Commit 48461135 authored by Josef Bacik's avatar Josef Bacik Committed by David S. Miller

bpf: allow access into map value arrays

Suppose you have a map array value that is something like this

struct foo {
	unsigned iter;
	int array[SOME_CONSTANT];
};

You can easily insert this into an array, but you cannot modify the contents of
foo->array[] after the fact.  This is because we have no way to verify we won't
go off the end of the array at verification time.  This patch provides a start
for this work.  We accomplish this by keeping track of a minimum and maximum
value a register could be while we're checking the code.  Then at the time we
try to do an access into a MAP_VALUE we verify that the maximum offset into that
region is a valid access into that memory region.  So in practice, code such as
this

unsigned index = 0;

if (foo->iter >= SOME_CONSTANT)
	foo->iter = index;
else
	index = foo->iter++;
foo->array[index] = bar;

would be allowed, as we can verify that index will always be between 0 and
SOME_CONSTANT-1.  If you wish to use signed values you'll have to have an extra
check to make sure the index isn't less than 0, or do something like index %=
SOME_CONSTANT.
Signed-off-by: default avatarJosef Bacik <jbacik@fb.com>
Acked-by: default avatarAlexei Starovoitov <ast@kernel.org>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 7836667c
......@@ -139,6 +139,13 @@ enum bpf_reg_type {
*/
PTR_TO_PACKET,
PTR_TO_PACKET_END, /* skb->data + headlen */
/* PTR_TO_MAP_VALUE_ADJ is used for doing pointer math inside of a map
* elem value. We only allow this if we can statically verify that
* access from this register are going to fall within the size of the
* map element.
*/
PTR_TO_MAP_VALUE_ADJ,
};
struct bpf_prog;
......
......@@ -10,8 +10,19 @@
#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
/* Just some arbitrary values so we can safely do math without overflowing and
* are obviously wrong for any sort of memory access.
*/
#define BPF_REGISTER_MAX_RANGE (1024 * 1024 * 1024)
#define BPF_REGISTER_MIN_RANGE -(1024 * 1024 * 1024)
struct bpf_reg_state {
enum bpf_reg_type type;
/*
* Used to determine if any memory access using this register will
* result in a bad access.
*/
u64 min_value, max_value;
union {
/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
s64 imm;
......@@ -81,6 +92,7 @@ struct bpf_verifier_env {
u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks;
bool seen_direct_write;
bool varlen_map_value_access;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
};
......
......@@ -182,6 +182,7 @@ static const char * const reg_type_str[] = {
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
[PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
[FRAME_PTR] = "fp",
[PTR_TO_STACK] = "fp",
[CONST_IMM] = "imm",
......@@ -209,10 +210,17 @@ static void print_verifier_state(struct bpf_verifier_state *state)
else if (t == UNKNOWN_VALUE && reg->imm)
verbose("%lld", reg->imm);
else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL)
t == PTR_TO_MAP_VALUE_OR_NULL ||
t == PTR_TO_MAP_VALUE_ADJ)
verbose("(ks=%d,vs=%d)",
reg->map_ptr->key_size,
reg->map_ptr->value_size);
if (reg->min_value != BPF_REGISTER_MIN_RANGE)
verbose(",min_value=%llu",
(unsigned long long)reg->min_value);
if (reg->max_value != BPF_REGISTER_MAX_RANGE)
verbose(",max_value=%llu",
(unsigned long long)reg->max_value);
}
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] == STACK_SPILL)
......@@ -424,6 +432,8 @@ static void init_reg_state(struct bpf_reg_state *regs)
for (i = 0; i < MAX_BPF_REG; i++) {
regs[i].type = NOT_INIT;
regs[i].imm = 0;
regs[i].min_value = BPF_REGISTER_MIN_RANGE;
regs[i].max_value = BPF_REGISTER_MAX_RANGE;
}
/* frame pointer */
......@@ -440,6 +450,12 @@ static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
regs[regno].imm = 0;
}
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
{
regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
}
enum reg_arg_type {
SRC_OP, /* register is used as source operand */
DST_OP, /* register is used as destination operand */
......@@ -665,7 +681,7 @@ static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
static int check_ptr_alignment(struct bpf_verifier_env *env,
struct bpf_reg_state *reg, int off, int size)
{
if (reg->type != PTR_TO_PACKET) {
if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
if (off % size != 0) {
verbose("misaligned access off %d size %d\n",
off, size);
......@@ -675,16 +691,6 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
}
}
switch (env->prog->type) {
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
break;
default:
verbose("verifier is misconfigured\n");
return -EACCES;
}
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
/* misaligned access to packet is ok on x86,arm,arm64 */
return 0;
......@@ -695,7 +701,8 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
}
/* skb->data is NET_IP_ALIGN-ed */
if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
if (reg->type == PTR_TO_PACKET &&
(NET_IP_ALIGN + reg->off + off) % size != 0) {
verbose("misaligned packet access off %d+%d+%d size %d\n",
NET_IP_ALIGN, reg->off, off, size);
return -EACCES;
......@@ -728,12 +735,52 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
if (err)
return err;
if (reg->type == PTR_TO_MAP_VALUE) {
if (reg->type == PTR_TO_MAP_VALUE ||
reg->type == PTR_TO_MAP_VALUE_ADJ) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into map\n", value_regno);
return -EACCES;
}
/* If we adjusted the register to this map value at all then we
* need to change off and size to min_value and max_value
* respectively to make sure our theoretical access will be
* safe.
*/
if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
if (log_level)
print_verifier_state(state);
env->varlen_map_value_access = true;
/* The minimum value is only important with signed
* comparisons where we can't assume the floor of a
* value is 0. If we are using signed variables for our
* index'es we need to make sure that whatever we use
* will have a set floor within our range.
*/
if ((s64)reg->min_value < 0) {
verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = check_map_access(env, regno, reg->min_value + off,
size);
if (err) {
verbose("R%d min value is outside of the array range\n",
regno);
return err;
}
/* If we haven't set a max value then we need to bail
* since we can't be sure we won't do bad things.
*/
if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
regno);
return -EACCES;
}
off += reg->max_value;
}
err = check_map_access(env, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown_value(state->regs, value_regno);
......@@ -1195,6 +1242,7 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
regs[BPF_REG_0].type = NOT_INIT;
} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
/* remember map_ptr, so that check_map_access()
* can check 'value_size' boundary of memory access
* to map element returned from bpf_map_lookup_elem()
......@@ -1416,6 +1464,106 @@ static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
return 0;
}
static void check_reg_overflow(struct bpf_reg_state *reg)
{
if (reg->max_value > BPF_REGISTER_MAX_RANGE)
reg->max_value = BPF_REGISTER_MAX_RANGE;
if ((s64)reg->min_value < BPF_REGISTER_MIN_RANGE)
reg->min_value = BPF_REGISTER_MIN_RANGE;
}
static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
u64 min_val = BPF_REGISTER_MIN_RANGE, max_val = BPF_REGISTER_MAX_RANGE;
bool min_set = false, max_set = false;
u8 opcode = BPF_OP(insn->code);
dst_reg = &regs[insn->dst_reg];
if (BPF_SRC(insn->code) == BPF_X) {
check_reg_overflow(&regs[insn->src_reg]);
min_val = regs[insn->src_reg].min_value;
max_val = regs[insn->src_reg].max_value;
/* If the source register is a random pointer then the
* min_value/max_value values represent the range of the known
* accesses into that value, not the actual min/max value of the
* register itself. In this case we have to reset the reg range
* values so we know it is not safe to look at.
*/
if (regs[insn->src_reg].type != CONST_IMM &&
regs[insn->src_reg].type != UNKNOWN_VALUE) {
min_val = BPF_REGISTER_MIN_RANGE;
max_val = BPF_REGISTER_MAX_RANGE;
}
} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
(s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
min_val = max_val = insn->imm;
min_set = max_set = true;
}
/* We don't know anything about what was done to this register, mark it
* as unknown.
*/
if (min_val == BPF_REGISTER_MIN_RANGE &&
max_val == BPF_REGISTER_MAX_RANGE) {
reset_reg_range_values(regs, insn->dst_reg);
return;
}
switch (opcode) {
case BPF_ADD:
dst_reg->min_value += min_val;
dst_reg->max_value += max_val;
break;
case BPF_SUB:
dst_reg->min_value -= min_val;
dst_reg->max_value -= max_val;
break;
case BPF_MUL:
dst_reg->min_value *= min_val;
dst_reg->max_value *= max_val;
break;
case BPF_AND:
/* & is special since it could end up with 0 bits set. */
dst_reg->min_value &= min_val;
dst_reg->max_value = max_val;
break;
case BPF_LSH:
/* Gotta have special overflow logic here, if we're shifting
* more than MAX_RANGE then just assume we have an invalid
* range.
*/
if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
else
dst_reg->min_value <<= min_val;
if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
else
dst_reg->max_value <<= max_val;
break;
case BPF_RSH:
dst_reg->min_value >>= min_val;
dst_reg->max_value >>= max_val;
break;
case BPF_MOD:
/* % is special since it is an unsigned modulus, so the floor
* will always be 0.
*/
dst_reg->min_value = 0;
dst_reg->max_value = max_val - 1;
break;
default:
reset_reg_range_values(regs, insn->dst_reg);
break;
}
check_reg_overflow(dst_reg);
}
/* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
......@@ -1479,6 +1627,11 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (err)
return err;
/* we are setting our register to something new, we need to
* reset its range values.
*/
reset_reg_range_values(regs, insn->dst_reg);
if (BPF_SRC(insn->code) == BPF_X) {
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
......@@ -1500,6 +1653,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
regs[insn->dst_reg].type = CONST_IMM;
regs[insn->dst_reg].imm = insn->imm;
regs[insn->dst_reg].max_value = insn->imm;
regs[insn->dst_reg].min_value = insn->imm;
}
} else if (opcode > BPF_END) {
......@@ -1552,6 +1707,9 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
dst_reg = &regs[insn->dst_reg];
/* first we want to adjust our ranges. */
adjust_reg_min_max_vals(env, insn);
/* pattern match 'bpf_add Rx, imm' instruction */
if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
......@@ -1586,7 +1744,16 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
return -EACCES;
}
/* mark dest operand */
/* If we did pointer math on a map value then just set it to our
* PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
* loads to this register appropriately, otherwise just mark the
* register as unknown.
*/
if (env->allow_ptr_leaks &&
(dst_reg->type == PTR_TO_MAP_VALUE ||
dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
else
mark_reg_unknown_value(regs, insn->dst_reg);
}
......@@ -1642,6 +1809,104 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *state,
}
}
/* Adjusts the register min/max values in the case that the dst_reg is the
* variable register that we are working on, and src_reg is a constant or we're
* simply doing a BPF_K check.
*/
static void reg_set_min_max(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
/* If this is false then we know nothing Jon Snow, but if it is
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
break;
case BPF_JGT:
/* Unsigned comparison, the minimum value is 0. */
false_reg->min_value = 0;
case BPF_JSGT:
/* If this is false then we know the maximum val is val,
* otherwise we know the min val is val+1.
*/
false_reg->max_value = val;
true_reg->min_value = val + 1;
break;
case BPF_JGE:
/* Unsigned comparison, the minimum value is 0. */
false_reg->min_value = 0;
case BPF_JSGE:
/* If this is false then we know the maximum value is val - 1,
* otherwise we know the mimimum value is val.
*/
false_reg->max_value = val - 1;
true_reg->min_value = val;
break;
default:
break;
}
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
}
/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
* is the variable reg.
*/
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
/* If this is false then we know nothing Jon Snow, but if it is
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
break;
case BPF_JGT:
/* Unsigned comparison, the minimum value is 0. */
true_reg->min_value = 0;
case BPF_JSGT:
/*
* If this is false, then the val is <= the register, if it is
* true the register <= to the val.
*/
false_reg->min_value = val;
true_reg->max_value = val - 1;
break;
case BPF_JGE:
/* Unsigned comparison, the minimum value is 0. */
true_reg->min_value = 0;
case BPF_JSGE:
/* If this is false then constant < register, if it is true then
* the register < constant.
*/
false_reg->min_value = val + 1;
true_reg->max_value = val;
break;
default:
break;
}
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
}
static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_insn *insn, int *insn_idx)
{
......@@ -1708,6 +1973,23 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
if (!other_branch)
return -EFAULT;
/* detect if we are comparing against a constant value so we can adjust
* our min/max values for our dst register.
*/
if (BPF_SRC(insn->code) == BPF_X) {
if (regs[insn->src_reg].type == CONST_IMM)
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, regs[insn->src_reg].imm,
opcode);
else if (dst_reg->type == CONST_IMM)
reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
&regs[insn->src_reg], dst_reg->imm,
opcode);
} else {
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, insn->imm, opcode);
}
/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
if (BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
......@@ -2144,7 +2426,8 @@ static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
* whereas register type in current state is meaningful, it means that
* the current state will reach 'bpf_exit' instruction safely
*/
static bool states_equal(struct bpf_verifier_state *old,
static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
struct bpf_reg_state *rold, *rcur;
......@@ -2157,6 +2440,13 @@ static bool states_equal(struct bpf_verifier_state *old,
if (memcmp(rold, rcur, sizeof(*rold)) == 0)
continue;
/* If the ranges were not the same, but everything else was and
* we didn't do a variable access into a map then we are a-ok.
*/
if (!env->varlen_map_value_access &&
rold->type == rcur->type && rold->imm == rcur->imm)
continue;
if (rold->type == NOT_INIT ||
(rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
continue;
......@@ -2213,7 +2503,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
return 0;
while (sl != STATE_LIST_MARK) {
if (states_equal(&sl->state, &env->cur_state))
if (states_equal(env, &sl->state, &env->cur_state))
/* reached equivalent register/stack state,
* prune the search
*/
......@@ -2259,6 +2549,7 @@ static int do_check(struct bpf_verifier_env *env)
init_reg_state(regs);
insn_idx = 0;
env->varlen_map_value_access = false;
for (;;) {
struct bpf_insn *insn;
u8 class;
......@@ -2339,6 +2630,7 @@ static int do_check(struct bpf_verifier_env *env)
if (err)
return err;
reset_reg_range_values(regs, insn->dst_reg);
if (BPF_SIZE(insn->code) != BPF_W &&
BPF_SIZE(insn->code) != BPF_DW) {
insn_idx++;
......@@ -2509,6 +2801,7 @@ static int do_check(struct bpf_verifier_env *env)
verbose("invalid BPF_LD mode\n");
return -EINVAL;
}
reset_reg_range_values(regs, insn->dst_reg);
} else {
verbose("unknown insn class %d\n", class);
return -EINVAL;
......
......@@ -85,6 +85,14 @@ extern char bpf_log_buf[LOG_BUF_SIZE];
.off = 0, \
.imm = IMM })
#define BPF_MOV32_IMM(DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
#define BPF_LD_IMM64(DST, IMM) \
BPF_LD_IMM64_RAW(DST, 0, IMM)
......
......@@ -29,6 +29,7 @@ struct bpf_test {
struct bpf_insn insns[MAX_INSNS];
int fixup[MAX_FIXUPS];
int prog_array_fixup[MAX_FIXUPS];
int test_val_map_fixup[MAX_FIXUPS];
const char *errstr;
const char *errstr_unpriv;
enum {
......@@ -39,6 +40,19 @@ struct bpf_test {
enum bpf_prog_type prog_type;
};
/* Note we want this to be 64 bit aligned so that the end of our array is
* actually the end of the structure.
*/
#define MAX_ENTRIES 11
struct test_val {
unsigned index;
int foo[MAX_ENTRIES];
};
struct other_val {
unsigned int action[32];
};
static struct bpf_test tests[] = {
{
"add+sub+mul",
......@@ -2163,6 +2177,212 @@ static struct bpf_test tests[] = {
.errstr = "invalid access to packet",
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
},
{
"valid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"valid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, 4),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"valid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"valid map access into an array with a signed variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr_unpriv = "R0 leaks addr",
.result_unpriv = REJECT,
.result = ACCEPT,
},
{
"invalid map access into an array with a constant",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr = "invalid access to map value, value_size=48 off=48 size=8",
.result = REJECT,
},
{
"invalid map access into an array with a register",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr = "R0 min value is outside of the array range",
.result = REJECT,
},
{
"invalid map access into an array with a variable",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
.result = REJECT,
},
{
"invalid map access into an array with no floor check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
.result = REJECT,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
BPF_MOV32_IMM(BPF_REG_1, 0),
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3},
.errstr = "invalid access to map value, value_size=48 off=44 size=8",
.result = REJECT,
},
{
"invalid map access into an array with a invalid max check",
.insns = {
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct test_val, foo)),
BPF_EXIT_INSN(),
},
.test_val_map_fixup = {3, 11},
.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
.result = REJECT,
},
};
static int probe_filter_length(struct bpf_insn *fp)
......@@ -2176,12 +2396,12 @@ static int probe_filter_length(struct bpf_insn *fp)
return len + 1;
}
static int create_map(void)
static int create_map(size_t val_size, int num)
{
int map_fd;
map_fd = bpf_create_map(BPF_MAP_TYPE_HASH,
sizeof(long long), sizeof(long long), 1024, 0);
sizeof(long long), val_size, num, 0);
if (map_fd < 0)
printf("failed to create map '%s'\n", strerror(errno));
......@@ -2211,12 +2431,13 @@ static int test(void)
int prog_len = probe_filter_length(prog);
int *fixup = tests[i].fixup;
int *prog_array_fixup = tests[i].prog_array_fixup;
int *test_val_map_fixup = tests[i].test_val_map_fixup;
int expected_result;
const char *expected_errstr;
int map_fd = -1, prog_array_fd = -1;
int map_fd = -1, prog_array_fd = -1, test_val_map_fd = -1;
if (*fixup) {
map_fd = create_map();
map_fd = create_map(sizeof(long long), 1024);
do {
prog[*fixup].imm = map_fd;
......@@ -2231,6 +2452,18 @@ static int test(void)
prog_array_fixup++;
} while (*prog_array_fixup);
}
if (*test_val_map_fixup) {
/* Unprivileged can't create a hash map.*/
if (unpriv)
continue;
test_val_map_fd = create_map(sizeof(struct test_val),
256);
do {
prog[*test_val_map_fixup].imm = test_val_map_fd;
test_val_map_fixup++;
} while (*test_val_map_fixup);
}
printf("#%d %s ", i, tests[i].descr);
prog_fd = bpf_prog_load(prog_type ?: BPF_PROG_TYPE_SOCKET_FILTER,
......@@ -2277,6 +2510,8 @@ static int test(void)
close(map_fd);
if (prog_array_fd >= 0)
close(prog_array_fd);
if (test_val_map_fd >= 0)
close(test_val_map_fd);
close(prog_fd);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment