Commit 50cfbbb7 authored by Gilad Ben-Yossef's avatar Gilad Ben-Yossef Committed by Greg Kroah-Hartman

staging: ccree: add ahash support

Add CryptoCell async. hash and HMAC support.
Signed-off-by: default avatarGilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent abefd674
......@@ -2,6 +2,12 @@ config CRYPTO_DEV_CCREE
tristate "Support for ARM TrustZone CryptoCell C7XX family of Crypto accelerators"
depends on CRYPTO_HW && OF && HAS_DMA
default n
select CRYPTO_HASH
select CRYPTO_SHA1
select CRYPTO_MD5
select CRYPTO_SHA256
select CRYPTO_SHA512
select CRYPTO_HMAC
help
Say 'Y' to enable a driver for the Arm TrustZone CryptoCell
C7xx. Currently only the CryptoCell 712 REE is supported.
......
obj-$(CONFIG_CRYPTO_DEV_CCREE) := ccree.o
ccree-y := ssi_driver.o ssi_sysfs.o ssi_buffer_mgr.o ssi_request_mgr.o ssi_sram_mgr.o ssi_pm.o ssi_pm_ext.o
ccree-y := ssi_driver.o ssi_sysfs.o ssi_buffer_mgr.o ssi_request_mgr.o ssi_hash.o ssi_sram_mgr.o ssi_pm.o ssi_pm_ext.o
......@@ -220,6 +220,28 @@ struct drv_ctx_generic {
} __attribute__((__may_alias__));
struct drv_ctx_hash {
enum drv_crypto_alg alg; /* DRV_CRYPTO_ALG_HASH */
enum drv_hash_mode mode;
uint8_t digest[CC_DIGEST_SIZE_MAX];
/* reserve to end of allocated context size */
uint8_t reserved[CC_CTX_SIZE - 2 * sizeof(uint32_t) -
CC_DIGEST_SIZE_MAX];
};
/* !!!! drv_ctx_hmac should have the same structure as drv_ctx_hash except
k0, k0_size fields */
struct drv_ctx_hmac {
enum drv_crypto_alg alg; /* DRV_CRYPTO_ALG_HMAC */
enum drv_hash_mode mode;
uint8_t digest[CC_DIGEST_SIZE_MAX];
uint32_t k0[CC_HMAC_BLOCK_SIZE_MAX/sizeof(uint32_t)];
uint32_t k0_size;
/* reserve to end of allocated context size */
uint8_t reserved[CC_CTX_SIZE - 3 * sizeof(uint32_t) -
CC_DIGEST_SIZE_MAX - CC_HMAC_BLOCK_SIZE_MAX];
};
/*******************************************************************/
/***************** MESSAGE BASED CONTEXTS **************************/
/*******************************************************************/
......
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _HASH_DEFS_H__
#define _HASH_DEFS_H__
#include "cc_crypto_ctx.h"
/* this files provides definitions required for hash engine drivers */
#ifndef CC_CONFIG_HASH_SHA_512_SUPPORTED
#define SEP_HASH_LENGTH_WORDS 2
#else
#define SEP_HASH_LENGTH_WORDS 4
#endif
#ifdef BIG__ENDIAN
#define OPAD_CURRENT_LENGTH 0x40000000, 0x00000000 , 0x00000000, 0x00000000
#define HASH_LARVAL_MD5 0x76543210, 0xFEDCBA98, 0x89ABCDEF, 0x01234567
#define HASH_LARVAL_SHA1 0xF0E1D2C3, 0x76543210, 0xFEDCBA98, 0x89ABCDEF, 0x01234567
#define HASH_LARVAL_SHA224 0XA44FFABE, 0XA78FF964, 0X11155868, 0X310BC0FF, 0X39590EF7, 0X17DD7030, 0X07D57C36, 0XD89E05C1
#define HASH_LARVAL_SHA256 0X19CDE05B, 0XABD9831F, 0X8C68059B, 0X7F520E51, 0X3AF54FA5, 0X72F36E3C, 0X85AE67BB, 0X67E6096A
#define HASH_LARVAL_SHA384 0X1D48B547, 0XA44FFABE, 0X0D2E0CDB, 0XA78FF964, 0X874AB48E, 0X11155868, 0X67263367, 0X310BC0FF, 0XD8EC2F15, 0X39590EF7, 0X5A015991, 0X17DD7030, 0X2A299A62, 0X07D57C36, 0X5D9DBBCB, 0XD89E05C1
#define HASH_LARVAL_SHA512 0X19CDE05B, 0X79217E13, 0XABD9831F, 0X6BBD41FB, 0X8C68059B, 0X1F6C3E2B, 0X7F520E51, 0XD182E6AD, 0X3AF54FA5, 0XF1361D5F, 0X72F36E3C, 0X2BF894FE, 0X85AE67BB, 0X3BA7CA84, 0X67E6096A, 0X08C9BCF3
#else
#define OPAD_CURRENT_LENGTH 0x00000040, 0x00000000, 0x00000000, 0x00000000
#define HASH_LARVAL_MD5 0x10325476, 0x98BADCFE, 0xEFCDAB89, 0x67452301
#define HASH_LARVAL_SHA1 0xC3D2E1F0, 0x10325476, 0x98BADCFE, 0xEFCDAB89, 0x67452301
#define HASH_LARVAL_SHA224 0xbefa4fa4, 0x64f98fa7, 0x68581511, 0xffc00b31, 0xf70e5939, 0x3070dd17, 0x367cd507, 0xc1059ed8
#define HASH_LARVAL_SHA256 0x5be0cd19, 0x1f83d9ab, 0x9b05688c, 0x510e527f, 0xa54ff53a, 0x3c6ef372, 0xbb67ae85, 0x6a09e667
#define HASH_LARVAL_SHA384 0X47B5481D, 0XBEFA4FA4, 0XDB0C2E0D, 0X64F98FA7, 0X8EB44A87, 0X68581511, 0X67332667, 0XFFC00B31, 0X152FECD8, 0XF70E5939, 0X9159015A, 0X3070DD17, 0X629A292A, 0X367CD507, 0XCBBB9D5D, 0XC1059ED8
#define HASH_LARVAL_SHA512 0x5be0cd19, 0x137e2179, 0x1f83d9ab, 0xfb41bd6b, 0x9b05688c, 0x2b3e6c1f, 0x510e527f, 0xade682d1, 0xa54ff53a, 0x5f1d36f1, 0x3c6ef372, 0xfe94f82b, 0xbb67ae85, 0x84caa73b, 0x6a09e667, 0xf3bcc908
#endif
enum HashConfig1Padding {
HASH_PADDING_DISABLED = 0,
HASH_PADDING_ENABLED = 1,
HASH_DIGEST_RESULT_LITTLE_ENDIAN = 2,
HASH_CONFIG1_PADDING_RESERVE32 = INT32_MAX,
};
enum HashCipherDoPadding {
DO_NOT_PAD = 0,
DO_PAD = 1,
HASH_CIPHER_DO_PADDING_RESERVE32 = INT32_MAX,
};
typedef struct SepHashPrivateContext {
/* The current length is placed at the end of the context buffer because the hash
context is used for all HMAC operations as well. HMAC context includes a 64 bytes
K0 field. The size of struct drv_ctx_hash reserved field is 88/184 bytes depend if t
he SHA512 is supported ( in this case teh context size is 256 bytes).
The size of struct drv_ctx_hash reseved field is 20 or 52 depend if the SHA512 is supported.
This means that this structure size (without the reserved field can be up to 20 bytes ,
in case sha512 is not suppported it is 20 bytes (SEP_HASH_LENGTH_WORDS define to 2 ) and in the other
case it is 28 (SEP_HASH_LENGTH_WORDS define to 4) */
uint32_t reserved[(sizeof(struct drv_ctx_hash)/sizeof(uint32_t)) - SEP_HASH_LENGTH_WORDS - 3];
uint32_t CurrentDigestedLength[SEP_HASH_LENGTH_WORDS];
uint32_t KeyType;
uint32_t dataCompleted;
uint32_t hmacFinalization;
/* no space left */
} SepHashPrivateContext_s;
#endif /*_HASH_DEFS_H__*/
......@@ -17,6 +17,7 @@
#include <linux/crypto.h>
#include <linux/version.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <linux/dmapool.h>
......@@ -27,6 +28,7 @@
#include "ssi_buffer_mgr.h"
#include "cc_lli_defs.h"
#include "ssi_hash.h"
#define LLI_MAX_NUM_OF_DATA_ENTRIES 128
#define LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES 4
......@@ -281,11 +283,6 @@ static inline int ssi_buffer_mgr_render_scatterlist_to_mlli(
return 0;
}
static int ssi_buffer_mgr_generate_mlli (
struct device *dev,
struct buffer_array *sg_data,
struct mlli_params *mlli_params) __maybe_unused;
static int ssi_buffer_mgr_generate_mlli(
struct device *dev,
struct buffer_array *sg_data,
......@@ -427,11 +424,6 @@ ssi_buffer_mgr_dma_map_sg(struct device *dev, struct scatterlist *sg, uint32_t n
return 0;
}
static int ssi_buffer_mgr_map_scatterlist (struct device *dev,
struct scatterlist *sg, unsigned int nbytes, int direction,
uint32_t *nents, uint32_t max_sg_nents, uint32_t *lbytes,
uint32_t *mapped_nents) __maybe_unused;
static int ssi_buffer_mgr_map_scatterlist(
struct device *dev, struct scatterlist *sg,
unsigned int nbytes, int direction,
......@@ -493,6 +485,305 @@ static int ssi_buffer_mgr_map_scatterlist(
return 0;
}
static inline int ssi_ahash_handle_curr_buf(struct device *dev,
struct ahash_req_ctx *areq_ctx,
uint8_t* curr_buff,
uint32_t curr_buff_cnt,
struct buffer_array *sg_data)
{
SSI_LOG_DEBUG(" handle curr buff %x set to DLLI \n", curr_buff_cnt);
/* create sg for the current buffer */
sg_init_one(areq_ctx->buff_sg,curr_buff, curr_buff_cnt);
if (unlikely(dma_map_sg(dev, areq_ctx->buff_sg, 1,
DMA_TO_DEVICE) != 1)) {
SSI_LOG_ERR("dma_map_sg() "
"src buffer failed\n");
return -ENOMEM;
}
SSI_LOG_DEBUG("Mapped curr_buff: dma_address=0x%llX "
"page_link=0x%08lX addr=%pK "
"offset=%u length=%u\n",
(unsigned long long)sg_dma_address(areq_ctx->buff_sg),
areq_ctx->buff_sg->page_link,
sg_virt(areq_ctx->buff_sg),
areq_ctx->buff_sg->offset,
areq_ctx->buff_sg->length);
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_DLLI;
areq_ctx->curr_sg = areq_ctx->buff_sg;
areq_ctx->in_nents = 0;
/* prepare for case of MLLI */
ssi_buffer_mgr_add_scatterlist_entry(sg_data, 1, areq_ctx->buff_sg,
curr_buff_cnt, 0, false, NULL);
return 0;
}
int ssi_buffer_mgr_map_hash_request_final(
struct ssi_drvdata *drvdata, void *ctx, struct scatterlist *src, unsigned int nbytes, bool do_update)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = &drvdata->plat_dev->dev;
uint8_t* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
areq_ctx->buff0;
uint32_t *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
&areq_ctx->buff0_cnt;
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
uint32_t dummy = 0;
uint32_t mapped_nents = 0;
SSI_LOG_DEBUG(" final params : curr_buff=%pK "
"curr_buff_cnt=0x%X nbytes = 0x%X "
"src=%pK curr_index=%u\n",
curr_buff, *curr_buff_cnt, nbytes,
src, areq_ctx->buff_index);
/* Init the type of the dma buffer */
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_NULL;
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
areq_ctx->in_nents = 0;
if (unlikely(nbytes == 0 && *curr_buff_cnt == 0)) {
/* nothing to do */
return 0;
}
/*TODO: copy data in case that buffer is enough for operation */
/* map the previous buffer */
if (*curr_buff_cnt != 0 ) {
if (ssi_ahash_handle_curr_buf(dev, areq_ctx, curr_buff,
*curr_buff_cnt, &sg_data) != 0) {
return -ENOMEM;
}
}
if (src && (nbytes > 0) && do_update) {
if ( unlikely( ssi_buffer_mgr_map_scatterlist( dev,src,
nbytes,
DMA_TO_DEVICE,
&areq_ctx->in_nents,
LLI_MAX_NUM_OF_DATA_ENTRIES,
&dummy, &mapped_nents))){
goto unmap_curr_buff;
}
if ( src && (mapped_nents == 1)
&& (areq_ctx->data_dma_buf_type == SSI_DMA_BUF_NULL) ) {
memcpy(areq_ctx->buff_sg,src,
sizeof(struct scatterlist));
areq_ctx->buff_sg->length = nbytes;
areq_ctx->curr_sg = areq_ctx->buff_sg;
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_DLLI;
} else {
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_MLLI;
}
}
/*build mlli */
if (unlikely(areq_ctx->data_dma_buf_type == SSI_DMA_BUF_MLLI)) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
/* add the src data to the sg_data */
ssi_buffer_mgr_add_scatterlist_entry(&sg_data,
areq_ctx->in_nents,
src,
nbytes, 0,
true, &areq_ctx->mlli_nents);
if (unlikely(ssi_buffer_mgr_generate_mlli(dev, &sg_data,
mlli_params) != 0)) {
goto fail_unmap_din;
}
}
/* change the buffer index for the unmap function */
areq_ctx->buff_index = (areq_ctx->buff_index^1);
SSI_LOG_DEBUG("areq_ctx->data_dma_buf_type = %s\n",
GET_DMA_BUFFER_TYPE(areq_ctx->data_dma_buf_type));
return 0;
fail_unmap_din:
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
unmap_curr_buff:
if (*curr_buff_cnt != 0 ) {
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
}
return -ENOMEM;
}
int ssi_buffer_mgr_map_hash_request_update(
struct ssi_drvdata *drvdata, void *ctx, struct scatterlist *src, unsigned int nbytes, unsigned int block_size)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = &drvdata->plat_dev->dev;
uint8_t* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
areq_ctx->buff0;
uint32_t *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
&areq_ctx->buff0_cnt;
uint8_t* next_buff = areq_ctx->buff_index ? areq_ctx->buff0 :
areq_ctx->buff1;
uint32_t *next_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
&areq_ctx->buff1_cnt;
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
unsigned int update_data_len;
uint32_t total_in_len = nbytes + *curr_buff_cnt;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
unsigned int swap_index = 0;
uint32_t dummy = 0;
uint32_t mapped_nents = 0;
SSI_LOG_DEBUG(" update params : curr_buff=%pK "
"curr_buff_cnt=0x%X nbytes=0x%X "
"src=%pK curr_index=%u \n",
curr_buff, *curr_buff_cnt, nbytes,
src, areq_ctx->buff_index);
/* Init the type of the dma buffer */
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_NULL;
mlli_params->curr_pool = NULL;
areq_ctx->curr_sg = NULL;
sg_data.num_of_buffers = 0;
areq_ctx->in_nents = 0;
if (unlikely(total_in_len < block_size)) {
SSI_LOG_DEBUG(" less than one block: curr_buff=%pK "
"*curr_buff_cnt=0x%X copy_to=%pK\n",
curr_buff, *curr_buff_cnt,
&curr_buff[*curr_buff_cnt]);
areq_ctx->in_nents =
ssi_buffer_mgr_get_sgl_nents(src,
nbytes,
&dummy, NULL);
sg_copy_to_buffer(src, areq_ctx->in_nents,
&curr_buff[*curr_buff_cnt], nbytes);
*curr_buff_cnt += nbytes;
return 1;
}
/* Calculate the residue size*/
*next_buff_cnt = total_in_len & (block_size - 1);
/* update data len */
update_data_len = total_in_len - *next_buff_cnt;
SSI_LOG_DEBUG(" temp length : *next_buff_cnt=0x%X "
"update_data_len=0x%X\n",
*next_buff_cnt, update_data_len);
/* Copy the new residue to next buffer */
if (*next_buff_cnt != 0) {
SSI_LOG_DEBUG(" handle residue: next buff %pK skip data %u"
" residue %u \n", next_buff,
(update_data_len - *curr_buff_cnt),
*next_buff_cnt);
ssi_buffer_mgr_copy_scatterlist_portion(next_buff, src,
(update_data_len -*curr_buff_cnt),
nbytes,SSI_SG_TO_BUF);
/* change the buffer index for next operation */
swap_index = 1;
}
if (*curr_buff_cnt != 0) {
if (ssi_ahash_handle_curr_buf(dev, areq_ctx, curr_buff,
*curr_buff_cnt, &sg_data) != 0) {
return -ENOMEM;
}
/* change the buffer index for next operation */
swap_index = 1;
}
if ( update_data_len > *curr_buff_cnt ) {
if ( unlikely( ssi_buffer_mgr_map_scatterlist( dev,src,
(update_data_len -*curr_buff_cnt),
DMA_TO_DEVICE,
&areq_ctx->in_nents,
LLI_MAX_NUM_OF_DATA_ENTRIES,
&dummy, &mapped_nents))){
goto unmap_curr_buff;
}
if ( (mapped_nents == 1)
&& (areq_ctx->data_dma_buf_type == SSI_DMA_BUF_NULL) ) {
/* only one entry in the SG and no previous data */
memcpy(areq_ctx->buff_sg,src,
sizeof(struct scatterlist));
areq_ctx->buff_sg->length = update_data_len;
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_DLLI;
areq_ctx->curr_sg = areq_ctx->buff_sg;
} else {
areq_ctx->data_dma_buf_type = SSI_DMA_BUF_MLLI;
}
}
if (unlikely(areq_ctx->data_dma_buf_type == SSI_DMA_BUF_MLLI)) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
/* add the src data to the sg_data */
ssi_buffer_mgr_add_scatterlist_entry(&sg_data,
areq_ctx->in_nents,
src,
(update_data_len - *curr_buff_cnt), 0,
true, &areq_ctx->mlli_nents);
if (unlikely(ssi_buffer_mgr_generate_mlli(dev, &sg_data,
mlli_params) != 0)) {
goto fail_unmap_din;
}
}
areq_ctx->buff_index = (areq_ctx->buff_index^swap_index);
return 0;
fail_unmap_din:
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
unmap_curr_buff:
if (*curr_buff_cnt != 0 ) {
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
}
return -ENOMEM;
}
void ssi_buffer_mgr_unmap_hash_request(
struct device *dev, void *ctx, struct scatterlist *src, bool do_revert)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
uint32_t *prev_len = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
&areq_ctx->buff1_cnt;
/*In case a pool was set, a table was
allocated and should be released */
if (areq_ctx->mlli_params.curr_pool != NULL) {
SSI_LOG_DEBUG("free MLLI buffer: dma=0x%llX virt=%pK\n",
(unsigned long long)areq_ctx->mlli_params.mlli_dma_addr,
areq_ctx->mlli_params.mlli_virt_addr);
SSI_RESTORE_DMA_ADDR_TO_48BIT(areq_ctx->mlli_params.mlli_dma_addr);
dma_pool_free(areq_ctx->mlli_params.curr_pool,
areq_ctx->mlli_params.mlli_virt_addr,
areq_ctx->mlli_params.mlli_dma_addr);
}
if ((src) && likely(areq_ctx->in_nents != 0)) {
SSI_LOG_DEBUG("Unmapped sg src: virt=%pK dma=0x%llX len=0x%X\n",
sg_virt(src),
(unsigned long long)sg_dma_address(src),
sg_dma_len(src));
SSI_RESTORE_DMA_ADDR_TO_48BIT(sg_dma_address(src));
dma_unmap_sg(dev, src,
areq_ctx->in_nents, DMA_TO_DEVICE);
}
if (*prev_len != 0) {
SSI_LOG_DEBUG("Unmapped buffer: areq_ctx->buff_sg=%pK"
"dma=0x%llX len 0x%X\n",
sg_virt(areq_ctx->buff_sg),
(unsigned long long)sg_dma_address(areq_ctx->buff_sg),
sg_dma_len(areq_ctx->buff_sg));
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
if (!do_revert) {
/* clean the previous data length for update operation */
*prev_len = 0;
} else {
areq_ctx->buff_index ^= 1;
}
}
}
int ssi_buffer_mgr_init(struct ssi_drvdata *drvdata)
{
struct buff_mgr_handle *buff_mgr_handle;
......
......@@ -55,6 +55,12 @@ int ssi_buffer_mgr_init(struct ssi_drvdata *drvdata);
int ssi_buffer_mgr_fini(struct ssi_drvdata *drvdata);
int ssi_buffer_mgr_map_hash_request_final(struct ssi_drvdata *drvdata, void *ctx, struct scatterlist *src, unsigned int nbytes, bool do_update);
int ssi_buffer_mgr_map_hash_request_update(struct ssi_drvdata *drvdata, void *ctx, struct scatterlist *src, unsigned int nbytes, unsigned int block_size);
void ssi_buffer_mgr_unmap_hash_request(struct device *dev, void *ctx, struct scatterlist *src, bool do_revert);
void ssi_buffer_mgr_copy_scatterlist_portion(u8 *dest, struct scatterlist *sg, uint32_t to_skip, uint32_t end, enum ssi_sg_cpy_direct direct);
void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, uint32_t data_len);
......
......@@ -61,6 +61,7 @@
#include "ssi_request_mgr.h"
#include "ssi_buffer_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_hash.h"
#include "ssi_sram_mgr.h"
#include "ssi_pm.h"
......@@ -218,8 +219,6 @@ static int init_cc_resources(struct platform_device *plat_dev)
goto init_cc_res_err;
}
new_drvdata->inflight_counter = 0;
dev_set_drvdata(&plat_dev->dev, new_drvdata);
/* Get device resources */
/* First CC registers space */
......@@ -344,12 +343,19 @@ static int init_cc_resources(struct platform_device *plat_dev)
goto init_cc_res_err;
}
rc = ssi_hash_alloc(new_drvdata);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("ssi_hash_alloc failed\n");
goto init_cc_res_err;
}
return 0;
init_cc_res_err:
SSI_LOG_ERR("Freeing CC HW resources!\n");
if (new_drvdata != NULL) {
ssi_hash_free(new_drvdata);
ssi_power_mgr_fini(new_drvdata);
ssi_buffer_mgr_fini(new_drvdata);
request_mgr_fini(new_drvdata);
......@@ -389,6 +395,7 @@ static void cleanup_cc_resources(struct platform_device *plat_dev)
struct ssi_drvdata *drvdata =
(struct ssi_drvdata *)dev_get_drvdata(&plat_dev->dev);
ssi_hash_free(drvdata);
ssi_power_mgr_fini(drvdata);
ssi_buffer_mgr_fini(drvdata);
request_mgr_fini(drvdata);
......
......@@ -32,6 +32,7 @@
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/authenc.h>
#include <crypto/hash.h>
#include <linux/version.h>
#ifndef INT32_MAX /* Missing in Linux kernel */
......@@ -50,6 +51,7 @@
#define CC_SUPPORT_SHA DX_DEV_SHA_MAX
#include "cc_crypto_ctx.h"
#include "ssi_sysfs.h"
#include "hash_defs.h"
#define DRV_MODULE_VERSION "3.0"
......@@ -138,13 +140,13 @@ struct ssi_drvdata {
ssi_sram_addr_t mlli_sram_addr;
struct completion icache_setup_completion;
void *buff_mgr_handle;
void *hash_handle;
void *request_mgr_handle;
void *sram_mgr_handle;
#ifdef ENABLE_CYCLE_COUNT
cycles_t isr_exit_cycles; /* Save for isr-to-tasklet latency */
#endif
uint32_t inflight_counter;
};
......
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/md5.h>
#include <crypto/internal/hash.h>
#include "ssi_config.h"
#include "ssi_driver.h"
#include "ssi_request_mgr.h"
#include "ssi_buffer_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_hash.h"
#include "ssi_sram_mgr.h"
#define SSI_MAX_AHASH_SEQ_LEN 12
#define SSI_MAX_HASH_OPAD_TMP_KEYS_SIZE MAX(SSI_MAX_HASH_BLCK_SIZE, 3 * AES_BLOCK_SIZE)
struct ssi_hash_handle {
ssi_sram_addr_t digest_len_sram_addr; /* const value in SRAM*/
ssi_sram_addr_t larval_digest_sram_addr; /* const value in SRAM */
struct list_head hash_list;
struct completion init_comp;
};
static const uint32_t digest_len_init[] = {
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
static const uint32_t md5_init[] = {
SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha1_init[] = {
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha224_init[] = {
SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
static const uint32_t sha256_init[] = {
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
#if (DX_DEV_SHA_MAX > 256)
static const uint32_t digest_len_sha512_init[] = {
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
static const uint64_t sha384_init[] = {
SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4,
SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 };
static const uint64_t sha512_init[] = {
SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
#endif
static void ssi_hash_create_xcbc_setup(
struct ahash_request *areq,
HwDesc_s desc[],
unsigned int *seq_size);
static void ssi_hash_create_cmac_setup(struct ahash_request *areq,
HwDesc_s desc[],
unsigned int *seq_size);
struct ssi_hash_alg {
struct list_head entry;
bool synchronize;
int hash_mode;
int hw_mode;
int inter_digestsize;
struct ssi_drvdata *drvdata;
union {
struct ahash_alg ahash_alg;
struct shash_alg shash_alg;
};
};
struct hash_key_req_ctx {
uint32_t keylen;
dma_addr_t key_dma_addr;
};
/* hash per-session context */
struct ssi_hash_ctx {
struct ssi_drvdata *drvdata;
/* holds the origin digest; the digest after "setkey" if HMAC,*
the initial digest if HASH. */
uint8_t digest_buff[SSI_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
uint8_t opad_tmp_keys_buff[SSI_MAX_HASH_OPAD_TMP_KEYS_SIZE] ____cacheline_aligned;
dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
dma_addr_t digest_buff_dma_addr;
/* use for hmac with key large then mode block size */
struct hash_key_req_ctx key_params;
int hash_mode;
int hw_mode;
int inter_digestsize;
struct completion setkey_comp;
bool is_hmac;
};
static const struct crypto_type crypto_shash_type;
static void ssi_hash_create_data_desc(
struct ahash_req_ctx *areq_ctx,
struct ssi_hash_ctx *ctx,
unsigned int flow_mode,HwDesc_s desc[],
bool is_not_last_data,
unsigned int *seq_size);
static inline void ssi_set_hash_endianity(uint32_t mode, HwDesc_s *desc)
{
if (unlikely((mode == DRV_HASH_MD5) ||
(mode == DRV_HASH_SHA384) ||
(mode == DRV_HASH_SHA512))) {
HW_DESC_SET_BYTES_SWAP(desc, 1);
} else {
HW_DESC_SET_CIPHER_CONFIG0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
}
}
static int ssi_hash_map_result(struct device *dev,
struct ahash_req_ctx *state,
unsigned int digestsize)
{
state->digest_result_dma_addr =
dma_map_single(dev, (void *)state->digest_result_buff,
digestsize,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, state->digest_result_dma_addr))) {
SSI_LOG_ERR("Mapping digest result buffer %u B for DMA failed\n",
digestsize);
return -ENOMEM;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(state->digest_result_dma_addr,
digestsize);
SSI_LOG_DEBUG("Mapped digest result buffer %u B "
"at va=%pK to dma=0x%llX\n",
digestsize, state->digest_result_buff,
(unsigned long long)state->digest_result_dma_addr);
return 0;
}
static int ssi_hash_map_request(struct device *dev,
struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx)
{
bool is_hmac = ctx->is_hmac;
ssi_sram_addr_t larval_digest_addr = ssi_ahash_get_larval_digest_sram_addr(
ctx->drvdata, ctx->hash_mode);
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc;
int rc = -ENOMEM;
state->buff0 = kzalloc(SSI_MAX_HASH_BLCK_SIZE ,GFP_KERNEL|GFP_DMA);
if (!state->buff0) {
SSI_LOG_ERR("Allocating buff0 in context failed\n");
goto fail0;
}
state->buff1 = kzalloc(SSI_MAX_HASH_BLCK_SIZE ,GFP_KERNEL|GFP_DMA);
if (!state->buff1) {
SSI_LOG_ERR("Allocating buff1 in context failed\n");
goto fail_buff0;
}
state->digest_result_buff = kzalloc(SSI_MAX_HASH_DIGEST_SIZE ,GFP_KERNEL|GFP_DMA);
if (!state->digest_result_buff) {
SSI_LOG_ERR("Allocating digest_result_buff in context failed\n");
goto fail_buff1;
}
state->digest_buff = kzalloc(ctx->inter_digestsize, GFP_KERNEL|GFP_DMA);
if (!state->digest_buff) {
SSI_LOG_ERR("Allocating digest-buffer in context failed\n");
goto fail_digest_result_buff;
}
SSI_LOG_DEBUG("Allocated digest-buffer in context ctx->digest_buff=@%p\n", state->digest_buff);
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
state->digest_bytes_len = kzalloc(HASH_LEN_SIZE, GFP_KERNEL|GFP_DMA);
if (!state->digest_bytes_len) {
SSI_LOG_ERR("Allocating digest-bytes-len in context failed\n");
goto fail1;
}
SSI_LOG_DEBUG("Allocated digest-bytes-len in context state->>digest_bytes_len=@%p\n", state->digest_bytes_len);
} else {
state->digest_bytes_len = NULL;
}
state->opad_digest_buff = kzalloc(ctx->inter_digestsize, GFP_KERNEL|GFP_DMA);
if (!state->opad_digest_buff) {
SSI_LOG_ERR("Allocating opad-digest-buffer in context failed\n");
goto fail2;
}
SSI_LOG_DEBUG("Allocated opad-digest-buffer in context state->digest_bytes_len=@%p\n", state->opad_digest_buff);
state->digest_buff_dma_addr = dma_map_single(dev, (void *)state->digest_buff, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
SSI_LOG_ERR("Mapping digest len %d B at va=%pK for DMA failed\n",
ctx->inter_digestsize, state->digest_buff);
goto fail3;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(state->digest_buff_dma_addr,
ctx->inter_digestsize);
SSI_LOG_DEBUG("Mapped digest %d B at va=%pK to dma=0x%llX\n",
ctx->inter_digestsize, state->digest_buff,
(unsigned long long)state->digest_buff_dma_addr);
if (is_hmac) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->digest_buff_dma_addr);
dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->digest_buff_dma_addr,
ctx->inter_digestsize);
if ((ctx->hw_mode == DRV_CIPHER_XCBC_MAC) || (ctx->hw_mode == DRV_CIPHER_CMAC)) {
memset(state->digest_buff, 0, ctx->inter_digestsize);
} else { /*sha*/
memcpy(state->digest_buff, ctx->digest_buff, ctx->inter_digestsize);
#if (DX_DEV_SHA_MAX > 256)
if (unlikely((ctx->hash_mode == DRV_HASH_SHA512) || (ctx->hash_mode == DRV_HASH_SHA384))) {
memcpy(state->digest_bytes_len, digest_len_sha512_init, HASH_LEN_SIZE);
} else {
memcpy(state->digest_bytes_len, digest_len_init, HASH_LEN_SIZE);
}
#else
memcpy(state->digest_bytes_len, digest_len_init, HASH_LEN_SIZE);
#endif
}
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_buff_dma_addr);
dma_sync_single_for_device(dev, state->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
SSI_UPDATE_DMA_ADDR_TO_48BIT(state->digest_buff_dma_addr,
ctx->inter_digestsize);
if (ctx->hash_mode != DRV_HASH_NULL) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr);
dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
memcpy(state->opad_digest_buff, ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr,
ctx->inter_digestsize);
}
} else { /*hash*/
/* Copy the initial digests if hash flow. The SRAM contains the
initial digests in the expected order for all SHA* */
HW_DESC_INIT(&desc);
HW_DESC_SET_DIN_SRAM(&desc, larval_digest_addr, ctx->inter_digestsize);
HW_DESC_SET_DOUT_DLLI(&desc, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc, BYPASS);
rc = send_request(ctx->drvdata, &ssi_req, &desc, 1, 0);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
goto fail4;
}
}
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
state->digest_bytes_len_dma_addr = dma_map_single(dev, (void *)state->digest_bytes_len, HASH_LEN_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
SSI_LOG_ERR("Mapping digest len %u B at va=%pK for DMA failed\n",
HASH_LEN_SIZE, state->digest_bytes_len);
goto fail4;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(state->digest_bytes_len_dma_addr,
HASH_LEN_SIZE);
SSI_LOG_DEBUG("Mapped digest len %u B at va=%pK to dma=0x%llX\n",
HASH_LEN_SIZE, state->digest_bytes_len,
(unsigned long long)state->digest_bytes_len_dma_addr);
} else {
state->digest_bytes_len_dma_addr = 0;
}
if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
state->opad_digest_dma_addr = dma_map_single(dev, (void *)state->opad_digest_buff, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
SSI_LOG_ERR("Mapping opad digest %d B at va=%pK for DMA failed\n",
ctx->inter_digestsize, state->opad_digest_buff);
goto fail5;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(state->opad_digest_dma_addr,
ctx->inter_digestsize);
SSI_LOG_DEBUG("Mapped opad digest %d B at va=%pK to dma=0x%llX\n",
ctx->inter_digestsize, state->opad_digest_buff,
(unsigned long long)state->opad_digest_dma_addr);
} else {
state->opad_digest_dma_addr = 0;
}
state->buff0_cnt = 0;
state->buff1_cnt = 0;
state->buff_index = 0;
state->mlli_params.curr_pool = NULL;
return 0;
fail5:
if (state->digest_bytes_len_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_bytes_len_dma_addr);
dma_unmap_single(dev, state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, DMA_BIDIRECTIONAL);
state->digest_bytes_len_dma_addr = 0;
}
fail4:
if (state->digest_buff_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_buff_dma_addr);
dma_unmap_single(dev, state->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL);
state->digest_buff_dma_addr = 0;
}
fail3:
if (state->opad_digest_buff != NULL)
kfree(state->opad_digest_buff);
fail2:
if (state->digest_bytes_len != NULL)
kfree(state->digest_bytes_len);
fail1:
if (state->digest_buff != NULL)
kfree(state->digest_buff);
fail_digest_result_buff:
if (state->digest_result_buff != NULL) {
kfree(state->digest_result_buff);
state->digest_result_buff = NULL;
}
fail_buff1:
if (state->buff1 != NULL) {
kfree(state->buff1);
state->buff1 = NULL;
}
fail_buff0:
if (state->buff0 != NULL) {
kfree(state->buff0);
state->buff0 = NULL;
}
fail0:
return rc;
}
static void ssi_hash_unmap_request(struct device *dev,
struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx)
{
if (state->digest_buff_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_buff_dma_addr);
dma_unmap_single(dev, state->digest_buff_dma_addr,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("Unmapped digest-buffer: digest_buff_dma_addr=0x%llX\n",
(unsigned long long)state->digest_buff_dma_addr);
state->digest_buff_dma_addr = 0;
}
if (state->digest_bytes_len_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_bytes_len_dma_addr);
dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
HASH_LEN_SIZE, DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=0x%llX\n",
(unsigned long long)state->digest_bytes_len_dma_addr);
state->digest_bytes_len_dma_addr = 0;
}
if (state->opad_digest_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->opad_digest_dma_addr);
dma_unmap_single(dev, state->opad_digest_dma_addr,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("Unmapped opad-digest: opad_digest_dma_addr=0x%llX\n",
(unsigned long long)state->opad_digest_dma_addr);
state->opad_digest_dma_addr = 0;
}
if (state->opad_digest_buff != NULL)
kfree(state->opad_digest_buff);
if (state->digest_bytes_len != NULL)
kfree(state->digest_bytes_len);
if (state->digest_buff != NULL)
kfree(state->digest_buff);
if (state->digest_result_buff != NULL)
kfree(state->digest_result_buff);
if (state->buff1 != NULL)
kfree(state->buff1);
if (state->buff0 != NULL)
kfree(state->buff0);
}
static void ssi_hash_unmap_result(struct device *dev,
struct ahash_req_ctx *state,
unsigned int digestsize, u8 *result)
{
if (state->digest_result_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(state->digest_result_dma_addr);
dma_unmap_single(dev,
state->digest_result_dma_addr,
digestsize,
DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("unmpa digest result buffer "
"va (%pK) pa (%llx) len %u\n",
state->digest_result_buff,
(unsigned long long)state->digest_result_dma_addr,
digestsize);
memcpy(result,
state->digest_result_buff,
digestsize);
}
state->digest_result_dma_addr = 0;
}
static void ssi_hash_update_complete(struct device *dev, void *ssi_req, void __iomem *cc_base)
{
struct ahash_request *req = (struct ahash_request *)ssi_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
SSI_LOG_DEBUG("req=%pK\n", req);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, false);
req->base.complete(&req->base, 0);
}
static void ssi_hash_digest_complete(struct device *dev, void *ssi_req, void __iomem *cc_base)
{
struct ahash_request *req = (struct ahash_request *)ssi_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("req=%pK\n", req);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, false);
ssi_hash_unmap_result(dev, state, digestsize, req->result);
ssi_hash_unmap_request(dev, state, ctx);
req->base.complete(&req->base, 0);
}
static void ssi_hash_complete(struct device *dev, void *ssi_req, void __iomem *cc_base)
{
struct ahash_request *req = (struct ahash_request *)ssi_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("req=%pK\n", req);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, false);
ssi_hash_unmap_result(dev, state, digestsize, req->result);
ssi_hash_unmap_request(dev, state, ctx);
req->base.complete(&req->base, 0);
}
static int ssi_hash_digest(struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx,
unsigned int digestsize,
struct scatterlist *src,
unsigned int nbytes, u8 *result,
void *async_req)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
bool is_hmac = ctx->is_hmac;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
ssi_sram_addr_t larval_digest_addr = ssi_ahash_get_larval_digest_sram_addr(
ctx->drvdata, ctx->hash_mode);
int idx = 0;
int rc = 0;
SSI_LOG_DEBUG("===== %s-digest (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
if (unlikely(ssi_hash_map_request(dev, state, ctx) != 0)) {
SSI_LOG_ERR("map_ahash_source() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
if (async_req) {
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_digest_complete;
ssi_req.user_arg = (void *)async_req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
}
/* If HMAC then load hash IPAD xor key, if HASH then load initial digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
if (is_hmac) {
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT);
} else {
HW_DESC_SET_DIN_SRAM(&desc[idx], larval_digest_addr, ctx->inter_digestsize);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
if (is_hmac) {
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT);
} else {
HW_DESC_SET_DIN_CONST(&desc[idx], 0, HASH_LEN_SIZE);
if (likely(nbytes != 0)) {
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
} else {
HW_DESC_SET_CIPHER_DO(&desc[idx], DO_PAD);
}
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
ssi_hash_create_data_desc(state, ctx, DIN_HASH, desc, false, &idx);
if (is_hmac) {
/* HW last hash block padding (aka. "DO_PAD") */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, HASH_LEN_SIZE, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE1);
HW_DESC_SET_CIPHER_DO(&desc[idx], DO_PAD);
idx++;
/* store the hash digest result in the context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, digestsize, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
ssi_set_hash_endianity(ctx->hash_mode, &desc[idx]);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Loading hash opad xor key state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_SRAM(&desc[idx], ssi_ahash_get_initial_digest_len_sram_addr(ctx->drvdata, ctx->hash_mode), HASH_LEN_SIZE);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* Perform HASH update */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, async_req? 1:0); /*TODO*/
if (async_req) {
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
ssi_set_hash_endianity(ctx->hash_mode, &desc[idx]);
idx++;
if (async_req) {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
ssi_hash_unmap_result(dev, state, digestsize, result);
ssi_hash_unmap_request(dev, state, ctx);
}
} else {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (rc != 0) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
} else {
ssi_buffer_mgr_unmap_hash_request(dev, state, src, false);
}
ssi_hash_unmap_result(dev, state, digestsize, result);
ssi_hash_unmap_request(dev, state, ctx);
}
return rc;
}
static int ssi_hash_update(struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx,
unsigned int block_size,
struct scatterlist *src,
unsigned int nbytes,
void *async_req)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
uint32_t idx = 0;
int rc;
SSI_LOG_DEBUG("===== %s-update (%d) ====\n", ctx->is_hmac ?
"hmac":"hash", nbytes);
if (nbytes == 0) {
/* no real updates required */
return 0;
}
if (unlikely(rc = ssi_buffer_mgr_map_hash_request_update(ctx->drvdata, state, src, nbytes, block_size))) {
if (rc == 1) {
SSI_LOG_DEBUG(" data size not require HW update %x\n",
nbytes);
/* No hardware updates are required */
return 0;
}
SSI_LOG_ERR("map_ahash_request_update() failed\n");
return -ENOMEM;
}
if (async_req) {
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_update_complete;
ssi_req.user_arg = async_req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
}
/* Restore hash digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Restore hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
ssi_hash_create_data_desc(state, ctx, DIN_HASH, desc, false, &idx);
/* store the hash digest result in context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* store current hash length in context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT, async_req? 1:0);
if (async_req) {
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE1);
idx++;
if (async_req) {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
}
} else {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (rc != 0) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
} else {
ssi_buffer_mgr_unmap_hash_request(dev, state, src, false);
}
}
return rc;
}
static int ssi_hash_finup(struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx,
unsigned int digestsize,
struct scatterlist *src,
unsigned int nbytes,
u8 *result,
void *async_req)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
bool is_hmac = ctx->is_hmac;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc;
SSI_LOG_DEBUG("===== %s-finup (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, src , nbytes, 1) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
if (async_req) {
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_complete;
ssi_req.user_arg = async_req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
}
/* Restore hash digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Restore hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
ssi_hash_create_data_desc(state, ctx, DIN_HASH, desc, false, &idx);
if (is_hmac) {
/* Store the hash digest result in the context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, digestsize, NS_BIT, 0);
ssi_set_hash_endianity(ctx->hash_mode,&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Loading hash OPAD xor key state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_SRAM(&desc[idx], ssi_ahash_get_initial_digest_len_sram_addr(ctx->drvdata, ctx->hash_mode), HASH_LEN_SIZE);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* Perform HASH update on last digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, async_req? 1:0); /*TODO*/
if (async_req) {
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
ssi_set_hash_endianity(ctx->hash_mode,&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
idx++;
if (async_req) {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
ssi_hash_unmap_result(dev, state, digestsize, result);
}
} else {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (rc != 0) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
ssi_hash_unmap_result(dev, state, digestsize, result);
} else {
ssi_buffer_mgr_unmap_hash_request(dev, state, src, false);
ssi_hash_unmap_result(dev, state, digestsize, result);
ssi_hash_unmap_request(dev, state, ctx);
}
}
return rc;
}
static int ssi_hash_final(struct ahash_req_ctx *state,
struct ssi_hash_ctx *ctx,
unsigned int digestsize,
struct scatterlist *src,
unsigned int nbytes,
u8 *result,
void *async_req)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
bool is_hmac = ctx->is_hmac;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc;
SSI_LOG_DEBUG("===== %s-final (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, src, nbytes, 0) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
if (async_req) {
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_complete;
ssi_req.user_arg = async_req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
}
/* Restore hash digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Restore hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
ssi_hash_create_data_desc(state, ctx, DIN_HASH, desc, false, &idx);
/* "DO-PAD" must be enabled only when writing current length to HW */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_DO(&desc[idx], DO_PAD);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT, 0);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
idx++;
if (is_hmac) {
/* Store the hash digest result in the context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, digestsize, NS_BIT, 0);
ssi_set_hash_endianity(ctx->hash_mode,&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Loading hash OPAD xor key state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr, ctx->inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_SRAM(&desc[idx], ssi_ahash_get_initial_digest_len_sram_addr(ctx->drvdata, ctx->hash_mode), HASH_LEN_SIZE);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* Perform HASH update on last digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, async_req? 1:0);
if (async_req) {
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
ssi_set_hash_endianity(ctx->hash_mode,&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
idx++;
if (async_req) {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
ssi_hash_unmap_result(dev, state, digestsize, result);
}
} else {
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (rc != 0) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, src, true);
ssi_hash_unmap_result(dev, state, digestsize, result);
} else {
ssi_buffer_mgr_unmap_hash_request(dev, state, src, false);
ssi_hash_unmap_result(dev, state, digestsize, result);
ssi_hash_unmap_request(dev, state, ctx);
}
}
return rc;
}
static int ssi_hash_init(struct ahash_req_ctx *state, struct ssi_hash_ctx *ctx)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
state->xcbc_count = 0;
ssi_hash_map_request(dev, state, ctx);
return 0;
}
#ifdef EXPORT_FIXED
static int ssi_hash_export(struct ssi_hash_ctx *ctx, void *out)
{
memcpy(out, ctx, sizeof(struct ssi_hash_ctx));
return 0;
}
static int ssi_hash_import(struct ssi_hash_ctx *ctx, const void *in)
{
memcpy(ctx, in, sizeof(struct ssi_hash_ctx));
return 0;
}
#endif
static int ssi_hash_setkey(void *hash,
const u8 *key,
unsigned int keylen,
bool synchronize)
{
unsigned int hmacPadConst[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
struct ssi_crypto_req ssi_req = {};
struct ssi_hash_ctx *ctx = NULL;
int blocksize = 0;
int digestsize = 0;
int i, idx = 0, rc = 0;
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
ssi_sram_addr_t larval_addr;
SSI_LOG_DEBUG("ssi_hash_setkey: start keylen: %d", keylen);
if (synchronize) {
ctx = crypto_shash_ctx(((struct crypto_shash *)hash));
blocksize = crypto_tfm_alg_blocksize(&((struct crypto_shash *)hash)->base);
digestsize = crypto_shash_digestsize(((struct crypto_shash *)hash));
} else {
ctx = crypto_ahash_ctx(((struct crypto_ahash *)hash));
blocksize = crypto_tfm_alg_blocksize(&((struct crypto_ahash *)hash)->base);
digestsize = crypto_ahash_digestsize(((struct crypto_ahash *)hash));
}
larval_addr = ssi_ahash_get_larval_digest_sram_addr(
ctx->drvdata, ctx->hash_mode);
/* The keylen value distinguishes HASH in case keylen is ZERO bytes,
any NON-ZERO value utilizes HMAC flow */
ctx->key_params.keylen = keylen;
ctx->key_params.key_dma_addr = 0;
ctx->is_hmac = true;
if (keylen != 0) {
ctx->key_params.key_dma_addr = dma_map_single(
&ctx->drvdata->plat_dev->dev,
(void *)key,
keylen, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&ctx->drvdata->plat_dev->dev,
ctx->key_params.key_dma_addr))) {
SSI_LOG_ERR("Mapping key va=0x%p len=%u for"
" DMA failed\n", key, keylen);
return -ENOMEM;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->key_params.key_dma_addr, keylen);
SSI_LOG_DEBUG("mapping key-buffer: key_dma_addr=0x%llX "
"keylen=%u\n",
(unsigned long long)ctx->key_params.key_dma_addr,
ctx->key_params.keylen);
if (keylen > blocksize) {
/* Load hash initial state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_SRAM(&desc[idx], larval_addr,
ctx->inter_digestsize);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, HASH_LEN_SIZE);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
ctx->key_params.key_dma_addr,
keylen, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* Get hashed key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], ctx->opad_tmp_keys_dma_addr,
digestsize, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
ssi_set_hash_endianity(ctx->hash_mode,&desc[idx]);
idx++;
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, (blocksize - digestsize));
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
(ctx->opad_tmp_keys_dma_addr + digestsize),
(blocksize - digestsize),
NS_BIT, 0);
idx++;
} else {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
ctx->key_params.key_dma_addr,
keylen, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
(ctx->opad_tmp_keys_dma_addr),
keylen, NS_BIT, 0);
idx++;
if ((blocksize - keylen) != 0) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, (blocksize - keylen));
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
(ctx->opad_tmp_keys_dma_addr + keylen),
(blocksize - keylen),
NS_BIT, 0);
idx++;
}
}
} else {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, blocksize);
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
(ctx->opad_tmp_keys_dma_addr),
blocksize,
NS_BIT, 0);
idx++;
}
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
goto out;
}
/* calc derived HMAC key */
for (idx = 0, i = 0; i < 2; i++) {
/* Load hash initial state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_SRAM(&desc[idx], larval_addr,
ctx->inter_digestsize);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, HASH_LEN_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Prepare ipad key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_XOR_VAL(&desc[idx], hmacPadConst[i]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
idx++;
/* Perform HASH update */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
ctx->opad_tmp_keys_dma_addr,
blocksize, NS_BIT);
HW_DESC_SET_CIPHER_MODE(&desc[idx],ctx->hw_mode);
HW_DESC_SET_XOR_ACTIVE(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest of the first HASH "update" state) */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
if (i > 0) /* Not first iteration */
HW_DESC_SET_DOUT_DLLI(&desc[idx],
ctx->opad_tmp_keys_dma_addr,
ctx->inter_digestsize,
NS_BIT, 0);
else /* First iteration */
HW_DESC_SET_DOUT_DLLI(&desc[idx],
ctx->digest_buff_dma_addr,
ctx->inter_digestsize,
NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
}
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
out:
if (rc != 0) {
if (synchronize) {
crypto_shash_set_flags((struct crypto_shash *)hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
} else {
crypto_ahash_set_flags((struct crypto_ahash *)hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
}
}
if (ctx->key_params.key_dma_addr) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->key_params.key_dma_addr);
dma_unmap_single(&ctx->drvdata->plat_dev->dev,
ctx->key_params.key_dma_addr,
ctx->key_params.keylen, DMA_TO_DEVICE);
SSI_LOG_DEBUG("Unmapped key-buffer: key_dma_addr=0x%llX keylen=%u\n",
(unsigned long long)ctx->key_params.key_dma_addr,
ctx->key_params.keylen);
}
return rc;
}
static int ssi_xcbc_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
struct ssi_crypto_req ssi_req = {};
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int idx = 0, rc = 0;
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
SSI_LOG_DEBUG("===== setkey (%d) ====\n", keylen);
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
break;
default:
return -EINVAL;
}
ctx->key_params.keylen = keylen;
ctx->key_params.key_dma_addr = dma_map_single(
&ctx->drvdata->plat_dev->dev,
(void *)key,
keylen, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&ctx->drvdata->plat_dev->dev,
ctx->key_params.key_dma_addr))) {
SSI_LOG_ERR("Mapping key va=0x%p len=%u for"
" DMA failed\n", key, keylen);
return -ENOMEM;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->key_params.key_dma_addr, keylen);
SSI_LOG_DEBUG("mapping key-buffer: key_dma_addr=0x%llX "
"keylen=%u\n",
(unsigned long long)ctx->key_params.key_dma_addr,
ctx->key_params.keylen);
ctx->is_hmac = true;
/* 1. Load the AES key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr, keylen, NS_BIT);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_ECB);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], keylen);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], (ctx->opad_tmp_keys_dma_addr +
XCBC_MAC_K1_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], (ctx->opad_tmp_keys_dma_addr +
XCBC_MAC_K2_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], (ctx->opad_tmp_keys_dma_addr +
XCBC_MAC_K3_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 0);
if (rc != 0)
crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->key_params.key_dma_addr);
dma_unmap_single(&ctx->drvdata->plat_dev->dev,
ctx->key_params.key_dma_addr,
ctx->key_params.keylen, DMA_TO_DEVICE);
SSI_LOG_DEBUG("Unmapped key-buffer: key_dma_addr=0x%llX keylen=%u\n",
(unsigned long long)ctx->key_params.key_dma_addr,
ctx->key_params.keylen);
return rc;
}
#if SSI_CC_HAS_CMAC
static int ssi_cmac_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(ahash);
DECL_CYCLE_COUNT_RESOURCES;
SSI_LOG_DEBUG("===== setkey (%d) ====\n", keylen);
ctx->is_hmac = true;
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
break;
default:
return -EINVAL;
}
ctx->key_params.keylen = keylen;
/* STAT_PHASE_1: Copy key to ctx */
START_CYCLE_COUNT();
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr);
dma_sync_single_for_cpu(&ctx->drvdata->plat_dev->dev,
ctx->opad_tmp_keys_dma_addr,
keylen, DMA_TO_DEVICE);
memcpy(ctx->opad_tmp_keys_buff, key, keylen);
if (keylen == 24)
memset(ctx->opad_tmp_keys_buff + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
dma_sync_single_for_device(&ctx->drvdata->plat_dev->dev,
ctx->opad_tmp_keys_dma_addr,
keylen, DMA_TO_DEVICE);
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr, keylen);
ctx->key_params.keylen = keylen;
END_CYCLE_COUNT(STAT_OP_TYPE_SETKEY, STAT_PHASE_1);
return 0;
}
#endif
static void ssi_hash_free_ctx(struct ssi_hash_ctx *ctx)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
if (ctx->digest_buff_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->digest_buff_dma_addr);
dma_unmap_single(dev, ctx->digest_buff_dma_addr,
sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("Unmapped digest-buffer: "
"digest_buff_dma_addr=0x%llX\n",
(unsigned long long)ctx->digest_buff_dma_addr);
ctx->digest_buff_dma_addr = 0;
}
if (ctx->opad_tmp_keys_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr);
dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
sizeof(ctx->opad_tmp_keys_buff),
DMA_BIDIRECTIONAL);
SSI_LOG_DEBUG("Unmapped opad-digest: "
"opad_tmp_keys_dma_addr=0x%llX\n",
(unsigned long long)ctx->opad_tmp_keys_dma_addr);
ctx->opad_tmp_keys_dma_addr = 0;
}
ctx->key_params.keylen = 0;
}
static int ssi_hash_alloc_ctx(struct ssi_hash_ctx *ctx)
{
struct device *dev = &ctx->drvdata->plat_dev->dev;
ctx->key_params.keylen = 0;
ctx->digest_buff_dma_addr = dma_map_single(dev, (void *)ctx->digest_buff, sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
SSI_LOG_ERR("Mapping digest len %zu B at va=%pK for DMA failed\n",
sizeof(ctx->digest_buff), ctx->digest_buff);
goto fail;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->digest_buff_dma_addr,
sizeof(ctx->digest_buff));
SSI_LOG_DEBUG("Mapped digest %zu B at va=%pK to dma=0x%llX\n",
sizeof(ctx->digest_buff), ctx->digest_buff,
(unsigned long long)ctx->digest_buff_dma_addr);
ctx->opad_tmp_keys_dma_addr = dma_map_single(dev, (void *)ctx->opad_tmp_keys_buff, sizeof(ctx->opad_tmp_keys_buff), DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
SSI_LOG_ERR("Mapping opad digest %zu B at va=%pK for DMA failed\n",
sizeof(ctx->opad_tmp_keys_buff),
ctx->opad_tmp_keys_buff);
goto fail;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(ctx->opad_tmp_keys_dma_addr,
sizeof(ctx->opad_tmp_keys_buff));
SSI_LOG_DEBUG("Mapped opad_tmp_keys %zu B at va=%pK to dma=0x%llX\n",
sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
(unsigned long long)ctx->opad_tmp_keys_dma_addr);
ctx->is_hmac = false;
return 0;
fail:
ssi_hash_free_ctx(ctx);
return -ENOMEM;
}
static int ssi_shash_cra_init(struct crypto_tfm *tfm)
{
struct ssi_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct shash_alg * shash_alg =
container_of(tfm->__crt_alg, struct shash_alg, base);
struct ssi_hash_alg *ssi_alg =
container_of(shash_alg, struct ssi_hash_alg, shash_alg);
ctx->hash_mode = ssi_alg->hash_mode;
ctx->hw_mode = ssi_alg->hw_mode;
ctx->inter_digestsize = ssi_alg->inter_digestsize;
ctx->drvdata = ssi_alg->drvdata;
return ssi_hash_alloc_ctx(ctx);
}
static int ssi_ahash_cra_init(struct crypto_tfm *tfm)
{
struct ssi_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct hash_alg_common * hash_alg_common =
container_of(tfm->__crt_alg, struct hash_alg_common, base);
struct ahash_alg *ahash_alg =
container_of(hash_alg_common, struct ahash_alg, halg);
struct ssi_hash_alg *ssi_alg =
container_of(ahash_alg, struct ssi_hash_alg, ahash_alg);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_req_ctx));
ctx->hash_mode = ssi_alg->hash_mode;
ctx->hw_mode = ssi_alg->hw_mode;
ctx->inter_digestsize = ssi_alg->inter_digestsize;
ctx->drvdata = ssi_alg->drvdata;
return ssi_hash_alloc_ctx(ctx);
}
static void ssi_hash_cra_exit(struct crypto_tfm *tfm)
{
struct ssi_hash_ctx *ctx = crypto_tfm_ctx(tfm);
SSI_LOG_DEBUG("ssi_hash_cra_exit");
ssi_hash_free_ctx(ctx);
}
static int ssi_mac_update(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int rc;
uint32_t idx = 0;
if (req->nbytes == 0) {
/* no real updates required */
return 0;
}
state->xcbc_count++;
if (unlikely(rc = ssi_buffer_mgr_map_hash_request_update(ctx->drvdata, state, req->src, req->nbytes, block_size))) {
if (rc == 1) {
SSI_LOG_DEBUG(" data size not require HW update %x\n",
req->nbytes);
/* No hardware updates are required */
return 0;
}
SSI_LOG_ERR("map_ahash_request_update() failed\n");
return -ENOMEM;
}
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
ssi_hash_create_xcbc_setup(req, desc, &idx);
} else {
ssi_hash_create_cmac_setup(req, desc, &idx);
}
ssi_hash_create_data_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
/* store the hash digest result in context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 1);
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_AES_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_update_complete;
ssi_req.user_arg = (void *)req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, true);
}
return rc;
}
static int ssi_mac_final(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc = 0;
uint32_t keySize, keyLen;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
uint32_t rem_cnt = state->buff_index ? state->buff1_cnt :
state->buff0_cnt;
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
keySize = CC_AES_128_BIT_KEY_SIZE;
keyLen = CC_AES_128_BIT_KEY_SIZE;
} else {
keySize = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE : ctx->key_params.keylen;
keyLen = ctx->key_params.keylen;
}
SSI_LOG_DEBUG("===== final xcbc reminder (%d) ====\n", rem_cnt);
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 0) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_complete;
ssi_req.user_arg = (void *)req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
if (state->xcbc_count && (rem_cnt == 0)) {
/* Load key for ECB decryption */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_ECB);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
(ctx->opad_tmp_keys_dma_addr +
XCBC_MAC_K1_OFFSET),
keySize, NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], keyLen);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Initiate decryption of block state to previous block_state-XOR-M[n] */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT,0);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
/* Memory Barrier: wait for axi write to complete */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
}
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
ssi_hash_create_xcbc_setup(req, desc, &idx);
} else {
ssi_hash_create_cmac_setup(req, desc, &idx);
}
if (state->xcbc_count == 0) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], keyLen);
HW_DESC_SET_CMAC_SIZE0_MODE(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
} else if (rem_cnt > 0) {
ssi_hash_create_data_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
} else {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, 1); /*TODO*/
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_AES_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
idx++;
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, true);
ssi_hash_unmap_result(dev, state, digestsize, req->result);
}
return rc;
}
static int ssi_mac_finup(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc = 0;
uint32_t key_len = 0;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("===== finup xcbc(%d) ====\n", req->nbytes);
if (state->xcbc_count > 0 && req->nbytes == 0) {
SSI_LOG_DEBUG("No data to update. Call to fdx_mac_final \n");
return ssi_mac_final(req);
}
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 1) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_complete;
ssi_req.user_arg = (void *)req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
key_len = CC_AES_128_BIT_KEY_SIZE;
ssi_hash_create_xcbc_setup(req, desc, &idx);
} else {
key_len = ctx->key_params.keylen;
ssi_hash_create_cmac_setup(req, desc, &idx);
}
if (req->nbytes == 0) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len);
HW_DESC_SET_CMAC_SIZE0_MODE(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
} else {
ssi_hash_create_data_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, 1); /*TODO*/
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_AES_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
idx++;
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, true);
ssi_hash_unmap_result(dev, state, digestsize, req->result);
}
return rc;
}
static int ssi_mac_digest(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
uint32_t keyLen;
int idx = 0;
int rc;
SSI_LOG_DEBUG("===== -digest mac (%d) ====\n", req->nbytes);
if (unlikely(ssi_hash_map_request(dev, state, ctx) != 0)) {
SSI_LOG_ERR("map_ahash_source() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_hash_map_result(dev, state, digestsize) != 0)) {
SSI_LOG_ERR("map_ahash_digest() failed\n");
return -ENOMEM;
}
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 1) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
}
/* Setup DX request structure */
ssi_req.user_cb = (void *)ssi_hash_digest_complete;
ssi_req.user_arg = (void *)req;
#ifdef ENABLE_CYCLE_COUNT
ssi_req.op_type = STAT_OP_TYPE_ENCODE; /* Use "Encode" stats */
#endif
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
keyLen = CC_AES_128_BIT_KEY_SIZE;
ssi_hash_create_xcbc_setup(req, desc, &idx);
} else {
keyLen = ctx->key_params.keylen;
ssi_hash_create_cmac_setup(req, desc, &idx);
}
if (req->nbytes == 0) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], keyLen);
HW_DESC_SET_CMAC_SIZE0_MODE(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
} else {
ssi_hash_create_data_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
}
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], state->digest_result_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT,1);
HW_DESC_SET_QUEUE_LAST_IND(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_AES_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx],DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_CIPHER_MODE(&desc[idx], ctx->hw_mode);
idx++;
rc = send_request(ctx->drvdata, &ssi_req, desc, idx, 1);
if (unlikely(rc != -EINPROGRESS)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
ssi_buffer_mgr_unmap_hash_request(dev, state, req->src, true);
ssi_hash_unmap_result(dev, state, digestsize, req->result);
ssi_hash_unmap_request(dev, state, ctx);
}
return rc;
}
//shash wrap functions
#ifdef SYNC_ALGS
static int ssi_shash_digest(struct shash_desc *desc,
const u8 *data, unsigned int len, u8 *out)
{
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
struct scatterlist src;
if (len == 0) {
return ssi_hash_digest(state, ctx, digestsize, NULL, 0, out, NULL);
}
/* sg_init_one may crash when len is 0 (depends on kernel configuration) */
sg_init_one(&src, (const void *)data, len);
return ssi_hash_digest(state, ctx, digestsize, &src, len, out, NULL);
}
static int ssi_shash_update(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t blocksize = crypto_tfm_alg_blocksize(&tfm->base);
struct scatterlist src;
sg_init_one(&src, (const void *)data, len);
return ssi_hash_update(state, ctx, blocksize, &src, len, NULL);
}
static int ssi_shash_finup(struct shash_desc *desc,
const u8 *data, unsigned int len, u8 *out)
{
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
struct scatterlist src;
sg_init_one(&src, (const void *)data, len);
return ssi_hash_finup(state, ctx, digestsize, &src, len, out, NULL);
}
static int ssi_shash_final(struct shash_desc *desc, u8 *out)
{
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
return ssi_hash_final(state, ctx, digestsize, NULL, 0, out, NULL);
}
static int ssi_shash_init(struct shash_desc *desc)
{
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
return ssi_hash_init(state, ctx);
}
#ifdef EXPORT_FIXED
static int ssi_shash_export(struct shash_desc *desc, void *out)
{
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
return ssi_hash_export(ctx, out);
}
static int ssi_shash_import(struct shash_desc *desc, const void *in)
{
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
return ssi_hash_import(ctx, in);
}
#endif
static int ssi_shash_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
return ssi_hash_setkey((void *) tfm, key, keylen, true);
}
#endif /* SYNC_ALGS */
//ahash wrap functions
static int ssi_ahash_digest(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_digest(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
static int ssi_ahash_update(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
return ssi_hash_update(state, ctx, block_size, req->src, req->nbytes, (void *)req);
}
static int ssi_ahash_finup(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_finup(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
static int ssi_ahash_final(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_final(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
static int ssi_ahash_init(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
SSI_LOG_DEBUG("===== init (%d) ====\n", req->nbytes);
return ssi_hash_init(state, ctx);
}
#ifdef EXPORT_FIXED
static int ssi_ahash_export(struct ahash_request *req, void *out)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(ahash);
return ssi_hash_export(ctx, out);
}
static int ssi_ahash_import(struct ahash_request *req, const void *in)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(ahash);
return ssi_hash_import(ctx, in);
}
#endif
static int ssi_ahash_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
return ssi_hash_setkey((void *) ahash, key, keylen, false);
}
struct ssi_hash_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
char hmac_name[CRYPTO_MAX_ALG_NAME];
char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
bool synchronize;
union {
struct ahash_alg template_ahash;
struct shash_alg template_shash;
};
int hash_mode;
int hw_mode;
int inter_digestsize;
struct ssi_drvdata *drvdata;
};
/* hash descriptors */
static struct ssi_hash_template driver_hash[] = {
//Asynchronize hash template
{
.name = "sha1",
.driver_name = "sha1-dx",
.hmac_name = "hmac(sha1)",
.hmac_driver_name = "hmac-sha1-dx",
.blocksize = SHA1_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
},
},
.hash_mode = DRV_HASH_SHA1,
.hw_mode = DRV_HASH_HW_SHA1,
.inter_digestsize = SHA1_DIGEST_SIZE,
},
{
.name = "sha256",
.driver_name = "sha256-dx",
.hmac_name = "hmac(sha256)",
.hmac_driver_name = "hmac-sha256-dx",
.blocksize = SHA256_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
},
},
.hash_mode = DRV_HASH_SHA256,
.hw_mode = DRV_HASH_HW_SHA256,
.inter_digestsize = SHA256_DIGEST_SIZE,
},
{
.name = "sha224",
.driver_name = "sha224-dx",
.hmac_name = "hmac(sha224)",
.hmac_driver_name = "hmac-sha224-dx",
.blocksize = SHA224_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
},
},
.hash_mode = DRV_HASH_SHA224,
.hw_mode = DRV_HASH_HW_SHA256,
.inter_digestsize = SHA256_DIGEST_SIZE,
},
#if (DX_DEV_SHA_MAX > 256)
{
.name = "sha384",
.driver_name = "sha384-dx",
.hmac_name = "hmac(sha384)",
.hmac_driver_name = "hmac-sha384-dx",
.blocksize = SHA384_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct sha512_state),
},
},
.hash_mode = DRV_HASH_SHA384,
.hw_mode = DRV_HASH_HW_SHA512,
.inter_digestsize = SHA512_DIGEST_SIZE,
},
{
.name = "sha512",
.driver_name = "sha512-dx",
.hmac_name = "hmac(sha512)",
.hmac_driver_name = "hmac-sha512-dx",
.blocksize = SHA512_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct sha512_state),
},
},
.hash_mode = DRV_HASH_SHA512,
.hw_mode = DRV_HASH_HW_SHA512,
.inter_digestsize = SHA512_DIGEST_SIZE,
},
#endif
{
.name = "md5",
.driver_name = "md5-dx",
.hmac_name = "hmac(md5)",
.hmac_driver_name = "hmac-md5-dx",
.blocksize = MD5_HMAC_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_ahash_update,
.final = ssi_ahash_final,
.finup = ssi_ahash_finup,
.digest = ssi_ahash_digest,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.setkey = ssi_ahash_setkey,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
},
},
.hash_mode = DRV_HASH_MD5,
.hw_mode = DRV_HASH_HW_MD5,
.inter_digestsize = MD5_DIGEST_SIZE,
},
{
.name = "xcbc(aes)",
.driver_name = "xcbc-aes-dx",
.blocksize = AES_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_mac_update,
.final = ssi_mac_final,
.finup = ssi_mac_finup,
.digest = ssi_mac_digest,
.setkey = ssi_xcbc_setkey,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = sizeof(struct aeshash_state),
},
},
.hash_mode = DRV_HASH_NULL,
.hw_mode = DRV_CIPHER_XCBC_MAC,
.inter_digestsize = AES_BLOCK_SIZE,
},
#if SSI_CC_HAS_CMAC
{
.name = "cmac(aes)",
.driver_name = "cmac-aes-dx",
.blocksize = AES_BLOCK_SIZE,
.synchronize = false,
.template_ahash = {
.init = ssi_ahash_init,
.update = ssi_mac_update,
.final = ssi_mac_final,
.finup = ssi_mac_finup,
.digest = ssi_mac_digest,
.setkey = ssi_cmac_setkey,
#ifdef EXPORT_FIXED
.export = ssi_ahash_export,
.import = ssi_ahash_import,
#endif
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = sizeof(struct aeshash_state),
},
},
.hash_mode = DRV_HASH_NULL,
.hw_mode = DRV_CIPHER_CMAC,
.inter_digestsize = AES_BLOCK_SIZE,
},
#endif
};
static struct ssi_hash_alg *
ssi_hash_create_alg(struct ssi_hash_template *template, bool keyed)
{
struct ssi_hash_alg *t_crypto_alg;
struct crypto_alg *alg;
t_crypto_alg = kzalloc(sizeof(struct ssi_hash_alg), GFP_KERNEL);
if (!t_crypto_alg) {
SSI_LOG_ERR("failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
t_crypto_alg->synchronize = template->synchronize;
if (template->synchronize) {
struct shash_alg *halg;
t_crypto_alg->shash_alg = template->template_shash;
halg = &t_crypto_alg->shash_alg;
alg = &halg->base;
if (!keyed) halg->setkey = NULL;
} else {
struct ahash_alg *halg;
t_crypto_alg->ahash_alg = template->template_ahash;
halg = &t_crypto_alg->ahash_alg;
alg = &halg->halg.base;
if (!keyed) halg->setkey = NULL;
}
if (keyed) {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_driver_name);
} else {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
}
alg->cra_module = THIS_MODULE;
alg->cra_ctxsize = sizeof(struct ssi_hash_ctx);
alg->cra_priority = SSI_CRA_PRIO;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_exit = ssi_hash_cra_exit;
if (template->synchronize) {
alg->cra_init = ssi_shash_cra_init;
alg->cra_flags = CRYPTO_ALG_TYPE_SHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->cra_type = &crypto_shash_type;
} else {
alg->cra_init = ssi_ahash_cra_init;
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->cra_type = &crypto_ahash_type;
}
t_crypto_alg->hash_mode = template->hash_mode;
t_crypto_alg->hw_mode = template->hw_mode;
t_crypto_alg->inter_digestsize = template->inter_digestsize;
return t_crypto_alg;
}
int ssi_hash_init_sram_digest_consts(struct ssi_drvdata *drvdata)
{
struct ssi_hash_handle *hash_handle = drvdata->hash_handle;
ssi_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr;
unsigned int larval_seq_len = 0;
HwDesc_s larval_seq[CC_DIGEST_SIZE_MAX/sizeof(uint32_t)];
int rc = 0;
#if (DX_DEV_SHA_MAX > 256)
int i;
#endif
/* Copy-to-sram digest-len */
ssi_sram_mgr_const2sram_desc(digest_len_init, sram_buff_ofs,
ARRAY_SIZE(digest_len_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(digest_len_init);
larval_seq_len = 0;
#if (DX_DEV_SHA_MAX > 256)
/* Copy-to-sram digest-len for sha384/512 */
ssi_sram_mgr_const2sram_desc(digest_len_sha512_init, sram_buff_ofs,
ARRAY_SIZE(digest_len_sha512_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(digest_len_sha512_init);
larval_seq_len = 0;
#endif
/* The initial digests offset */
hash_handle->larval_digest_sram_addr = sram_buff_ofs;
/* Copy-to-sram initial SHA* digests */
ssi_sram_mgr_const2sram_desc(md5_init, sram_buff_ofs,
ARRAY_SIZE(md5_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(md5_init);
larval_seq_len = 0;
ssi_sram_mgr_const2sram_desc(sha1_init, sram_buff_ofs,
ARRAY_SIZE(sha1_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(sha1_init);
larval_seq_len = 0;
ssi_sram_mgr_const2sram_desc(sha224_init, sram_buff_ofs,
ARRAY_SIZE(sha224_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(sha224_init);
larval_seq_len = 0;
ssi_sram_mgr_const2sram_desc(sha256_init, sram_buff_ofs,
ARRAY_SIZE(sha256_init), larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0))
goto init_digest_const_err;
sram_buff_ofs += sizeof(sha256_init);
larval_seq_len = 0;
#if (DX_DEV_SHA_MAX > 256)
/* We are forced to swap each double-word larval before copying to sram */
for (i = 0; i < ARRAY_SIZE(sha384_init); i++) {
const uint32_t const0 = ((uint32_t *)((uint64_t *)&sha384_init[i]))[1];
const uint32_t const1 = ((uint32_t *)((uint64_t *)&sha384_init[i]))[0];
ssi_sram_mgr_const2sram_desc(&const0, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
ssi_sram_mgr_const2sram_desc(&const1, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
}
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc = %d)\n", rc);
goto init_digest_const_err;
}
larval_seq_len = 0;
for (i = 0; i < ARRAY_SIZE(sha512_init); i++) {
const uint32_t const0 = ((uint32_t *)((uint64_t *)&sha512_init[i]))[1];
const uint32_t const1 = ((uint32_t *)((uint64_t *)&sha512_init[i]))[0];
ssi_sram_mgr_const2sram_desc(&const0, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
ssi_sram_mgr_const2sram_desc(&const1, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
}
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc = %d)\n", rc);
goto init_digest_const_err;
}
#endif
init_digest_const_err:
return rc;
}
int ssi_hash_alloc(struct ssi_drvdata *drvdata)
{
struct ssi_hash_handle *hash_handle;
ssi_sram_addr_t sram_buff;
uint32_t sram_size_to_alloc;
int rc = 0;
int alg;
hash_handle = kzalloc(sizeof(struct ssi_hash_handle), GFP_KERNEL);
if (hash_handle == NULL) {
SSI_LOG_ERR("kzalloc failed to allocate %zu B\n",
sizeof(struct ssi_hash_handle));
rc = -ENOMEM;
goto fail;
}
drvdata->hash_handle = hash_handle;
sram_size_to_alloc = sizeof(digest_len_init) +
#if (DX_DEV_SHA_MAX > 256)
sizeof(digest_len_sha512_init) +
sizeof(sha384_init) +
sizeof(sha512_init) +
#endif
sizeof(md5_init) +
sizeof(sha1_init) +
sizeof(sha224_init) +
sizeof(sha256_init);
sram_buff = ssi_sram_mgr_alloc(drvdata, sram_size_to_alloc);
if (sram_buff == NULL_SRAM_ADDR) {
SSI_LOG_ERR("SRAM pool exhausted\n");
rc = -ENOMEM;
goto fail;
}
/* The initial digest-len offset */
hash_handle->digest_len_sram_addr = sram_buff;
/*must be set before the alg registration as it is being used there*/
rc = ssi_hash_init_sram_digest_consts(drvdata);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("Init digest CONST failed (rc=%d)\n", rc);
goto fail;
}
INIT_LIST_HEAD(&hash_handle->hash_list);
/* ahash registration */
for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
struct ssi_hash_alg *t_alg;
/* register hmac version */
if ((((struct ssi_hash_template)driver_hash[alg]).hw_mode != DRV_CIPHER_XCBC_MAC) &&
(((struct ssi_hash_template)driver_hash[alg]).hw_mode != DRV_CIPHER_CMAC)) {
t_alg = ssi_hash_create_alg(&driver_hash[alg], true);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
SSI_LOG_ERR("%s alg allocation failed\n",
driver_hash[alg].driver_name);
goto fail;
}
t_alg->drvdata = drvdata;
if (t_alg->synchronize) {
rc = crypto_register_shash(&t_alg->shash_alg);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("%s alg registration failed\n",
t_alg->shash_alg.base.cra_driver_name);
kfree(t_alg);
goto fail;
} else
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
} else {
rc = crypto_register_ahash(&t_alg->ahash_alg);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("%s alg registration failed\n",
t_alg->ahash_alg.halg.base.cra_driver_name);
kfree(t_alg);
goto fail;
} else
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
}
}
/* register hash version */
t_alg = ssi_hash_create_alg(&driver_hash[alg], false);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
SSI_LOG_ERR("%s alg allocation failed\n",
driver_hash[alg].driver_name);
goto fail;
}
t_alg->drvdata = drvdata;
if (t_alg->synchronize) {
rc = crypto_register_shash(&t_alg->shash_alg);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("%s alg registration failed\n",
t_alg->shash_alg.base.cra_driver_name);
kfree(t_alg);
goto fail;
} else
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
} else {
rc = crypto_register_ahash(&t_alg->ahash_alg);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("%s alg registration failed\n",
t_alg->ahash_alg.halg.base.cra_driver_name);
kfree(t_alg);
goto fail;
} else
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
}
}
return 0;
fail:
if (drvdata->hash_handle != NULL) {
kfree(drvdata->hash_handle);
drvdata->hash_handle = NULL;
}
return rc;
}
int ssi_hash_free(struct ssi_drvdata *drvdata)
{
struct ssi_hash_alg *t_hash_alg, *hash_n;
struct ssi_hash_handle *hash_handle = drvdata->hash_handle;
if (hash_handle != NULL) {
list_for_each_entry_safe(t_hash_alg, hash_n, &hash_handle->hash_list, entry) {
if (t_hash_alg->synchronize) {
crypto_unregister_shash(&t_hash_alg->shash_alg);
} else {
crypto_unregister_ahash(&t_hash_alg->ahash_alg);
}
list_del(&t_hash_alg->entry);
kfree(t_hash_alg);
}
kfree(hash_handle);
drvdata->hash_handle = NULL;
}
return 0;
}
static void ssi_hash_create_xcbc_setup(struct ahash_request *areq,
HwDesc_s desc[],
unsigned int *seq_size) {
unsigned int idx = *seq_size;
struct ahash_req_ctx *state = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
/* Setup XCBC MAC K1 */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr
+ XCBC_MAC_K1_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_XCBC_MAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Setup XCBC MAC K2 */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr
+ XCBC_MAC_K2_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_XCBC_MAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Setup XCBC MAC K3 */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr
+ XCBC_MAC_K3_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE2);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_XCBC_MAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Loading MAC state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_XCBC_MAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
*seq_size = idx;
}
static void ssi_hash_create_cmac_setup(struct ahash_request *areq,
HwDesc_s desc[],
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
struct ahash_req_ctx *state = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
/* Setup CMAC Key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE : ctx->key_params.keylen), NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CMAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], ctx->key_params.keylen);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Load MAC state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CMAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], ctx->key_params.keylen);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
*seq_size = idx;
}
static void ssi_hash_create_data_desc(struct ahash_req_ctx *areq_ctx,
struct ssi_hash_ctx *ctx,
unsigned int flow_mode,
HwDesc_s desc[],
bool is_not_last_data,
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
if (likely(areq_ctx->data_dma_buf_type == SSI_DMA_BUF_DLLI)) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
sg_dma_address(areq_ctx->curr_sg),
areq_ctx->curr_sg->length, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], flow_mode);
idx++;
} else {
if (areq_ctx->data_dma_buf_type == SSI_DMA_BUF_NULL) {
SSI_LOG_DEBUG(" NULL mode\n");
/* nothing to build */
return;
}
/* bypass */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
areq_ctx->mlli_params.mlli_dma_addr,
areq_ctx->mlli_params.mlli_len,
NS_BIT);
HW_DESC_SET_DOUT_SRAM(&desc[idx],
ctx->drvdata->mlli_sram_addr,
areq_ctx->mlli_params.mlli_len);
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
idx++;
/* process */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_MLLI,
ctx->drvdata->mlli_sram_addr,
areq_ctx->mlli_nents,
NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], flow_mode);
idx++;
}
if (is_not_last_data) {
HW_DESC_SET_DIN_NOT_LAST_INDICATION(&desc[idx-1]);
}
/* return updated desc sequence size */
*seq_size = idx;
}
/*!
* Gets the address of the initial digest in SRAM
* according to the given hash mode
*
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
*
* \return uint32_t The address of the inital digest in SRAM
*/
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, uint32_t mode)
{
struct ssi_drvdata *_drvdata = (struct ssi_drvdata *)drvdata;
struct ssi_hash_handle *hash_handle = _drvdata->hash_handle;
switch (mode) {
case DRV_HASH_NULL:
break; /*Ignore*/
case DRV_HASH_MD5:
return (hash_handle->larval_digest_sram_addr);
case DRV_HASH_SHA1:
return (hash_handle->larval_digest_sram_addr +
sizeof(md5_init));
case DRV_HASH_SHA224:
return (hash_handle->larval_digest_sram_addr +
sizeof(md5_init) +
sizeof(sha1_init));
case DRV_HASH_SHA256:
return (hash_handle->larval_digest_sram_addr +
sizeof(md5_init) +
sizeof(sha1_init) +
sizeof(sha224_init));
#if (DX_DEV_SHA_MAX > 256)
case DRV_HASH_SHA384:
return (hash_handle->larval_digest_sram_addr +
sizeof(md5_init) +
sizeof(sha1_init) +
sizeof(sha224_init) +
sizeof(sha256_init));
case DRV_HASH_SHA512:
return (hash_handle->larval_digest_sram_addr +
sizeof(md5_init) +
sizeof(sha1_init) +
sizeof(sha224_init) +
sizeof(sha256_init) +
sizeof(sha384_init));
#endif
default:
SSI_LOG_ERR("Invalid hash mode (%d)\n", mode);
}
/*This is valid wrong value to avoid kernel crash*/
return hash_handle->larval_digest_sram_addr;
}
ssi_sram_addr_t
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, uint32_t mode)
{
struct ssi_drvdata *_drvdata = (struct ssi_drvdata *)drvdata;
struct ssi_hash_handle *hash_handle = _drvdata->hash_handle;
ssi_sram_addr_t digest_len_addr = hash_handle->digest_len_sram_addr;
switch (mode) {
case DRV_HASH_SHA1:
case DRV_HASH_SHA224:
case DRV_HASH_SHA256:
case DRV_HASH_MD5:
return digest_len_addr;
#if (DX_DEV_SHA_MAX > 256)
case DRV_HASH_SHA384:
case DRV_HASH_SHA512:
return digest_len_addr + sizeof(digest_len_init);
#endif
default:
return digest_len_addr; /*to avoid kernel crash*/
}
}
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* \file ssi_hash.h
ARM CryptoCell Hash Crypto API
*/
#ifndef __SSI_HASH_H__
#define __SSI_HASH_H__
#include "ssi_buffer_mgr.h"
#define HMAC_IPAD_CONST 0x36363636
#define HMAC_OPAD_CONST 0x5C5C5C5C
#if (DX_DEV_SHA_MAX > 256)
#define HASH_LEN_SIZE 16
#define SSI_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
#define SSI_MAX_HASH_BLCK_SIZE SHA512_BLOCK_SIZE
#else
#define HASH_LEN_SIZE 8
#define SSI_MAX_HASH_DIGEST_SIZE SHA256_DIGEST_SIZE
#define SSI_MAX_HASH_BLCK_SIZE SHA256_BLOCK_SIZE
#endif
#define XCBC_MAC_K1_OFFSET 0
#define XCBC_MAC_K2_OFFSET 16
#define XCBC_MAC_K3_OFFSET 32
// this struct was taken from drivers/crypto/nx/nx-aes-xcbc.c and it is used for xcbc/cmac statesize
struct aeshash_state {
u8 state[AES_BLOCK_SIZE];
unsigned int count;
u8 buffer[AES_BLOCK_SIZE];
};
/* ahash state */
struct ahash_req_ctx {
uint8_t* buff0;
uint8_t* buff1;
uint8_t* digest_result_buff;
struct async_gen_req_ctx gen_ctx;
enum ssi_req_dma_buf_type data_dma_buf_type;
uint8_t *digest_buff;
uint8_t *opad_digest_buff;
uint8_t *digest_bytes_len;
dma_addr_t opad_digest_dma_addr;
dma_addr_t digest_buff_dma_addr;
dma_addr_t digest_bytes_len_dma_addr;
dma_addr_t digest_result_dma_addr;
uint32_t buff0_cnt;
uint32_t buff1_cnt;
uint32_t buff_index;
uint32_t xcbc_count; /* count xcbc update operatations */
struct scatterlist buff_sg[2];
struct scatterlist *curr_sg;
uint32_t in_nents;
uint32_t mlli_nents;
struct mlli_params mlli_params;
};
int ssi_hash_alloc(struct ssi_drvdata *drvdata);
int ssi_hash_init_sram_digest_consts(struct ssi_drvdata *drvdata);
int ssi_hash_free(struct ssi_drvdata *drvdata);
/*!
* Gets the initial digest length
*
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256/SHA384/SHA512
*
* \return uint32_t returns the address of the initial digest length in SRAM
*/
ssi_sram_addr_t
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, uint32_t mode);
/*!
* Gets the address of the initial digest in SRAM
* according to the given hash mode
*
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256/SHA384/SHA512
*
* \return uint32_t The address of the inital digest in SRAM
*/
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, uint32_t mode);
#endif /*__SSI_HASH_H__*/
......@@ -26,6 +26,7 @@
#include "ssi_request_mgr.h"
#include "ssi_sram_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_hash.h"
#include "ssi_pm.h"
#include "ssi_pm_ext.h"
......@@ -79,6 +80,9 @@ int ssi_power_mgr_runtime_resume(struct device *dev)
return rc;
}
/* must be after the queue resuming as it uses the HW queue*/
ssi_hash_init_sram_digest_consts(drvdata);
return 0;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment