Commit 429ccf05 authored by Henri Häkkinen's avatar Henri Häkkinen Committed by Greg Kroah-Hartman

staging:panel: Fixed coding conventions.

Fixed coding convention issues as reported by checkpatch.pl tool
on the file `panel.c'. Moved LCD special code handling from the
function `lcd_write' into function `handle_lcd_special_code'. Also
moved the handling of INPUT_ST_HIGH and INPUT_ST_FALLING states from
the function `panel_process_input' into functions `input_state_high'
and `input_state_falling'.
Signed-off-by: default avatarHenri Häkkinen <henuxd@gmail.com>
Acked-by: default avatarWilly Tarreau <w@1wt.eu>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent aa605fa4
......@@ -68,11 +68,16 @@
#define LCD_MAXBYTES 256 /* max burst write */
#define KEYPAD_BUFFER 64
#define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
#define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
#define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
/* poll the keyboard this every second */
#define INPUT_POLL_TIME (HZ/50)
/* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_START (10)
/* a key repeats this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY (2)
/* keep the light on this times INPUT_POLL_TIME for each flash */
#define FLASH_LIGHT_TEMPO (200)
/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
......@@ -84,7 +89,8 @@
#define PNL_PERRORP 0x08 /* direct input, active low */
#define PNL_PBIDIR 0x20 /* bi-directional ports */
#define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
/* high to read data in or-ed with data out */
#define PNL_PINTEN 0x10
#define PNL_PSELECP 0x08 /* inverted output, active low */
#define PNL_PINITP 0x04 /* direct output, active low */
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
......@@ -123,7 +129,7 @@
#define LCD_FLAG_N 0x0040 /* 2-rows mode */
#define LCD_FLAG_L 0x0080 /* backlight enabled */
#define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
#define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
/* macros to simplify use of the parallel port */
......@@ -134,8 +140,10 @@
#define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
/* this defines which bits are to be used and which ones to be ignored */
static __u8 scan_mask_o; /* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_i; /* logical or of the input bits involved in the scan matrix */
/* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_o;
/* logical or of the input bits involved in the scan matrix */
static __u8 scan_mask_i;
typedef __u64 pmask_t;
......@@ -161,14 +169,14 @@ struct logical_input {
__u8 rise_timer, fall_timer, high_timer;
union {
struct { /* this structure is valid when type == INPUT_TYPE_STD */
struct { /* valid when type == INPUT_TYPE_STD */
void (*press_fct) (int);
void (*release_fct) (int);
int press_data;
int release_data;
} std;
struct { /* this structure is valid when type == INPUT_TYPE_KBD */
/* strings can be full-length (ie. non null-terminated) */
struct { /* valid when type == INPUT_TYPE_KBD */
/* strings can be non null-terminated */
char press_str[sizeof(void *) + sizeof(int)];
char repeat_str[sizeof(void *) + sizeof(int)];
char release_str[sizeof(void *) + sizeof(int)];
......@@ -188,11 +196,17 @@ LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
*/
static pmask_t phys_read; /* what has just been read from the I/O ports */
static pmask_t phys_read_prev; /* previous phys_read */
static pmask_t phys_curr; /* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_prev; /* previous phys_curr */
static char inputs_stable; /* 0 means that at least one logical signal needs be computed */
/* what has just been read from the I/O ports */
static pmask_t phys_read;
/* previous phys_read */
static pmask_t phys_read_prev;
/* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_curr;
/* previous phys_curr */
static pmask_t phys_prev;
/* 0 means that at least one logical signal needs be computed */
static char inputs_stable;
/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
......@@ -202,11 +216,17 @@ static char keypressed;
static wait_queue_head_t keypad_read_wait;
/* lcd-specific variables */
static unsigned long int lcd_flags; /* contains the LCD config state */
static unsigned long int lcd_addr_x; /* contains the LCD X offset */
static unsigned long int lcd_addr_y; /* contains the LCD Y offset */
static char lcd_escape[LCD_ESCAPE_LEN + 1]; /* current escape sequence, 0 terminated */
static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
/* contains the LCD config state */
static unsigned long int lcd_flags;
/* contains the LCD X offset */
static unsigned long int lcd_addr_x;
/* contains the LCD Y offset */
static unsigned long int lcd_addr_y;
/* current escape sequence, 0 terminated */
static char lcd_escape[LCD_ESCAPE_LEN + 1];
/* not in escape state. >=0 = escape cmd len */
static int lcd_escape_len = -1;
/*
* Bit masks to convert LCD signals to parallel port outputs.
......@@ -436,11 +456,13 @@ MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
static int lcd_type = -1;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
"LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
"LCD type: 0=none, 1=old //, 2=serial ks0074, "
"3=hantronix //, 4=nexcom //, 5=compiled-in");
static int lcd_proto = -1;
module_param(lcd_proto, int, 0000);
MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial,"
MODULE_PARM_DESC(lcd_proto,
"LCD communication: 0=parallel (//), 1=serial,"
"2=TI LCD Interface");
static int lcd_charset = -1;
......@@ -450,12 +472,14 @@ MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
static int keypad_type = -1;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
"Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
"Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
"3=nexcom 4 keys");
static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
"1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
"1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
"4=16x2 nexcom; default=40x2, old kp");
/*
* These are the parallel port pins the LCD control signals are connected to.
......@@ -469,32 +493,38 @@ MODULE_PARM_DESC(profile,
static int lcd_e_pin = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
"# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
"# of the // port pin connected to LCD 'E' signal, "
"with polarity (-17..17)");
static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
"# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
"# of the // port pin connected to LCD 'RS' signal, "
"with polarity (-17..17)");
static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
"# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
"# of the // port pin connected to LCD 'RW' signal, "
"with polarity (-17..17)");
static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
"# of the // port pin connected to LCD backlight, with polarity (-17..17)");
"# of the // port pin connected to LCD backlight, "
"with polarity (-17..17)");
static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
"# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
"# of the // port pin connected to serial LCD 'SDA' "
"signal, with polarity (-17..17)");
static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
"# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
"# of the // port pin connected to serial LCD 'SCL' "
"signal, with polarity (-17..17)");
static unsigned char *lcd_char_conv;
......@@ -572,12 +602,12 @@ static char (*keypad_profile)[4][9] = old_keypad_profile;
/* FIXME: this should be converted to a bit array containing signals states */
static struct {
unsigned char e; /* parallel LCD E (data latch on falling edge) */
unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
unsigned char cl; /* serial LCD clock (latch on rising edge) */
unsigned char da; /* serial LCD data */
unsigned char e; /* parallel LCD E (data latch on falling edge) */
unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
unsigned char cl; /* serial LCD clock (latch on rising edge) */
unsigned char da; /* serial LCD data */
} bits;
static void init_scan_timer(void);
......@@ -666,7 +696,7 @@ void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
c_bit = PNL_PAUTOLF;
inv = !inv;
break;
case PIN_INITP: /* init, direct */
case PIN_INITP: /* init, direct */
c_bit = PNL_PINITP;
break;
case PIN_SELECP: /* select_in, inverted */
......@@ -698,23 +728,23 @@ static void long_sleep(int ms)
}
}
/* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
/* send a serial byte to the LCD panel. The caller is responsible for locking
if needed. */
static void lcd_send_serial(int byte)
{
int bit;
/* the data bit is set on D0, and the clock on STROBE.
* LCD reads D0 on STROBE's rising edge.
*/
* LCD reads D0 on STROBE's rising edge. */
for (bit = 0; bit < 8; bit++) {
bits.cl = BIT_CLR; /* CLK low */
panel_set_bits();
bits.da = byte & 1;
panel_set_bits();
udelay(2); /* maintain the data during 2 us before CLK up */
udelay(2); /* maintain the data during 2 us before CLK up */
bits.cl = BIT_SET; /* CLK high */
panel_set_bits();
udelay(1); /* maintain the strobe during 1 us */
udelay(1); /* maintain the strobe during 1 us */
byte >>= 1;
}
}
......@@ -760,19 +790,19 @@ static void lcd_write_cmd_p8(int cmd)
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, cmd);
udelay(20); /* maintain the data during 20 us before the strobe */
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_CLR;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(120); /* the shortest command takes at least 120 us */
udelay(120); /* the shortest command takes at least 120 us */
spin_unlock(&pprt_lock);
}
......@@ -782,19 +812,19 @@ static void lcd_write_data_p8(int data)
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(20); /* maintain the data during 20 us before the strobe */
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
udelay(45); /* the shortest data takes at least 45 us */
spin_unlock(&pprt_lock);
}
......@@ -822,7 +852,8 @@ static void lcd_gotoxy(void)
{
lcd_write_cmd(0x80 /* set DDRAM address */
| (lcd_addr_y ? lcd_hwidth : 0)
/* we force the cursor to stay at the end of the line if it wants to go farther */
/* we force the cursor to stay at the end of the
line if it wants to go farther */
| ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
(lcd_hwidth - 1) : lcd_bwidth - 1));
}
......@@ -871,19 +902,23 @@ static void lcd_clear_fast_p8(void)
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
udelay(20); /* maintain the data during 20 us before the strobe */
/* maintain the data during 20 us before the strobe */
udelay(20);
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
/* maintain the strobe during 40 us */
udelay(40);
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
/* the shortest data takes at least 45 us */
udelay(45);
}
spin_unlock(&pprt_lock);
......@@ -954,7 +989,8 @@ static void lcd_init_display(void)
long_sleep(10);
lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
/* entry mode set : increment, cursor shifting */
lcd_write_cmd(0x06);
lcd_clear_display();
}
......@@ -966,317 +1002,342 @@ static void lcd_init_display(void)
*
*/
static inline int handle_lcd_special_code(void)
{
/* LCD special codes */
int processed = 0;
char *esc = lcd_escape + 2;
int oldflags = lcd_flags;
/* check for display mode flags */
switch (*esc) {
case 'D': /* Display ON */
lcd_flags |= LCD_FLAG_D;
processed = 1;
break;
case 'd': /* Display OFF */
lcd_flags &= ~LCD_FLAG_D;
processed = 1;
break;
case 'C': /* Cursor ON */
lcd_flags |= LCD_FLAG_C;
processed = 1;
break;
case 'c': /* Cursor OFF */
lcd_flags &= ~LCD_FLAG_C;
processed = 1;
break;
case 'B': /* Blink ON */
lcd_flags |= LCD_FLAG_B;
processed = 1;
break;
case 'b': /* Blink OFF */
lcd_flags &= ~LCD_FLAG_B;
processed = 1;
break;
case '+': /* Back light ON */
lcd_flags |= LCD_FLAG_L;
processed = 1;
break;
case '-': /* Back light OFF */
lcd_flags &= ~LCD_FLAG_L;
processed = 1;
break;
case '*':
/* flash back light using the keypad timer */
if (scan_timer.function != NULL) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
processed = 1;
break;
case 'f': /* Small Font */
lcd_flags &= ~LCD_FLAG_F;
processed = 1;
break;
case 'F': /* Large Font */
lcd_flags |= LCD_FLAG_F;
processed = 1;
break;
case 'n': /* One Line */
lcd_flags &= ~LCD_FLAG_N;
processed = 1;
break;
case 'N': /* Two Lines */
lcd_flags |= LCD_FLAG_N;
break;
case 'l': /* Shift Cursor Left */
if (lcd_addr_x > 0) {
/* back one char if not at end of line */
if (lcd_addr_x < lcd_bwidth)
lcd_write_cmd(0x10);
lcd_addr_x--;
}
processed = 1;
break;
case 'r': /* shift cursor right */
if (lcd_addr_x < lcd_width) {
/* allow the cursor to pass the end of the line */
if (lcd_addr_x <
(lcd_bwidth - 1))
lcd_write_cmd(0x14);
lcd_addr_x++;
}
processed = 1;
break;
case 'L': /* shift display left */
lcd_left_shift++;
lcd_write_cmd(0x18);
processed = 1;
break;
case 'R': /* shift display right */
lcd_left_shift--;
lcd_write_cmd(0x1C);
processed = 1;
break;
case 'k': { /* kill end of line */
int x;
for (x = lcd_addr_x; x < lcd_bwidth; x++)
lcd_write_data(' ');
/* restore cursor position */
lcd_gotoxy();
processed = 1;
break;
}
case 'I': /* reinitialize display */
lcd_init_display();
lcd_left_shift = 0;
processed = 1;
break;
case 'G': {
/* Generator : LGcxxxxx...xx; must have <c> between '0'
* and '7', representing the numerical ASCII code of the
* redefined character, and <xx...xx> a sequence of 16
* hex digits representing 8 bytes for each character.
* Most LCDs will only use 5 lower bits of the 7 first
* bytes.
*/
unsigned char cgbytes[8];
unsigned char cgaddr;
int cgoffset;
int shift;
char value;
int addr;
if (strchr(esc, ';') == NULL)
break;
esc++;
cgaddr = *(esc++) - '0';
if (cgaddr > 7) {
processed = 1;
break;
}
cgoffset = 0;
shift = 0;
value = 0;
while (*esc && cgoffset < 8) {
shift ^= 4;
if (*esc >= '0' && *esc <= '9')
value |= (*esc - '0') << shift;
else if (*esc >= 'A' && *esc <= 'Z')
value |= (*esc - 'A' + 10) << shift;
else if (*esc >= 'a' && *esc <= 'z')
value |= (*esc - 'a' + 10) << shift;
else {
esc++;
continue;
}
if (shift == 0) {
cgbytes[cgoffset++] = value;
value = 0;
}
esc++;
}
lcd_write_cmd(0x40 | (cgaddr * 8));
for (addr = 0; addr < cgoffset; addr++)
lcd_write_data(cgbytes[addr]);
/* ensures that we stop writing to CGRAM */
lcd_gotoxy();
processed = 1;
break;
}
case 'x': /* gotoxy : LxXXX[yYYY]; */
case 'y': /* gotoxy : LyYYY[xXXX]; */
if (strchr(esc, ';') == NULL)
break;
while (*esc) {
if (*esc == 'x') {
esc++;
lcd_addr_x = 0;
while (isdigit(*esc)) {
lcd_addr_x = lcd_addr_x * 10 +
(*esc - '0');
esc++;
}
} else if (*esc == 'y') {
esc++;
lcd_addr_y = 0;
while (isdigit(*esc)) {
lcd_addr_y = lcd_addr_y * 10 +
(*esc - '0');
esc++;
}
} else
break;
}
lcd_gotoxy();
processed = 1;
break;
}
/* Check wether one flag was changed */
if (oldflags != lcd_flags) {
/* check whether one of B,C,D flags were changed */
if ((oldflags ^ lcd_flags) &
(LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
/* set display mode */
lcd_write_cmd(0x08
| ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
| ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
/* check whether one of F,N flags was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
lcd_write_cmd(0x30
| ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
/* check wether L flag was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
if (lcd_flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (light_tempo == 0)
/* switch off the light only when the tempo
lighting is gone */
lcd_backlight(0);
}
}
return processed;
}
static ssize_t lcd_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
const char *tmp = buf;
char c;
for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
schedule(); /* let's be a little nice with other processes that need some CPU */
/* let's be a little nice with other processes
that need some CPU */
schedule();
if (ppos == NULL && file == NULL)
c = *tmp; /* let's not use get_user() from the kernel ! */
/* let's not use get_user() from the kernel ! */
c = *tmp;
else if (get_user(c, tmp))
return -EFAULT;
/* first, we'll test if we're in escape mode */
if ((c != '\n') && lcd_escape_len >= 0) { /* yes, let's add this char to the buffer */
if ((c != '\n') && lcd_escape_len >= 0) {
/* yes, let's add this char to the buffer */
lcd_escape[lcd_escape_len++] = c;
lcd_escape[lcd_escape_len] = 0;
} else {
lcd_escape_len = -1; /* aborts any previous escape sequence */
/* aborts any previous escape sequence */
lcd_escape_len = -1;
switch (c) {
case LCD_ESCAPE_CHAR: /* start of an escape sequence */
case LCD_ESCAPE_CHAR:
/* start of an escape sequence */
lcd_escape_len = 0;
lcd_escape[lcd_escape_len] = 0;
break;
case '\b': /* go back one char and clear it */
case '\b':
/* go back one char and clear it */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth) /* check if we're not at the end of the line */
lcd_write_cmd(0x10); /* back one char */
/* check if we're not at the
end of the line */
if (lcd_addr_x < lcd_bwidth)
/* back one char */
lcd_write_cmd(0x10);
lcd_addr_x--;
}
lcd_write_data(' '); /* replace with a space */
lcd_write_cmd(0x10); /* back one char again */
/* replace with a space */
lcd_write_data(' ');
/* back one char again */
lcd_write_cmd(0x10);
break;
case '\014': /* quickly clear the display */
case '\014':
/* quickly clear the display */
lcd_clear_fast();
break;
case '\n': /* flush the remainder of the current line and go to the
beginning of the next line */
case '\n':
/* flush the remainder of the current line and
go to the beginning of the next line */
for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
lcd_write_data(' ');
lcd_addr_x = 0;
lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
lcd_gotoxy();
break;
case '\r': /* go to the beginning of the same line */
case '\r':
/* go to the beginning of the same line */
lcd_addr_x = 0;
lcd_gotoxy();
break;
case '\t': /* print a space instead of the tab */
case '\t':
/* print a space instead of the tab */
lcd_print(' ');
break;
default: /* simply print this char */
default:
/* simply print this char */
lcd_print(c);
break;
}
}
/* now we'll see if we're in an escape mode and if the current
escape sequence can be understood.
*/
if (lcd_escape_len >= 2) { /* minimal length for an escape command */
int processed = 0; /* 1 means the command has been processed */
escape sequence can be understood. */
if (lcd_escape_len >= 2) {
int processed = 0;
if (!strcmp(lcd_escape, "[2J")) { /* Clear the display */
lcd_clear_fast(); /* clear display */
if (!strcmp(lcd_escape, "[2J")) {
/* clear the display */
lcd_clear_fast();
processed = 1;
} else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
} else if (!strcmp(lcd_escape, "[H")) {
/* cursor to home */
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
processed = 1;
}
/* codes starting with ^[[L */
else if ((lcd_escape_len >= 3) &&
(lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) { /* LCD special codes */
char *esc = lcd_escape + 2;
int oldflags = lcd_flags;
/* check for display mode flags */
switch (*esc) {
case 'D': /* Display ON */
lcd_flags |= LCD_FLAG_D;
processed = 1;
break;
case 'd': /* Display OFF */
lcd_flags &= ~LCD_FLAG_D;
processed = 1;
break;
case 'C': /* Cursor ON */
lcd_flags |= LCD_FLAG_C;
processed = 1;
break;
case 'c': /* Cursor OFF */
lcd_flags &= ~LCD_FLAG_C;
processed = 1;
break;
case 'B': /* Blink ON */
lcd_flags |= LCD_FLAG_B;
processed = 1;
break;
case 'b': /* Blink OFF */
lcd_flags &= ~LCD_FLAG_B;
processed = 1;
break;
case '+': /* Back light ON */
lcd_flags |= LCD_FLAG_L;
processed = 1;
break;
case '-': /* Back light OFF */
lcd_flags &= ~LCD_FLAG_L;
processed = 1;
break;
case '*': /* flash back light using the keypad timer */
if (scan_timer.function != NULL) {
if (light_tempo == 0
&& ((lcd_flags & LCD_FLAG_L)
== 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
processed = 1;
break;
case 'f': /* Small Font */
lcd_flags &= ~LCD_FLAG_F;
processed = 1;
break;
case 'F': /* Large Font */
lcd_flags |= LCD_FLAG_F;
processed = 1;
break;
case 'n': /* One Line */
lcd_flags &= ~LCD_FLAG_N;
processed = 1;
break;
case 'N': /* Two Lines */
lcd_flags |= LCD_FLAG_N;
break;
case 'l': /* Shift Cursor Left */
if (lcd_addr_x > 0) {
if (lcd_addr_x < lcd_bwidth)
lcd_write_cmd(0x10); /* back one char if not at end of line */
lcd_addr_x--;
}
processed = 1;
break;
case 'r': /* shift cursor right */
if (lcd_addr_x < lcd_width) {
if (lcd_addr_x < (lcd_bwidth - 1))
lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
lcd_addr_x++;
}
processed = 1;
break;
case 'L': /* shift display left */
lcd_left_shift++;
lcd_write_cmd(0x18);
processed = 1;
break;
case 'R': /* shift display right */
lcd_left_shift--;
lcd_write_cmd(0x1C);
processed = 1;
break;
case 'k':{ /* kill end of line */
int x;
for (x = lcd_addr_x; x < lcd_bwidth; x++)
lcd_write_data(' ');
lcd_gotoxy(); /* restore cursor position */
processed = 1;
break;
}
case 'I': /* reinitialize display */
lcd_init_display();
lcd_left_shift = 0;
processed = 1;
break;
case 'G': /* Generator : LGcxxxxx...xx; */ {
/* must have <c> between '0' and '7', representing the numerical
* ASCII code of the redefined character, and <xx...xx> a sequence
* of 16 hex digits representing 8 bytes for each character. Most
* LCDs will only use 5 lower bits of the 7 first bytes.
*/
unsigned char cgbytes[8];
unsigned char cgaddr;
int cgoffset;
int shift;
char value;
int addr;
if (strchr(esc, ';') == NULL)
break;
esc++;
cgaddr = *(esc++) - '0';
if (cgaddr > 7) {
processed = 1;
break;
}
cgoffset = 0;
shift = 0;
value = 0;
while (*esc && cgoffset < 8) {
shift ^= 4;
if (*esc >= '0' && *esc <= '9')
value |= (*esc - '0') << shift;
else if (*esc >= 'A' && *esc <= 'Z')
value |= (*esc - 'A' + 10) << shift;
else if (*esc >= 'a' && *esc <= 'z')
value |= (*esc - 'a' + 10) << shift;
else {
esc++;
continue;
}
if (shift == 0) {
cgbytes[cgoffset++] = value;
value = 0;
}
esc++;
}
lcd_write_cmd(0x40 | (cgaddr * 8));
for (addr = 0; addr < cgoffset; addr++)
lcd_write_data(cgbytes[addr]);
lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
processed = 1;
break;
}
case 'x': /* gotoxy : LxXXX[yYYY]; */
case 'y': /* gotoxy : LyYYY[xXXX]; */
if (strchr(esc, ';') == NULL)
break;
while (*esc) {
if (*esc == 'x') {
esc++;
lcd_addr_x = 0;
while (isdigit(*esc)) {
lcd_addr_x =
lcd_addr_x *
10 + (*esc -
'0');
esc++;
}
} else if (*esc == 'y') {
esc++;
lcd_addr_y = 0;
while (isdigit(*esc)) {
lcd_addr_y =
lcd_addr_y *
10 + (*esc -
'0');
esc++;
}
} else
break;
}
lcd_gotoxy();
processed = 1;
break;
} /* end of switch */
/* Check wether one flag was changed */
if (oldflags != lcd_flags) {
/* check wether one of B,C,D flags was changed */
if ((oldflags ^ lcd_flags) &
(LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
/* set display mode */
lcd_write_cmd(0x08 |
((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
((lcd_flags & LCD_FLAG_B) ? 1 : 0));
/* check wether one of F,N flags was changed */
else if ((oldflags ^ lcd_flags) &
(LCD_FLAG_F | LCD_FLAG_N))
lcd_write_cmd(0x30 |
((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
((lcd_flags & LCD_FLAG_N) ? 8 : 0));
/* check wether L flag was changed */
else if ((oldflags ^ lcd_flags) &
(LCD_FLAG_L)) {
if (lcd_flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (light_tempo == 0) /* switch off the light only when the tempo lighting is gone */
lcd_backlight(0);
}
}
(lcd_escape[0] == '[') &&
(lcd_escape[1] == 'L')) {
processed = handle_lcd_special_code();
}
/* LCD special escape codes */
/* flush the escape sequence if it's been processed or if it is
getting too long. */
/* flush the escape sequence if it's been processed
or if it is getting too long. */
if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
lcd_escape_len = -1;
} /* escape codes */
} /* escape codes */
}
return tmp - buf;
......@@ -1304,7 +1365,7 @@ static int lcd_release(struct inode *inode, struct file *file)
return 0;
}
static struct file_operations lcd_fops = {
static const struct file_operations lcd_fops = {
.write = lcd_write,
.open = lcd_open,
.release = lcd_release,
......@@ -1327,7 +1388,8 @@ void panel_lcd_print(char *s)
void lcd_init(void)
{
switch (lcd_type) {
case LCD_TYPE_OLD: /* parallel mode, 8 bits */
case LCD_TYPE_OLD:
/* parallel mode, 8 bits */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
......@@ -1346,7 +1408,8 @@ void lcd_init(void)
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_KS0074: /* serial mode, ks0074 */
case LCD_TYPE_KS0074:
/* serial mode, ks0074 */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_SERIAL;
if (lcd_charset < 0)
......@@ -1367,7 +1430,8 @@ void lcd_init(void)
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_NEXCOM: /* parallel mode, 8 bits, generic */
case LCD_TYPE_NEXCOM:
/* parallel mode, 8 bits, generic */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
......@@ -1388,14 +1452,16 @@ void lcd_init(void)
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_CUSTOM: /* customer-defined */
case LCD_TYPE_CUSTOM:
/* customer-defined */
if (lcd_proto < 0)
lcd_proto = DEFAULT_LCD_PROTO;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
/* default geometry will be set later */
break;
case LCD_TYPE_HANTRONIX: /* parallel mode, 8 bits, hantronix-like */
case LCD_TYPE_HANTRONIX:
/* parallel mode, 8 bits, hantronix-like */
default:
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
......@@ -1496,8 +1562,7 @@ void lcd_init(void)
/* before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
* enable mark the LCD initialized just before.
*/
* enable mark the LCD initialized just before. */
lcd_initialized = 1;
lcd_init_display();
......@@ -1511,7 +1576,8 @@ void lcd_init(void)
PANEL_VERSION);
#endif
lcd_addr_x = lcd_addr_y = 0;
lcd_must_clear = 1; /* clear the display on the next device opening */
/* clear the display on the next device opening */
lcd_must_clear = 1;
lcd_gotoxy();
}
......@@ -1535,7 +1601,8 @@ static ssize_t keypad_read(struct file *file,
return -EINTR;
}
for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
for (; count-- > 0 && (keypad_buflen > 0);
++i, ++tmp, --keypad_buflen) {
put_user(keypad_buffer[keypad_start], tmp);
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
}
......@@ -1564,7 +1631,7 @@ static int keypad_release(struct inode *inode, struct file *file)
return 0;
}
static struct file_operations keypad_fops = {
static const struct file_operations keypad_fops = {
.read = keypad_read, /* read */
.open = keypad_open, /* open */
.release = keypad_release, /* close */
......@@ -1591,14 +1658,15 @@ static void keypad_send_key(char *string, int max_len)
}
}
/* this function scans all the bits involving at least one logical signal, and puts the
* results in the bitfield "phys_read" (one bit per established contact), and sets
* "phys_read_prev" to "phys_read".
/* this function scans all the bits involving at least one logical signal,
* and puts the results in the bitfield "phys_read" (one bit per established
* contact), and sets "phys_read_prev" to "phys_read".
*
* Note: to debounce input signals, we will only consider as switched a signal which is
* stable across 2 measures. Signals which are different between two reads will be kept
* as they previously were in their logical form (phys_prev). A signal which has just
* switched will have a 1 in (phys_read ^ phys_read_prev).
* Note: to debounce input signals, we will only consider as switched a signal
* which is stable across 2 measures. Signals which are different between two
* reads will be kept as they previously were in their logical form (phys_prev).
* A signal which has just switched will have a 1 in
* (phys_read ^ phys_read_prev).
*/
static void phys_scan_contacts(void)
{
......@@ -1611,21 +1679,30 @@ static void phys_scan_contacts(void)
phys_read_prev = phys_read;
phys_read = 0; /* flush all signals */
oldval = r_dtr(pprt) | scan_mask_o; /* keep track of old value, with all outputs disabled */
w_dtr(pprt, oldval & ~scan_mask_o); /* activate all keyboard outputs (active low) */
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* will have a 1 for each bit set to gnd */
w_dtr(pprt, oldval); /* disable all matrix signals */
/* keep track of old value, with all outputs disabled */
oldval = r_dtr(pprt) | scan_mask_o;
/* activate all keyboard outputs (active low) */
w_dtr(pprt, oldval & ~scan_mask_o);
/* will have a 1 for each bit set to gnd */
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
/* disable all matrix signals */
w_dtr(pprt, oldval);
/* now that all outputs are cleared, the only active input bits are
* directly connected to the ground
*/
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* 1 for each grounded input */
phys_read |= (pmask_t) gndmask << 40; /* grounded inputs are signals 40-44 */
/* 1 for each grounded input */
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
/* grounded inputs are signals 40-44 */
phys_read |= (pmask_t) gndmask << 40;
if (bitmask != gndmask) {
/* since clearing the outputs changed some inputs, we know that some
* input signals are currently tied to some outputs. So we'll scan them.
/* since clearing the outputs changed some inputs, we know
* that some input signals are currently tied to some outputs.
* So we'll scan them.
*/
for (bit = 0; bit < 8; bit++) {
bitval = 1 << bit;
......@@ -1639,11 +1716,127 @@ static void phys_scan_contacts(void)
}
w_dtr(pprt, oldval); /* disable all outputs */
}
/* this is easy: use old bits when they are flapping, use new ones when stable */
phys_curr =
(phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
~(phys_read ^
phys_read_prev));
/* this is easy: use old bits when they are flapping,
* use new ones when stable */
phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
(phys_read & ~(phys_read ^ phys_read_prev));
}
static inline int input_state_high(struct logical_input *input)
{
#if 0
/* FIXME:
* this is an invalid test. It tries to catch
* transitions from single-key to multiple-key, but
* doesn't take into account the contacts polarity.
* The only solution to the problem is to parse keys
* from the most complex to the simplest combinations,
* and mark them as 'caught' once a combination
* matches, then unmatch it for all other ones.
*/
/* try to catch dangerous transitions cases :
* someone adds a bit, so this signal was a false
* positive resulting from a transition. We should
* invalidate the signal immediately and not call the
* release function.
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
*/
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
return 1;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if ((input->type == INPUT_TYPE_STD) &&
(input->high_timer == 0)) {
input->high_timer++;
if (input->u.std.press_fct != NULL)
input->u.std.press_fct(input->u.std.press_data);
} else if (input->type == INPUT_TYPE_KBD) {
/* will turn on the light */
keypressed = 1;
if (input->high_timer == 0) {
char *press_str = input->u.kbd.press_str;
if (press_str[0])
keypad_send_key(press_str,
sizeof(press_str));
}
if (input->u.kbd.repeat_str[0]) {
char *repeat_str = input->u.kbd.repeat_str;
if (input->high_timer >= KEYPAD_REP_START) {
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(repeat_str,
sizeof(repeat_str));
}
/* we will need to come back here soon */
inputs_stable = 0;
}
if (input->high_timer < 255)
input->high_timer++;
}
return 1;
} else {
/* else signal falling down. Let's fall through. */
input->state = INPUT_ST_FALLING;
input->fall_timer = 0;
}
return 0;
}
static inline void input_state_falling(struct logical_input *input)
{
#if 0
/* FIXME !!! same comment as in input_state_high */
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
return;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if (input->type == INPUT_TYPE_KBD) {
/* will turn on the light */
keypressed = 1;
if (input->u.kbd.repeat_str[0]) {
char *repeat_str = input->u.kbd.repeat_str;
if (input->high_timer >= KEYPAD_REP_START)
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(repeat_str,
sizeof(repeat_str));
/* we will need to come back here soon */
inputs_stable = 0;
}
if (input->high_timer < 255)
input->high_timer++;
}
input->state = INPUT_ST_HIGH;
} else if (input->fall_timer >= input->fall_time) {
/* call release event */
if (input->type == INPUT_TYPE_STD) {
void (*release_fct)(int) = input->u.std.release_fct;
if (release_fct != NULL)
release_fct(input->u.std.release_data);
} else if (input->type == INPUT_TYPE_KBD) {
char *release_str = input->u.kbd.release_str;
if (release_str[0])
keypad_send_key(release_str,
sizeof(release_str));
}
input->state = INPUT_ST_LOW;
} else {
input->fall_timer++;
inputs_stable = 0;
}
}
static void panel_process_inputs(void)
......@@ -1666,10 +1859,12 @@ static void panel_process_inputs(void)
case INPUT_ST_LOW:
if ((phys_curr & input->mask) != input->value)
break;
/* if all needed ones were already set previously, this means that
* this logical signal has been activated by the releasing of
* another combined signal, so we don't want to match.
* eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
/* if all needed ones were already set previously,
* this means that this logical signal has been
* activated by the releasing of another combined
* signal, so we don't want to match.
* eg: AB -(release B)-> A -(release A)-> 0 :
* don't match A.
*/
if ((phys_prev & input->mask) == input->value)
break;
......@@ -1690,122 +1885,11 @@ static void panel_process_inputs(void)
input->state = INPUT_ST_HIGH;
/* no break here, fall through */
case INPUT_ST_HIGH:
#if 0
/* FIXME:
* this is an invalid test. It tries to catch transitions from single-key
* to multiple-key, but doesn't take into account the contacts polarity.
* The only solution to the problem is to parse keys from the most complex
* to the simplest combinations, and mark them as 'caught' once a combination
* matches, then unmatch it for all other ones.
*/
/* try to catch dangerous transitions cases :
* someone adds a bit, so this signal was a false
* positive resulting from a transition. We should invalidate
* the signal immediately and not call the release function.
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
*/
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
if (input_state_high(input))
break;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if ((input->type == INPUT_TYPE_STD)
&& (input->high_timer == 0)) {
input->high_timer++;
if (input->u.std.press_fct != NULL)
input->u.std.press_fct(input->u.
std.
press_data);
} else if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->high_timer == 0) {
if (input->u.kbd.press_str[0])
keypad_send_key(input->
u.kbd.
press_str,
sizeof
(input->
u.kbd.
press_str));
}
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >=
KEYPAD_REP_START) {
input->high_timer -=
KEYPAD_REP_DELAY;
keypad_send_key(input->
u.kbd.
repeat_str,
sizeof
(input->
u.kbd.
repeat_str));
}
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255)
input->high_timer++;
}
break;
} else {
/* else signal falling down. Let's fall through. */
input->state = INPUT_ST_FALLING;
input->fall_timer = 0;
}
/* no break here, fall through */
case INPUT_ST_FALLING:
#if 0
/* FIXME !!! same comment as above */
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
break;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if (input->type == INPUT_TYPE_KBD) {
keypressed = 1; /* will turn on the light */
if (input->u.kbd.repeat_str[0]) {
if (input->high_timer >= KEYPAD_REP_START)
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(input->u.kbd.repeat_str,
sizeof(input->u.kbd.repeat_str));
inputs_stable = 0; /* we will need to come back here soon */
}
if (input->high_timer < 255)
input->high_timer++;
}
input->state = INPUT_ST_HIGH;
break;
} else if (input->fall_timer >= input->fall_time) {
/* call release event */
if (input->type == INPUT_TYPE_STD) {
if (input->u.std.release_fct != NULL)
input->u.std.release_fct(input->u.std.release_data);
} else if (input->type == INPUT_TYPE_KBD) {
if (input->u.kbd.release_str[0])
keypad_send_key(input->u.kbd.release_str,
sizeof(input->u.kbd.release_str));
}
input->state = INPUT_ST_LOW;
break;
} else {
input->fall_timer++;
inputs_stable = 0;
break;
}
input_state_falling(input);
}
}
}
......@@ -1815,7 +1899,9 @@ static void panel_scan_timer(void)
if (keypad_enabled && keypad_initialized) {
if (spin_trylock(&pprt_lock)) {
phys_scan_contacts();
spin_unlock(&pprt_lock); /* no need for the parport anymore */
/* no need for the parport anymore */
spin_unlock(&pprt_lock);
}
if (!inputs_stable || phys_curr != phys_prev)
......@@ -1850,8 +1936,8 @@ static void init_scan_timer(void)
}
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
* if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
* to out and in bits respectively.
* if <omask> or <imask> are non-null, they will be or'ed with the bits
* corresponding to out and in bits respectively.
* returns 1 if ok, 0 if error (in which case, nothing is written).
*/
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
......@@ -1864,7 +1950,8 @@ static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
om = im = m = v = 0ULL;
while (*name) {
int in, out, bit, neg;
for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
for (in = 0; (in < sizeof(sigtab)) &&
(sigtab[in] != *name); in++)
;
if (in >= sizeof(sigtab))
return 0; /* input name not found */
......@@ -1936,7 +2023,8 @@ static struct logical_input *panel_bind_key(char *name, char *press,
/* tries to bind a callback function to the signal name <name>. The function
* <press_fct> will be called with the <press_data> arg when the signal is
* activated, and so on for <release_fct>/<release_data>
* Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
* Returns the pointer to the new signal if ok, NULL if the signal could not
* be bound.
*/
static struct logical_input *panel_bind_callback(char *name,
void (*press_fct) (int),
......@@ -2028,24 +2116,27 @@ static void panel_attach(struct parport *port)
if (pprt) {
printk(KERN_ERR
"panel_attach(): port->number=%d parport=%d, already registered !\n",
"panel_attach(): port->number=%d parport=%d, "
"already registered !\n",
port->number, parport);
return;
}
pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
NULL,
/*PARPORT_DEV_EXCL */
0, (void *)&pprt);
if (parport_claim(pprt)) {
printk(KERN_ERR
"Panel: could not claim access to parport%d. Aborting.\n",
parport);
"Panel: could not claim access to parport%d. "
"Aborting.\n", parport);
return;
}
/* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
/* must init LCD first, just in case an IRQ from the keypad is
* generated at keypad init
*/
if (lcd_enabled) {
lcd_init();
misc_register(&lcd_dev);
......@@ -2064,7 +2155,8 @@ static void panel_detach(struct parport *port)
if (!pprt) {
printk(KERN_ERR
"panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
"panel_detach(): port->number=%d parport=%d, "
"nothing to unregister.\n",
port->number, parport);
return;
}
......@@ -2105,13 +2197,15 @@ int panel_init(void)
/* take care of an eventual profile */
switch (profile) {
case PANEL_PROFILE_CUSTOM: /* custom profile */
case PANEL_PROFILE_CUSTOM:
/* custom profile */
if (keypad_type < 0)
keypad_type = DEFAULT_KEYPAD;
if (lcd_type < 0)
lcd_type = DEFAULT_LCD;
break;
case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
case PANEL_PROFILE_OLD:
/* 8 bits, 2*16, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
......@@ -2121,25 +2215,29 @@ int panel_init(void)
if (lcd_hwidth < 0)
lcd_hwidth = 16;
break;
case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
case PANEL_PROFILE_NEW:
/* serial, 2*16, new keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEW;
if (lcd_type < 0)
lcd_type = LCD_TYPE_KS0074;
break;
case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */
case PANEL_PROFILE_HANTRONIX:
/* 8 bits, 2*16 hantronix-like, no keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NONE;
if (lcd_type < 0)
lcd_type = LCD_TYPE_HANTRONIX;
break;
case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
case PANEL_PROFILE_NEXCOM:
/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEXCOM;
if (lcd_type < 0)
lcd_type = LCD_TYPE_NEXCOM;
break;
case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */
case PANEL_PROFILE_LARGE:
/* 8 bits, 2*40, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
......@@ -2195,7 +2293,8 @@ int panel_init(void)
else
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" not yet registered\n");
/* tells various subsystems about the fact that initialization is finished */
/* tells various subsystems about the fact that initialization
is finished */
init_in_progress = 0;
return 0;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment