT_RESET 0x0 // needs restart with StartPacer
#define ADC_SCNT_FIFO_WRITE 0x1
// A/D Conversion Signal Select (for SetConversionSelect)
#define ADC_START_SOFTWARE 0x0 // Software A/D Start
#define ADC_START_PCLK 0x1 // Pacer Clock (Ext. Int. see Func.509)
#define ADC_START_BCLK 0x2 // Burst Clock
#define ADC_START_DIGITAL_IT 0x3 // Digital Interrupt
#define ADC_START_DAC1_MARKER1 0x4 // D/A 1 Data Marker 1
#define ADC_START_DAC2_MARKER1 0x5 // D/A 2 Data Marker 1
#define ADC_START_SBUS0 0x6 // SyncBus 0
#define ADC_START_SBUS1 0x7 // SyncBus 1
#define ADC_START_SBUS2 0x8 // SyncBus 2
// Burst Clock start trigger select (SetBurstStart)
#define BCLK_START_SOFTWARE 0x0 // Software A/D Start (StartBurst)
#define BCLK_START_PCLK 0x1 // Pacer Clock
#define BCLK_START_ETRIG 0x2 // External Trigger
#define BCLK_START_DIGITAL_IT 0x3 // Digital Interrupt
#define BCLK_START_SBUS0 0x4 // SyncBus 0
#define BCLK_START_SBUS1 0x5 // SyncBus 1
#define BCLK_START_SBUS2 0x6 // SyncBus 2
// Pacer Clock start trigger select (SetPacerStart)
#define PCLK_START_SOFTWARE 0x0 // Software Pacer Start (StartPacer)
#define PCLK_START_ETRIG 0x1 // External trigger
#define PCLK_START_DIGITAL_IT 0x2 // Digital interrupt
#define PCLK_START_UTC2 0x3 // User TC 2 out
#define PCLK_START_SBUS0 0x4 // SyncBus 0
#define PCLK_START_SBUS1 0x5 // SyncBus 1
#define PCLK_START_SBUS2 0x6 // SyncBus 2
#define PCLK_START_D_SOFTWARE 0x8 // Delayed Software Pacer Start
#define PCLK_START_D_ETRIG 0x9 // Delayed external trigger
#define PCLK_START_D_DIGITAL_IT 0xA // Delayed digital interrupt
#define PCLK_START_D_UTC2 0xB // Delayed User TC 2 out
#define PCLK_START_D_SBUS0 0xC // Delayed SyncBus 0
#define PCLK_START_D_SBUS1 0xD // Delayed SyncBus 1
#define PCLK_START_D_SBUS2 0xE // Delayed SyncBus 2
#define PCLK_START_ETRIG_GATED 0xF // External Trigger Gated controlled mode
// Pacer Clock Stop Trigger select (SetPacerStop)
#define PCLK_STOP_SOFTWARE 0x0 // Software Pacer Stop (StopPacer)
#define PCLK_STOP_ETRIG 0x1 // External Trigger
#define PCLK_STOP_DIGITAL_IT 0x2 // Digital Interrupt
#define PCLK_STOP_ACNT 0x3 // About Counter
#define PCLK_STOP_UTC2 0x4 // User TC2 out
#define PCLK_STOP_SBUS0 0x5 // SyncBus 0
#define PCLK_STOP_SBUS1 0x6 // SyncBus 1
#define PCLK_STOP_SBUS2 0x7 // SyncBus 2
#define PCLK_STOP_A_SOFTWARE 0x8 // About Software Pacer Stop
#define PCLK_STOP_A_ETRIG 0x9 // About External Trigger
#define PCLK_STOP_A_DIGITAL_IT 0xA // About Digital Interrupt
#define PCLK_STOP_A_UTC2 0xC // About User TC2 out
#define PCLK_STOP_A_SBUS0 0xD // About SyncBus 0
#define PCLK_STOP_A_SBUS1 0xE // About SyncBus 1
#define PCLK_STOP_A_SBUS2 0xF // About SyncBus 2
// About Counter Stop Enable
#define ACNT_STOP 0x0 // stop enable
#define ACNT_NO_STOP 0x1 // stop disabled
// DAC update source (SetDAC1Start & SetDAC2Start)
#define DAC_START_SOFTWARE 0x0 // Software Update
#define DAC_START_CGT 0x1 // CGT controlled Update
#define DAC_START_DAC_CLK 0x2 // D/A Clock
#define DAC_START_EPCLK 0x3 // External Pacer Clock
#define DAC_START_SBUS0 0x4 // SyncBus 0
#define DAC_START_SBUS1 0x5 // SyncBus 1
#define DAC_START_SBUS2 0x6 // SyncBus 2
// DAC Cycle Mode (SetDAC1Cycle, SetDAC2Cycle, SetupDAC)
#define DAC_CYCLE_SINGLE 0x0 // not cycle
#define DAC_CYCLE_MULTI 0x1 // cycle
// 8254 Operation Modes (Set8254Mode, SetupTimerCounter)
#define M8254_EVENT_COUNTER 0 // Event Counter
#define M8254_HW_ONE_SHOT 1 // Hardware-Retriggerable One-Shot
#define M8254_RATE_GENERATOR 2 // Rate Generator
#define M8254_SQUARE_WAVE 3 // Square Wave Mode
#define M8254_SW_STROBE 4 // Software Triggered Strobe
#define M8254_HW_STROBE 5 // Hardware Triggered Strobe (Retriggerable)
// User Timer/Counter 0 Clock Select (SetUtc0Clock)
#define CUTC0_8MHZ 0x0 // 8MHz
#define CUTC0_EXT_TC_CLOCK1 0x1 // Ext. TC Clock 1
#define CUTC0_EXT_TC_CLOCK2 0x2 // Ext. TC Clock 2
#define CUTC0_EXT_PCLK 0x3 // Ext. Pacer Clock
// User Timer/Counter 1 Clock Select (SetUtc1Clock)
#define CUTC1_8MHZ 0x0 // 8MHz
#define CUTC1_EXT_TC_CLOCK1 0x1 // Ext. TC Clock 1
#define CUTC1_EXT_TC_CLOCK2 0x2 // Ext. TC Clock 2
#define CUTC1_EXT_PCLK 0x3 // Ext. Pacer Clock
#define CUTC1_UTC0_OUT 0x4 // User Timer/Counter 0 out
#define CUTC1_DIN_SIGNAL 0x5 // High-Speed Digital Input Sampling signal
// User Timer/Counter 2 Clock Select (SetUtc2Clock)
#define CUTC2_8MHZ 0x0 // 8MHz
#define CUTC2_EXT_TC_CLOCK1 0x1 // Ext. TC Clock 1
#define CUTC2_EXT_TC_CLOCK2 0x2 // Ext. TC Clock 2
#define CUTC2_EXT_PCLK 0x3 // Ext. Pacer Clock
#define CUTC2_UTC1_OUT 0x4 // User Timer/Counter 1 out
// User Timer/Counter 0 Gate Select (SetUtc0Gate)
#define GUTC0_NOT_GATED 0x0 // Not gated
#define GUTC0_GATED 0x1 // Gated
#define GUTC0_EXT_TC_GATE1 0x2 // Ext. TC Gate 1
#define GUTC0_EXT_TC_GATE2 0x3 // Ext. TC Gate 2
// User Timer/Counter 1 Gate Select (SetUtc1Gate)
#define GUTC1_NOT_GATED 0x0 // Not gated
#define GUTC1_GATED 0x1 // Gated
#define GUTC1_EXT_TC_GATE1 0x2 // Ext. TC Gate 1
#define GUTC1_EXT_TC_GATE2 0x3 // Ext. TC Gate 2
#define GUTC1_UTC0_OUT 0x4 // User Timer/Counter 0 out
// User Timer/Counter 2 Gate Select (SetUtc2Gate)
#define GUTC2_NOT_GATED 0x0 // Not gated
#define GUTC2_GATED 0x1 // Gated
#define GUTC2_EXT_TC_GATE1 0x2 // Ext. TC Gate 1
#define GUTC2_EXT_TC_GATE2 0x3 // Ext. TC Gate 2
#define GUTC2_UTC1_OUT 0x4 // User Timer/Counter 1 out
// Interrupt Source Masks (SetITMask, ClearITMask, GetITStatus)
#define IRQM_ADC_FIFO_WRITE 0x0001 // ADC FIFO Write
#define IRQM_CGT_RESET 0x0002 // Reset CGT
#define IRQM_CGT_PAUSE 0x0008 // Pause CGT
#define IRQM_ADC_ABOUT_CNT 0x0010 // About Counter out
#define IRQM_ADC_DELAY_CNT 0x0020 // Delay Counter out
#define IRQM_ADC_SAMPLE_CNT 0x0040 // ADC Sample Counter
#define IRQM_DAC1_UCNT 0x0080 // DAC1 Update Counter
#define IRQM_DAC2_UCNT 0x0100 // DAC2 Update Counter
#define IRQM_UTC1 0x0200 // User TC1 out
#define IRQM_UTC1_INV 0x0400 // User TC1 out, inverted
#define IRQM_UTC2 0x0800 // User TC2 out
#define IRQM_DIGITAL_IT 0x1000 // Digital Interrupt
#define IRQM_EXTERNAL_IT 0x2000 // External Interrupt
#define IRQM_ETRIG_RISING 0x4000 // External Trigger rising-edge
#define IRQM_ETRIG_FALLING 0x8000 // External Trigger falling-edge
// DMA Request Sources (LAS0)
#define DMAS_DISABLED 0x0 // DMA Disabled
#define DMAS_ADC_SCNT 0x1 // ADC Sample Counter
#define DMAS_DAC1_UCNT 0x2 // D/A1 Update Counter
#define DMAS_DAC2_UCNT 0x3 // D/A2 Update Counter
#define DMAS_UTC1 0x4 // User TC1 out
#define DMAS_ADFIFO_HALF_FULL 0x8 // A/D FIFO half full
#define DMAS_DAC1_FIFO_HALF_EMPTY 0x9 // D/A1 FIFO half empty
#define DMAS_DAC2_FIFO_HALF_EMPTY 0xA // D/A2 FIFO half empty
// DMA Local Addresses (0x40000000+LAS1 offset)
#define DMALADDR_ADC 0x40000000 // A/D FIFO
#define DMALADDR_HDIN 0x40000004 // High Speed Digital Input FIFO
#define DMALADDR_DAC1 0x40000008 // D/A1 FIFO
#define DMALADDR_DAC2 0x4000000C // D/A2 FIFO
// Port 0 compare modes (SetDIO0CompareMode)
#define DIO_MODE_EVENT 0 // Event Mode
#define DIO_MODE_MATCH 1 // Match Mode
// Digital Table Enable (Port 1 disable)
#define DTBL_DISABLE 0 // Enable Digital Table
#define DTBL_ENABLE 1 // Disable Digital Table
// Sampling Signal for High Speed Digital Input (SetHdinStart)
#define HDIN_SOFTWARE 0x0 // Software Trigger
#define HDIN_ADC 0x1 // A/D Conversion Signal
#define HDIN_UTC0 0x2 // User TC out 0
#define HDIN_UTC1 0x3 // User TC out 1
#define HDIN_UTC2 0x4 // User TC out 2
#define HDIN_EPCLK 0x5 // External Pacer Clock
#define HDIN_ETRG 0x6 // External Trigger
// Channel Gain Table / Channel Gain Latch
#define CSC_LATCH 0 // Channel Gain Latch mode
#define CSC_CGT 1 // Channel Gain Table mode
// Channel Gain Table Pause Enable
#define CGT_PAUSE_DISABLE 0 // Channel Gain Table Pause Disable
#define CGT_PAUSE_ENABLE 1 // Channel Gain Table Pause Enable
// DAC output type/range (p63)
#define AOUT_UNIP5 0 // 0..+5 Volt
#define AOUT_UNIP10 1 // 0..+10 Volt
#define AOUT_BIP5 2 // -5..+5 Volt
#define AOUT_BIP10 3 // -10..+10 Volt
// Ghannel Gain Table field definitions (p61)
// Gain
#define GAIN1 0
#define GAIN2 1
#define GAIN4 2
#define GAIN8 3
#define GAIN16 4
#define GAIN32 5
#define GAIN64 6
#define GAIN128 7
// Input range/polarity
#define AIN_BIP5 0 // -5..+5 Volt
#define AIN_BIP10 1 // -10..+10 Volt
#define AIN_UNIP10 2 // 0..+10 Volt
// non referenced single ended select bit
#define NRSE_AGND 0 // AGND referenced SE input
#define NRSE_AINS 1 // AIN SENSE referenced SE input
// single ended vs differential
#define GND_SE 0 // Single-Ended
#define GND_DIFF 1 // Differential
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment