Commit 4bc91a02 authored by Andries E. Brouwer's avatar Andries E. Brouwer Committed by Greg Kroah-Hartman

[PATCH] sddr09 write capability

USB sddr09

The main purpose of the patch is to add write capability.
parent 7adcd3c4
...@@ -1005,6 +1005,10 @@ static int sd_init_onedisk(int i) ...@@ -1005,6 +1005,10 @@ static int sd_init_onedisk(int i)
* we're only interested in the header anyway, this should * we're only interested in the header anyway, this should
* be fine. * be fine.
* -- Matthew Dharm (mdharm-scsi@one-eyed-alien.net) * -- Matthew Dharm (mdharm-scsi@one-eyed-alien.net)
*
* As it turns out, some devices return an error for
* every MODE_SENSE request except one for page 0.
* So, we should also try that. --aeb
*/ */
memset((void *) &cmd[0], 0, 8); memset((void *) &cmd[0], 0, 8);
...@@ -1025,7 +1029,9 @@ static int sd_init_onedisk(int i) ...@@ -1025,7 +1029,9 @@ static int sd_init_onedisk(int i)
the_result = SRpnt->sr_result; the_result = SRpnt->sr_result;
if (the_result) { if (the_result) {
printk("%s: test WP failed, assume Write Enabled\n", nbuff); printk("%s: test WP failed, assume Write Enabled\n",
nbuff);
/* alternatively, try page 0 */
} else { } else {
rscsi_disks[i].write_prot = ((buffer[2] & 0x80) != 0); rscsi_disks[i].write_prot = ((buffer[2] & 0x80) != 0);
printk("%s: Write Protect is %s\n", nbuff, printk("%s: Write Protect is %s\n", nbuff,
......
...@@ -28,11 +28,15 @@ CONFIG_USB_STORAGE_FREECOM ...@@ -28,11 +28,15 @@ CONFIG_USB_STORAGE_FREECOM
Support for the Freecom USB to IDE/ATAPI adaptor. Support for the Freecom USB to IDE/ATAPI adaptor.
Freecom has a web page at <http://www.freecom.de/>. Freecom has a web page at <http://www.freecom.de/>.
CONFIG_USB_STORAGE_DATAFAB
Support for certain Datafab CompactFlash readers.
Datafab has a web page at <http://www.datafabusa.com/>.
CONFIG_USB_STORAGE_DPCM CONFIG_USB_STORAGE_DPCM
Say Y here to support the Microtech ZiO! CompactFlash/SmartMedia Say Y here to support the Microtech ZiO! CompactFlash reader.
reader, details at <http://www.microtechint.com/zio/index.html>. There is a web page at <http://www.microtechint.com/zio/index.html>.
This driver treats the flash card as a removable storage device.
CONFIG_USB_STORAGE_SDDR09 CONFIG_USB_STORAGE_SDDR09
Say Y here to include additional code to support the Sandisk SDDR-09 Say Y here to include additional code to support the Sandisk SDDR-09
SmartMedia reader in the USB Mass Storage driver. SmartMedia reader in the USB Mass Storage driver.
Also works for the Microtech Zio! SmartMedia reader.
...@@ -6,7 +6,7 @@ if [ "$CONFIG_SCSI" = "n" ]; then ...@@ -6,7 +6,7 @@ if [ "$CONFIG_SCSI" = "n" ]; then
fi fi
dep_tristate ' USB Mass Storage support' CONFIG_USB_STORAGE $CONFIG_USB $CONFIG_SCSI dep_tristate ' USB Mass Storage support' CONFIG_USB_STORAGE $CONFIG_USB $CONFIG_SCSI
dep_mbool ' USB Mass Storage verbose debug' CONFIG_USB_STORAGE_DEBUG $CONFIG_USB_STORAGE dep_mbool ' USB Mass Storage verbose debug' CONFIG_USB_STORAGE_DEBUG $CONFIG_USB_STORAGE
dep_mbool ' Datafab MDCFE-B Compact Flash Reader support' CONFIG_USB_STORAGE_DATAFAB $CONFIG_USB_STORAGE $CONFIG_EXPERIMENTAL dep_mbool ' Datafab Compact Flash Reader support' CONFIG_USB_STORAGE_DATAFAB $CONFIG_USB_STORAGE $CONFIG_EXPERIMENTAL
dep_mbool ' Freecom USB/ATAPI Bridge support' CONFIG_USB_STORAGE_FREECOM $CONFIG_USB_STORAGE dep_mbool ' Freecom USB/ATAPI Bridge support' CONFIG_USB_STORAGE_FREECOM $CONFIG_USB_STORAGE
dep_mbool ' ISD-200 USB/ATA Bridge support' CONFIG_USB_STORAGE_ISD200 $CONFIG_USB_STORAGE dep_mbool ' ISD-200 USB/ATA Bridge support' CONFIG_USB_STORAGE_ISD200 $CONFIG_USB_STORAGE
dep_mbool ' Microtech CompactFlash/SmartMedia support' CONFIG_USB_STORAGE_DPCM $CONFIG_USB_STORAGE dep_mbool ' Microtech CompactFlash/SmartMedia support' CONFIG_USB_STORAGE_DPCM $CONFIG_USB_STORAGE
......
...@@ -327,6 +327,7 @@ void usb_stor_show_sense( ...@@ -327,6 +327,7 @@ void usb_stor_show_sense(
case 0x3502: what="enclosure services unavailable"; break; case 0x3502: what="enclosure services unavailable"; break;
case 0x3503: what="enclosure services transfer failure"; break; case 0x3503: what="enclosure services transfer failure"; break;
case 0x3504: what="enclosure services transfer refused"; break; case 0x3504: what="enclosure services transfer refused"; break;
case 0x3A00: what="medium not present"; break;
case 0x3B0F: what="end of medium reached"; break; case 0x3B0F: what="end of medium reached"; break;
case 0x3F02: what="changed operating definition"; break; case 0x3F02: what="changed operating definition"; break;
case 0x4100: what="data path failure (should use 40 NN)"; break; case 0x4100: what="data path failure (should use 40 NN)"; break;
......
...@@ -37,8 +37,13 @@ ...@@ -37,8 +37,13 @@
* 675 Mass Ave, Cambridge, MA 02139, USA. * 675 Mass Ave, Cambridge, MA 02139, USA.
*/ */
#include <linux/config.h>
#include "usb.h" #include "usb.h"
/* This places the Shuttle/SCM USB<->SCSI bridge devices in multi-target /* This places the Shuttle/SCM USB<->SCSI bridge devices in multi-target
* mode */ * mode */
int usb_stor_euscsi_init(struct us_data *us); int usb_stor_euscsi_init(struct us_data *us);
#ifdef CONFIG_USB_STORAGE_SDDR09
int sddr09_init(struct us_data *us);
#endif
...@@ -192,7 +192,7 @@ static int jumpshot_raw_bulk(int direction, ...@@ -192,7 +192,7 @@ static int jumpshot_raw_bulk(int direction,
return US_BULK_TRANSFER_SHORT; return US_BULK_TRANSFER_SHORT;
} }
US_DEBUGP("jumpshot_raw_bulk: Transfered %d of %d bytes\n", act_len, len); US_DEBUGP("jumpshot_raw_bulk: Transferred %d of %d bytes\n", act_len, len);
return US_BULK_TRANSFER_GOOD; return US_BULK_TRANSFER_GOOD;
} }
......
/* Driver for SanDisk SDDR-09 SmartMedia reader /* Driver for SanDisk SDDR-09 SmartMedia reader
* *
* $Id: sddr09.c,v 1.22 2001/12/08 23:32:48 mdharm Exp $
*
* SDDR09 driver v0.1:
*
* First release
*
* Current development and maintenance by:
* (c) 2000, 2001 Robert Baruch (autophile@starband.net) * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
* (c) 2002 Andries Brouwer (aeb@cwi.nl)
* *
* The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip. * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
* This chip is a programmable USB controller. In the SDDR-09, it has * This chip is a programmable USB controller. In the SDDR-09, it has
* been programmed to obey a certain limited set of SCSI commands. This * been programmed to obey a certain limited set of SCSI commands.
* driver translates the "real" SCSI commands to the SDDR-09 SCSI * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
* commands. * commands.
* *
* This program is free software; you can redistribute it and/or modify it * This program is free software; you can redistribute it and/or modify it
...@@ -44,6 +38,180 @@ ...@@ -44,6 +38,180 @@
#define LSB_of(s) ((s)&0xFF) #define LSB_of(s) ((s)&0xFF)
#define MSB_of(s) ((s)>>8) #define MSB_of(s) ((s)>>8)
/* #define US_DEBUGP printk */
/*
* First some stuff that does not belong here:
* data on SmartMedia and other cards, completely
* unrelated to this driver.
* Similar stuff occurs in <linux/mtd/nand_ids.h>.
*/
struct nand_flash_dev {
int model_id;
int chipshift; /* 1<<cs bytes total capacity */
char pageshift; /* 1<<ps bytes in a page */
char blockshift; /* 1<<bs pages in an erase block */
char zoneshift; /* 1<<zs blocks in a zone */
/* # of logical blocks is 125/128 of this */
char pageadrlen; /* length of an address in bytes - 1 */
};
/*
* NAND Flash Manufacturer ID Codes
*/
#define NAND_MFR_AMD 0x01
#define NAND_MFR_TOSHIBA 0x98
#define NAND_MFR_SAMSUNG 0xec
static inline char *nand_flash_manufacturer(int manuf_id) {
switch(manuf_id) {
case NAND_MFR_AMD:
return "AMD";
case NAND_MFR_TOSHIBA:
return "Toshiba";
case NAND_MFR_SAMSUNG:
return "Samsung";
default:
return "unknown";
}
}
/*
* It looks like it is unnecessary to attach manufacturer to the
* remaining data: SSFDC prescribes manufacturer-independent id codes.
*/
static struct nand_flash_dev nand_flash_ids[] = {
/* NAND flash - these I verified */
{ 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
{ 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
{ 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
{ 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
{ 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
{ 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
{ 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
{ 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
{ 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
{ 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
{ 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
{ 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
{ 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
/* There do also exist 96 MB (from Datafab) and 256 MB cards */
/* MASK ROM - from unknown source */
{ 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
{ 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
{ 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
{ 0,}
};
#define SIZE(a) (sizeof(a)/sizeof((a)[0]))
static struct nand_flash_dev *
nand_find_id(unsigned char id) {
int i;
for (i = 0; i < SIZE(nand_flash_ids); i++)
if (nand_flash_ids[i].model_id == id)
return &(nand_flash_ids[i]);
return NULL;
}
/*
* ECC computation.
*/
static unsigned char parity[256];
static unsigned char ecc2[256];
static void nand_init_ecc(void) {
int i, j, a;
parity[0] = 0;
for (i = 1; i < 256; i++)
parity[i] = (parity[i&(i-1)] ^ 1);
for (i = 0; i < 256; i++) {
a = 0;
for (j = 0; j < 8; j++) {
if (i & (1<<j)) {
if ((j & 1) == 0)
a ^= 0x04;
if ((j & 2) == 0)
a ^= 0x10;
if ((j & 4) == 0)
a ^= 0x40;
}
}
ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
}
}
/* compute 3-byte ecc on 256 bytes */
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
int i, j, a;
unsigned char par, bit, bits[8];
par = 0;
for (j = 0; j < 8; j++)
bits[j] = 0;
/* collect 16 checksum bits */
for (i = 0; i < 256; i++) {
par ^= data[i];
bit = parity[data[i]];
for (j = 0; j < 8; j++)
if ((i & (1<<j)) == 0)
bits[j] ^= bit;
}
/* put 4+4+4 = 12 bits in the ecc */
a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
ecc[2] = ecc2[par];
}
static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
}
static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
memcpy(data, ecc, 3);
}
/*
* The actual driver starts here.
*/
/*
* On my 16MB card, control blocks have size 64 (16 real control bytes,
* and 48 junk bytes). In reality of course the card uses 16 control bytes,
* so the reader makes up the remaining 48. Don't know whether these numbers
* depend on the card. For now a constant.
*/
#define CONTROL_SHIFT 6
/*
* On my Combo CF/SM reader, the SM reader has LUN 1.
* (and things fail with LUN 0).
* It seems LUN is irrelevant for others.
*/
#define LUN 1
#define LUNBITS (LUN << 5)
/*
* LBA and PBA are unsigned ints. Special values.
*/
#define UNDEF 0xffffffff
#define SPARE 0xfffffffe
#define UNUSABLE 0xfffffffd
static int erase_bad_lba_entries = 0;
/* /*
* Send a control message and wait for the response. * Send a control message and wait for the response.
* *
...@@ -63,27 +231,18 @@ ...@@ -63,27 +231,18 @@
* *
*/ */
static int sddr09_send_control(struct us_data *us, static int
sddr09_send_control(struct us_data *us,
int pipe, int pipe,
unsigned char request, unsigned char request,
unsigned char requesttype, unsigned char requesttype,
unsigned short value, unsigned int value,
unsigned short index, unsigned int index,
unsigned char *xfer_data, unsigned char *xfer_data,
unsigned int xfer_len) { unsigned int xfer_len) {
int result; int result;
// If data is going to be sent or received with the URB,
// then allocate a buffer for it. If data is to be sent,
// copy the data into the buffer.
/*
if (xfer_len > 0) {
buffer = kmalloc(xfer_len, GFP_NOIO);
if (!(command[0] & USB_DIR_IN))
memcpy(buffer, xfer_data, xfer_len);
}
*/
// Send the URB to the device and wait for a response. // Send the URB to the device and wait for a response.
/* Why are request and request type reversed in this call? */ /* Why are request and request type reversed in this call? */
...@@ -93,16 +252,6 @@ static int sddr09_send_control(struct us_data *us, ...@@ -93,16 +252,6 @@ static int sddr09_send_control(struct us_data *us,
xfer_data, xfer_len); xfer_data, xfer_len);
// If data was sent or received with the URB, free the buffer we
// allocated earlier, but not before reading the data out of the
// buffer if we wanted to receive data.
/*
if (xfer_len > 0) {
if (command[0] & USB_DIR_IN)
memcpy(xfer_data, buffer, xfer_len);
kfree(buffer);
}
*/
// Check the return code for the command. // Check the return code for the command.
if (result < 0) { if (result < 0) {
...@@ -118,17 +267,44 @@ static int sddr09_send_control(struct us_data *us, ...@@ -118,17 +267,44 @@ static int sddr09_send_control(struct us_data *us,
return USB_STOR_TRANSPORT_FAILED; return USB_STOR_TRANSPORT_FAILED;
} }
/* Uh oh... serious problem here */
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
} }
return USB_STOR_TRANSPORT_GOOD; return USB_STOR_TRANSPORT_GOOD;
} }
static int sddr09_raw_bulk(struct us_data *us, /* send vendor interface command (0x41) */
int direction, /* called for requests 0, 1, 8 */
unsigned char *data, static int
unsigned int len) { sddr09_send_command(struct us_data *us,
unsigned char request,
unsigned char direction,
unsigned char *xfer_data,
unsigned int xfer_len) {
int pipe;
unsigned char requesttype = (0x41 | direction);
// Get the receive or send control pipe number
if (direction == USB_DIR_IN)
pipe = usb_rcvctrlpipe(us->pusb_dev,0);
else
pipe = usb_sndctrlpipe(us->pusb_dev,0);
return sddr09_send_control(us, pipe, request, requesttype,
0, 0, xfer_data, xfer_len);
}
static int
sddr09_send_scsi_command(struct us_data *us,
unsigned char *command,
unsigned int command_len) {
return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
}
static int
sddr09_raw_bulk(struct us_data *us, int direction,
unsigned char *data, unsigned int len) {
int result; int result;
int act_len; int act_len;
...@@ -150,51 +326,36 @@ static int sddr09_raw_bulk(struct us_data *us, ...@@ -150,51 +326,36 @@ static int sddr09_raw_bulk(struct us_data *us,
} }
if (result) { if (result) {
/* NAK - that means we've retried a few times already */
if (result == -ETIMEDOUT) {
US_DEBUGP("usbat_raw_bulk():"
" device NAKed\n");
return US_BULK_TRANSFER_FAILED;
}
/* -ENOENT -- we canceled this transfer */ /* -ENOENT -- we canceled this transfer */
if (result == -ENOENT) { if (result == -ENOENT) {
US_DEBUGP("usbat_raw_bulk():" US_DEBUGP("usbat_raw_bulk(): transfer aborted\n");
" transfer aborted\n");
return US_BULK_TRANSFER_ABORTED; return US_BULK_TRANSFER_ABORTED;
} }
if (result == -EPIPE) { /* NAK - that means we've retried a few times already */
US_DEBUGP("usbat_raw_bulk():" if (result == -ETIMEDOUT)
" output pipe stalled\n"); US_DEBUGP("usbat_raw_bulk(): device NAKed\n");
return USB_STOR_TRANSPORT_FAILED; else if (result == -EOVERFLOW)
} US_DEBUGP("us_transfer_partial(): babble/overflow\n");
else if (result != -EPIPE)
US_DEBUGP("us_transfer_partial(): unknown error %d\n",
result);
/* the catch-all case */
US_DEBUGP("us_transfer_partial(): unknown error\n");
return US_BULK_TRANSFER_FAILED; return US_BULK_TRANSFER_FAILED;
} }
if (act_len != len) { if (act_len != len) {
US_DEBUGP("Warning: Transferred only %d bytes\n", US_DEBUGP("Warning: Transferred only %d of %d bytes\n",
act_len); act_len, len);
return US_BULK_TRANSFER_SHORT; return US_BULK_TRANSFER_SHORT;
} }
US_DEBUGP("Transferred %d of %d bytes\n", act_len, len);
return US_BULK_TRANSFER_GOOD; return US_BULK_TRANSFER_GOOD;
} }
/* static int
* Note: direction must be set if command_len == 0. sddr09_bulk_transport(struct us_data *us, int direction,
*/ unsigned char *data, unsigned int len,
static int sddr09_bulk_transport(struct us_data *us,
int direction,
unsigned char *data,
unsigned int len,
int use_sg) { int use_sg) {
int result = USB_STOR_TRANSPORT_GOOD; int result = USB_STOR_TRANSPORT_GOOD;
...@@ -203,97 +364,724 @@ static int sddr09_bulk_transport(struct us_data *us, ...@@ -203,97 +364,724 @@ static int sddr09_bulk_transport(struct us_data *us,
struct scatterlist *sg; struct scatterlist *sg;
char string[64]; char string[64];
if (len==0) #define DEBUG_PRCT 12
return USB_STOR_TRANSPORT_GOOD;
if (len == 0)
return USB_STOR_TRANSPORT_GOOD;
/* transfer the data */ if (direction == SCSI_DATA_WRITE && !use_sg) {
if (direction == SCSI_DATA_WRITE) {
/* Debug-print the first 48 bytes of the write transfer */ /* Debug-print the first N bytes of the write transfer */
if (!use_sg) {
strcpy(string, "wr: "); strcpy(string, "wr: ");
for (i=0; i<len && i<48; i++) { for (i=0; i<len && i<DEBUG_PRCT; i++) {
sprintf(string+strlen(string), "%02X ", sprintf(string+strlen(string), "%02X ",
data[i]); data[i]);
if ((i%16)==15) { if ((i%16) == 15) {
US_DEBUGP("%s\n", string); US_DEBUGP("%s\n", string);
strcpy(string, "wr: "); strcpy(string, "wr: ");
} }
} }
if ((i%16)!=0) if ((i%16)!=0)
US_DEBUGP("%s\n", string); US_DEBUGP("%s\n", string);
}
US_DEBUGP("SCM data %s transfer %d sg buffers %d\n",
(direction == SCSI_DATA_READ) ? "in" : "out",
len, use_sg);
if (!use_sg)
result = sddr09_raw_bulk(us, direction, data, len);
else {
sg = (struct scatterlist *)data;
for (i=0; i<use_sg && transferred<len; i++) {
unsigned char *buf;
unsigned int length;
buf = page_address(sg[i].page) + sg[i].offset;
length = len-transferred;
if (length > sg[i].length)
length = sg[i].length;
result = sddr09_raw_bulk(us, direction, buf, length);
if (result != US_BULK_TRANSFER_GOOD)
break;
transferred += sg[i].length;
}
}
if (direction == SCSI_DATA_READ && !use_sg) {
/* Debug-print the first N bytes of the read transfer */
strcpy(string, "rd: ");
for (i=0; i<len && i<DEBUG_PRCT; i++) {
sprintf(string+strlen(string), "%02X ",
data[i]);
if ((i%16) == 15) {
US_DEBUGP("%s\n", string);
strcpy(string, "rd: ");
}
}
if ((i%16)!=0)
US_DEBUGP("%s\n", string);
}
return result;
}
#if 0
/*
* Test Unit Ready Command: 12 bytes.
* byte 0: opcode: 00
*/
static int
sddr09_test_unit_ready(struct us_data *us) {
unsigned char command[6] = {
0, LUNBITS, 0, 0, 0, 0
};
int result;
result = sddr09_send_scsi_command(us, command, sizeof(command));
US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
return result;
}
#endif
/*
* Request Sense Command: 12 bytes.
* byte 0: opcode: 03
* byte 4: data length
*/
static int
sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
unsigned char command[12] = {
0x03, LUNBITS, 0, 0, buflen, 0, 0, 0, 0, 0, 0, 0
};
int result;
result = sddr09_send_scsi_command(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("request sense failed\n");
return result;
}
result = sddr09_raw_bulk(us, SCSI_DATA_READ, sensebuf, buflen);
if (result != USB_STOR_TRANSPORT_GOOD)
US_DEBUGP("request sense bulk in failed\n");
else
US_DEBUGP("request sense worked\n");
return result;
}
/*
* Read Command: 12 bytes.
* byte 0: opcode: E8
* byte 1: last two bits: 00: read data, 01: read blockwise control,
* 10: read both, 11: read pagewise control.
* It turns out we need values 20, 21, 22, 23 here (LUN 1).
* bytes 2-5: address (interpretation depends on byte 1, see below)
* bytes 10-11: count (idem)
*
* A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
* A read data command gets data in 512-byte pages.
* A read control command gets control in 64-byte chunks.
* A read both command gets data+control in 576-byte chunks.
*
* Blocks are groups of 32 pages, and read blockwise control jumps to the
* next block, while read pagewise control jumps to the next page after
* reading a group of 64 control bytes.
* [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
*
* (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
*/
static int
sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
int nr_of_pages, int bulklen, unsigned char *buf,
int use_sg) {
unsigned char command[12] = {
0xe8, LUNBITS | x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int result;
command[2] = MSB_of(fromaddress>>16);
command[3] = LSB_of(fromaddress>>16);
command[4] = MSB_of(fromaddress & 0xFFFF);
command[5] = LSB_of(fromaddress & 0xFFFF);
command[10] = MSB_of(nr_of_pages);
command[11] = LSB_of(nr_of_pages);
result = sddr09_send_scsi_command(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
x, result);
return result;
}
result = sddr09_bulk_transport(us, SCSI_DATA_READ,
buf, bulklen, use_sg);
if (result != USB_STOR_TRANSPORT_GOOD)
US_DEBUGP("Result for bulk_transport in sddr09_read2%d %d\n",
x, result);
return result;
}
/*
* Read Data
*
* fromaddress counts data shorts:
* increasing it by 256 shifts the bytestream by 512 bytes;
* the last 8 bits are ignored.
*
* nr_of_pages counts pages of size (1 << pageshift).
*/
static int
sddr09_read20(struct us_data *us, unsigned long fromaddress,
int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
int bulklen = nr_of_pages << pageshift;
/* The last 8 bits of fromaddress are ignored. */
return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
buf, use_sg);
}
/*
* Read Blockwise Control
*
* fromaddress gives the starting position (as in read data;
* the last 8 bits are ignored); increasing it by 32*256 shifts
* the output stream by 64 bytes.
*
* count counts control groups of size (1 << controlshift).
* For me, controlshift = 6. Is this constant?
*
* After getting one control group, jump to the next block
* (fromaddress += 8192).
*/
static int
sddr09_read21(struct us_data *us, unsigned long fromaddress,
int count, int controlshift, unsigned char *buf, int use_sg) {
int bulklen = (count << controlshift);
return sddr09_readX(us, 1, fromaddress, count, bulklen,
buf, use_sg);
}
/*
* Read both Data and Control
*
* fromaddress counts data shorts, ignoring control:
* increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
* the last 8 bits are ignored.
*
* nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
*/
static int
sddr09_read22(struct us_data *us, unsigned long fromaddress,
int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
nr_of_pages, bulklen);
return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
buf, use_sg);
}
#if 0
/*
* Read Pagewise Control
*
* fromaddress gives the starting position (as in read data;
* the last 8 bits are ignored); increasing it by 256 shifts
* the output stream by 64 bytes.
*
* count counts control groups of size (1 << controlshift).
* For me, controlshift = 6. Is this constant?
*
* After getting one control group, jump to the next page
* (fromaddress += 256).
*/
static int
sddr09_read23(struct us_data *us, unsigned long fromaddress,
int count, int controlshift, unsigned char *buf, int use_sg) {
int bulklen = (count << controlshift);
return sddr09_readX(us, 3, fromaddress, count, bulklen,
buf, use_sg);
}
#endif
/*
* Erase Command: 12 bytes.
* byte 0: opcode: EA
* bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
*
* Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
* The byte address being erased is 2*Eaddress.
*/
static int
sddr09_erase(struct us_data *us, unsigned long Eaddress) {
unsigned char command[12] = {
0xea, LUNBITS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int result;
command[6] = MSB_of(Eaddress>>16);
command[7] = LSB_of(Eaddress>>16);
command[8] = MSB_of(Eaddress & 0xFFFF);
command[9] = LSB_of(Eaddress & 0xFFFF);
result = sddr09_send_scsi_command(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD)
US_DEBUGP("Result for send_control in sddr09_erase %d\n",
result);
return result;
}
/*
* Write Command: 12 bytes.
* byte 0: opcode: E9
* bytes 2-5: write address (big-endian, counting shorts, sector aligned).
* bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
* bytes 10-11: sector count (big-endian, in 512-byte sectors).
*
* If write address equals erase address, the erase is done first,
* otherwise the write is done first. When erase address equals zero
* no erase is done?
*/
static int
sddr09_writeX(struct us_data *us,
unsigned long Waddress, unsigned long Eaddress,
int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
unsigned char command[12] = {
0xe9, LUNBITS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int result;
command[2] = MSB_of(Waddress>>16);
command[3] = LSB_of(Waddress>>16);
command[4] = MSB_of(Waddress & 0xFFFF);
command[5] = LSB_of(Waddress & 0xFFFF);
command[6] = MSB_of(Eaddress>>16);
command[7] = LSB_of(Eaddress>>16);
command[8] = MSB_of(Eaddress & 0xFFFF);
command[9] = LSB_of(Eaddress & 0xFFFF);
command[10] = MSB_of(nr_of_pages);
command[11] = LSB_of(nr_of_pages);
result = sddr09_send_scsi_command(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
result);
return result;
}
result = sddr09_bulk_transport(us, SCSI_DATA_WRITE,
buf, bulklen, use_sg);
if (result != USB_STOR_TRANSPORT_GOOD)
US_DEBUGP("Result for bulk_transport in sddr09_writeX %d\n",
result);
return result;
}
/* erase address, write same address */
static int
sddr09_write_inplace(struct us_data *us, unsigned long address,
int nr_of_pages, int pageshift, unsigned char *buf,
int use_sg) {
int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
buf, use_sg);
}
#if 0
/*
* Read Scatter Gather Command: 3+4n bytes.
* byte 0: opcode E7
* byte 2: n
* bytes 4i-1,4i,4i+1: page address
* byte 4i+2: page count
* (i=1..n)
*
* This reads several pages from the card to a single memory buffer.
* The last two bits of byte 1 have the same meaning as for E8.
*/
static int
sddr09_read_sg_test_only(struct us_data *us) {
unsigned char command[15] = {
0xe7, LUNBITS, 0
};
int result, bulklen, nsg, ct;
unsigned char *buf;
unsigned long address;
nsg = bulklen = 0;
address = 040000; ct = 1;
nsg++;
bulklen += (ct << 9);
command[4*nsg+2] = ct;
command[4*nsg+1] = ((address >> 9) & 0xFF);
command[4*nsg+0] = ((address >> 17) & 0xFF);
command[4*nsg-1] = ((address >> 25) & 0xFF);
address = 0340000; ct = 1;
nsg++;
bulklen += (ct << 9);
command[4*nsg+2] = ct;
command[4*nsg+1] = ((address >> 9) & 0xFF);
command[4*nsg+0] = ((address >> 17) & 0xFF);
command[4*nsg-1] = ((address >> 25) & 0xFF);
address = 01000000; ct = 2;
nsg++;
bulklen += (ct << 9);
command[4*nsg+2] = ct;
command[4*nsg+1] = ((address >> 9) & 0xFF);
command[4*nsg+0] = ((address >> 17) & 0xFF);
command[4*nsg-1] = ((address >> 25) & 0xFF);
command[2] = nsg;
result = sddr09_send_scsi_command(us, command, 4*nsg+3);
if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
result);
return result;
}
buf = (unsigned char *) kmalloc(bulklen, GFP_NOIO);
if (!buf)
return USB_STOR_TRANSPORT_ERROR;
result = sddr09_bulk_transport(us, SCSI_DATA_READ,
buf, bulklen, 0);
if (result != USB_STOR_TRANSPORT_GOOD)
US_DEBUGP("Result for bulk_transport in sddr09_read_sg %d\n",
result);
kfree(buf);
return result;
}
#endif
/*
* Read Status Command: 12 bytes.
* byte 0: opcode: EC
*
* Returns 64 bytes, all zero except for the first.
* bit 0: 1: Error
* bit 5: 1: Suspended
* bit 6: 1: Ready
* bit 7: 1: Not write-protected
*/
static int
sddr09_read_status(struct us_data *us, unsigned char *status) {
unsigned char command[12] = {
0xec, LUNBITS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
unsigned char data[64];
int result;
US_DEBUGP("Reading status...\n");
result = sddr09_send_scsi_command(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
result = sddr09_bulk_transport(us, SCSI_DATA_READ,
data, sizeof(data), 0);
*status = data[0];
return result;
}
static int
sddr09_read_data(struct us_data *us,
unsigned long address,
unsigned int sectors,
unsigned char *content,
int use_sg) {
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
unsigned int lba, maxlba, pba;
unsigned int page, pages;
unsigned char *buffer = NULL;
unsigned char *ptr;
struct scatterlist *sg = NULL;
int result, i, len;
// If we're using scatter-gather, we have to create a new
// buffer to read all of the data in first, since a
// scatter-gather buffer could in theory start in the middle
// of a page, which would be bad. A developer who wants a
// challenge might want to write a limited-buffer
// version of this code.
len = sectors*info->pagesize;
if (use_sg) {
sg = (struct scatterlist *)content;
buffer = kmalloc(len, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
ptr = buffer;
} else
ptr = content;
// Figure out the initial LBA and page
lba = address >> info->blockshift;
page = (address & info->blockmask);
maxlba = info->capacity >> (info->pageshift + info->blockshift);
// This could be made much more efficient by checking for
// contiguous LBA's. Another exercise left to the student.
result = USB_STOR_TRANSPORT_GOOD;
while (sectors > 0) {
/* Find number of pages we can read in this block */
pages = info->blocksize - page;
if (pages > sectors)
pages = sectors;
/* Not overflowing capacity? */
if (lba >= maxlba) {
US_DEBUGP("Error: Requested lba %u exceeds "
"maximum %u\n", lba, maxlba);
result = USB_STOR_TRANSPORT_ERROR;
break;
}
/* Find where this lba lives on disk */
pba = info->lba_to_pba[lba];
if (pba == UNDEF) { /* this lba was never written */
US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
pages, lba, page);
/* This is not really an error. It just means
that the block has never been written.
Instead of returning USB_STOR_TRANSPORT_ERROR
it is better to return all zero data. */
memset(ptr, 0, pages << info->pageshift);
} else {
US_DEBUGP("Read %d pages, from PBA %d"
" (LBA %d) page %d\n",
pages, pba, lba, page);
address = ((pba << info->blockshift) + page) <<
info->pageshift;
result = sddr09_read20(us, address>>1,
pages, info->pageshift, ptr, 0);
if (result != USB_STOR_TRANSPORT_GOOD)
break;
}
page = 0;
lba++;
sectors -= pages;
ptr += (pages << info->pageshift);
}
if (use_sg && result == USB_STOR_TRANSPORT_GOOD) {
int transferred = 0;
for (i=0; i<use_sg && transferred<len; i++) {
unsigned char *buf;
unsigned int length;
buf = page_address(sg[i].page) + sg[i].offset;
length = len-transferred;
if (length > sg[i].length)
length = sg[i].length;
memcpy(buf, buffer+transferred, length);
transferred += sg[i].length;
}
}
if (use_sg)
kfree(buffer);
return result;
}
/* we never free blocks, so lastpba can only increase */
static unsigned int
sddr09_find_unused_pba(struct sddr09_card_info *info) {
static unsigned int lastpba = 1;
int numblocks = info->capacity >> (info->blockshift + info->pageshift);
int i;
for (i = lastpba+1; i < numblocks; i++) {
if (info->pba_to_lba[i] == UNDEF) {
lastpba = i;
return i;
}
}
return 0;
}
static int
sddr09_write_lba(struct us_data *us, unsigned int lba,
unsigned int page, unsigned int pages,
unsigned char *ptr) {
struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
unsigned long address;
unsigned int pba, lbap;
unsigned int pagelen, blocklen;
unsigned char *blockbuffer, *bptr, *cptr, *xptr;
unsigned char ecc[3];
int i, result;
lbap = ((lba & 0x3ff) << 1) | 0x1000;
if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
lbap ^= 1;
pba = info->lba_to_pba[lba];
if (pba == UNDEF) {
pba = sddr09_find_unused_pba(info);
if (!pba) {
printk("sddr09_write_lba: Out of unused blocks\n");
return USB_STOR_TRANSPORT_ERROR;
}
info->pba_to_lba[pba] = lba;
info->lba_to_pba[lba] = pba;
}
if (pba == 1) {
/* Maybe it is impossible to write to PBA 1.
Fake success, but don't do anything. */
printk("sddr09: avoid writing to pba 1\n");
return USB_STOR_TRANSPORT_GOOD;
}
pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
blocklen = (pagelen << info->blockshift);
blockbuffer = kmalloc(blocklen, GFP_NOIO);
if (!blockbuffer) {
printk("sddr09_write_lba: Out of memory\n");
return USB_STOR_TRANSPORT_ERROR;
}
/* read old contents */
address = (pba << (info->pageshift + info->blockshift));
result = sddr09_read22(us, address>>1, info->blocksize,
info->pageshift, blockbuffer, 0);
if (result != USB_STOR_TRANSPORT_GOOD)
goto err;
/* check old contents */
for (i = 0; i < info->blockshift; i++) {
bptr = blockbuffer + i*pagelen;
cptr = bptr + info->pagesize;
nand_compute_ecc(bptr, ecc);
if (!nand_compare_ecc(cptr+13, ecc)) {
US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
i, pba);
nand_store_ecc(cptr+13, ecc);
}
nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
if (!nand_compare_ecc(cptr+8, ecc)) {
US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
i, pba);
nand_store_ecc(cptr+8, ecc);
} }
} }
/* copy in new stuff and compute ECC */
US_DEBUGP("SCM data %s transfer %d sg buffers %d\n", xptr = ptr;
( direction==SCSI_DATA_READ ? "in" : "out"), for (i = page; i < page+pages; i++) {
len, use_sg); bptr = blockbuffer + i*pagelen;
cptr = bptr + info->pagesize;
if (!use_sg) memcpy(bptr, xptr, info->pagesize);
result = sddr09_raw_bulk(us, direction, data, len); xptr += info->pagesize;
else { nand_compute_ecc(bptr, ecc);
sg = (struct scatterlist *)data; nand_store_ecc(cptr+13, ecc);
for (i=0; i<use_sg && transferred<len; i++) { nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
result = sddr09_raw_bulk(us, direction, nand_store_ecc(cptr+8, ecc);
page_address(sg[i].page) + sg[i].offset, cptr[6] = cptr[11] = MSB_of(lbap);
len-transferred > sg[i].length ? cptr[7] = cptr[12] = LSB_of(lbap);
sg[i].length : len-transferred);
if (result!=US_BULK_TRANSFER_GOOD)
break;
transferred += sg[i].length;
}
} }
if (direction == SCSI_DATA_READ) { US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
/* Debug-print the first 48 bytes of the read transfer */ result = sddr09_write_inplace(us, address>>1, info->blocksize,
info->pageshift, blockbuffer, 0);
if (!use_sg) { US_DEBUGP("sddr09_write_inplace returns %d\n", result);
strcpy(string, "rd: ");
for (i=0; i<len && i<48; i++) { #if 0
sprintf(string+strlen(string), "%02X ", {
data[i]); unsigned char status = 0;
if ((i%16)==15) { int result2 = sddr09_read_status(us, &status);
US_DEBUGP("%s\n", string); if (result2 != USB_STOR_TRANSPORT_GOOD)
strcpy(string, "rd: "); US_DEBUGP("sddr09_write_inplace: cannot read status\n");
} else if (status != 0xc0)
} US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
if ((i%16)!=0) status);
US_DEBUGP("%s\n", string);
} }
#endif
#if 0
{
int result2 = sddr09_test_unit_ready(us);
} }
#endif
err:
kfree(blockbuffer);
/* TODO: instead of doing kmalloc/kfree for each block,
add a bufferpointer to the info structure */
return result; return result;
} }
int sddr09_read_data(struct us_data *us, static int
sddr09_write_data(struct us_data *us,
unsigned long address, unsigned long address,
unsigned short sectors, unsigned int sectors,
unsigned char *content, unsigned char *content,
int use_sg) { int use_sg) {
int result; struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
unsigned char command[12] = { unsigned int lba, page, pages;
0xe8, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
struct sddr09_card_info *info = (struct sddr09_card_info *)us->extra;
unsigned int lba;
unsigned int pba;
unsigned short page;
unsigned short pages;
unsigned char *buffer = NULL; unsigned char *buffer = NULL;
unsigned char *ptr; unsigned char *ptr;
struct scatterlist *sg = NULL; struct scatterlist *sg = NULL;
int i; int result, i, len;
int len;
int transferred;
// If we're using scatter-gather, we have to create a new // If we're using scatter-gather, we have to create a new
// buffer to read all of the data in first, since a // buffer to write all of the data in first, since a
// scatter-gather buffer could in theory start in the middle // scatter-gather buffer could in theory start in the middle
// of a page, which would be bad. A developer who wants a // of a page, which would be bad. A developer who wants a
// challenge might want to write a limited-buffer // challenge might want to write a limited-buffer
...@@ -302,78 +1090,50 @@ int sddr09_read_data(struct us_data *us, ...@@ -302,78 +1090,50 @@ int sddr09_read_data(struct us_data *us,
len = sectors*info->pagesize; len = sectors*info->pagesize;
if (use_sg) { if (use_sg) {
int transferred = 0;
sg = (struct scatterlist *)content; sg = (struct scatterlist *)content;
buffer = kmalloc(len, GFP_NOIO); buffer = kmalloc(len, GFP_NOIO);
if (buffer == NULL) if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
for (i=0; i<use_sg && transferred<len; i++) {
unsigned char *buf;
unsigned int length;
buf = page_address(sg[i].page) + sg[i].offset;
length = len-transferred;
if (length > sg[i].length)
length = sg[i].length;
memcpy(buffer+transferred, buf, length);
transferred += sg[i].length;
}
ptr = buffer; ptr = buffer;
} else } else
ptr = content; ptr = content;
// Figure out the initial LBA and page // Figure out the initial LBA and page
lba = address >> info->blockshift;
pba = address >> (info->pageshift + info->blockshift); page = (address & info->blockmask);
lba = info->pba_to_lba[pba];
page = (address >> info->pageshift) & info->blockmask;
// This could be made much more efficient by checking for // This could be made much more efficient by checking for
// contiguous LBA's. Another exercise left to the student. // contiguous LBA's. Another exercise left to the student.
while (sectors>0) { result = USB_STOR_TRANSPORT_GOOD;
pba = info->lba_to_pba[lba]; while (sectors > 0) {
// Read as many sectors as possible in this block // Write as many sectors as possible in this block
pages = info->blocksize - page; pages = info->blocksize - page;
if (pages > sectors) if (pages > sectors)
pages = sectors; pages = sectors;
US_DEBUGP("Read %02X pages, from PBA %04X" result = sddr09_write_lba(us, lba, page, pages, ptr);
" (LBA %04X) page %02X\n", if (result != USB_STOR_TRANSPORT_GOOD)
pages, pba, lba, page); break;
address = ( (pba << info->blockshift) + page ) <<
info->pageshift;
// Unlike in the documentation, the address is in
// words of 2 bytes.
command[2] = MSB_of(address>>17);
command[3] = LSB_of(address>>17);
command[4] = MSB_of((address>>1)&0xFFFF);
command[5] = LSB_of((address>>1)&0xFFFF);
command[10] = MSB_of(pages);
command[11] = LSB_of(pages);
result = sddr09_send_control(us,
usb_sndctrlpipe(us->pusb_dev,0),
0,
0x41,
0,
0,
command,
12);
US_DEBUGP("Result for send_control in read_data %d\n",
result);
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
result = sddr09_bulk_transport(us,
SCSI_DATA_READ, ptr,
pages<<info->pageshift, 0);
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
page = 0; page = 0;
lba++; lba++;
...@@ -381,234 +1141,164 @@ int sddr09_read_data(struct us_data *us, ...@@ -381,234 +1141,164 @@ int sddr09_read_data(struct us_data *us,
ptr += (pages << info->pageshift); ptr += (pages << info->pageshift);
} }
if (use_sg) { if (use_sg)
transferred = 0;
for (i=0; i<use_sg && transferred<len; i++) {
memcpy(page_address(sg[i].page) + sg[i].offset, buffer+transferred,
len-transferred > sg[i].length ?
sg[i].length : len-transferred);
transferred += sg[i].length;
}
kfree(buffer); kfree(buffer);
}
return USB_STOR_TRANSPORT_GOOD; return result;
} }
int sddr09_read_control(struct us_data *us, static int
sddr09_read_control(struct us_data *us,
unsigned long address, unsigned long address,
unsigned short blocks, unsigned int blocks,
unsigned char *content, unsigned char *content,
int use_sg) { int use_sg) {
// Unlike in the documentation, the last two bytes are the
// number of blocks, not sectors.
int result;
unsigned char command[12] = {
0xe8, 0x21, MSB_of(address>>16),
LSB_of(address>>16), MSB_of(address&0xFFFF),
LSB_of(address&0xFFFF), 0, 0, 0, 0,
MSB_of(blocks), LSB_of(blocks)
};
US_DEBUGP("Read control address %08lX blocks %04X\n", US_DEBUGP("Read control address %08lX blocks %04X\n",
address, blocks); address, blocks);
result = sddr09_send_control(us, return sddr09_read21(us, address, blocks, CONTROL_SHIFT, content, use_sg);
usb_sndctrlpipe(us->pusb_dev,0),
0,
0x41,
0,
0,
command,
12);
US_DEBUGP("Result for send_control in read_control %d\n",
result);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
result = sddr09_bulk_transport(us,
SCSI_DATA_READ, content,
blocks<<6, use_sg); // 0x40 bytes per block
US_DEBUGP("Result for bulk read in read_control %d\n",
result);
return result;
} }
int sddr09_read_deviceID(struct us_data *us, /*
unsigned char *manufacturerID, * Read Device ID Command: 12 bytes.
unsigned char *deviceID) { * byte 0: opcode: ED
*
int result; * Returns 2 bytes: Manufacturer ID and Device ID.
* On more recent cards 3 bytes: the third byte is an option code A5
* signifying that the secret command to read an 128-bit ID is available.
* On still more recent cards 4 bytes: the fourth byte C0 means that
* a second read ID cmd is available.
*/
static int
sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
unsigned char command[12] = { unsigned char command[12] = {
0xed, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0xed, LUNBITS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}; };
unsigned char content[64]; unsigned char content[64];
int result, i;
result = sddr09_send_control(us, result = sddr09_send_scsi_command(us, command, sizeof(command));
usb_sndctrlpipe(us->pusb_dev,0),
0,
0x41,
0,
0,
command,
12);
US_DEBUGP("Result of send_control for device ID is %d\n",
result);
if (result != USB_STOR_TRANSPORT_GOOD) if (result != USB_STOR_TRANSPORT_GOOD)
return result; return result;
result = sddr09_bulk_transport(us, result = sddr09_bulk_transport(us, SCSI_DATA_READ, content, 64, 0);
SCSI_DATA_READ, content,
64, 0);
*manufacturerID = content[0]; for (i = 0; i < 4; i++)
*deviceID = content[1]; deviceID[i] = content[i];
return result; return result;
} }
int sddr09_read_status(struct us_data *us, static int
unsigned char *status) { sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
int result; int result;
unsigned char command[12] = { unsigned char status;
0xec, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
result = sddr09_send_control(us,
usb_sndctrlpipe(us->pusb_dev,0),
0,
0x41,
0,
0,
command,
12);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
result = sddr09_bulk_transport(us,
SCSI_DATA_READ, status,
1, 0);
result = sddr09_read_status(us, &status);
if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("sddr09_get_wp: read_status fails\n");
return result; return result;
}
US_DEBUGP("sddr09_get_wp: status %02X", status);
if ((status & 0x80) == 0) {
info->flags |= SDDR09_WP; /* write protected */
US_DEBUGP(" WP");
}
if (status & 0x40)
US_DEBUGP(" Ready");
if (status & LUNBITS)
US_DEBUGP(" Suspended");
if (status & 0x1)
US_DEBUGP(" Error");
US_DEBUGP("\n");
return USB_STOR_TRANSPORT_GOOD;
} }
int sddr09_reset(struct us_data *us) { #if 0
/*
* Reset Command: 12 bytes.
* byte 0: opcode: EB
*/
static int
sddr09_reset(struct us_data *us) {
int result;
unsigned char command[12] = { unsigned char command[12] = {
0xeb, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0xeb, LUNBITS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}; };
result = sddr09_send_control(us, return sddr09_send_scsi_command(us, command, sizeof(command));
usb_sndctrlpipe(us->pusb_dev,0),
0,
0x41,
0,
0,
command,
12);
return result;
} }
#endif
unsigned long sddr09_get_capacity(struct us_data *us, static struct nand_flash_dev *
unsigned int *pagesize, unsigned int *blocksize) { sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
struct nand_flash_dev *cardinfo;
unsigned char manufacturerID; unsigned char deviceID[4];
unsigned char deviceID; char blurbtxt[256];
int result; int result;
US_DEBUGP("Reading capacity...\n"); US_DEBUGP("Reading capacity...\n");
result = sddr09_read_deviceID(us, result = sddr09_read_deviceID(us, deviceID);
&manufacturerID,
&deviceID);
US_DEBUGP("Result of read_deviceID is %d\n",
result);
if (result != USB_STOR_TRANSPORT_GOOD) if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("Result of read_deviceID is %d\n", result);
printk("sddr09: could not read card info\n");
return 0; return 0;
}
US_DEBUGP("Device ID = %02X\n", deviceID); sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
US_DEBUGP("Manuf ID = %02X\n", manufacturerID); deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
*pagesize = 512; /* Byte 0 is the manufacturer */
*blocksize = 16; sprintf(blurbtxt + strlen(blurbtxt),
": Manuf. %s",
switch (deviceID) { nand_flash_manufacturer(deviceID[0]));
case 0x6e: // 1MB /* Byte 1 is the device type */
case 0xe8: cardinfo = nand_find_id(deviceID[1]);
case 0xec: if (cardinfo) {
*pagesize = 256; /* MB or MiB? It is neither. A 16 MB card has
return 0x00100000; 17301504 raw bytes, of which 16384000 are
usable for user data. */
case 0xea: // 2MB sprintf(blurbtxt + strlen(blurbtxt),
case 0x5d: // 5d is a ROM card with pagesize 512. ", %d MB", 1<<(cardinfo->chipshift - 20));
case 0x64: } else {
if (deviceID!=0x5D) sprintf(blurbtxt + strlen(blurbtxt),
*pagesize = 256; ", type unrecognized");
return 0x00200000; }
case 0xe3: // 4MB
case 0xe5:
case 0x6b:
case 0xd5:
return 0x00400000;
case 0xe6: // 8MB
case 0xd6:
return 0x00800000;
case 0x73: // 16MB
*blocksize = 32;
return 0x01000000;
case 0x75: // 32MB /* Byte 2 is code to signal availability of 128-bit ID */
*blocksize = 32; if (deviceID[2] == 0xa5) {
return 0x02000000; sprintf(blurbtxt + strlen(blurbtxt),
", 128-bit ID");
}
case 0x76: // 64MB /* Byte 3 announces the availability of another read ID command */
*blocksize = 32; if (deviceID[3] == 0xc0) {
return 0x04000000; sprintf(blurbtxt + strlen(blurbtxt),
", extra cmd");
}
case 0x79: // 128MB if (flags & SDDR09_WP)
*blocksize = 32; sprintf(blurbtxt + strlen(blurbtxt),
return 0x08000000; ", WP");
default: // unknown printk("%s\n", blurbtxt);
return 0;
} return cardinfo;
} }
int sddr09_read_map(struct us_data *us) { static int
sddr09_read_map(struct us_data *us) {
struct scatterlist *sg; struct scatterlist *sg;
struct sddr09_card_info *info = (struct sddr09_card_info *)(us->extra); struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
int numblocks; int numblocks, alloc_len, alloc_blocks;
int i; int i, j, result;
unsigned char *ptr; unsigned char *ptr;
unsigned short lba; unsigned int lba, lbact;
unsigned char parity;
unsigned char fast_parity[16] = {
0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0
};
int result;
int alloc_len;
int alloc_blocks;
if (!info->capacity) if (!info->capacity)
return -1; return -1;
...@@ -621,7 +1311,7 @@ int sddr09_read_map(struct us_data *us) { ...@@ -621,7 +1311,7 @@ int sddr09_read_map(struct us_data *us) {
// capacity>>(b+p-6) // capacity>>(b+p-6)
alloc_len = info->capacity >> alloc_len = info->capacity >>
(info->blockshift + info->pageshift - 6); (info->blockshift + info->pageshift - CONTROL_SHIFT);
// Allocate a number of scatterlist structures according to // Allocate a number of scatterlist structures according to
// the number of 128k blocks in the alloc_len. Adding 128k-1 // the number of 128k blocks in the alloc_len. Adding 128k-1
...@@ -660,28 +1350,22 @@ int sddr09_read_map(struct us_data *us) { ...@@ -660,28 +1350,22 @@ int sddr09_read_map(struct us_data *us) {
numblocks = info->capacity >> (info->blockshift + info->pageshift); numblocks = info->capacity >> (info->blockshift + info->pageshift);
if ( (result = sddr09_read_control(us, 0, numblocks, result = sddr09_read_control(us, 0, numblocks,
(unsigned char *)sg, alloc_blocks)) != (unsigned char *)sg, alloc_blocks);
USB_STOR_TRANSPORT_GOOD) { if (result != USB_STOR_TRANSPORT_GOOD) {
for (i=0; i<alloc_blocks; i++) for (i=0; i<alloc_blocks; i++)
kfree(page_address(sg[i].page) + sg[i].offset); kfree(page_address(sg[i].page) + sg[i].offset);
kfree(sg); kfree(sg);
return -1; return -1;
} }
if (info->lba_to_pba)
kfree(info->lba_to_pba); kfree(info->lba_to_pba);
if (info->pba_to_lba)
kfree(info->pba_to_lba); kfree(info->pba_to_lba);
info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO); info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO); info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) { if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
if (info->lba_to_pba != NULL)
kfree(info->lba_to_pba); kfree(info->lba_to_pba);
if (info->pba_to_lba != NULL)
kfree(info->pba_to_lba); kfree(info->pba_to_lba);
info->lba_to_pba = NULL; info->lba_to_pba = NULL;
info->pba_to_lba = NULL; info->pba_to_lba = NULL;
...@@ -691,64 +1375,137 @@ int sddr09_read_map(struct us_data *us) { ...@@ -691,64 +1375,137 @@ int sddr09_read_map(struct us_data *us) {
return 0; return 0;
} }
memset(info->lba_to_pba, 0, numblocks*sizeof(int)); for (i = 0; i < numblocks; i++)
memset(info->pba_to_lba, 0, numblocks*sizeof(int)); info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
ptr = page_address(sg[0].page)+sg[0].offset;
/*
* Define lba-pba translation table
*/
// Each block is 64 bytes of control data, so block i is located in // Each block is 64 bytes of control data, so block i is located in
// scatterlist block i*64/128k = i*(2^6)*(2^-17) = i*(2^-11) // scatterlist block i*64/128k = i*(2^6)*(2^-17) = i*(2^-11)
#if 0
/* No translation */
for (i=0; i<numblocks; i++) { for (i=0; i<numblocks; i++) {
ptr = page_address(sg[i>>11].page)+sg[i>>11].offset+((i&0x7ff)<<6); lba = i;
if (ptr[0]!=0xFF || ptr[1]!=0xFF || ptr[2]!=0xFF || info->pba_to_lba[i] = lba;
ptr[3]!=0xFF || ptr[4]!=0xFF || ptr[5]!=0xFF) { info->lba_to_pba[lba] = i;
US_DEBUGP("PBA %04X has no logical mapping: reserved area = "
"%02X%02X%02X%02X data status %02X block status %02X\n",
i, ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5]);
continue;
} }
if ((ptr[6]>>4)!=0x01) { printk("sddr09: no translation today\n");
US_DEBUGP("PBA %04X has invalid address field %02X%02X/%02X%02X\n", #else
i, ptr[6], ptr[7], ptr[11], ptr[12]); for (i=0; i<numblocks; i++) {
ptr = page_address(sg[i>>11].page) +
sg[i>>11].offset + ((i&0x7ff)<<6);
if (i == 0 || i == 1) {
info->pba_to_lba[i] = UNUSABLE;
continue; continue;
} }
/* ensure even parity */ /* special PBAs have control field 0^16 */
for (j = 0; j < 16; j++)
if (ptr[j] != 0)
goto nonz;
info->pba_to_lba[i] = UNUSABLE;
printk("sddr09: PBA %04X has no logical mapping\n", i);
continue;
lba = short_pack(ptr[7], ptr[6]); nonz:
parity = 1; // the parity of 0x1000 /* unwritten PBAs have control field FF^16 */
parity ^= fast_parity[lba & 0x000F]; for (j = 0; j < 16; j++)
parity ^= fast_parity[(lba>>4) & 0x000F]; if (ptr[j] != 0xff)
parity ^= fast_parity[(lba>>8) & 0x000F]; goto nonff;
continue;
if (parity) { /* bad parity bit */ nonff:
US_DEBUGP("Bad parity in LBA for block %04X\n", i); /* normal PBAs start with six FFs */
if (j < 6) {
printk("sddr09: PBA %04X has no logical mapping: "
"reserved area = %02X%02X%02X%02X "
"data status %02X block status %02X\n",
i, ptr[0], ptr[1], ptr[2], ptr[3],
ptr[4], ptr[5]);
info->pba_to_lba[i] = UNUSABLE;
continue; continue;
} }
lba = (lba&0x07FF)>>1; if ((ptr[6] >> 4) != 0x01) {
printk("sddr09: PBA %04X has invalid address field "
"%02X%02X/%02X%02X\n",
i, ptr[6], ptr[7], ptr[11], ptr[12]);
info->pba_to_lba[i] = UNUSABLE;
continue;
}
/* Every 1024 physical blocks ("zone"), the LBA numbers /* check even parity */
* go back to zero, but are within a higher if (parity[ptr[6] ^ ptr[7]]) {
* block of LBA's. Also, there is a maximum of printk("sddr09: Bad parity in LBA for block %04X"
* 1000 LBA's per zone. In other words, in PBA " (%02X %02X)\n", i, ptr[6], ptr[7]);
* 1024-2047 you will find LBA 0-999 which are info->pba_to_lba[i] = UNUSABLE;
* really LBA 1000-1999. Yes, this wastes 24 continue;
* physical blocks per zone. Go figure. }
*/
lba += 1000*(i/0x400); lba = short_pack(ptr[7], ptr[6]);
lba = (lba & 0x07FF) >> 1;
/*
* Every 1024 physical blocks ("zone"), the LBA numbers
* go back to zero, but are within a higher block of LBA's.
* Also, there is a maximum of 1000 LBA's per zone.
* In other words, in PBA 1024-2047 you will find LBA 0-999
* which are really LBA 1000-1999. This allows for 24 bad
* or special physical blocks per zone.
*/
if (lba>=numblocks) { if (lba >= 1000) {
US_DEBUGP("Bad LBA %04X for block %04X\n", lba, i); unsigned long address;
printk("sddr09: Bad LBA %04X for block %04X\n",
lba, i);
info->pba_to_lba[i] = UNDEF /* UNUSABLE */;
if (erase_bad_lba_entries) {
/* some cameras cannot erase a card if it has
bad entries, so we supply this function */
address = (i << (info->pageshift + info->blockshift));
sddr09_erase(us, address>>1);
}
continue; continue;
} }
if (lba<0x10 || (lba>=0x3E0 && lba<0x3EF)) lba += 1000*(i/0x400);
if (lba<0x10 || (lba >= 0x3E0 && lba < 0x3EF))
US_DEBUGP("LBA %04X <-> PBA %04X\n", lba, i); US_DEBUGP("LBA %04X <-> PBA %04X\n", lba, i);
info->pba_to_lba[i] = lba; info->pba_to_lba[i] = lba;
info->lba_to_pba[lba] = i; info->lba_to_pba[lba] = i;
} }
#endif
/*
* Approximate capacity. This is not entirely correct yet,
* since a zone with less than 1000 usable pages leads to
* missing LBAs. Especially if it is the last zone, some
* LBAs can be past capacity.
*/
lbact = 0;
for (i = 0; i < numblocks; i += 1024) {
int ct = 0;
for (j = 0; j < 1024 && i+j < numblocks; j++) {
if (info->pba_to_lba[i+j] != UNUSABLE) {
if (ct >= 1000)
info->pba_to_lba[i+j] = SPARE;
else
ct++;
}
}
lbact += ct;
}
info->lbact = lbact;
US_DEBUGP("Found %d LBA's\n", lbact);
for (i=0; i<alloc_blocks; i++) for (i=0; i<alloc_blocks; i++)
kfree(page_address(sg[i].page)+sg[i].offset); kfree(page_address(sg[i].page)+sg[i].offset);
...@@ -756,67 +1513,74 @@ int sddr09_read_map(struct us_data *us) { ...@@ -756,67 +1513,74 @@ int sddr09_read_map(struct us_data *us) {
return 0; return 0;
} }
/* static void
static int init_sddr09(struct us_data *us) { sddr09_card_info_destructor(void *extra) {
struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
int result;
unsigned char data[14];
unsigned char command[8] = {
0xc1, 0x01, 0, 0, 0, 0, 0, 0
};
unsigned char command2[8] = {
0x41, 0, 0, 0, 0, 0, 0, 0
};
unsigned char tur[12] = {
0x03, 0x20, 0, 0, 0x0e, 0, 0, 0, 0, 0, 0, 0
};
// What the hey is all this for? Doesn't seem to if (!info)
// affect the device, so we won't do device inits. return;
if ( (result = sddr09_send_control(us, command, data, 2)) != kfree(info->lba_to_pba);
USB_STOR_TRANSPORT_GOOD) kfree(info->pba_to_lba);
return result; }
US_DEBUGP("SDDR09: %02X %02X\n", data[0], data[1]); static void
sddr09_init_card_info(struct us_data *us) {
if (!us->extra) {
us->extra = kmalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
if (us->extra) {
memset(us->extra, 0, sizeof(struct sddr09_card_info));
us->extra_destructor = sddr09_card_info_destructor;
}
}
}
command[1] = 0x08; /*
* This is needed at a very early stage. If this is not listed in the
* unusual devices list but called from here then LUN 0 of the combo reader
* is not recognized. But I do not know what precisely these calls do.
*/
int
sddr09_init(struct us_data *us) {
int result;
unsigned char data[18];
if ( (result = sddr09_send_control(us, command, data, 2)) != result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
USB_STOR_TRANSPORT_GOOD) if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("sddr09_init: send_command fails\n");
return result; return result;
}
US_DEBUGP("SDDR09: %02X %02X\n", data[0], data[1]); US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
// get 07 02
if ( (result = sddr09_send_control(us, command2, tur, 12)) != result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
USB_STOR_TRANSPORT_GOOD) { if (result != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("SDDR09: request sense failed\n"); US_DEBUGP("sddr09_init: 2nd send_command fails\n");
return result; return result;
} }
if ( (result = sddr09_raw_bulk( US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
us, SCSI_DATA_READ, data, 14)) != // get 07 00
USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("SDDR09: request sense bulk in failed\n"); result = sddr09_request_sense(us, data, sizeof(data));
return result; if (result == USB_STOR_TRANSPORT_GOOD && data[2] != 0) {
int j;
for (j=0; j<sizeof(data); j++)
printk(" %02X", data[j]);
printk("\n");
// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
// 70: current command
// sense key 0, sense code 0, extd sense code 0
// additional transfer length * = sizeof(data) - 7
// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
// sense key 06, sense code 28: unit attention,
// not ready to ready transition
} }
US_DEBUGP("SDDR09: request sense worked\n"); // test unit ready
return result;
}
*/
void sddr09_card_info_destructor(void *extra) {
struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
if (!extra) return USB_STOR_TRANSPORT_GOOD; /* not result */
return;
if (info->lba_to_pba)
kfree(info->lba_to_pba);
if (info->pba_to_lba)
kfree(info->pba_to_lba);
} }
/* /*
...@@ -824,36 +1588,53 @@ void sddr09_card_info_destructor(void *extra) { ...@@ -824,36 +1588,53 @@ void sddr09_card_info_destructor(void *extra) {
*/ */
int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
{ {
int result; static unsigned char sensekey = 0, sensecode = 0;
int i; static unsigned char havefakesense = 0;
int result, i;
unsigned char *ptr;
unsigned long capacity;
unsigned int page, pages;
char string[64]; char string[64];
struct sddr09_card_info *info;
unsigned char inquiry_response[36] = { unsigned char inquiry_response[36] = {
0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
}; };
unsigned char mode_page_01[16] = { // write-protected for now
0x03, 0x00, 0x80, 0x00, unsigned char mode_page_01[16] = {
0x0F, 0x00, 0, 0x00,
0x01, 0x0A, 0x01, 0x0A,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}; };
unsigned char *ptr;
unsigned long capacity;
unsigned int lba;
unsigned int pba;
unsigned int page;
unsigned short pages;
struct sddr09_card_info *info = (struct sddr09_card_info *)(us->extra);
if (!us->extra) { info = (struct sddr09_card_info *)us->extra;
us->extra = kmalloc( if (!info) {
sizeof(struct sddr09_card_info), GFP_NOIO); nand_init_ecc();
if (!us->extra) sddr09_init_card_info(us);
info = (struct sddr09_card_info *)us->extra;
if (!info)
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
memset(us->extra, 0, sizeof(struct sddr09_card_info));
us->extra_destructor = sddr09_card_info_destructor;
} }
ptr = (unsigned char *)srb->request_buffer; ptr = (unsigned char *)srb->request_buffer;
if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
/* for a faked command, we have to follow with a faked sense */
memset(ptr, 0, srb->request_bufflen);
if (srb->request_bufflen > 7) {
ptr[0] = 0x70;
ptr[2] = sensekey;
ptr[7] = srb->request_bufflen - 7;
}
if (srb->request_bufflen > 12)
ptr[12] = sensecode;
sensekey = sensecode = havefakesense = 0;
return USB_STOR_TRANSPORT_GOOD;
}
havefakesense = 1;
/* Dummy up a response for INQUIRY since SDDR09 doesn't /* Dummy up a response for INQUIRY since SDDR09 doesn't
respond to INQUIRY commands */ respond to INQUIRY commands */
...@@ -864,43 +1645,44 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -864,43 +1645,44 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
} }
if (srb->cmnd[0] == READ_CAPACITY) { if (srb->cmnd[0] == READ_CAPACITY) {
struct nand_flash_dev *cardinfo;
capacity = sddr09_get_capacity(us, &info->pagesize, sddr09_get_wp(us, info); /* read WP bit */
&info->blocksize);
if (!capacity) cardinfo = sddr09_get_cardinfo(us, info->flags);
if (!cardinfo) {
/* probably no media */
sensekey = 0x02; /* not ready */
sensecode = 0x3a; /* medium not present */
return USB_STOR_TRANSPORT_FAILED; return USB_STOR_TRANSPORT_FAILED;
}
info->capacity = capacity; info->capacity = (1 << cardinfo->chipshift);
for (info->pageshift=1; info->pageshift = cardinfo->pageshift;
(info->pagesize>>info->pageshift); info->pagesize = (1 << info->pageshift);
info->pageshift++); info->blockshift = cardinfo->blockshift;
info->pageshift--; info->blocksize = (1 << info->blockshift);
for (info->blockshift=1; info->blockmask = info->blocksize - 1;
(info->blocksize>>info->blockshift);
info->blockshift++); // map initialization, must follow get_cardinfo()
info->blockshift--; sddr09_read_map(us);
info->blockmask = (1<<info->blockshift)-1;
// Last page in the card // Report capacity
capacity /= info->pagesize; capacity = (info->lbact << info->blockshift) - 1;
capacity--;
ptr[0] = MSB_of(capacity>>16); ptr[0] = MSB_of(capacity>>16);
ptr[1] = LSB_of(capacity>>16); ptr[1] = LSB_of(capacity>>16);
ptr[2] = MSB_of(capacity&0xFFFF); ptr[2] = MSB_of(capacity&0xFFFF);
ptr[3] = LSB_of(capacity&0xFFFF); ptr[3] = LSB_of(capacity&0xFFFF);
// The page size // Report page size
ptr[4] = MSB_of(info->pagesize>>16); ptr[4] = MSB_of(info->pagesize>>16);
ptr[5] = LSB_of(info->pagesize>>16); ptr[5] = LSB_of(info->pagesize>>16);
ptr[6] = MSB_of(info->pagesize&0xFFFF); ptr[6] = MSB_of(info->pagesize&0xFFFF);
ptr[7] = LSB_of(info->pagesize&0xFFFF); ptr[7] = LSB_of(info->pagesize&0xFFFF);
sddr09_read_map(us);
return USB_STOR_TRANSPORT_GOOD; return USB_STOR_TRANSPORT_GOOD;
} }
...@@ -914,19 +1696,21 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -914,19 +1696,21 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
US_DEBUGP( US_DEBUGP(
"SDDR09: Dummy up request for mode page 1\n"); "SDDR09: Dummy up request for mode page 1\n");
if (ptr==NULL || if (ptr == NULL ||
srb->request_bufflen<sizeof(mode_page_01)) srb->request_bufflen<sizeof(mode_page_01))
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
mode_page_01[0] = sizeof(mode_page_01) - 1;
mode_page_01[2] = (info->flags & SDDR09_WP) ? 0x80 : 0;
memcpy(ptr, mode_page_01, sizeof(mode_page_01)); memcpy(ptr, mode_page_01, sizeof(mode_page_01));
return USB_STOR_TRANSPORT_GOOD; return USB_STOR_TRANSPORT_GOOD;
} else if ( (srb->cmnd[2] & 0x3F) == 0x3F ) { } else if ( (srb->cmnd[2] & 0x3F) == 0x3F ) {
US_DEBUGP( US_DEBUGP("SDDR09: Dummy up request for "
"SDDR09: Dummy up request for all mode pages\n"); "all mode pages\n");
if (ptr==NULL || if (ptr == NULL ||
srb->request_bufflen<sizeof(mode_page_01)) srb->request_bufflen<sizeof(mode_page_01))
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
...@@ -935,8 +1719,6 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -935,8 +1719,6 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
} }
// FIXME: sense buffer?
return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_ERROR;
} }
...@@ -951,6 +1733,8 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -951,6 +1733,8 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
} }
havefakesense = 0;
if (srb->cmnd[0] == READ_10) { if (srb->cmnd[0] == READ_10) {
page = short_pack(srb->cmnd[3], srb->cmnd[2]); page = short_pack(srb->cmnd[3], srb->cmnd[2]);
...@@ -958,61 +1742,37 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -958,61 +1742,37 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
page |= short_pack(srb->cmnd[5], srb->cmnd[4]); page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
pages = short_pack(srb->cmnd[8], srb->cmnd[7]); pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
// convert page to block and page-within-block US_DEBUGP("READ_10: read page %d pagect %d\n",
page, pages);
lba = page >> info->blockshift;
page = page & info->blockmask;
// locate physical block corresponding to logical block
if (lba >=
(info->capacity >>
(info->pageshift + info->blockshift) ) ) {
US_DEBUGP("Error: Requested LBA %04X exceeds maximum " return sddr09_read_data(us, page, pages, ptr, srb->use_sg);
"block %04lX\n", lba,
(info->capacity >> (info->pageshift + info->blockshift))-1);
// FIXME: sense buffer?
return USB_STOR_TRANSPORT_ERROR;
} }
pba = info->lba_to_pba[lba]; if (srb->cmnd[0] == WRITE_10) {
// if pba is 0, either it's really 0, in which case
// the pba-to-lba map for pba 0 will be the lba,
// or that lba doesn't exist.
if (pba==0 && info->pba_to_lba[0] != lba) {
// FIXME: sense buffer?
US_DEBUGP("Error: Requested LBA %04X has no physical block "
"mapping.\n", lba);
return USB_STOR_TRANSPORT_ERROR; page = short_pack(srb->cmnd[3], srb->cmnd[2]);
} page <<= 16;
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
US_DEBUGP("READ_10: read block %04X (LBA %04X) page %01X" US_DEBUGP("WRITE_10: write page %d pagect %d\n",
" pages %d\n", page, pages);
pba, lba, page, pages);
return sddr09_read_data(us, return sddr09_write_data(us, page, pages, ptr, srb->use_sg);
( (pba << info->blockshift) + page) << info->pageshift,
pages, ptr, srb->use_sg);
} }
// Pass TEST_UNIT_READY and REQUEST_SENSE through // Pass TEST_UNIT_READY and REQUEST_SENSE through
if (srb->cmnd[0] != TEST_UNIT_READY && if (srb->cmnd[0] != TEST_UNIT_READY &&
srb->cmnd[0] != REQUEST_SENSE) srb->cmnd[0] != REQUEST_SENSE) {
return USB_STOR_TRANSPORT_ERROR; // FIXME: sense buffer? havefakesense = 1;
return USB_STOR_TRANSPORT_ERROR;
}
for (; srb->cmd_len<12; srb->cmd_len++) for (; srb->cmd_len<12; srb->cmd_len++)
srb->cmnd[srb->cmd_len] = 0; srb->cmnd[srb->cmd_len] = 0;
srb->cmnd[1] = 0x20; srb->cmnd[1] = LUNBITS;
string[0] = 0; string[0] = 0;
for (i=0; i<12; i++) for (i=0; i<12; i++)
...@@ -1021,17 +1781,12 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -1021,17 +1781,12 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
US_DEBUGP("SDDR09: Send control for command %s\n", US_DEBUGP("SDDR09: Send control for command %s\n",
string); string);
if ( (result = sddr09_send_control(us, result = sddr09_send_scsi_command(us, srb->cmnd, 12);
usb_sndctrlpipe(us->pusb_dev,0), if (result != USB_STOR_TRANSPORT_GOOD) {
0, US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
0x41, "returns %d\n", result);
0,
0,
srb->cmnd,
12)) != USB_STOR_TRANSPORT_GOOD)
return result; return result;
}
US_DEBUGP("SDDR09: Control for command OK\n");
if (srb->request_bufflen == 0) if (srb->request_bufflen == 0)
return USB_STOR_TRANSPORT_GOOD; return USB_STOR_TRANSPORT_GOOD;
...@@ -1040,17 +1795,17 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us) ...@@ -1040,17 +1795,17 @@ int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
srb->sc_data_direction == SCSI_DATA_READ) { srb->sc_data_direction == SCSI_DATA_READ) {
US_DEBUGP("SDDR09: %s %d bytes\n", US_DEBUGP("SDDR09: %s %d bytes\n",
srb->sc_data_direction==SCSI_DATA_WRITE ? (srb->sc_data_direction == SCSI_DATA_WRITE) ?
"sending" : "receiving", "sending" : "receiving",
srb->request_bufflen); srb->request_bufflen);
result = sddr09_bulk_transport(us, result = sddr09_bulk_transport(us,
srb->sc_data_direction, srb->sc_data_direction,
srb->request_buffer, srb->request_buffer,
srb->request_bufflen, srb->use_sg); srb->request_bufflen,
srb->use_sg);
return result; return result;
} }
return USB_STOR_TRANSPORT_GOOD; return USB_STOR_TRANSPORT_GOOD;
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* *
* Current development and maintenance by: * Current development and maintenance by:
* (c) 2000 Robert Baruch (autophile@dol.net) * (c) 2000 Robert Baruch (autophile@dol.net)
* (c) 2002 Andries Brouwer (aeb@cwi.nl)
* *
* See sddr09.c for more explanation * See sddr09.c for more explanation
* *
...@@ -39,6 +40,9 @@ struct sddr09_card_info { ...@@ -39,6 +40,9 @@ struct sddr09_card_info {
int blockmask; /* 2^blockshift - 1 */ int blockmask; /* 2^blockshift - 1 */
int *lba_to_pba; /* logical to physical map */ int *lba_to_pba; /* logical to physical map */
int *pba_to_lba; /* physical to logical map */ int *pba_to_lba; /* physical to logical map */
int lbact; /* number of available pages */
int flags;
#define SDDR09_WP 1 /* write protected */
}; };
#endif #endif
...@@ -130,14 +130,14 @@ UNUSUAL_DEV( 0x04e6, 0x0003, 0x0000, 0x9999, ...@@ -130,14 +130,14 @@ UNUSUAL_DEV( 0x04e6, 0x0003, 0x0000, 0x9999,
"ImageMate SDDR09", "ImageMate SDDR09",
US_SC_SCSI, US_PR_EUSB_SDDR09, NULL, US_SC_SCSI, US_PR_EUSB_SDDR09, NULL,
US_FL_SINGLE_LUN | US_FL_START_STOP ), US_FL_SINGLE_LUN | US_FL_START_STOP ),
#endif
/* This entry is from Andries.Brouwer@cwi.nl */ /* This entry is from Andries.Brouwer@cwi.nl */
UNUSUAL_DEV( 0x04e6, 0x0005, 0x0100, 0x0208, UNUSUAL_DEV( 0x04e6, 0x0005, 0x0100, 0x0208,
"SCM Microsystems", "SCM Microsystems",
"eUSB SmartMedia / CompactFlash Adapter", "eUSB SmartMedia / CompactFlash Adapter",
US_SC_SCSI, US_PR_DPCM_USB, NULL, US_SC_SCSI, US_PR_DPCM_USB, sddr09_init,
US_FL_START_STOP), US_FL_START_STOP),
#endif
UNUSUAL_DEV( 0x04e6, 0x0006, 0x0100, 0x0205, UNUSUAL_DEV( 0x04e6, 0x0006, 0x0100, 0x0205,
"Shuttle", "Shuttle",
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment