Commit 4c72c53b authored by David S. Miller's avatar David S. Miller

Merge tag 'linux-can-next-for-3.20-20150128' of...

Merge tag 'linux-can-next-for-3.20-20150128' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2015-28-01

this is a pull request of 12 patches for net-next/master.

There are 3 patches by Ahmed S. Darwish, which update the kvaser_usb
driver and add support for the USBcan-II based adapters. Stéphane
Grosjean contributes 7 patches for the peak_usb driver, which add
support for the CANFD USB adapters. I contribute 2 patches which clean
up the peak_usb driver structure a bit.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 4b222ca6 0a25e1f4
......@@ -25,7 +25,7 @@ config CAN_KVASER_USB
tristate "Kvaser CAN/USB interface"
---help---
This driver adds support for Kvaser CAN/USB devices like Kvaser
Leaf Light.
Leaf Light and Kvaser USBcan II.
The driver provides support for the following devices:
- Kvaser Leaf Light
......@@ -46,6 +46,12 @@ config CAN_KVASER_USB
- Kvaser USBcan R
- Kvaser Leaf Light v2
- Kvaser Mini PCI Express HS
- Kvaser USBcan II HS/HS
- Kvaser USBcan II HS/LS
- Kvaser USBcan Rugged ("USBcan Rev B")
- Kvaser Memorator HS/HS
- Kvaser Memorator HS/LS
- Scania VCI2 (if you have the Kvaser logo on top)
If unsure, say N.
......@@ -53,10 +59,18 @@ config CAN_KVASER_USB
module will be called kvaser_usb.
config CAN_PEAK_USB
tristate "PEAK PCAN-USB/USB Pro interfaces"
tristate "PEAK PCAN-USB/USB Pro interfaces for CAN 2.0b/CAN-FD"
---help---
This driver supports the PCAN-USB and PCAN-USB Pro adapters
from PEAK-System Technik (http://www.peak-system.com).
This driver supports the PEAK-System Technik USB adapters that enable
access to the CAN bus, with repect to the CAN 2.0b and/or CAN-FD
standards, that is:
PCAN-USB single CAN 2.0b channel USB adapter
PCAN-USB Pro dual CAN 2.0b channels USB adapter
PCAN-USB FD single CAN-FD channel USB adapter
PCAN-USB Pro FD dual CAN-FD channels USB adapter
(see also http://www.peak-system.com).
config CAN_8DEV_USB
tristate "8 devices USB2CAN interface"
......
......@@ -6,10 +6,12 @@
* Parts of this driver are based on the following:
* - Kvaser linux leaf driver (version 4.78)
* - CAN driver for esd CAN-USB/2
* - Kvaser linux usbcanII driver (version 5.3)
*
* Copyright (C) 2002-2006 KVASER AB, Sweden. All rights reserved.
* Copyright (C) 2010 Matthias Fuchs <matthias.fuchs@esd.eu>, esd gmbh
* Copyright (C) 2012 Olivier Sobrie <olivier@sobrie.be>
* Copyright (C) 2015 Valeo A.S.
*/
#include <linux/completion.h>
......@@ -30,8 +32,9 @@
#define RX_BUFFER_SIZE 3072
#define CAN_USB_CLOCK 8000000
#define MAX_NET_DEVICES 3
#define MAX_USBCAN_NET_DEVICES 2
/* Kvaser USB devices */
/* Kvaser Leaf USB devices */
#define KVASER_VENDOR_ID 0x0bfd
#define USB_LEAF_DEVEL_PRODUCT_ID 10
#define USB_LEAF_LITE_PRODUCT_ID 11
......@@ -56,6 +59,24 @@
#define USB_LEAF_LITE_V2_PRODUCT_ID 288
#define USB_MINI_PCIE_HS_PRODUCT_ID 289
static inline bool kvaser_is_leaf(const struct usb_device_id *id)
{
return id->idProduct >= USB_LEAF_DEVEL_PRODUCT_ID &&
id->idProduct <= USB_MINI_PCIE_HS_PRODUCT_ID;
}
/* Kvaser USBCan-II devices */
#define USB_USBCAN_REVB_PRODUCT_ID 2
#define USB_VCI2_PRODUCT_ID 3
#define USB_USBCAN2_PRODUCT_ID 4
#define USB_MEMORATOR_PRODUCT_ID 5
static inline bool kvaser_is_usbcan(const struct usb_device_id *id)
{
return id->idProduct >= USB_USBCAN_REVB_PRODUCT_ID &&
id->idProduct <= USB_MEMORATOR_PRODUCT_ID;
}
/* USB devices features */
#define KVASER_HAS_SILENT_MODE BIT(0)
#define KVASER_HAS_TXRX_ERRORS BIT(1)
......@@ -73,7 +94,7 @@
#define MSG_FLAG_TX_ACK BIT(6)
#define MSG_FLAG_TX_REQUEST BIT(7)
/* Can states */
/* Can states (M16C CxSTRH register) */
#define M16C_STATE_BUS_RESET BIT(0)
#define M16C_STATE_BUS_ERROR BIT(4)
#define M16C_STATE_BUS_PASSIVE BIT(5)
......@@ -98,7 +119,11 @@
#define CMD_START_CHIP_REPLY 27
#define CMD_STOP_CHIP 28
#define CMD_STOP_CHIP_REPLY 29
#define CMD_GET_CARD_INFO2 32
#define CMD_LEAF_GET_CARD_INFO2 32
#define CMD_USBCAN_RESET_CLOCK 32
#define CMD_USBCAN_CLOCK_OVERFLOW_EVENT 33
#define CMD_GET_CARD_INFO 34
#define CMD_GET_CARD_INFO_REPLY 35
#define CMD_GET_SOFTWARE_INFO 38
......@@ -108,8 +133,9 @@
#define CMD_RESET_ERROR_COUNTER 49
#define CMD_TX_ACKNOWLEDGE 50
#define CMD_CAN_ERROR_EVENT 51
#define CMD_USB_THROTTLE 77
#define CMD_LOG_MESSAGE 106
#define CMD_LEAF_USB_THROTTLE 77
#define CMD_LEAF_LOG_MESSAGE 106
/* error factors */
#define M16C_EF_ACKE BIT(0)
......@@ -121,6 +147,14 @@
#define M16C_EF_RCVE BIT(6)
#define M16C_EF_TRE BIT(7)
/* Only Leaf-based devices can report M16C error factors,
* thus define our own error status flags for USBCANII
*/
#define USBCAN_ERROR_STATE_NONE 0
#define USBCAN_ERROR_STATE_TX_ERROR BIT(0)
#define USBCAN_ERROR_STATE_RX_ERROR BIT(1)
#define USBCAN_ERROR_STATE_BUSERROR BIT(2)
/* bittiming parameters */
#define KVASER_USB_TSEG1_MIN 1
#define KVASER_USB_TSEG1_MAX 16
......@@ -137,9 +171,18 @@
#define KVASER_CTRL_MODE_SELFRECEPTION 3
#define KVASER_CTRL_MODE_OFF 4
/* log message */
/* Extended CAN identifier flag */
#define KVASER_EXTENDED_FRAME BIT(31)
/* Kvaser USB CAN dongles are divided into two major families:
* - Leaf: Based on Renesas M32C, running firmware labeled as 'filo'
* - UsbcanII: Based on Renesas M16C, running firmware labeled as 'helios'
*/
enum kvaser_usb_family {
KVASER_LEAF,
KVASER_USBCAN,
};
struct kvaser_msg_simple {
u8 tid;
u8 channel;
......@@ -148,30 +191,55 @@ struct kvaser_msg_simple {
struct kvaser_msg_cardinfo {
u8 tid;
u8 nchannels;
union {
struct {
__le32 serial_number;
__le32 padding;
} __packed leaf0;
struct {
__le32 serial_number_low;
__le32 serial_number_high;
} __packed usbcan0;
} __packed;
__le32 clock_resolution;
__le32 mfgdate;
u8 ean[8];
u8 hw_revision;
union {
struct {
u8 usb_hs_mode;
__le16 padding2;
} __packed leaf1;
struct {
u8 padding;
} __packed usbcan1;
} __packed;
__le16 padding;
} __packed;
struct kvaser_msg_cardinfo2 {
u8 tid;
u8 channel;
u8 reserved;
u8 pcb_id[24];
__le32 oem_unlock_code;
} __packed;
struct kvaser_msg_softinfo {
struct leaf_msg_softinfo {
u8 tid;
u8 channel;
u8 padding0;
__le32 sw_options;
__le32 fw_version;
__le16 max_outstanding_tx;
__le16 padding[9];
__le16 padding1[9];
} __packed;
struct usbcan_msg_softinfo {
u8 tid;
u8 fw_name[5];
__le16 max_outstanding_tx;
u8 padding[6];
__le32 fw_version;
__le16 checksum;
__le16 sw_options;
} __packed;
struct kvaser_msg_busparams {
......@@ -188,36 +256,86 @@ struct kvaser_msg_tx_can {
u8 channel;
u8 tid;
u8 msg[14];
union {
struct {
u8 padding;
u8 flags;
} __packed leaf;
struct {
u8 flags;
u8 padding;
} __packed usbcan;
} __packed;
} __packed;
struct kvaser_msg_rx_can_header {
u8 channel;
u8 flag;
} __packed;
struct kvaser_msg_rx_can {
struct leaf_msg_rx_can {
u8 channel;
u8 flag;
__le16 time[3];
u8 msg[14];
} __packed;
struct kvaser_msg_chip_state_event {
struct usbcan_msg_rx_can {
u8 channel;
u8 flag;
u8 msg[14];
__le16 time;
} __packed;
struct leaf_msg_chip_state_event {
u8 tid;
u8 channel;
__le16 time[3];
u8 tx_errors_count;
u8 rx_errors_count;
u8 status;
u8 padding[3];
} __packed;
struct kvaser_msg_tx_acknowledge {
struct usbcan_msg_chip_state_event {
u8 tid;
u8 channel;
u8 tx_errors_count;
u8 rx_errors_count;
__le16 time;
u8 status;
u8 padding[3];
} __packed;
struct kvaser_msg_tx_acknowledge_header {
u8 channel;
u8 tid;
} __packed;
struct leaf_msg_tx_acknowledge {
u8 channel;
u8 tid;
__le16 time[3];
u8 flags;
u8 time_offset;
} __packed;
struct kvaser_msg_error_event {
struct usbcan_msg_tx_acknowledge {
u8 channel;
u8 tid;
__le16 time;
__le16 padding;
} __packed;
struct leaf_msg_error_event {
u8 tid;
u8 flags;
__le16 time[3];
......@@ -229,6 +347,18 @@ struct kvaser_msg_error_event {
u8 error_factor;
} __packed;
struct usbcan_msg_error_event {
u8 tid;
u8 padding;
u8 tx_errors_count_ch0;
u8 rx_errors_count_ch0;
u8 tx_errors_count_ch1;
u8 rx_errors_count_ch1;
u8 status_ch0;
u8 status_ch1;
__le16 time;
} __packed;
struct kvaser_msg_ctrl_mode {
u8 tid;
u8 channel;
......@@ -243,7 +373,7 @@ struct kvaser_msg_flush_queue {
u8 padding[3];
} __packed;
struct kvaser_msg_log_message {
struct leaf_msg_log_message {
u8 channel;
u8 flags;
__le16 time[3];
......@@ -260,19 +390,57 @@ struct kvaser_msg {
struct kvaser_msg_simple simple;
struct kvaser_msg_cardinfo cardinfo;
struct kvaser_msg_cardinfo2 cardinfo2;
struct kvaser_msg_softinfo softinfo;
struct kvaser_msg_busparams busparams;
struct kvaser_msg_rx_can_header rx_can_header;
struct kvaser_msg_tx_acknowledge_header tx_acknowledge_header;
union {
struct leaf_msg_softinfo softinfo;
struct leaf_msg_rx_can rx_can;
struct leaf_msg_chip_state_event chip_state_event;
struct leaf_msg_tx_acknowledge tx_acknowledge;
struct leaf_msg_error_event error_event;
struct leaf_msg_log_message log_message;
} __packed leaf;
union {
struct usbcan_msg_softinfo softinfo;
struct usbcan_msg_rx_can rx_can;
struct usbcan_msg_chip_state_event chip_state_event;
struct usbcan_msg_tx_acknowledge tx_acknowledge;
struct usbcan_msg_error_event error_event;
} __packed usbcan;
struct kvaser_msg_tx_can tx_can;
struct kvaser_msg_rx_can rx_can;
struct kvaser_msg_chip_state_event chip_state_event;
struct kvaser_msg_tx_acknowledge tx_acknowledge;
struct kvaser_msg_error_event error_event;
struct kvaser_msg_ctrl_mode ctrl_mode;
struct kvaser_msg_flush_queue flush_queue;
struct kvaser_msg_log_message log_message;
} u;
} __packed;
/* Summary of a kvaser error event, for a unified Leaf/Usbcan error
* handling. Some discrepancies between the two families exist:
*
* - USBCAN firmware does not report M16C "error factors"
* - USBCAN controllers has difficulties reporting if the raised error
* event is for ch0 or ch1. They leave such arbitration to the OS
* driver by letting it compare error counters with previous values
* and decide the error event's channel. Thus for USBCAN, the channel
* field is only advisory.
*/
struct kvaser_usb_error_summary {
u8 channel, status, txerr, rxerr;
union {
struct {
u8 error_factor;
} leaf;
struct {
u8 other_ch_status;
u8 error_state;
} usbcan;
};
};
struct kvaser_usb_tx_urb_context {
struct kvaser_usb_net_priv *priv;
u32 echo_index;
......@@ -288,6 +456,7 @@ struct kvaser_usb {
u32 fw_version;
unsigned int nchannels;
enum kvaser_usb_family family;
bool rxinitdone;
void *rxbuf[MAX_RX_URBS];
......@@ -311,6 +480,7 @@ struct kvaser_usb_net_priv {
};
static const struct usb_device_id kvaser_usb_table[] = {
/* Leaf family IDs */
{ USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_DEVEL_PRODUCT_ID) },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_PRODUCT_ID) },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_PRO_PRODUCT_ID),
......@@ -360,6 +530,17 @@ static const struct usb_device_id kvaser_usb_table[] = {
.driver_info = KVASER_HAS_TXRX_ERRORS },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_LEAF_LITE_V2_PRODUCT_ID) },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_MINI_PCIE_HS_PRODUCT_ID) },
/* USBCANII family IDs */
{ USB_DEVICE(KVASER_VENDOR_ID, USB_USBCAN2_PRODUCT_ID),
.driver_info = KVASER_HAS_TXRX_ERRORS },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_USBCAN_REVB_PRODUCT_ID),
.driver_info = KVASER_HAS_TXRX_ERRORS },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_MEMORATOR_PRODUCT_ID),
.driver_info = KVASER_HAS_TXRX_ERRORS },
{ USB_DEVICE(KVASER_VENDOR_ID, USB_VCI2_PRODUCT_ID),
.driver_info = KVASER_HAS_TXRX_ERRORS },
{ }
};
MODULE_DEVICE_TABLE(usb, kvaser_usb_table);
......@@ -463,7 +644,14 @@ static int kvaser_usb_get_software_info(struct kvaser_usb *dev)
if (err)
return err;
dev->fw_version = le32_to_cpu(msg.u.softinfo.fw_version);
switch (dev->family) {
case KVASER_LEAF:
dev->fw_version = le32_to_cpu(msg.u.leaf.softinfo.fw_version);
break;
case KVASER_USBCAN:
dev->fw_version = le32_to_cpu(msg.u.usbcan.softinfo.fw_version);
break;
}
return 0;
}
......@@ -482,7 +670,9 @@ static int kvaser_usb_get_card_info(struct kvaser_usb *dev)
return err;
dev->nchannels = msg.u.cardinfo.nchannels;
if (dev->nchannels > MAX_NET_DEVICES)
if ((dev->nchannels > MAX_NET_DEVICES) ||
(dev->family == KVASER_USBCAN &&
dev->nchannels > MAX_USBCAN_NET_DEVICES))
return -EINVAL;
return 0;
......@@ -496,8 +686,10 @@ static void kvaser_usb_tx_acknowledge(const struct kvaser_usb *dev,
struct kvaser_usb_net_priv *priv;
struct sk_buff *skb;
struct can_frame *cf;
u8 channel = msg->u.tx_acknowledge.channel;
u8 tid = msg->u.tx_acknowledge.tid;
u8 channel, tid;
channel = msg->u.tx_acknowledge_header.channel;
tid = msg->u.tx_acknowledge_header.tid;
if (channel >= dev->nchannels) {
dev_err(dev->udev->dev.parent,
......@@ -615,160 +807,281 @@ static void kvaser_usb_unlink_tx_urbs(struct kvaser_usb_net_priv *priv)
priv->tx_contexts[i].echo_index = MAX_TX_URBS;
}
static void kvaser_usb_rx_error(const struct kvaser_usb *dev,
const struct kvaser_msg *msg)
static void kvaser_usb_rx_error_update_can_state(struct kvaser_usb_net_priv *priv,
const struct kvaser_usb_error_summary *es,
struct can_frame *cf)
{
struct can_frame *cf;
struct sk_buff *skb;
struct net_device_stats *stats;
struct kvaser_usb_net_priv *priv;
unsigned int new_state;
u8 channel, status, txerr, rxerr, error_factor;
struct kvaser_usb *dev = priv->dev;
struct net_device_stats *stats = &priv->netdev->stats;
enum can_state cur_state, new_state, tx_state, rx_state;
switch (msg->id) {
case CMD_CAN_ERROR_EVENT:
channel = msg->u.error_event.channel;
status = msg->u.error_event.status;
txerr = msg->u.error_event.tx_errors_count;
rxerr = msg->u.error_event.rx_errors_count;
error_factor = msg->u.error_event.error_factor;
break;
case CMD_LOG_MESSAGE:
channel = msg->u.log_message.channel;
status = msg->u.log_message.data[0];
txerr = msg->u.log_message.data[2];
rxerr = msg->u.log_message.data[3];
error_factor = msg->u.log_message.data[1];
netdev_dbg(priv->netdev, "Error status: 0x%02x\n", es->status);
new_state = cur_state = priv->can.state;
if (es->status & (M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET))
new_state = CAN_STATE_BUS_OFF;
else if (es->status & M16C_STATE_BUS_PASSIVE)
new_state = CAN_STATE_ERROR_PASSIVE;
else if (es->status & M16C_STATE_BUS_ERROR) {
if ((es->txerr >= 256) || (es->rxerr >= 256))
new_state = CAN_STATE_BUS_OFF;
else if ((es->txerr >= 128) || (es->rxerr >= 128))
new_state = CAN_STATE_ERROR_PASSIVE;
else if ((es->txerr >= 96) || (es->rxerr >= 96))
new_state = CAN_STATE_ERROR_WARNING;
else if (cur_state > CAN_STATE_ERROR_ACTIVE)
new_state = CAN_STATE_ERROR_ACTIVE;
}
if (!es->status)
new_state = CAN_STATE_ERROR_ACTIVE;
if (new_state != cur_state) {
tx_state = (es->txerr >= es->rxerr) ? new_state : 0;
rx_state = (es->txerr <= es->rxerr) ? new_state : 0;
can_change_state(priv->netdev, cf, tx_state, rx_state);
}
if (priv->can.restart_ms &&
(cur_state >= CAN_STATE_BUS_OFF) &&
(new_state < CAN_STATE_BUS_OFF)) {
priv->can.can_stats.restarts++;
}
switch (dev->family) {
case KVASER_LEAF:
if (es->leaf.error_factor) {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
}
break;
case CMD_CHIP_STATE_EVENT:
channel = msg->u.chip_state_event.channel;
status = msg->u.chip_state_event.status;
txerr = msg->u.chip_state_event.tx_errors_count;
rxerr = msg->u.chip_state_event.rx_errors_count;
error_factor = 0;
case KVASER_USBCAN:
if (es->usbcan.error_state & USBCAN_ERROR_STATE_TX_ERROR)
stats->tx_errors++;
if (es->usbcan.error_state & USBCAN_ERROR_STATE_RX_ERROR)
stats->rx_errors++;
if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR) {
priv->can.can_stats.bus_error++;
}
break;
default:
dev_err(dev->udev->dev.parent, "Invalid msg id (%d)\n",
msg->id);
return;
}
if (channel >= dev->nchannels) {
priv->bec.txerr = es->txerr;
priv->bec.rxerr = es->rxerr;
}
static void kvaser_usb_rx_error(const struct kvaser_usb *dev,
const struct kvaser_usb_error_summary *es)
{
struct can_frame *cf, tmp_cf = { .can_id = CAN_ERR_FLAG, .can_dlc = CAN_ERR_DLC };
struct sk_buff *skb;
struct net_device_stats *stats;
struct kvaser_usb_net_priv *priv;
enum can_state old_state, new_state;
if (es->channel >= dev->nchannels) {
dev_err(dev->udev->dev.parent,
"Invalid channel number (%d)\n", channel);
"Invalid channel number (%d)\n", es->channel);
return;
}
priv = dev->nets[channel];
priv = dev->nets[es->channel];
stats = &priv->netdev->stats;
/* Update all of the can interface's state and error counters before
* trying any memory allocation that can actually fail with -ENOMEM.
*
* We send a temporary stack-allocated error can frame to
* can_change_state() for the very same reason.
*
* TODO: Split can_change_state() responsibility between updating the
* can interface's state and counters, and the setting up of can error
* frame ID and data to userspace. Remove stack allocation afterwards.
*/
old_state = priv->can.state;
kvaser_usb_rx_error_update_can_state(priv, es, &tmp_cf);
new_state = priv->can.state;
skb = alloc_can_err_skb(priv->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
memcpy(cf, &tmp_cf, sizeof(*cf));
new_state = priv->can.state;
netdev_dbg(priv->netdev, "Error status: 0x%02x\n", status);
if (status & (M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) {
cf->can_id |= CAN_ERR_BUSOFF;
priv->can.can_stats.bus_off++;
if (new_state != old_state) {
if (es->status &
(M16C_STATE_BUS_OFF | M16C_STATE_BUS_RESET)) {
if (!priv->can.restart_ms)
kvaser_usb_simple_msg_async(priv, CMD_STOP_CHIP);
netif_carrier_off(priv->netdev);
new_state = CAN_STATE_BUS_OFF;
} else if (status & M16C_STATE_BUS_PASSIVE) {
if (priv->can.state != CAN_STATE_ERROR_PASSIVE) {
cf->can_id |= CAN_ERR_CRTL;
if (txerr || rxerr)
cf->data[1] = (txerr > rxerr)
? CAN_ERR_CRTL_TX_PASSIVE
: CAN_ERR_CRTL_RX_PASSIVE;
else
cf->data[1] = CAN_ERR_CRTL_TX_PASSIVE |
CAN_ERR_CRTL_RX_PASSIVE;
priv->can.can_stats.error_passive++;
}
new_state = CAN_STATE_ERROR_PASSIVE;
} else if (status & M16C_STATE_BUS_ERROR) {
if ((priv->can.state < CAN_STATE_ERROR_WARNING) &&
((txerr >= 96) || (rxerr >= 96))) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = (txerr > rxerr)
? CAN_ERR_CRTL_TX_WARNING
: CAN_ERR_CRTL_RX_WARNING;
priv->can.can_stats.error_warning++;
new_state = CAN_STATE_ERROR_WARNING;
} else if ((priv->can.state > CAN_STATE_ERROR_ACTIVE) &&
((txerr < 96) && (rxerr < 96))) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_ACTIVE;
new_state = CAN_STATE_ERROR_ACTIVE;
}
}
if (!status) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_ACTIVE;
new_state = CAN_STATE_ERROR_ACTIVE;
}
if (priv->can.restart_ms &&
(priv->can.state >= CAN_STATE_BUS_OFF) &&
(old_state >= CAN_STATE_BUS_OFF) &&
(new_state < CAN_STATE_BUS_OFF)) {
cf->can_id |= CAN_ERR_RESTARTED;
netif_carrier_on(priv->netdev);
priv->can.can_stats.restarts++;
}
}
if (error_factor) {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
switch (dev->family) {
case KVASER_LEAF:
if (es->leaf.error_factor) {
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
if (error_factor & M16C_EF_ACKE)
if (es->leaf.error_factor & M16C_EF_ACKE)
cf->data[3] |= (CAN_ERR_PROT_LOC_ACK);
if (error_factor & M16C_EF_CRCE)
if (es->leaf.error_factor & M16C_EF_CRCE)
cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
CAN_ERR_PROT_LOC_CRC_DEL);
if (error_factor & M16C_EF_FORME)
if (es->leaf.error_factor & M16C_EF_FORME)
cf->data[2] |= CAN_ERR_PROT_FORM;
if (error_factor & M16C_EF_STFE)
if (es->leaf.error_factor & M16C_EF_STFE)
cf->data[2] |= CAN_ERR_PROT_STUFF;
if (error_factor & M16C_EF_BITE0)
if (es->leaf.error_factor & M16C_EF_BITE0)
cf->data[2] |= CAN_ERR_PROT_BIT0;
if (error_factor & M16C_EF_BITE1)
if (es->leaf.error_factor & M16C_EF_BITE1)
cf->data[2] |= CAN_ERR_PROT_BIT1;
if (error_factor & M16C_EF_TRE)
if (es->leaf.error_factor & M16C_EF_TRE)
cf->data[2] |= CAN_ERR_PROT_TX;
}
break;
case KVASER_USBCAN:
if (es->usbcan.error_state & USBCAN_ERROR_STATE_BUSERROR) {
cf->can_id |= CAN_ERR_BUSERROR;
}
break;
}
cf->data[6] = txerr;
cf->data[7] = rxerr;
priv->bec.txerr = txerr;
priv->bec.rxerr = rxerr;
priv->can.state = new_state;
cf->data[6] = es->txerr;
cf->data[7] = es->rxerr;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
/* For USBCAN, report error to userspace iff the channels's errors counter
* has changed, or we're the only channel seeing a bus error state.
*/
static void kvaser_usbcan_conditionally_rx_error(const struct kvaser_usb *dev,
struct kvaser_usb_error_summary *es)
{
struct kvaser_usb_net_priv *priv;
int channel;
bool report_error;
channel = es->channel;
if (channel >= dev->nchannels) {
dev_err(dev->udev->dev.parent,
"Invalid channel number (%d)\n", channel);
return;
}
priv = dev->nets[channel];
report_error = false;
if (es->txerr != priv->bec.txerr) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_TX_ERROR;
report_error = true;
}
if (es->rxerr != priv->bec.rxerr) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_RX_ERROR;
report_error = true;
}
if ((es->status & M16C_STATE_BUS_ERROR) &&
!(es->usbcan.other_ch_status & M16C_STATE_BUS_ERROR)) {
es->usbcan.error_state |= USBCAN_ERROR_STATE_BUSERROR;
report_error = true;
}
if (report_error)
kvaser_usb_rx_error(dev, es);
}
static void kvaser_usbcan_rx_error(const struct kvaser_usb *dev,
const struct kvaser_msg *msg)
{
struct kvaser_usb_error_summary es = { };
switch (msg->id) {
/* Sometimes errors are sent as unsolicited chip state events */
case CMD_CHIP_STATE_EVENT:
es.channel = msg->u.usbcan.chip_state_event.channel;
es.status = msg->u.usbcan.chip_state_event.status;
es.txerr = msg->u.usbcan.chip_state_event.tx_errors_count;
es.rxerr = msg->u.usbcan.chip_state_event.rx_errors_count;
kvaser_usbcan_conditionally_rx_error(dev, &es);
break;
case CMD_CAN_ERROR_EVENT:
es.channel = 0;
es.status = msg->u.usbcan.error_event.status_ch0;
es.txerr = msg->u.usbcan.error_event.tx_errors_count_ch0;
es.rxerr = msg->u.usbcan.error_event.rx_errors_count_ch0;
es.usbcan.other_ch_status =
msg->u.usbcan.error_event.status_ch1;
kvaser_usbcan_conditionally_rx_error(dev, &es);
/* The USBCAN firmware supports up to 2 channels.
* Now that ch0 was checked, check if ch1 has any errors.
*/
if (dev->nchannels == MAX_USBCAN_NET_DEVICES) {
es.channel = 1;
es.status = msg->u.usbcan.error_event.status_ch1;
es.txerr = msg->u.usbcan.error_event.tx_errors_count_ch1;
es.rxerr = msg->u.usbcan.error_event.rx_errors_count_ch1;
es.usbcan.other_ch_status =
msg->u.usbcan.error_event.status_ch0;
kvaser_usbcan_conditionally_rx_error(dev, &es);
}
break;
default:
dev_err(dev->udev->dev.parent, "Invalid msg id (%d)\n",
msg->id);
}
}
static void kvaser_leaf_rx_error(const struct kvaser_usb *dev,
const struct kvaser_msg *msg)
{
struct kvaser_usb_error_summary es = { };
switch (msg->id) {
case CMD_CAN_ERROR_EVENT:
es.channel = msg->u.leaf.error_event.channel;
es.status = msg->u.leaf.error_event.status;
es.txerr = msg->u.leaf.error_event.tx_errors_count;
es.rxerr = msg->u.leaf.error_event.rx_errors_count;
es.leaf.error_factor = msg->u.leaf.error_event.error_factor;
break;
case CMD_LEAF_LOG_MESSAGE:
es.channel = msg->u.leaf.log_message.channel;
es.status = msg->u.leaf.log_message.data[0];
es.txerr = msg->u.leaf.log_message.data[2];
es.rxerr = msg->u.leaf.log_message.data[3];
es.leaf.error_factor = msg->u.leaf.log_message.data[1];
break;
case CMD_CHIP_STATE_EVENT:
es.channel = msg->u.leaf.chip_state_event.channel;
es.status = msg->u.leaf.chip_state_event.status;
es.txerr = msg->u.leaf.chip_state_event.tx_errors_count;
es.rxerr = msg->u.leaf.chip_state_event.rx_errors_count;
es.leaf.error_factor = 0;
break;
default:
dev_err(dev->udev->dev.parent, "Invalid msg id (%d)\n",
msg->id);
return;
}
kvaser_usb_rx_error(dev, &es);
}
static void kvaser_usb_rx_can_err(const struct kvaser_usb_net_priv *priv,
const struct kvaser_msg *msg)
{
......@@ -776,16 +1089,19 @@ static void kvaser_usb_rx_can_err(const struct kvaser_usb_net_priv *priv,
struct sk_buff *skb;
struct net_device_stats *stats = &priv->netdev->stats;
if (msg->u.rx_can.flag & (MSG_FLAG_ERROR_FRAME |
if (msg->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME |
MSG_FLAG_NERR)) {
netdev_err(priv->netdev, "Unknow error (flags: 0x%02x)\n",
msg->u.rx_can.flag);
msg->u.rx_can_header.flag);
stats->rx_errors++;
return;
}
if (msg->u.rx_can.flag & MSG_FLAG_OVERRUN) {
if (msg->u.rx_can_header.flag & MSG_FLAG_OVERRUN) {
stats->rx_over_errors++;
stats->rx_errors++;
skb = alloc_can_err_skb(priv->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
......@@ -795,9 +1111,6 @@ static void kvaser_usb_rx_can_err(const struct kvaser_usb_net_priv *priv,
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
stats->rx_over_errors++;
stats->rx_errors++;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
......@@ -811,7 +1124,8 @@ static void kvaser_usb_rx_can_msg(const struct kvaser_usb *dev,
struct can_frame *cf;
struct sk_buff *skb;
struct net_device_stats *stats;
u8 channel = msg->u.rx_can.channel;
u8 channel = msg->u.rx_can_header.channel;
const u8 *rx_msg = NULL; /* GCC */
if (channel >= dev->nchannels) {
dev_err(dev->udev->dev.parent,
......@@ -822,60 +1136,68 @@ static void kvaser_usb_rx_can_msg(const struct kvaser_usb *dev,
priv = dev->nets[channel];
stats = &priv->netdev->stats;
if ((msg->u.rx_can.flag & MSG_FLAG_ERROR_FRAME) &&
(msg->id == CMD_LOG_MESSAGE)) {
kvaser_usb_rx_error(dev, msg);
if ((msg->u.rx_can_header.flag & MSG_FLAG_ERROR_FRAME) &&
(dev->family == KVASER_LEAF && msg->id == CMD_LEAF_LOG_MESSAGE)) {
kvaser_leaf_rx_error(dev, msg);
return;
} else if (msg->u.rx_can.flag & (MSG_FLAG_ERROR_FRAME |
} else if (msg->u.rx_can_header.flag & (MSG_FLAG_ERROR_FRAME |
MSG_FLAG_NERR |
MSG_FLAG_OVERRUN)) {
kvaser_usb_rx_can_err(priv, msg);
return;
} else if (msg->u.rx_can.flag & ~MSG_FLAG_REMOTE_FRAME) {
} else if (msg->u.rx_can_header.flag & ~MSG_FLAG_REMOTE_FRAME) {
netdev_warn(priv->netdev,
"Unhandled frame (flags: 0x%02x)",
msg->u.rx_can.flag);
msg->u.rx_can_header.flag);
return;
}
switch (dev->family) {
case KVASER_LEAF:
rx_msg = msg->u.leaf.rx_can.msg;
break;
case KVASER_USBCAN:
rx_msg = msg->u.usbcan.rx_can.msg;
break;
}
skb = alloc_can_skb(priv->netdev, &cf);
if (!skb) {
stats->tx_dropped++;
return;
}
if (msg->id == CMD_LOG_MESSAGE) {
cf->can_id = le32_to_cpu(msg->u.log_message.id);
if (dev->family == KVASER_LEAF && msg->id == CMD_LEAF_LOG_MESSAGE) {
cf->can_id = le32_to_cpu(msg->u.leaf.log_message.id);
if (cf->can_id & KVASER_EXTENDED_FRAME)
cf->can_id &= CAN_EFF_MASK | CAN_EFF_FLAG;
else
cf->can_id &= CAN_SFF_MASK;
cf->can_dlc = get_can_dlc(msg->u.log_message.dlc);
cf->can_dlc = get_can_dlc(msg->u.leaf.log_message.dlc);
if (msg->u.log_message.flags & MSG_FLAG_REMOTE_FRAME)
if (msg->u.leaf.log_message.flags & MSG_FLAG_REMOTE_FRAME)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, &msg->u.log_message.data,
memcpy(cf->data, &msg->u.leaf.log_message.data,
cf->can_dlc);
} else {
cf->can_id = ((msg->u.rx_can.msg[0] & 0x1f) << 6) |
(msg->u.rx_can.msg[1] & 0x3f);
cf->can_id = ((rx_msg[0] & 0x1f) << 6) | (rx_msg[1] & 0x3f);
if (msg->id == CMD_RX_EXT_MESSAGE) {
cf->can_id <<= 18;
cf->can_id |= ((msg->u.rx_can.msg[2] & 0x0f) << 14) |
((msg->u.rx_can.msg[3] & 0xff) << 6) |
(msg->u.rx_can.msg[4] & 0x3f);
cf->can_id |= ((rx_msg[2] & 0x0f) << 14) |
((rx_msg[3] & 0xff) << 6) |
(rx_msg[4] & 0x3f);
cf->can_id |= CAN_EFF_FLAG;
}
cf->can_dlc = get_can_dlc(msg->u.rx_can.msg[5]);
cf->can_dlc = get_can_dlc(rx_msg[5]);
if (msg->u.rx_can.flag & MSG_FLAG_REMOTE_FRAME)
if (msg->u.rx_can_header.flag & MSG_FLAG_REMOTE_FRAME)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, &msg->u.rx_can.msg[6],
memcpy(cf->data, &rx_msg[6],
cf->can_dlc);
}
......@@ -938,21 +1260,35 @@ static void kvaser_usb_handle_message(const struct kvaser_usb *dev,
case CMD_RX_STD_MESSAGE:
case CMD_RX_EXT_MESSAGE:
case CMD_LOG_MESSAGE:
kvaser_usb_rx_can_msg(dev, msg);
break;
case CMD_LEAF_LOG_MESSAGE:
if (dev->family != KVASER_LEAF)
goto warn;
kvaser_usb_rx_can_msg(dev, msg);
break;
case CMD_CHIP_STATE_EVENT:
case CMD_CAN_ERROR_EVENT:
kvaser_usb_rx_error(dev, msg);
if (dev->family == KVASER_LEAF)
kvaser_leaf_rx_error(dev, msg);
else
kvaser_usbcan_rx_error(dev, msg);
break;
case CMD_TX_ACKNOWLEDGE:
kvaser_usb_tx_acknowledge(dev, msg);
break;
/* Ignored messages */
case CMD_USBCAN_CLOCK_OVERFLOW_EVENT:
if (dev->family != KVASER_USBCAN)
goto warn;
break;
default:
dev_warn(dev->udev->dev.parent,
warn: dev_warn(dev->udev->dev.parent,
"Unhandled message (%d)\n", msg->id);
break;
}
......@@ -1172,7 +1508,7 @@ static void kvaser_usb_unlink_all_urbs(struct kvaser_usb *dev)
dev->rxbuf[i],
dev->rxbuf_dma[i]);
for (i = 0; i < MAX_NET_DEVICES; i++) {
for (i = 0; i < dev->nchannels; i++) {
struct kvaser_usb_net_priv *priv = dev->nets[i];
if (priv)
......@@ -1280,6 +1616,7 @@ static netdev_tx_t kvaser_usb_start_xmit(struct sk_buff *skb,
struct kvaser_msg *msg;
int i, err;
int ret = NETDEV_TX_OK;
u8 *msg_tx_can_flags = NULL; /* GCC */
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
......@@ -1301,9 +1638,19 @@ static netdev_tx_t kvaser_usb_start_xmit(struct sk_buff *skb,
msg = buf;
msg->len = MSG_HEADER_LEN + sizeof(struct kvaser_msg_tx_can);
msg->u.tx_can.flags = 0;
msg->u.tx_can.channel = priv->channel;
switch (dev->family) {
case KVASER_LEAF:
msg_tx_can_flags = &msg->u.tx_can.leaf.flags;
break;
case KVASER_USBCAN:
msg_tx_can_flags = &msg->u.tx_can.usbcan.flags;
break;
}
*msg_tx_can_flags = 0;
if (cf->can_id & CAN_EFF_FLAG) {
msg->id = CMD_TX_EXT_MESSAGE;
msg->u.tx_can.msg[0] = (cf->can_id >> 24) & 0x1f;
......@@ -1321,7 +1668,7 @@ static netdev_tx_t kvaser_usb_start_xmit(struct sk_buff *skb,
memcpy(&msg->u.tx_can.msg[6], cf->data, cf->can_dlc);
if (cf->can_id & CAN_RTR_FLAG)
msg->u.tx_can.flags |= MSG_FLAG_REMOTE_FRAME;
*msg_tx_can_flags |= MSG_FLAG_REMOTE_FRAME;
for (i = 0; i < ARRAY_SIZE(priv->tx_contexts); i++) {
if (priv->tx_contexts[i].echo_index == MAX_TX_URBS) {
......@@ -1590,6 +1937,17 @@ static int kvaser_usb_probe(struct usb_interface *intf,
if (!dev)
return -ENOMEM;
if (kvaser_is_leaf(id)) {
dev->family = KVASER_LEAF;
} else if (kvaser_is_usbcan(id)) {
dev->family = KVASER_USBCAN;
} else {
dev_err(&intf->dev,
"Product ID (%d) does not belong to any known Kvaser USB family",
id->idProduct);
return -ENODEV;
}
err = kvaser_usb_get_endpoints(intf, &dev->bulk_in, &dev->bulk_out);
if (err) {
dev_err(&intf->dev, "Cannot get usb endpoint(s)");
......
obj-$(CONFIG_CAN_PEAK_USB) += peak_usb.o
peak_usb-y = pcan_usb_core.o pcan_usb.o pcan_usb_pro.o
peak_usb-y = pcan_usb_core.o pcan_usb.o pcan_usb_pro.o pcan_usb_fd.o
/*
* CAN driver for PEAK System micro-CAN based adapters
*
* Copyright (C) 2003-2011 PEAK System-Technik GmbH
* Copyright (C) 2011-2013 Stephane Grosjean <s.grosjean@peak-system.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef PUCAN_H
#define PUCAN_H
/* uCAN commands opcodes list (low-order 10 bits) */
#define PUCAN_CMD_NOP 0x000
#define PUCAN_CMD_RESET_MODE 0x001
#define PUCAN_CMD_NORMAL_MODE 0x002
#define PUCAN_CMD_LISTEN_ONLY_MODE 0x003
#define PUCAN_CMD_TIMING_SLOW 0x004
#define PUCAN_CMD_TIMING_FAST 0x005
#define PUCAN_CMD_FILTER_STD 0x008
#define PUCAN_CMD_TX_ABORT 0x009
#define PUCAN_CMD_WR_ERR_CNT 0x00a
#define PUCAN_CMD_RX_FRAME_ENABLE 0x00b
#define PUCAN_CMD_RX_FRAME_DISABLE 0x00c
#define PUCAN_CMD_END_OF_COLLECTION 0x3ff
/* uCAN received messages list */
#define PUCAN_MSG_CAN_RX 0x0001
#define PUCAN_MSG_ERROR 0x0002
#define PUCAN_MSG_STATUS 0x0003
#define PUCAN_MSG_BUSLOAD 0x0004
#define PUCAN_MSG_CAN_TX 0x1000
/* uCAN command common header */
struct __packed pucan_command {
__le16 opcode_channel;
u16 args[3];
};
/* uCAN TIMING_SLOW command fields */
#define PUCAN_TSLOW_SJW_T(s, t) (((s) & 0xf) | ((!!(t)) << 7))
#define PUCAN_TSLOW_TSEG2(t) ((t) & 0xf)
#define PUCAN_TSLOW_TSEG1(t) ((t) & 0x3f)
#define PUCAN_TSLOW_BRP(b) ((b) & 0x3ff)
struct __packed pucan_timing_slow {
__le16 opcode_channel;
u8 ewl; /* Error Warning limit */
u8 sjw_t; /* Sync Jump Width + Triple sampling */
u8 tseg2; /* Timing SEGment 2 */
u8 tseg1; /* Timing SEGment 1 */
__le16 brp; /* BaudRate Prescaler */
};
/* uCAN TIMING_FAST command fields */
#define PUCAN_TFAST_SJW(s) ((s) & 0x3)
#define PUCAN_TFAST_TSEG2(t) ((t) & 0x7)
#define PUCAN_TFAST_TSEG1(t) ((t) & 0xf)
#define PUCAN_TFAST_BRP(b) ((b) & 0x3ff)
struct __packed pucan_timing_fast {
__le16 opcode_channel;
u8 unused;
u8 sjw; /* Sync Jump Width */
u8 tseg2; /* Timing SEGment 2 */
u8 tseg1; /* Timing SEGment 1 */
__le16 brp; /* BaudRate Prescaler */
};
/* uCAN FILTER_STD command fields */
#define PUCAN_FLTSTD_ROW_IDX_BITS 6
struct __packed pucan_filter_std {
__le16 opcode_channel;
__le16 idx;
__le32 mask; /* CAN-ID bitmask in idx range */
};
/* uCAN WR_ERR_CNT command fields */
#define PUCAN_WRERRCNT_TE 0x4000 /* Tx error cntr write Enable */
#define PUCAN_WRERRCNT_RE 0x8000 /* Rx error cntr write Enable */
struct __packed pucan_wr_err_cnt {
__le16 opcode_channel;
__le16 sel_mask;
u8 tx_counter; /* Tx error counter new value */
u8 rx_counter; /* Rx error counter new value */
u16 unused;
};
/* uCAN RX_FRAME_ENABLE command fields */
#define PUCAN_FLTEXT_ERROR 0x0001
#define PUCAN_FLTEXT_BUSLOAD 0x0002
struct __packed pucan_filter_ext {
__le16 opcode_channel;
__le16 ext_mask;
u32 unused;
};
/* uCAN received messages global format */
struct __packed pucan_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
};
/* uCAN flags for CAN/CANFD messages */
#define PUCAN_MSG_SELF_RECEIVE 0x80
#define PUCAN_MSG_ERROR_STATE_IND 0x40 /* error state indicator */
#define PUCAN_MSG_BITRATE_SWITCH 0x20 /* bitrate switch */
#define PUCAN_MSG_EXT_DATA_LEN 0x10 /* extended data length */
#define PUCAN_MSG_SINGLE_SHOT 0x08
#define PUCAN_MSG_LOOPED_BACK 0x04
#define PUCAN_MSG_EXT_ID 0x02
#define PUCAN_MSG_RTR 0x01
struct __packed pucan_rx_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
__le32 tag_low;
__le32 tag_high;
u8 channel_dlc;
u8 client;
__le16 flags;
__le32 can_id;
u8 d[0];
};
/* uCAN error types */
#define PUCAN_ERMSG_BIT_ERROR 0
#define PUCAN_ERMSG_FORM_ERROR 1
#define PUCAN_ERMSG_STUFF_ERROR 2
#define PUCAN_ERMSG_OTHER_ERROR 3
#define PUCAN_ERMSG_ERR_CNT_DEC 4
struct __packed pucan_error_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
u8 channel_type_d;
u8 code_g;
u8 tx_err_cnt;
u8 rx_err_cnt;
};
#define PUCAN_BUS_PASSIVE 0x20
#define PUCAN_BUS_WARNING 0x40
#define PUCAN_BUS_BUSOFF 0x80
struct __packed pucan_status_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
u8 channel_p_w_b;
u8 unused[3];
};
/* uCAN transmitted message format */
#define PUCAN_MSG_CHANNEL_DLC(c, d) (((c) & 0xf) | ((d) << 4))
struct __packed pucan_tx_msg {
__le16 size;
__le16 type;
__le32 tag_low;
__le32 tag_high;
u8 channel_dlc;
u8 client;
__le16 flags;
__le32 can_id;
u8 d[0];
};
/* build the cmd opcode_channel field with respect to the correct endianness */
static inline __le16 pucan_cmd_opcode_channel(struct peak_usb_device *dev,
int opcode)
{
return cpu_to_le16(((dev->ctrl_idx) << 12) | ((opcode) & 0x3ff));
}
/* return the channel number part from any received message channel_dlc field */
static inline int pucan_msg_get_channel(struct pucan_rx_msg *rm)
{
return rm->channel_dlc & 0xf;
}
/* return the dlc value from any received message channel_dlc field */
static inline int pucan_msg_get_dlc(struct pucan_rx_msg *rm)
{
return rm->channel_dlc >> 4;
}
static inline int pucan_ermsg_get_channel(struct pucan_error_msg *em)
{
return em->channel_type_d & 0x0f;
}
static inline int pucan_stmsg_get_channel(struct pucan_status_msg *sm)
{
return sm->channel_p_w_b & 0x0f;
}
#endif
......@@ -855,10 +855,11 @@ static int pcan_usb_probe(struct usb_interface *intf)
/*
* describe the PCAN-USB adapter
*/
struct peak_usb_adapter pcan_usb = {
const struct peak_usb_adapter pcan_usb = {
.name = "PCAN-USB",
.device_id = PCAN_USB_PRODUCT_ID,
.ctrl_count = 1,
.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY,
.clock = {
.freq = PCAN_USB_CRYSTAL_HZ / 2 ,
},
......
......@@ -37,16 +37,19 @@ MODULE_LICENSE("GPL v2");
static struct usb_device_id peak_usb_table[] = {
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USB_PRODUCT_ID)},
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBPRO_PRODUCT_ID)},
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBFD_PRODUCT_ID)},
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBPROFD_PRODUCT_ID)},
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, peak_usb_table);
/* List of supported PCAN-USB adapters (NULL terminated list) */
static struct peak_usb_adapter *peak_usb_adapters_list[] = {
static const struct peak_usb_adapter *const peak_usb_adapters_list[] = {
&pcan_usb,
&pcan_usb_pro,
NULL,
&pcan_usb_fd,
&pcan_usb_pro_fd,
};
/*
......@@ -65,7 +68,7 @@ void pcan_dump_mem(char *prompt, void *p, int l)
* initialize a time_ref object with usb adapter own settings
*/
void peak_usb_init_time_ref(struct peak_time_ref *time_ref,
struct peak_usb_adapter *adapter)
const struct peak_usb_adapter *adapter)
{
if (time_ref) {
memset(time_ref, 0, sizeof(struct peak_time_ref));
......@@ -164,6 +167,21 @@ void peak_usb_get_ts_tv(struct peak_time_ref *time_ref, u32 ts,
}
}
/*
* post received skb after having set any hw timestamp
*/
int peak_usb_netif_rx(struct sk_buff *skb,
struct peak_time_ref *time_ref, u32 ts_low, u32 ts_high)
{
struct skb_shared_hwtstamps *hwts = skb_hwtstamps(skb);
struct timeval tv;
peak_usb_get_ts_tv(time_ref, ts_low, &tv);
hwts->hwtstamp = timeval_to_ktime(tv);
return netif_rx(skb);
}
/*
* callback for bulk Rx urb
*/
......@@ -253,7 +271,7 @@ static void peak_usb_write_bulk_callback(struct urb *urb)
case 0:
/* transmission complete */
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += context->dlc;
netdev->stats.tx_bytes += context->data_len;
/* prevent tx timeout */
netdev->trans_start = jiffies;
......@@ -289,7 +307,7 @@ static netdev_tx_t peak_usb_ndo_start_xmit(struct sk_buff *skb,
struct peak_usb_device *dev = netdev_priv(netdev);
struct peak_tx_urb_context *context = NULL;
struct net_device_stats *stats = &netdev->stats;
struct can_frame *cf = (struct can_frame *)skb->data;
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
struct urb *urb;
u8 *obuf;
int i, err;
......@@ -322,7 +340,9 @@ static netdev_tx_t peak_usb_ndo_start_xmit(struct sk_buff *skb,
}
context->echo_index = i;
context->dlc = cf->can_dlc;
/* Note: this works with CANFD frames too */
context->data_len = cfd->len;
usb_anchor_urb(urb, &dev->tx_submitted);
......@@ -679,15 +699,16 @@ static int peak_usb_set_mode(struct net_device *netdev, enum can_mode mode)
}
/*
* candev callback used to set device bitrate.
* candev callback used to set device nominal/arbitration bitrate.
*/
static int peak_usb_set_bittiming(struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
struct can_bittiming *bt = &dev->can.bittiming;
const struct peak_usb_adapter *pa = dev->adapter;
if (dev->adapter->dev_set_bittiming) {
int err = dev->adapter->dev_set_bittiming(dev, bt);
if (pa->dev_set_bittiming) {
struct can_bittiming *bt = &dev->can.bittiming;
int err = pa->dev_set_bittiming(dev, bt);
if (err)
netdev_info(netdev, "couldn't set bitrate (err %d)\n",
......@@ -698,6 +719,29 @@ static int peak_usb_set_bittiming(struct net_device *netdev)
return 0;
}
/*
* candev callback used to set device data bitrate.
*/
static int peak_usb_set_data_bittiming(struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
const struct peak_usb_adapter *pa = dev->adapter;
if (pa->dev_set_data_bittiming) {
struct can_bittiming *bt = &dev->can.data_bittiming;
int err = pa->dev_set_data_bittiming(dev, bt);
if (err)
netdev_info(netdev,
"couldn't set data bitrate (err %d)\n",
err);
return err;
}
return 0;
}
static const struct net_device_ops peak_usb_netdev_ops = {
.ndo_open = peak_usb_ndo_open,
.ndo_stop = peak_usb_ndo_stop,
......@@ -709,7 +753,7 @@ static const struct net_device_ops peak_usb_netdev_ops = {
* create one device which is attached to CAN controller #ctrl_idx of the
* usb adapter.
*/
static int peak_usb_create_dev(struct peak_usb_adapter *peak_usb_adapter,
static int peak_usb_create_dev(const struct peak_usb_adapter *peak_usb_adapter,
struct usb_interface *intf, int ctrl_idx)
{
struct usb_device *usb_dev = interface_to_usbdev(intf);
......@@ -750,9 +794,11 @@ static int peak_usb_create_dev(struct peak_usb_adapter *peak_usb_adapter,
dev->can.clock = peak_usb_adapter->clock;
dev->can.bittiming_const = &peak_usb_adapter->bittiming_const;
dev->can.do_set_bittiming = peak_usb_set_bittiming;
dev->can.data_bittiming_const = &peak_usb_adapter->data_bittiming_const;
dev->can.do_set_data_bittiming = peak_usb_set_data_bittiming;
dev->can.do_set_mode = peak_usb_set_mode;
dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
CAN_CTRLMODE_LISTENONLY;
dev->can.do_get_berr_counter = peak_usb_adapter->do_get_berr_counter;
dev->can.ctrlmode_supported = peak_usb_adapter->ctrlmode_supported;
netdev->netdev_ops = &peak_usb_netdev_ops;
......@@ -857,17 +903,18 @@ static int peak_usb_probe(struct usb_interface *intf,
{
struct usb_device *usb_dev = interface_to_usbdev(intf);
const u16 usb_id_product = le16_to_cpu(usb_dev->descriptor.idProduct);
struct peak_usb_adapter *peak_usb_adapter, **pp;
const struct peak_usb_adapter *peak_usb_adapter = NULL;
int i, err = -ENOMEM;
usb_dev = interface_to_usbdev(intf);
/* get corresponding PCAN-USB adapter */
for (pp = peak_usb_adapters_list; *pp; pp++)
if ((*pp)->device_id == usb_id_product)
for (i = 0; i < ARRAY_SIZE(peak_usb_adapters_list); i++)
if (peak_usb_adapters_list[i]->device_id == usb_id_product) {
peak_usb_adapter = peak_usb_adapters_list[i];
break;
}
peak_usb_adapter = *pp;
if (!peak_usb_adapter) {
/* should never come except device_id bad usage in this file */
pr_err("%s: didn't find device id. 0x%x in devices list\n",
......
......@@ -25,6 +25,8 @@
/* supported device ids. */
#define PCAN_USB_PRODUCT_ID 0x000c
#define PCAN_USBPRO_PRODUCT_ID 0x000d
#define PCAN_USBPROFD_PRODUCT_ID 0x0011
#define PCAN_USBFD_PRODUCT_ID 0x0012
#define PCAN_USB_DRIVER_NAME "peak_usb"
......@@ -44,8 +46,10 @@ struct peak_usb_device;
struct peak_usb_adapter {
char *name;
u32 device_id;
u32 ctrlmode_supported;
struct can_clock clock;
const struct can_bittiming_const bittiming_const;
const struct can_bittiming_const data_bittiming_const;
unsigned int ctrl_count;
int (*intf_probe)(struct usb_interface *intf);
......@@ -57,6 +61,8 @@ struct peak_usb_adapter {
int (*dev_close)(struct peak_usb_device *dev);
int (*dev_set_bittiming)(struct peak_usb_device *dev,
struct can_bittiming *bt);
int (*dev_set_data_bittiming)(struct peak_usb_device *dev,
struct can_bittiming *bt);
int (*dev_set_bus)(struct peak_usb_device *dev, u8 onoff);
int (*dev_get_device_id)(struct peak_usb_device *dev, u32 *device_id);
int (*dev_decode_buf)(struct peak_usb_device *dev, struct urb *urb);
......@@ -66,6 +72,8 @@ struct peak_usb_adapter {
int (*dev_stop)(struct peak_usb_device *dev);
int (*dev_restart_async)(struct peak_usb_device *dev, struct urb *urb,
u8 *buf);
int (*do_get_berr_counter)(const struct net_device *netdev,
struct can_berr_counter *bec);
u8 ep_msg_in;
u8 ep_msg_out[PCAN_USB_MAX_CHANNEL];
u8 ts_used_bits;
......@@ -78,21 +86,23 @@ struct peak_usb_adapter {
int sizeof_dev_private;
};
extern struct peak_usb_adapter pcan_usb;
extern struct peak_usb_adapter pcan_usb_pro;
extern const struct peak_usb_adapter pcan_usb;
extern const struct peak_usb_adapter pcan_usb_pro;
extern const struct peak_usb_adapter pcan_usb_fd;
extern const struct peak_usb_adapter pcan_usb_pro_fd;
struct peak_time_ref {
struct timeval tv_host_0, tv_host;
u32 ts_dev_1, ts_dev_2;
u64 ts_total;
u32 tick_count;
struct peak_usb_adapter *adapter;
const struct peak_usb_adapter *adapter;
};
struct peak_tx_urb_context {
struct peak_usb_device *dev;
u32 echo_index;
u8 dlc;
u8 data_len;
struct urb *urb;
};
......@@ -102,7 +112,7 @@ struct peak_tx_urb_context {
/* PEAK-System USB device */
struct peak_usb_device {
struct can_priv can;
struct peak_usb_adapter *adapter;
const struct peak_usb_adapter *adapter;
unsigned int ctrl_idx;
u32 state;
......@@ -134,12 +144,14 @@ void pcan_dump_mem(char *prompt, void *p, int l);
/* common timestamp management */
void peak_usb_init_time_ref(struct peak_time_ref *time_ref,
struct peak_usb_adapter *adapter);
const struct peak_usb_adapter *adapter);
void peak_usb_update_ts_now(struct peak_time_ref *time_ref, u32 ts_now);
void peak_usb_set_ts_now(struct peak_time_ref *time_ref, u32 ts_now);
void peak_usb_get_ts_tv(struct peak_time_ref *time_ref, u32 ts,
struct timeval *tv);
int peak_usb_netif_rx(struct sk_buff *skb,
struct peak_time_ref *time_ref, u32 ts_low, u32 ts_high);
void peak_usb_async_complete(struct urb *urb);
void peak_usb_restart_complete(struct peak_usb_device *dev);
#endif
/*
* CAN driver for PEAK System PCAN-USB FD / PCAN-USB Pro FD adapter
*
* Copyright (C) 2013-2014 Stephane Grosjean <s.grosjean@peak-system.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/module.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include "pcan_usb_core.h"
#include "pcan_usb_pro.h"
#include "pcan_ucan.h"
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB FD adapter");
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB Pro FD adapter");
#define PCAN_USBPROFD_CHANNEL_COUNT 2
#define PCAN_USBFD_CHANNEL_COUNT 1
/* PCAN-USB Pro FD adapter internal clock (Hz) */
#define PCAN_UFD_CRYSTAL_HZ 80000000
#define PCAN_UFD_CMD_BUFFER_SIZE 512
#define PCAN_UFD_LOSPD_PKT_SIZE 64
/* PCAN-USB Pro FD command timeout (ms.) */
#define PCAN_UFD_CMD_TIMEOUT_MS 1000
/* PCAN-USB Pro FD rx/tx buffers size */
#define PCAN_UFD_RX_BUFFER_SIZE 2048
#define PCAN_UFD_TX_BUFFER_SIZE 512
/* read some versions info from the hw devcie */
struct __packed pcan_ufd_fw_info {
__le16 size_of; /* sizeof this */
__le16 type; /* type of this structure */
u8 hw_type; /* Type of hardware (HW_TYPE_xxx) */
u8 bl_version[3]; /* Bootloader version */
u8 hw_version; /* Hardware version (PCB) */
u8 fw_version[3]; /* Firmware version */
__le32 dev_id[2]; /* "device id" per CAN */
__le32 ser_no; /* S/N */
__le32 flags; /* special functions */
};
/* handle device specific info used by the netdevices */
struct pcan_usb_fd_if {
struct peak_usb_device *dev[PCAN_USB_MAX_CHANNEL];
struct pcan_ufd_fw_info fw_info;
struct peak_time_ref time_ref;
int cm_ignore_count;
int dev_opened_count;
};
/* device information */
struct pcan_usb_fd_device {
struct peak_usb_device dev;
struct can_berr_counter bec;
struct pcan_usb_fd_if *usb_if;
u8 *cmd_buffer_addr;
};
/* Extended USB commands (non uCAN commands) */
/* Clock Modes command */
#define PCAN_UFD_CMD_CLK_SET 0x80
#define PCAN_UFD_CLK_80MHZ 0x0
#define PCAN_UFD_CLK_60MHZ 0x1
#define PCAN_UFD_CLK_40MHZ 0x2
#define PCAN_UFD_CLK_30MHZ 0x3
#define PCAN_UFD_CLK_24MHZ 0x4
#define PCAN_UFD_CLK_20MHZ 0x5
#define PCAN_UFD_CLK_DEF PCAN_UFD_CLK_80MHZ
struct __packed pcan_ufd_clock {
__le16 opcode_channel;
u8 mode;
u8 unused[5];
};
/* LED control command */
#define PCAN_UFD_CMD_LED_SET 0x86
#define PCAN_UFD_LED_DEV 0x00
#define PCAN_UFD_LED_FAST 0x01
#define PCAN_UFD_LED_SLOW 0x02
#define PCAN_UFD_LED_ON 0x03
#define PCAN_UFD_LED_OFF 0x04
#define PCAN_UFD_LED_DEF PCAN_UFD_LED_DEV
struct __packed pcan_ufd_led {
__le16 opcode_channel;
u8 mode;
u8 unused[5];
};
/* Extended usage of uCAN commands CMD_RX_FRAME_xxxABLE for PCAN-USB Pro FD */
#define PCAN_UFD_FLTEXT_CALIBRATION 0x8000
struct __packed pcan_ufd_filter_ext {
__le16 opcode_channel;
__le16 ext_mask;
u16 unused;
__le16 usb_mask;
};
/* Extended usage of uCAN messages for PCAN-USB Pro FD */
#define PCAN_UFD_MSG_CALIBRATION 0x100
struct __packed pcan_ufd_ts_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
__le16 usb_frame_index;
u16 unused;
};
#define PCAN_UFD_MSG_OVERRUN 0x101
#define PCAN_UFD_OVMSG_CHANNEL(o) ((o)->channel & 0xf)
struct __packed pcan_ufd_ovr_msg {
__le16 size;
__le16 type;
__le32 ts_low;
__le32 ts_high;
u8 channel;
u8 unused[3];
};
static inline int pufd_omsg_get_channel(struct pcan_ufd_ovr_msg *om)
{
return om->channel & 0xf;
}
/* Clock mode frequency values */
static const u32 pcan_usb_fd_clk_freq[6] = {
[PCAN_UFD_CLK_80MHZ] = 80000000,
[PCAN_UFD_CLK_60MHZ] = 60000000,
[PCAN_UFD_CLK_40MHZ] = 40000000,
[PCAN_UFD_CLK_30MHZ] = 30000000,
[PCAN_UFD_CLK_24MHZ] = 24000000,
[PCAN_UFD_CLK_20MHZ] = 20000000
};
/* return a device USB interface */
static inline
struct pcan_usb_fd_if *pcan_usb_fd_dev_if(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
return pdev->usb_if;
}
/* return a device USB commands buffer */
static inline void *pcan_usb_fd_cmd_buffer(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
return pdev->cmd_buffer_addr;
}
/* send PCAN-USB Pro FD commands synchronously */
static int pcan_usb_fd_send_cmd(struct peak_usb_device *dev, void *cmd_tail)
{
void *cmd_head = pcan_usb_fd_cmd_buffer(dev);
int err;
u8 *packet_ptr;
int i, n = 1, packet_len;
ptrdiff_t cmd_len;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
/* if a packet is not filled completely by commands, the command list
* is terminated with an "end of collection" record.
*/
cmd_len = cmd_tail - cmd_head;
if (cmd_len <= (PCAN_UFD_CMD_BUFFER_SIZE - sizeof(u64))) {
memset(cmd_tail, 0xff, sizeof(u64));
cmd_len += sizeof(u64);
}
packet_ptr = cmd_head;
/* firmware is not able to re-assemble 512 bytes buffer in full-speed */
if ((dev->udev->speed != USB_SPEED_HIGH) &&
(cmd_len > PCAN_UFD_LOSPD_PKT_SIZE)) {
packet_len = PCAN_UFD_LOSPD_PKT_SIZE;
n += cmd_len / packet_len;
} else {
packet_len = cmd_len;
}
for (i = 0; i < n; i++) {
err = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev,
PCAN_USBPRO_EP_CMDOUT),
packet_ptr, packet_len,
NULL, PCAN_UFD_CMD_TIMEOUT_MS);
if (err) {
netdev_err(dev->netdev,
"sending command failure: %d\n", err);
break;
}
packet_ptr += packet_len;
}
return err;
}
/* build the commands list in the given buffer, to enter operational mode */
static int pcan_usb_fd_build_restart_cmd(struct peak_usb_device *dev, u8 *buf)
{
struct pucan_wr_err_cnt *prc;
struct pucan_command *cmd;
u8 *pc = buf;
/* 1st, reset error counters: */
prc = (struct pucan_wr_err_cnt *)pc;
prc->opcode_channel = pucan_cmd_opcode_channel(dev,
PUCAN_CMD_WR_ERR_CNT);
/* select both counters */
prc->sel_mask = cpu_to_le16(PUCAN_WRERRCNT_TE|PUCAN_WRERRCNT_RE);
/* and reset their values */
prc->tx_counter = 0;
prc->rx_counter = 0;
/* moves the pointer forward */
pc += sizeof(struct pucan_wr_err_cnt);
/* next, go back to operational mode */
cmd = (struct pucan_command *)pc;
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) ?
PUCAN_CMD_LISTEN_ONLY_MODE :
PUCAN_CMD_NORMAL_MODE);
pc += sizeof(struct pucan_command);
return pc - buf;
}
/* set CAN bus on/off */
static int pcan_usb_fd_set_bus(struct peak_usb_device *dev, u8 onoff)
{
u8 *pc = pcan_usb_fd_cmd_buffer(dev);
int l;
if (onoff) {
/* build the cmds list to enter operational mode */
l = pcan_usb_fd_build_restart_cmd(dev, pc);
} else {
struct pucan_command *cmd = (struct pucan_command *)pc;
/* build cmd to go back to reset mode */
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PUCAN_CMD_RESET_MODE);
l = sizeof(struct pucan_command);
}
/* send the command */
return pcan_usb_fd_send_cmd(dev, pc + l);
}
/* set filtering masks:
*
* idx in range [0..63] selects a row #idx, all rows otherwise
* mask in range [0..0xffffffff] defines up to 32 CANIDs in the row(s)
*
* Each bit of this 64 x 32 bits array defines a CANID value:
*
* bit[i,j] = 1 implies that CANID=(i x 32)+j will be received, while
* bit[i,j] = 0 implies that CANID=(i x 32)+j will be discarded.
*/
static int pcan_usb_fd_set_filter_std(struct peak_usb_device *dev, int idx,
u32 mask)
{
struct pucan_filter_std *cmd = pcan_usb_fd_cmd_buffer(dev);
int i, n;
/* select all rows when idx is out of range [0..63] */
if ((idx < 0) || (idx >= (1 << PUCAN_FLTSTD_ROW_IDX_BITS))) {
n = 1 << PUCAN_FLTSTD_ROW_IDX_BITS;
idx = 0;
/* select the row (and only the row) otherwise */
} else {
n = idx + 1;
}
for (i = idx; i < n; i++, cmd++) {
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PUCAN_CMD_FILTER_STD);
cmd->idx = cpu_to_le16(i);
cmd->mask = cpu_to_le32(mask);
}
/* send the command */
return pcan_usb_fd_send_cmd(dev, cmd);
}
/* set/unset notifications filter:
*
* onoff sets(1)/unset(0) notifications
* mask each bit defines a kind of notification to set/unset
*/
static int pcan_usb_fd_set_filter_ext(struct peak_usb_device *dev,
bool onoff, u16 ext_mask, u16 usb_mask)
{
struct pcan_ufd_filter_ext *cmd = pcan_usb_fd_cmd_buffer(dev);
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
(onoff) ? PUCAN_CMD_RX_FRAME_ENABLE :
PUCAN_CMD_RX_FRAME_DISABLE);
cmd->ext_mask = cpu_to_le16(ext_mask);
cmd->usb_mask = cpu_to_le16(usb_mask);
/* send the command */
return pcan_usb_fd_send_cmd(dev, ++cmd);
}
/* setup LED control */
static int pcan_usb_fd_set_can_led(struct peak_usb_device *dev, u8 led_mode)
{
struct pcan_ufd_led *cmd = pcan_usb_fd_cmd_buffer(dev);
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PCAN_UFD_CMD_LED_SET);
cmd->mode = led_mode;
/* send the command */
return pcan_usb_fd_send_cmd(dev, ++cmd);
}
/* set CAN clock domain */
static int pcan_usb_fd_set_clock_domain(struct peak_usb_device *dev,
u8 clk_mode)
{
struct pcan_ufd_clock *cmd = pcan_usb_fd_cmd_buffer(dev);
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PCAN_UFD_CMD_CLK_SET);
cmd->mode = clk_mode;
/* send the command */
return pcan_usb_fd_send_cmd(dev, ++cmd);
}
/* set bittiming for CAN and CAN-FD header */
static int pcan_usb_fd_set_bittiming_slow(struct peak_usb_device *dev,
struct can_bittiming *bt)
{
struct pucan_timing_slow *cmd = pcan_usb_fd_cmd_buffer(dev);
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PUCAN_CMD_TIMING_SLOW);
cmd->sjw_t = PUCAN_TSLOW_SJW_T(bt->sjw - 1,
dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES);
cmd->tseg2 = PUCAN_TSLOW_TSEG2(bt->phase_seg2 - 1);
cmd->tseg1 = PUCAN_TSLOW_TSEG1(bt->prop_seg + bt->phase_seg1 - 1);
cmd->brp = cpu_to_le16(PUCAN_TSLOW_BRP(bt->brp - 1));
cmd->ewl = 96; /* default */
/* send the command */
return pcan_usb_fd_send_cmd(dev, ++cmd);
}
/* set CAN-FD bittiming for data */
static int pcan_usb_fd_set_bittiming_fast(struct peak_usb_device *dev,
struct can_bittiming *bt)
{
struct pucan_timing_fast *cmd = pcan_usb_fd_cmd_buffer(dev);
cmd->opcode_channel = pucan_cmd_opcode_channel(dev,
PUCAN_CMD_TIMING_FAST);
cmd->sjw = PUCAN_TFAST_SJW(bt->sjw - 1);
cmd->tseg2 = PUCAN_TFAST_TSEG2(bt->phase_seg2 - 1);
cmd->tseg1 = PUCAN_TFAST_TSEG1(bt->prop_seg + bt->phase_seg1 - 1);
cmd->brp = cpu_to_le16(PUCAN_TFAST_BRP(bt->brp - 1));
/* send the command */
return pcan_usb_fd_send_cmd(dev, ++cmd);
}
/* handle restart but in asynchronously way
* (uses PCAN-USB Pro code to complete asynchronous request)
*/
static int pcan_usb_fd_restart_async(struct peak_usb_device *dev,
struct urb *urb, u8 *buf)
{
u8 *pc = buf;
/* build the entire cmds list in the provided buffer, to go back into
* operational mode.
*/
pc += pcan_usb_fd_build_restart_cmd(dev, pc);
/* add EOC */
memset(pc, 0xff, sizeof(struct pucan_command));
pc += sizeof(struct pucan_command);
/* complete the URB */
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USBPRO_EP_CMDOUT),
buf, pc - buf,
pcan_usb_pro_restart_complete, dev);
/* and submit it. */
return usb_submit_urb(urb, GFP_ATOMIC);
}
static int pcan_usb_fd_drv_loaded(struct peak_usb_device *dev, bool loaded)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
pdev->cmd_buffer_addr[0] = 0;
pdev->cmd_buffer_addr[1] = !!loaded;
return pcan_usb_pro_send_req(dev,
PCAN_USBPRO_REQ_FCT,
PCAN_USBPRO_FCT_DRVLD,
pdev->cmd_buffer_addr,
PCAN_USBPRO_FCT_DRVLD_REQ_LEN);
}
static int pcan_usb_fd_decode_canmsg(struct pcan_usb_fd_if *usb_if,
struct pucan_msg *rx_msg)
{
struct pucan_rx_msg *rm = (struct pucan_rx_msg *)rx_msg;
struct peak_usb_device *dev = usb_if->dev[pucan_msg_get_channel(rm)];
struct net_device *netdev = dev->netdev;
struct canfd_frame *cfd;
struct sk_buff *skb;
const u16 rx_msg_flags = le16_to_cpu(rm->flags);
if (rx_msg_flags & PUCAN_MSG_EXT_DATA_LEN) {
/* CANFD frame case */
skb = alloc_canfd_skb(netdev, &cfd);
if (!skb)
return -ENOMEM;
if (rx_msg_flags & PUCAN_MSG_BITRATE_SWITCH)
cfd->flags |= CANFD_BRS;
if (rx_msg_flags & PUCAN_MSG_ERROR_STATE_IND)
cfd->flags |= CANFD_ESI;
cfd->len = can_dlc2len(get_canfd_dlc(pucan_msg_get_dlc(rm)));
} else {
/* CAN 2.0 frame case */
skb = alloc_can_skb(netdev, (struct can_frame **)&cfd);
if (!skb)
return -ENOMEM;
cfd->len = get_can_dlc(pucan_msg_get_dlc(rm));
}
cfd->can_id = le32_to_cpu(rm->can_id);
if (rx_msg_flags & PUCAN_MSG_EXT_ID)
cfd->can_id |= CAN_EFF_FLAG;
if (rx_msg_flags & PUCAN_MSG_RTR)
cfd->can_id |= CAN_RTR_FLAG;
else
memcpy(cfd->data, rm->d, cfd->len);
peak_usb_netif_rx(skb, &usb_if->time_ref,
le32_to_cpu(rm->ts_low), le32_to_cpu(rm->ts_high));
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += cfd->len;
return 0;
}
/* handle uCAN status message */
static int pcan_usb_fd_decode_status(struct pcan_usb_fd_if *usb_if,
struct pucan_msg *rx_msg)
{
struct pucan_status_msg *sm = (struct pucan_status_msg *)rx_msg;
struct peak_usb_device *dev = usb_if->dev[pucan_stmsg_get_channel(sm)];
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
enum can_state new_state = CAN_STATE_ERROR_ACTIVE;
enum can_state rx_state, tx_state;
struct net_device *netdev = dev->netdev;
struct can_frame *cf;
struct sk_buff *skb;
/* nothing should be sent while in BUS_OFF state */
if (dev->can.state == CAN_STATE_BUS_OFF)
return 0;
if (sm->channel_p_w_b & PUCAN_BUS_BUSOFF) {
new_state = CAN_STATE_BUS_OFF;
} else if (sm->channel_p_w_b & PUCAN_BUS_PASSIVE) {
new_state = CAN_STATE_ERROR_PASSIVE;
} else if (sm->channel_p_w_b & PUCAN_BUS_WARNING) {
new_state = CAN_STATE_ERROR_WARNING;
} else {
/* no error bit (so, no error skb, back to active state) */
dev->can.state = CAN_STATE_ERROR_ACTIVE;
pdev->bec.txerr = 0;
pdev->bec.rxerr = 0;
return 0;
}
/* state hasn't changed */
if (new_state == dev->can.state)
return 0;
/* handle bus state change */
tx_state = (pdev->bec.txerr >= pdev->bec.rxerr) ? new_state : 0;
rx_state = (pdev->bec.txerr <= pdev->bec.rxerr) ? new_state : 0;
/* allocate an skb to store the error frame */
skb = alloc_can_err_skb(netdev, &cf);
if (skb)
can_change_state(netdev, cf, tx_state, rx_state);
/* things must be done even in case of OOM */
if (new_state == CAN_STATE_BUS_OFF)
can_bus_off(netdev);
if (!skb)
return -ENOMEM;
peak_usb_netif_rx(skb, &usb_if->time_ref,
le32_to_cpu(sm->ts_low), le32_to_cpu(sm->ts_high));
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += cf->can_dlc;
return 0;
}
/* handle uCAN error message */
static int pcan_usb_fd_decode_error(struct pcan_usb_fd_if *usb_if,
struct pucan_msg *rx_msg)
{
struct pucan_error_msg *er = (struct pucan_error_msg *)rx_msg;
struct peak_usb_device *dev = usb_if->dev[pucan_ermsg_get_channel(er)];
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
/* keep a trace of tx and rx error counters for later use */
pdev->bec.txerr = er->tx_err_cnt;
pdev->bec.rxerr = er->rx_err_cnt;
return 0;
}
/* handle uCAN overrun message */
static int pcan_usb_fd_decode_overrun(struct pcan_usb_fd_if *usb_if,
struct pucan_msg *rx_msg)
{
struct pcan_ufd_ovr_msg *ov = (struct pcan_ufd_ovr_msg *)rx_msg;
struct peak_usb_device *dev = usb_if->dev[pufd_omsg_get_channel(ov)];
struct net_device *netdev = dev->netdev;
struct can_frame *cf;
struct sk_buff *skb;
/* allocate an skb to store the error frame */
skb = alloc_can_err_skb(netdev, &cf);
if (!skb)
return -ENOMEM;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
peak_usb_netif_rx(skb, &usb_if->time_ref,
le32_to_cpu(ov->ts_low), le32_to_cpu(ov->ts_high));
netdev->stats.rx_over_errors++;
netdev->stats.rx_errors++;
return 0;
}
/* handle USB calibration message */
static void pcan_usb_fd_decode_ts(struct pcan_usb_fd_if *usb_if,
struct pucan_msg *rx_msg)
{
struct pcan_ufd_ts_msg *ts = (struct pcan_ufd_ts_msg *)rx_msg;
/* should wait until clock is stabilized */
if (usb_if->cm_ignore_count > 0)
usb_if->cm_ignore_count--;
else
peak_usb_set_ts_now(&usb_if->time_ref, le32_to_cpu(ts->ts_low));
}
/* callback for bulk IN urb */
static int pcan_usb_fd_decode_buf(struct peak_usb_device *dev, struct urb *urb)
{
struct pcan_usb_fd_if *usb_if = pcan_usb_fd_dev_if(dev);
struct net_device *netdev = dev->netdev;
struct pucan_msg *rx_msg;
u8 *msg_ptr, *msg_end;
int err = 0;
/* loop reading all the records from the incoming message */
msg_ptr = urb->transfer_buffer;
msg_end = urb->transfer_buffer + urb->actual_length;
for (; msg_ptr < msg_end;) {
u16 rx_msg_type, rx_msg_size;
rx_msg = (struct pucan_msg *)msg_ptr;
if (!rx_msg->size) {
/* null packet found: end of list */
break;
}
rx_msg_size = le16_to_cpu(rx_msg->size);
rx_msg_type = le16_to_cpu(rx_msg->type);
/* check if the record goes out of current packet */
if (msg_ptr + rx_msg_size > msg_end) {
netdev_err(netdev,
"got frag rec: should inc usb rx buf sze\n");
err = -EBADMSG;
break;
}
switch (rx_msg_type) {
case PUCAN_MSG_CAN_RX:
err = pcan_usb_fd_decode_canmsg(usb_if, rx_msg);
if (err < 0)
goto fail;
break;
case PCAN_UFD_MSG_CALIBRATION:
pcan_usb_fd_decode_ts(usb_if, rx_msg);
break;
case PUCAN_MSG_ERROR:
err = pcan_usb_fd_decode_error(usb_if, rx_msg);
if (err < 0)
goto fail;
break;
case PUCAN_MSG_STATUS:
err = pcan_usb_fd_decode_status(usb_if, rx_msg);
if (err < 0)
goto fail;
break;
case PCAN_UFD_MSG_OVERRUN:
err = pcan_usb_fd_decode_overrun(usb_if, rx_msg);
if (err < 0)
goto fail;
break;
default:
netdev_err(netdev,
"unhandled msg type 0x%02x (%d): ignored\n",
rx_msg_type, rx_msg_type);
break;
}
msg_ptr += rx_msg_size;
}
fail:
if (err)
pcan_dump_mem("received msg",
urb->transfer_buffer, urb->actual_length);
return err;
}
/* CAN/CANFD frames encoding callback */
static int pcan_usb_fd_encode_msg(struct peak_usb_device *dev,
struct sk_buff *skb, u8 *obuf, size_t *size)
{
struct pucan_tx_msg *tx_msg = (struct pucan_tx_msg *)obuf;
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
u16 tx_msg_size, tx_msg_flags;
u8 can_dlc;
tx_msg_size = ALIGN(sizeof(struct pucan_tx_msg) + cfd->len, 4);
tx_msg->size = cpu_to_le16(tx_msg_size);
tx_msg->type = cpu_to_le16(PUCAN_MSG_CAN_TX);
tx_msg_flags = 0;
if (cfd->can_id & CAN_EFF_FLAG) {
tx_msg_flags |= PUCAN_MSG_EXT_ID;
tx_msg->can_id = cpu_to_le32(cfd->can_id & CAN_EFF_MASK);
} else {
tx_msg->can_id = cpu_to_le32(cfd->can_id & CAN_SFF_MASK);
}
if (can_is_canfd_skb(skb)) {
/* considering a CANFD frame */
can_dlc = can_len2dlc(cfd->len);
tx_msg_flags |= PUCAN_MSG_EXT_DATA_LEN;
if (cfd->flags & CANFD_BRS)
tx_msg_flags |= PUCAN_MSG_BITRATE_SWITCH;
if (cfd->flags & CANFD_ESI)
tx_msg_flags |= PUCAN_MSG_ERROR_STATE_IND;
} else {
/* CAND 2.0 frames */
can_dlc = cfd->len;
if (cfd->can_id & CAN_RTR_FLAG)
tx_msg_flags |= PUCAN_MSG_RTR;
}
tx_msg->flags = cpu_to_le16(tx_msg_flags);
tx_msg->channel_dlc = PUCAN_MSG_CHANNEL_DLC(dev->ctrl_idx, can_dlc);
memcpy(tx_msg->d, cfd->data, cfd->len);
/* add null size message to tag the end (messages are 32-bits aligned)
*/
tx_msg = (struct pucan_tx_msg *)(obuf + tx_msg_size);
tx_msg->size = 0;
/* set the whole size of the USB packet to send */
*size = tx_msg_size + sizeof(u32);
return 0;
}
/* start the interface (last chance before set bus on) */
static int pcan_usb_fd_start(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
int err;
/* set filter mode: all acceptance */
err = pcan_usb_fd_set_filter_std(dev, -1, 0xffffffff);
if (err)
return err;
/* opening first device: */
if (pdev->usb_if->dev_opened_count == 0) {
/* reset time_ref */
peak_usb_init_time_ref(&pdev->usb_if->time_ref,
&pcan_usb_pro_fd);
/* enable USB calibration messages */
err = pcan_usb_fd_set_filter_ext(dev, 1,
PUCAN_FLTEXT_ERROR,
PCAN_UFD_FLTEXT_CALIBRATION);
}
pdev->usb_if->dev_opened_count++;
/* reset cached error counters */
pdev->bec.txerr = 0;
pdev->bec.rxerr = 0;
return err;
}
/* socket callback used to copy berr counters values receieved through USB */
static int pcan_usb_fd_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct peak_usb_device *dev = netdev_priv(netdev);
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
*bec = pdev->bec;
/* must return 0 */
return 0;
}
/* stop interface (last chance before set bus off) */
static int pcan_usb_fd_stop(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
/* turn off special msgs for that interface if no other dev opened */
if (pdev->usb_if->dev_opened_count == 1)
pcan_usb_fd_set_filter_ext(dev, 0,
PUCAN_FLTEXT_ERROR,
PCAN_UFD_FLTEXT_CALIBRATION);
pdev->usb_if->dev_opened_count--;
return 0;
}
/* called when probing, to initialize a device object */
static int pcan_usb_fd_init(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
int i, err = -ENOMEM;
/* do this for 1st channel only */
if (!dev->prev_siblings) {
/* allocate netdevices common structure attached to first one */
pdev->usb_if = kzalloc(sizeof(*pdev->usb_if), GFP_KERNEL);
if (!pdev->usb_if)
goto err_out;
/* allocate command buffer once for all for the interface */
pdev->cmd_buffer_addr = kmalloc(PCAN_UFD_CMD_BUFFER_SIZE,
GFP_KERNEL);
if (!pdev->cmd_buffer_addr)
goto err_out_1;
/* number of ts msgs to ignore before taking one into account */
pdev->usb_if->cm_ignore_count = 5;
err = pcan_usb_pro_send_req(dev, PCAN_USBPRO_REQ_INFO,
PCAN_USBPRO_INFO_FW,
&pdev->usb_if->fw_info,
sizeof(pdev->usb_if->fw_info));
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to read %s firmware info (err %d)\n",
dev->adapter->name, err);
goto err_out_2;
}
/* explicit use of dev_xxx() instead of netdev_xxx() here:
* information displayed are related to the device itself, not
* to the canx (channel) device.
*/
dev_info(dev->netdev->dev.parent,
"PEAK-System %s v%u fw v%u.%u.%u (%u channels)\n",
dev->adapter->name, pdev->usb_if->fw_info.hw_version,
pdev->usb_if->fw_info.fw_version[0],
pdev->usb_if->fw_info.fw_version[1],
pdev->usb_if->fw_info.fw_version[2],
dev->adapter->ctrl_count);
/* the currently supported hw is non-ISO */
dev->can.ctrlmode = CAN_CTRLMODE_FD_NON_ISO;
/* tell the hardware the can driver is running */
err = pcan_usb_fd_drv_loaded(dev, 1);
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to tell %s driver is loaded (err %d)\n",
dev->adapter->name, err);
goto err_out_2;
}
} else {
/* otherwise, simply copy previous sibling's values */
struct pcan_usb_fd_device *ppdev =
container_of(dev->prev_siblings,
struct pcan_usb_fd_device, dev);
pdev->usb_if = ppdev->usb_if;
pdev->cmd_buffer_addr = ppdev->cmd_buffer_addr;
}
pdev->usb_if->dev[dev->ctrl_idx] = dev;
dev->device_number =
le32_to_cpu(pdev->usb_if->fw_info.dev_id[dev->ctrl_idx]);
/* set clock domain */
for (i = 0; i < ARRAY_SIZE(pcan_usb_fd_clk_freq); i++)
if (dev->adapter->clock.freq == pcan_usb_fd_clk_freq[i])
break;
if (i >= ARRAY_SIZE(pcan_usb_fd_clk_freq)) {
dev_warn(dev->netdev->dev.parent,
"incompatible clock frequencies\n");
err = -EINVAL;
goto err_out_2;
}
pcan_usb_fd_set_clock_domain(dev, i);
/* set LED in default state (end of init phase) */
pcan_usb_fd_set_can_led(dev, PCAN_UFD_LED_DEF);
return 0;
err_out_2:
kfree(pdev->cmd_buffer_addr);
err_out_1:
kfree(pdev->usb_if);
err_out:
return err;
}
/* called when driver module is being unloaded */
static void pcan_usb_fd_exit(struct peak_usb_device *dev)
{
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
/* when rmmod called before unplug and if down, should reset things
* before leaving
*/
if (dev->can.state != CAN_STATE_STOPPED) {
/* set bus off on the corresponding channel */
pcan_usb_fd_set_bus(dev, 0);
}
/* switch off corresponding CAN LEDs */
pcan_usb_fd_set_can_led(dev, PCAN_UFD_LED_OFF);
/* if channel #0 (only) */
if (dev->ctrl_idx == 0) {
/* turn off calibration message if any device were opened */
if (pdev->usb_if->dev_opened_count > 0)
pcan_usb_fd_set_filter_ext(dev, 0,
PUCAN_FLTEXT_ERROR,
PCAN_UFD_FLTEXT_CALIBRATION);
/* tell USB adapter that the driver is being unloaded */
pcan_usb_fd_drv_loaded(dev, 0);
}
}
/* called when the USB adapter is unplugged */
static void pcan_usb_fd_free(struct peak_usb_device *dev)
{
/* last device: can free shared objects now */
if (!dev->prev_siblings && !dev->next_siblings) {
struct pcan_usb_fd_device *pdev =
container_of(dev, struct pcan_usb_fd_device, dev);
/* free commands buffer */
kfree(pdev->cmd_buffer_addr);
/* free usb interface object */
kfree(pdev->usb_if);
}
}
/* describes the PCAN-USB FD adapter */
const struct peak_usb_adapter pcan_usb_fd = {
.name = "PCAN-USB FD",
.device_id = PCAN_USBFD_PRODUCT_ID,
.ctrl_count = PCAN_USBFD_CHANNEL_COUNT,
.ctrlmode_supported = CAN_CTRLMODE_FD |
CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY,
.clock = {
.freq = PCAN_UFD_CRYSTAL_HZ,
},
.bittiming_const = {
.name = "pcan_usb_fd",
.tseg1_min = 1,
.tseg1_max = 64,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
.data_bittiming_const = {
.name = "pcan_usb_fd",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
/* size of device private data */
.sizeof_dev_private = sizeof(struct pcan_usb_fd_device),
/* timestamps usage */
.ts_used_bits = 32,
.ts_period = 1000000, /* calibration period in ts. */
.us_per_ts_scale = 1, /* us = (ts * scale) >> shift */
.us_per_ts_shift = 0,
/* give here messages in/out endpoints */
.ep_msg_in = PCAN_USBPRO_EP_MSGIN,
.ep_msg_out = {PCAN_USBPRO_EP_MSGOUT_0},
/* size of rx/tx usb buffers */
.rx_buffer_size = PCAN_UFD_RX_BUFFER_SIZE,
.tx_buffer_size = PCAN_UFD_TX_BUFFER_SIZE,
/* device callbacks */
.intf_probe = pcan_usb_pro_probe, /* same as PCAN-USB Pro */
.dev_init = pcan_usb_fd_init,
.dev_exit = pcan_usb_fd_exit,
.dev_free = pcan_usb_fd_free,
.dev_set_bus = pcan_usb_fd_set_bus,
.dev_set_bittiming = pcan_usb_fd_set_bittiming_slow,
.dev_set_data_bittiming = pcan_usb_fd_set_bittiming_fast,
.dev_decode_buf = pcan_usb_fd_decode_buf,
.dev_start = pcan_usb_fd_start,
.dev_stop = pcan_usb_fd_stop,
.dev_restart_async = pcan_usb_fd_restart_async,
.dev_encode_msg = pcan_usb_fd_encode_msg,
.do_get_berr_counter = pcan_usb_fd_get_berr_counter,
};
/* describes the PCAN-USB Pro FD adapter */
const struct peak_usb_adapter pcan_usb_pro_fd = {
.name = "PCAN-USB Pro FD",
.device_id = PCAN_USBPROFD_PRODUCT_ID,
.ctrl_count = PCAN_USBPROFD_CHANNEL_COUNT,
.ctrlmode_supported = CAN_CTRLMODE_FD |
CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY,
.clock = {
.freq = PCAN_UFD_CRYSTAL_HZ,
},
.bittiming_const = {
.name = "pcan_usb_pro_fd",
.tseg1_min = 1,
.tseg1_max = 64,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
.data_bittiming_const = {
.name = "pcan_usb_pro_fd",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
/* size of device private data */
.sizeof_dev_private = sizeof(struct pcan_usb_fd_device),
/* timestamps usage */
.ts_used_bits = 32,
.ts_period = 1000000, /* calibration period in ts. */
.us_per_ts_scale = 1, /* us = (ts * scale) >> shift */
.us_per_ts_shift = 0,
/* give here messages in/out endpoints */
.ep_msg_in = PCAN_USBPRO_EP_MSGIN,
.ep_msg_out = {PCAN_USBPRO_EP_MSGOUT_0, PCAN_USBPRO_EP_MSGOUT_1},
/* size of rx/tx usb buffers */
.rx_buffer_size = PCAN_UFD_RX_BUFFER_SIZE,
.tx_buffer_size = PCAN_UFD_TX_BUFFER_SIZE,
/* device callbacks */
.intf_probe = pcan_usb_pro_probe, /* same as PCAN-USB Pro */
.dev_init = pcan_usb_fd_init,
.dev_exit = pcan_usb_fd_exit,
.dev_free = pcan_usb_fd_free,
.dev_set_bus = pcan_usb_fd_set_bus,
.dev_set_bittiming = pcan_usb_fd_set_bittiming_slow,
.dev_set_data_bittiming = pcan_usb_fd_set_bittiming_fast,
.dev_decode_buf = pcan_usb_fd_decode_buf,
.dev_start = pcan_usb_fd_start,
.dev_stop = pcan_usb_fd_stop,
.dev_restart_async = pcan_usb_fd_restart_async,
.dev_encode_msg = pcan_usb_fd_encode_msg,
.do_get_berr_counter = pcan_usb_fd_get_berr_counter,
};
......@@ -27,14 +27,6 @@
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB Pro adapter");
/* PCAN-USB Pro Endpoints */
#define PCAN_USBPRO_EP_CMDOUT 1
#define PCAN_USBPRO_EP_CMDIN (PCAN_USBPRO_EP_CMDOUT | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_0 2
#define PCAN_USBPRO_EP_MSGIN (PCAN_USBPRO_EP_MSGOUT_0 | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_1 3
#define PCAN_USBPRO_EP_UNUSED (PCAN_USBPRO_EP_MSGOUT_1 | USB_DIR_IN)
#define PCAN_USBPRO_CHANNEL_COUNT 2
/* PCAN-USB Pro adapter internal clock (MHz) */
......@@ -322,7 +314,7 @@ static int pcan_usb_pro_wait_rsp(struct peak_usb_device *dev,
return (i >= PCAN_USBPRO_RSP_SUBMIT_MAX) ? -ERANGE : err;
}
static int pcan_usb_pro_send_req(struct peak_usb_device *dev, int req_id,
int pcan_usb_pro_send_req(struct peak_usb_device *dev, int req_id,
int req_value, void *req_addr, int req_size)
{
int err;
......@@ -475,7 +467,7 @@ static int pcan_usb_pro_set_bittiming(struct peak_usb_device *dev,
return pcan_usb_pro_set_bitrate(dev, ccbt);
}
static void pcan_usb_pro_restart_complete(struct urb *urb)
void pcan_usb_pro_restart_complete(struct urb *urb)
{
/* can delete usb resources */
peak_usb_async_complete(urb);
......@@ -978,7 +970,7 @@ static void pcan_usb_pro_free(struct peak_usb_device *dev)
/*
* probe function for new PCAN-USB Pro usb interface
*/
static int pcan_usb_pro_probe(struct usb_interface *intf)
int pcan_usb_pro_probe(struct usb_interface *intf)
{
struct usb_host_interface *if_desc;
int i;
......@@ -1012,10 +1004,11 @@ static int pcan_usb_pro_probe(struct usb_interface *intf)
/*
* describe the PCAN-USB Pro adapter
*/
struct peak_usb_adapter pcan_usb_pro = {
const struct peak_usb_adapter pcan_usb_pro = {
.name = "PCAN-USB Pro",
.device_id = PCAN_USBPRO_PRODUCT_ID,
.ctrl_count = PCAN_USBPRO_CHANNEL_COUNT,
.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY,
.clock = {
.freq = PCAN_USBPRO_CRYSTAL_HZ,
},
......
......@@ -27,6 +27,14 @@
#define PCAN_USBPRO_INFO_BL 0
#define PCAN_USBPRO_INFO_FW 1
/* PCAN-USB Pro (FD) Endpoints */
#define PCAN_USBPRO_EP_CMDOUT 1
#define PCAN_USBPRO_EP_CMDIN (PCAN_USBPRO_EP_CMDOUT | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_0 2
#define PCAN_USBPRO_EP_MSGIN (PCAN_USBPRO_EP_MSGOUT_0 | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_1 3
#define PCAN_USBPRO_EP_UNUSED (PCAN_USBPRO_EP_MSGOUT_1 | USB_DIR_IN)
/* Vendor Request value for XXX_FCT */
#define PCAN_USBPRO_FCT_DRVLD 5 /* tell device driver is loaded */
#define PCAN_USBPRO_FCT_DRVLD_REQ_LEN 16
......@@ -176,4 +184,9 @@ union pcan_usb_pro_rec {
struct pcan_usb_pro_txmsg tx_msg;
};
int pcan_usb_pro_probe(struct usb_interface *intf);
int pcan_usb_pro_send_req(struct peak_usb_device *dev, int req_id,
int req_value, void *req_addr, int req_size);
void pcan_usb_pro_restart_complete(struct urb *urb);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment