Commit 52b1eaf4 authored by Kozlov Sergey's avatar Kozlov Sergey Committed by Mauro Carvalho Chehab

[media] netup_unidvb: NetUP Universal DVB-S/S2/T/T2/C PCI-E card driver

Add NetUP Dual Universal CI PCIe board driver.
The board has
    - two CI slots
    - two I2C adapters
    - SPI master bus for accessing flash memory containing
      FPGA firmware

No changes required.
Signed-off-by: default avatarKozlov Sergey <serjk@netup.ru>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@osg.samsung.com>
parent c8946c8d
...@@ -6637,6 +6637,15 @@ T: git git://linuxtv.org/media_tree.git ...@@ -6637,6 +6637,15 @@ T: git git://linuxtv.org/media_tree.git
S: Supported S: Supported
F: drivers/media/dvb-frontends/lnbh25* F: drivers/media/dvb-frontends/lnbh25*
MEDIA DRIVERS FOR NETUP PCI UNIVERSAL DVB devices
M: Sergey Kozlov <serjk@netup.ru>
L: linux-media@vger.kernel.org
W: http://linuxtv.org/
W: http://netup.tv/
T: git git://linuxtv.org/media_tree.git
S: Supported
F: drivers/media/pci/netup_unidvb/*
MEDIA INPUT INFRASTRUCTURE (V4L/DVB) MEDIA INPUT INFRASTRUCTURE (V4L/DVB)
M: Mauro Carvalho Chehab <mchehab@osg.samsung.com> M: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
P: LinuxTV.org Project P: LinuxTV.org Project
......
...@@ -49,6 +49,7 @@ source "drivers/media/pci/mantis/Kconfig" ...@@ -49,6 +49,7 @@ source "drivers/media/pci/mantis/Kconfig"
source "drivers/media/pci/ngene/Kconfig" source "drivers/media/pci/ngene/Kconfig"
source "drivers/media/pci/ddbridge/Kconfig" source "drivers/media/pci/ddbridge/Kconfig"
source "drivers/media/pci/smipcie/Kconfig" source "drivers/media/pci/smipcie/Kconfig"
source "drivers/media/pci/netup_unidvb/Kconfig"
endif endif
endif #MEDIA_PCI_SUPPORT endif #MEDIA_PCI_SUPPORT
......
...@@ -12,7 +12,8 @@ obj-y += ttpci/ \ ...@@ -12,7 +12,8 @@ obj-y += ttpci/ \
ngene/ \ ngene/ \
ddbridge/ \ ddbridge/ \
saa7146/ \ saa7146/ \
smipcie/ smipcie/ \
netup_unidvb/
obj-$(CONFIG_VIDEO_IVTV) += ivtv/ obj-$(CONFIG_VIDEO_IVTV) += ivtv/
obj-$(CONFIG_VIDEO_ZORAN) += zoran/ obj-$(CONFIG_VIDEO_ZORAN) += zoran/
......
config DVB_NETUP_UNIDVB
tristate "NetUP Universal DVB card support"
depends on DVB_CORE && VIDEO_DEV && PCI && I2C && SPI_MASTER
select VIDEOBUF2_DVB
select VIDEOBUF2_VMALLOC
select DVB_HORUS3A if MEDIA_SUBDRV_AUTOSELECT
select DVB_ASCOT2E if MEDIA_SUBDRV_AUTOSELECT
select DVB_LNBH25 if MEDIA_SUBDRV_AUTOSELECT
select DVB_CXD2841ER if MEDIA_SUBDRV_AUTOSELECT
---help---
Support for NetUP PCI express Universal DVB card.
netup-unidvb-objs += netup_unidvb_core.o
netup-unidvb-objs += netup_unidvb_i2c.o
netup-unidvb-objs += netup_unidvb_ci.o
netup-unidvb-objs += netup_unidvb_spi.o
obj-$(CONFIG_DVB_NETUP_UNIDVB) += netup-unidvb.o
ccflags-y += -Idrivers/media/dvb-core
ccflags-y += -Idrivers/media/dvb-frontends
/*
* netup_unidvb.h
*
* Data type definitions for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/pci.h>
#include <linux/i2c.h>
#include <linux/workqueue.h>
#include <media/v4l2-common.h>
#include <media/v4l2-device.h>
#include <media/videobuf2-dvb.h>
#include <dvb_ca_en50221.h>
#define NETUP_UNIDVB_NAME "netup_unidvb"
#define NETUP_UNIDVB_VERSION "0.0.1"
#define NETUP_VENDOR_ID 0x1b55
#define NETUP_PCI_DEV_REVISION 0x2
/* IRQ-related regisers */
#define REG_ISR 0x4890
#define REG_ISR_MASKED 0x4892
#define REG_IMASK_SET 0x4894
#define REG_IMASK_CLEAR 0x4896
/* REG_ISR register bits */
#define NETUP_UNIDVB_IRQ_SPI (1 << 0)
#define NETUP_UNIDVB_IRQ_I2C0 (1 << 1)
#define NETUP_UNIDVB_IRQ_I2C1 (1 << 2)
#define NETUP_UNIDVB_IRQ_FRA0 (1 << 4)
#define NETUP_UNIDVB_IRQ_FRA1 (1 << 5)
#define NETUP_UNIDVB_IRQ_FRB0 (1 << 6)
#define NETUP_UNIDVB_IRQ_FRB1 (1 << 7)
#define NETUP_UNIDVB_IRQ_DMA1 (1 << 8)
#define NETUP_UNIDVB_IRQ_DMA2 (1 << 9)
#define NETUP_UNIDVB_IRQ_CI (1 << 10)
#define NETUP_UNIDVB_IRQ_CAM0 (1 << 11)
#define NETUP_UNIDVB_IRQ_CAM1 (1 << 12)
struct netup_dma {
u8 num;
spinlock_t lock;
struct netup_unidvb_dev *ndev;
struct netup_dma_regs *regs;
u32 ring_buffer_size;
u8 *addr_virt;
dma_addr_t addr_phys;
u64 addr_last;
u32 high_addr;
u32 data_offset;
u32 data_size;
struct list_head free_buffers;
struct work_struct work;
struct timer_list timeout;
};
enum netup_i2c_state {
STATE_DONE,
STATE_WAIT,
STATE_WANT_READ,
STATE_WANT_WRITE,
STATE_ERROR
};
struct netup_i2c_regs;
struct netup_i2c {
spinlock_t lock;
wait_queue_head_t wq;
struct i2c_adapter adap;
struct netup_unidvb_dev *dev;
struct netup_i2c_regs *regs;
struct i2c_msg *msg;
enum netup_i2c_state state;
u32 xmit_size;
};
struct netup_ci_state {
struct dvb_ca_en50221 ca;
u8 __iomem *membase8_config;
u8 __iomem *membase8_io;
struct netup_unidvb_dev *dev;
int status;
int nr;
};
struct netup_spi;
struct netup_unidvb_dev {
struct pci_dev *pci_dev;
int pci_bus;
int pci_slot;
int pci_func;
int board_num;
int old_fw;
u32 __iomem *lmmio0;
u8 __iomem *bmmio0;
u32 __iomem *lmmio1;
u8 __iomem *bmmio1;
u8 *dma_virt;
dma_addr_t dma_phys;
u32 dma_size;
struct vb2_dvb_frontends frontends[2];
struct netup_i2c i2c[2];
struct workqueue_struct *wq;
struct netup_dma dma[2];
struct netup_ci_state ci[2];
struct netup_spi *spi;
};
int netup_i2c_register(struct netup_unidvb_dev *ndev);
void netup_i2c_unregister(struct netup_unidvb_dev *ndev);
irqreturn_t netup_ci_interrupt(struct netup_unidvb_dev *ndev);
irqreturn_t netup_i2c_interrupt(struct netup_i2c *i2c);
irqreturn_t netup_spi_interrupt(struct netup_spi *spi);
int netup_unidvb_ci_register(struct netup_unidvb_dev *dev,
int num, struct pci_dev *pci_dev);
void netup_unidvb_ci_unregister(struct netup_unidvb_dev *dev, int num);
int netup_spi_init(struct netup_unidvb_dev *ndev);
void netup_spi_release(struct netup_unidvb_dev *ndev);
/*
* netup_unidvb_ci.c
*
* DVB CAM support for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include "netup_unidvb.h"
/* CI slot 0 base address */
#define CAM0_CONFIG 0x0
#define CAM0_IO 0x8000
#define CAM0_MEM 0x10000
#define CAM0_SZ 32
/* CI slot 1 base address */
#define CAM1_CONFIG 0x20000
#define CAM1_IO 0x28000
#define CAM1_MEM 0x30000
#define CAM1_SZ 32
/* ctrlstat registers */
#define CAM_CTRLSTAT_READ_SET 0x4980
#define CAM_CTRLSTAT_CLR 0x4982
/* register bits */
#define BIT_CAM_STCHG (1<<0)
#define BIT_CAM_PRESENT (1<<1)
#define BIT_CAM_RESET (1<<2)
#define BIT_CAM_BYPASS (1<<3)
#define BIT_CAM_READY (1<<4)
#define BIT_CAM_ERROR (1<<5)
#define BIT_CAM_OVERCURR (1<<6)
/* BIT_CAM_BYPASS bit shift for SLOT 1 */
#define CAM1_SHIFT 8
irqreturn_t netup_ci_interrupt(struct netup_unidvb_dev *ndev)
{
writew(0x101, ndev->bmmio0 + CAM_CTRLSTAT_CLR);
return IRQ_HANDLED;
}
static int netup_unidvb_ci_slot_ts_ctl(struct dvb_ca_en50221 *en50221,
int slot)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
u16 shift = (state->nr == 1) ? CAM1_SHIFT : 0;
dev_dbg(&dev->pci_dev->dev, "%s(): CAM_CTRLSTAT=0x%x\n",
__func__, readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET));
if (slot != 0)
return -EINVAL;
/* pass data to CAM module */
writew(BIT_CAM_BYPASS << shift, dev->bmmio0 + CAM_CTRLSTAT_CLR);
dev_dbg(&dev->pci_dev->dev, "%s(): CAM_CTRLSTAT=0x%x done\n",
__func__, readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET));
return 0;
}
static int netup_unidvb_ci_slot_shutdown(struct dvb_ca_en50221 *en50221,
int slot)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
dev_dbg(&dev->pci_dev->dev, "%s()\n", __func__);
return 0;
}
static int netup_unidvb_ci_slot_reset(struct dvb_ca_en50221 *en50221,
int slot)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
unsigned long timeout = 0;
u16 shift = (state->nr == 1) ? CAM1_SHIFT : 0;
u16 ci_stat = 0;
int reset_counter = 3;
dev_dbg(&dev->pci_dev->dev, "%s(): CAM_CTRLSTAT_READ_SET=0x%x\n",
__func__, readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET));
reset:
timeout = jiffies + msecs_to_jiffies(5000);
/* start reset */
writew(BIT_CAM_RESET << shift, dev->bmmio0 + CAM_CTRLSTAT_READ_SET);
dev_dbg(&dev->pci_dev->dev, "%s(): waiting for reset\n", __func__);
/* wait until reset done */
while (time_before(jiffies, timeout)) {
ci_stat = readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET);
if (ci_stat & (BIT_CAM_READY << shift))
break;
udelay(1000);
}
if (!(ci_stat & (BIT_CAM_READY << shift)) && reset_counter > 0) {
dev_dbg(&dev->pci_dev->dev,
"%s(): CAMP reset timeout! Will try again..\n",
__func__);
reset_counter--;
goto reset;
}
return 0;
}
static int netup_unidvb_poll_ci_slot_status(struct dvb_ca_en50221 *en50221,
int slot, int open)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
u16 shift = (state->nr == 1) ? CAM1_SHIFT : 0;
u16 ci_stat = 0;
dev_dbg(&dev->pci_dev->dev, "%s(): CAM_CTRLSTAT_READ_SET=0x%x\n",
__func__, readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET));
ci_stat = readw(dev->bmmio0 + CAM_CTRLSTAT_READ_SET);
if (ci_stat & (BIT_CAM_READY << shift)) {
state->status = DVB_CA_EN50221_POLL_CAM_PRESENT |
DVB_CA_EN50221_POLL_CAM_READY;
} else if (ci_stat & (BIT_CAM_PRESENT << shift)) {
state->status = DVB_CA_EN50221_POLL_CAM_PRESENT;
} else {
state->status = 0;
}
return state->status;
}
static int netup_unidvb_ci_read_attribute_mem(struct dvb_ca_en50221 *en50221,
int slot, int addr)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
u8 val = state->membase8_config[addr];
dev_dbg(&dev->pci_dev->dev,
"%s(): addr=0x%x val=0x%x\n", __func__, addr, val);
return val;
}
static int netup_unidvb_ci_write_attribute_mem(struct dvb_ca_en50221 *en50221,
int slot, int addr, u8 data)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
dev_dbg(&dev->pci_dev->dev,
"%s(): addr=0x%x data=0x%x\n", __func__, addr, data);
state->membase8_config[addr] = data;
return 0;
}
static int netup_unidvb_ci_read_cam_ctl(struct dvb_ca_en50221 *en50221,
int slot, u8 addr)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
u8 val = state->membase8_io[addr];
dev_dbg(&dev->pci_dev->dev,
"%s(): addr=0x%x val=0x%x\n", __func__, addr, val);
return val;
}
static int netup_unidvb_ci_write_cam_ctl(struct dvb_ca_en50221 *en50221,
int slot, u8 addr, u8 data)
{
struct netup_ci_state *state = en50221->data;
struct netup_unidvb_dev *dev = state->dev;
dev_dbg(&dev->pci_dev->dev,
"%s(): addr=0x%x data=0x%x\n", __func__, addr, data);
state->membase8_io[addr] = data;
return 0;
}
int netup_unidvb_ci_register(struct netup_unidvb_dev *dev,
int num, struct pci_dev *pci_dev)
{
int result;
struct netup_ci_state *state;
if (num < 0 || num > 1) {
dev_err(&pci_dev->dev, "%s(): invalid CI adapter %d\n",
__func__, num);
return -EINVAL;
}
state = &dev->ci[num];
state->nr = num;
state->membase8_config = dev->bmmio1 +
((num == 0) ? CAM0_CONFIG : CAM1_CONFIG);
state->membase8_io = dev->bmmio1 +
((num == 0) ? CAM0_IO : CAM1_IO);
state->dev = dev;
state->ca.owner = THIS_MODULE;
state->ca.read_attribute_mem = netup_unidvb_ci_read_attribute_mem;
state->ca.write_attribute_mem = netup_unidvb_ci_write_attribute_mem;
state->ca.read_cam_control = netup_unidvb_ci_read_cam_ctl;
state->ca.write_cam_control = netup_unidvb_ci_write_cam_ctl;
state->ca.slot_reset = netup_unidvb_ci_slot_reset;
state->ca.slot_shutdown = netup_unidvb_ci_slot_shutdown;
state->ca.slot_ts_enable = netup_unidvb_ci_slot_ts_ctl;
state->ca.poll_slot_status = netup_unidvb_poll_ci_slot_status;
state->ca.data = state;
result = dvb_ca_en50221_init(&dev->frontends[num].adapter,
&state->ca, 0, 1);
if (result < 0) {
dev_err(&pci_dev->dev,
"%s(): dvb_ca_en50221_init result %d\n",
__func__, result);
return result;
}
writew(NETUP_UNIDVB_IRQ_CI, (u16 *)(dev->bmmio0 + REG_IMASK_SET));
dev_info(&pci_dev->dev,
"%s(): CI adapter %d init done\n", __func__, num);
return 0;
}
void netup_unidvb_ci_unregister(struct netup_unidvb_dev *dev, int num)
{
struct netup_ci_state *state;
dev_dbg(&dev->pci_dev->dev, "%s()\n", __func__);
if (num < 0 || num > 1) {
dev_err(&dev->pci_dev->dev, "%s(): invalid CI adapter %d\n",
__func__, num);
return;
}
state = &dev->ci[num];
dvb_ca_en50221_release(&state->ca);
}
/*
* netup_unidvb_core.c
*
* Main module for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <media/videobuf2-vmalloc.h>
#include "netup_unidvb.h"
#include "cxd2841er.h"
#include "horus3a.h"
#include "ascot2e.h"
#include "lnbh25.h"
static int spi_enable;
module_param(spi_enable, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
MODULE_DESCRIPTION("Driver for NetUP Dual Universal DVB CI PCIe card");
MODULE_AUTHOR("info@netup.ru");
MODULE_VERSION(NETUP_UNIDVB_VERSION);
MODULE_LICENSE("GPL");
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
/* Avalon-MM PCI-E registers */
#define AVL_PCIE_IENR 0x50
#define AVL_PCIE_ISR 0x40
#define AVL_IRQ_ENABLE 0x80
#define AVL_IRQ_ASSERTED 0x80
/* GPIO registers */
#define GPIO_REG_IO 0x4880
#define GPIO_REG_IO_TOGGLE 0x4882
#define GPIO_REG_IO_SET 0x4884
#define GPIO_REG_IO_CLEAR 0x4886
/* GPIO bits */
#define GPIO_FEA_RESET (1 << 0)
#define GPIO_FEB_RESET (1 << 1)
#define GPIO_RFA_CTL (1 << 2)
#define GPIO_RFB_CTL (1 << 3)
#define GPIO_FEA_TU_RESET (1 << 4)
#define GPIO_FEB_TU_RESET (1 << 5)
/* DMA base address */
#define NETUP_DMA0_ADDR 0x4900
#define NETUP_DMA1_ADDR 0x4940
/* 8 DMA blocks * 128 packets * 188 bytes*/
#define NETUP_DMA_BLOCKS_COUNT 8
#define NETUP_DMA_PACKETS_COUNT 128
/* DMA status bits */
#define BIT_DMA_RUN 1
#define BIT_DMA_ERROR 2
#define BIT_DMA_IRQ 0x200
/**
* struct netup_dma_regs - the map of DMA module registers
* @ctrlstat_set: Control register, write to set control bits
* @ctrlstat_clear: Control register, write to clear control bits
* @start_addr_lo: DMA ring buffer start address, lower part
* @start_addr_hi: DMA ring buffer start address, higher part
* @size: DMA ring buffer size register
Bits [0-7]: DMA packet size, 188 bytes
Bits [16-23]: packets count in block, 128 packets
Bits [24-31]: blocks count, 8 blocks
* @timeout: DMA timeout in units of 8ns
For example, value of 375000000 equals to 3 sec
* @curr_addr_lo: Current ring buffer head address, lower part
* @curr_addr_hi: Current ring buffer head address, higher part
* @stat_pkt_received: Statistic register, not tested
* @stat_pkt_accepted: Statistic register, not tested
* @stat_pkt_overruns: Statistic register, not tested
* @stat_pkt_underruns: Statistic register, not tested
* @stat_fifo_overruns: Statistic register, not tested
*/
struct netup_dma_regs {
__le32 ctrlstat_set;
__le32 ctrlstat_clear;
__le32 start_addr_lo;
__le32 start_addr_hi;
__le32 size;
__le32 timeout;
__le32 curr_addr_lo;
__le32 curr_addr_hi;
__le32 stat_pkt_received;
__le32 stat_pkt_accepted;
__le32 stat_pkt_overruns;
__le32 stat_pkt_underruns;
__le32 stat_fifo_overruns;
} __packed __aligned(1);
struct netup_unidvb_buffer {
struct vb2_buffer vb;
struct list_head list;
u32 size;
};
static int netup_unidvb_tuner_ctrl(void *priv, int is_dvb_tc);
static void netup_unidvb_queue_cleanup(struct netup_dma *dma);
static struct cxd2841er_config demod_config = {
.i2c_addr = 0xc8
};
static struct horus3a_config horus3a_conf = {
.i2c_address = 0xc0,
.xtal_freq_mhz = 16,
.set_tuner_callback = netup_unidvb_tuner_ctrl
};
static struct ascot2e_config ascot2e_conf = {
.i2c_address = 0xc2,
.set_tuner_callback = netup_unidvb_tuner_ctrl
};
static struct lnbh25_config lnbh25_conf = {
.i2c_address = 0x10,
.data2_config = LNBH25_TEN | LNBH25_EXTM
};
static int netup_unidvb_tuner_ctrl(void *priv, int is_dvb_tc)
{
u8 reg, mask;
struct netup_dma *dma = priv;
struct netup_unidvb_dev *ndev;
if (!priv)
return -EINVAL;
ndev = dma->ndev;
dev_dbg(&ndev->pci_dev->dev, "%s(): num %d is_dvb_tc %d\n",
__func__, dma->num, is_dvb_tc);
reg = readb(ndev->bmmio0 + GPIO_REG_IO);
mask = (dma->num == 0) ? GPIO_RFA_CTL : GPIO_RFB_CTL;
if (!is_dvb_tc)
reg |= mask;
else
reg &= ~mask;
writeb(reg, ndev->bmmio0 + GPIO_REG_IO);
return 0;
}
static void netup_unidvb_dev_enable(struct netup_unidvb_dev *ndev)
{
u16 gpio_reg;
/* enable PCI-E interrupts */
writel(AVL_IRQ_ENABLE, ndev->bmmio0 + AVL_PCIE_IENR);
/* unreset frontends bits[0:1] */
writeb(0x00, ndev->bmmio0 + GPIO_REG_IO);
msleep(100);
gpio_reg =
GPIO_FEA_RESET | GPIO_FEB_RESET |
GPIO_FEA_TU_RESET | GPIO_FEB_TU_RESET |
GPIO_RFA_CTL | GPIO_RFB_CTL;
writeb(gpio_reg, ndev->bmmio0 + GPIO_REG_IO);
dev_dbg(&ndev->pci_dev->dev,
"%s(): AVL_PCIE_IENR 0x%x GPIO_REG_IO 0x%x\n",
__func__, readl(ndev->bmmio0 + AVL_PCIE_IENR),
(int)readb(ndev->bmmio0 + GPIO_REG_IO));
}
static void netup_unidvb_dma_enable(struct netup_dma *dma, int enable)
{
u32 irq_mask = (dma->num == 0 ?
NETUP_UNIDVB_IRQ_DMA1 : NETUP_UNIDVB_IRQ_DMA2);
dev_dbg(&dma->ndev->pci_dev->dev,
"%s(): DMA%d enable %d\n", __func__, dma->num, enable);
if (enable) {
writel(BIT_DMA_RUN, &dma->regs->ctrlstat_set);
writew(irq_mask,
(u16 *)(dma->ndev->bmmio0 + REG_IMASK_SET));
} else {
writel(BIT_DMA_RUN, &dma->regs->ctrlstat_clear);
writew(irq_mask,
(u16 *)(dma->ndev->bmmio0 + REG_IMASK_CLEAR));
}
}
static irqreturn_t netup_dma_interrupt(struct netup_dma *dma)
{
u64 addr_curr;
u32 size;
unsigned long flags;
struct device *dev = &dma->ndev->pci_dev->dev;
spin_lock_irqsave(&dma->lock, flags);
addr_curr = ((u64)readl(&dma->regs->curr_addr_hi) << 32) |
(u64)readl(&dma->regs->curr_addr_lo) | dma->high_addr;
/* clear IRQ */
writel(BIT_DMA_IRQ, &dma->regs->ctrlstat_clear);
/* sanity check */
if (addr_curr < dma->addr_phys ||
addr_curr > dma->addr_phys + dma->ring_buffer_size) {
if (addr_curr != 0) {
dev_err(dev,
"%s(): addr 0x%llx not from 0x%llx:0x%llx\n",
__func__, addr_curr, (u64)dma->addr_phys,
(u64)(dma->addr_phys + dma->ring_buffer_size));
}
goto irq_handled;
}
size = (addr_curr >= dma->addr_last) ?
(u32)(addr_curr - dma->addr_last) :
(u32)(dma->ring_buffer_size - (dma->addr_last - addr_curr));
if (dma->data_size != 0) {
printk_ratelimited("%s(): lost interrupt, data size %d\n",
__func__, dma->data_size);
dma->data_size += size;
}
if (dma->data_size == 0 || dma->data_size > dma->ring_buffer_size) {
dma->data_size = size;
dma->data_offset = (u32)(dma->addr_last - dma->addr_phys);
}
dma->addr_last = addr_curr;
queue_work(dma->ndev->wq, &dma->work);
irq_handled:
spin_unlock_irqrestore(&dma->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t netup_unidvb_isr(int irq, void *dev_id)
{
struct pci_dev *pci_dev = (struct pci_dev *)dev_id;
struct netup_unidvb_dev *ndev = pci_get_drvdata(pci_dev);
u32 reg40, reg_isr;
irqreturn_t iret = IRQ_NONE;
/* disable interrupts */
writel(0, ndev->bmmio0 + AVL_PCIE_IENR);
/* check IRQ source */
reg40 = readl(ndev->bmmio0 + AVL_PCIE_ISR);
if ((reg40 & AVL_IRQ_ASSERTED) != 0) {
/* IRQ is being signaled */
reg_isr = readw(ndev->bmmio0 + REG_ISR);
if (reg_isr & NETUP_UNIDVB_IRQ_I2C0) {
iret = netup_i2c_interrupt(&ndev->i2c[0]);
} else if (reg_isr & NETUP_UNIDVB_IRQ_I2C1) {
iret = netup_i2c_interrupt(&ndev->i2c[1]);
} else if (reg_isr & NETUP_UNIDVB_IRQ_SPI) {
iret = netup_spi_interrupt(ndev->spi);
} else if (reg_isr & NETUP_UNIDVB_IRQ_DMA1) {
iret = netup_dma_interrupt(&ndev->dma[0]);
} else if (reg_isr & NETUP_UNIDVB_IRQ_DMA2) {
iret = netup_dma_interrupt(&ndev->dma[1]);
} else if (reg_isr & NETUP_UNIDVB_IRQ_CI) {
iret = netup_ci_interrupt(ndev);
} else {
dev_err(&pci_dev->dev,
"%s(): unknown interrupt 0x%x\n",
__func__, reg_isr);
}
}
/* re-enable interrupts */
writel(AVL_IRQ_ENABLE, ndev->bmmio0 + AVL_PCIE_IENR);
return iret;
}
static int netup_unidvb_queue_setup(struct vb2_queue *vq,
const struct v4l2_format *fmt,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
void *alloc_ctxs[])
{
struct netup_dma *dma = vb2_get_drv_priv(vq);
dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__);
*nplanes = 1;
if (vq->num_buffers + *nbuffers < VIDEO_MAX_FRAME)
*nbuffers = VIDEO_MAX_FRAME - vq->num_buffers;
sizes[0] = PAGE_ALIGN(NETUP_DMA_PACKETS_COUNT * 188);
dev_dbg(&dma->ndev->pci_dev->dev, "%s() nbuffers=%d sizes[0]=%d\n",
__func__, *nbuffers, sizes[0]);
return 0;
}
static int netup_unidvb_buf_prepare(struct vb2_buffer *vb)
{
struct netup_dma *dma = vb2_get_drv_priv(vb->vb2_queue);
struct netup_unidvb_buffer *buf = container_of(vb,
struct netup_unidvb_buffer, vb);
dev_dbg(&dma->ndev->pci_dev->dev, "%s(): buf 0x%p\n", __func__, buf);
buf->size = 0;
return 0;
}
static void netup_unidvb_buf_queue(struct vb2_buffer *vb)
{
unsigned long flags;
struct netup_dma *dma = vb2_get_drv_priv(vb->vb2_queue);
struct netup_unidvb_buffer *buf = container_of(vb,
struct netup_unidvb_buffer, vb);
dev_dbg(&dma->ndev->pci_dev->dev, "%s(): %p\n", __func__, buf);
spin_lock_irqsave(&dma->lock, flags);
list_add_tail(&buf->list, &dma->free_buffers);
spin_unlock_irqrestore(&dma->lock, flags);
mod_timer(&dma->timeout, jiffies + msecs_to_jiffies(1000));
}
static int netup_unidvb_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct netup_dma *dma = vb2_get_drv_priv(q);
dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__);
netup_unidvb_dma_enable(dma, 1);
return 0;
}
static void netup_unidvb_stop_streaming(struct vb2_queue *q)
{
struct netup_dma *dma = vb2_get_drv_priv(q);
dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__);
netup_unidvb_dma_enable(dma, 0);
netup_unidvb_queue_cleanup(dma);
}
static struct vb2_ops dvb_qops = {
.queue_setup = netup_unidvb_queue_setup,
.buf_prepare = netup_unidvb_buf_prepare,
.buf_queue = netup_unidvb_buf_queue,
.start_streaming = netup_unidvb_start_streaming,
.stop_streaming = netup_unidvb_stop_streaming,
};
static int netup_unidvb_queue_init(struct netup_dma *dma,
struct vb2_queue *vb_queue)
{
int res;
/* Init videobuf2 queue structure */
vb_queue->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
vb_queue->io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ;
vb_queue->drv_priv = dma;
vb_queue->buf_struct_size = sizeof(struct netup_unidvb_buffer);
vb_queue->ops = &dvb_qops;
vb_queue->mem_ops = &vb2_vmalloc_memops;
vb_queue->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
res = vb2_queue_init(vb_queue);
if (res != 0) {
dev_err(&dma->ndev->pci_dev->dev,
"%s(): vb2_queue_init failed (%d)\n", __func__, res);
}
return res;
}
static int netup_unidvb_dvb_init(struct netup_unidvb_dev *ndev,
int num)
{
struct vb2_dvb_frontend *fe0, *fe1, *fe2;
if (num < 0 || num > 1) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to init DVB bus %d\n", __func__, num);
return -ENODEV;
}
mutex_init(&ndev->frontends[num].lock);
INIT_LIST_HEAD(&ndev->frontends[num].felist);
if (vb2_dvb_alloc_frontend(&ndev->frontends[num], 1) == NULL ||
vb2_dvb_alloc_frontend(
&ndev->frontends[num], 2) == NULL ||
vb2_dvb_alloc_frontend(
&ndev->frontends[num], 3) == NULL) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to to alllocate vb2_dvb_frontend\n",
__func__);
return -ENOMEM;
}
fe0 = vb2_dvb_get_frontend(&ndev->frontends[num], 1);
fe1 = vb2_dvb_get_frontend(&ndev->frontends[num], 2);
fe2 = vb2_dvb_get_frontend(&ndev->frontends[num], 3);
if (fe0 == NULL || fe1 == NULL || fe2 == NULL) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): frontends has not been allocated\n", __func__);
return -EINVAL;
}
netup_unidvb_queue_init(&ndev->dma[num], &fe0->dvb.dvbq);
netup_unidvb_queue_init(&ndev->dma[num], &fe1->dvb.dvbq);
netup_unidvb_queue_init(&ndev->dma[num], &fe2->dvb.dvbq);
fe0->dvb.name = "netup_fe0";
fe1->dvb.name = "netup_fe1";
fe2->dvb.name = "netup_fe2";
fe0->dvb.frontend = dvb_attach(cxd2841er_attach_s,
&demod_config, &ndev->i2c[num].adap);
if (fe0->dvb.frontend == NULL) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-S/S2 frontend\n",
__func__);
goto frontend_detach;
}
horus3a_conf.set_tuner_priv = &ndev->dma[num];
if (!dvb_attach(horus3a_attach, fe0->dvb.frontend,
&horus3a_conf, &ndev->i2c[num].adap)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-S/S2 tuner frontend\n",
__func__);
goto frontend_detach;
}
if (!dvb_attach(lnbh25_attach, fe0->dvb.frontend,
&lnbh25_conf, &ndev->i2c[num].adap)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach SEC frontend\n", __func__);
goto frontend_detach;
}
/* DVB-T/T2 frontend */
fe1->dvb.frontend = dvb_attach(cxd2841er_attach_t,
&demod_config, &ndev->i2c[num].adap);
if (fe1->dvb.frontend == NULL) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-T frontend\n", __func__);
goto frontend_detach;
}
fe1->dvb.frontend->id = 1;
ascot2e_conf.set_tuner_priv = &ndev->dma[num];
if (!dvb_attach(ascot2e_attach, fe1->dvb.frontend,
&ascot2e_conf, &ndev->i2c[num].adap)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-T tuner frontend\n",
__func__);
goto frontend_detach;
}
/* DVB-C/C2 frontend */
fe2->dvb.frontend = dvb_attach(cxd2841er_attach_c,
&demod_config, &ndev->i2c[num].adap);
if (fe2->dvb.frontend == NULL) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-C frontend\n", __func__);
goto frontend_detach;
}
fe2->dvb.frontend->id = 2;
if (!dvb_attach(ascot2e_attach, fe2->dvb.frontend,
&ascot2e_conf, &ndev->i2c[num].adap)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to attach DVB-T/C tuner frontend\n",
__func__);
goto frontend_detach;
}
if (vb2_dvb_register_bus(&ndev->frontends[num],
THIS_MODULE, NULL,
&ndev->pci_dev->dev, adapter_nr, 1)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): unable to register DVB bus %d\n",
__func__, num);
goto frontend_detach;
}
dev_info(&ndev->pci_dev->dev, "DVB init done, num=%d\n", num);
return 0;
frontend_detach:
vb2_dvb_dealloc_frontends(&ndev->frontends[num]);
return -EINVAL;
}
static void netup_unidvb_dvb_fini(struct netup_unidvb_dev *ndev, int num)
{
if (num < 0 || num > 1) {
dev_err(&ndev->pci_dev->dev,
"%s(): unable to unregister DVB bus %d\n",
__func__, num);
return;
}
vb2_dvb_unregister_bus(&ndev->frontends[num]);
dev_info(&ndev->pci_dev->dev,
"%s(): DVB bus %d unregistered\n", __func__, num);
}
static int netup_unidvb_dvb_setup(struct netup_unidvb_dev *ndev)
{
int res;
res = netup_unidvb_dvb_init(ndev, 0);
if (res)
return res;
res = netup_unidvb_dvb_init(ndev, 1);
if (res) {
netup_unidvb_dvb_fini(ndev, 0);
return res;
}
return 0;
}
static int netup_unidvb_ring_copy(struct netup_dma *dma,
struct netup_unidvb_buffer *buf)
{
u32 copy_bytes, ring_bytes;
u32 buff_bytes = NETUP_DMA_PACKETS_COUNT * 188 - buf->size;
u8 *p = vb2_plane_vaddr(&buf->vb, 0);
struct netup_unidvb_dev *ndev = dma->ndev;
if (p == NULL) {
dev_err(&ndev->pci_dev->dev,
"%s(): buffer is NULL\n", __func__);
return -EINVAL;
}
p += buf->size;
if (dma->data_offset + dma->data_size > dma->ring_buffer_size) {
ring_bytes = dma->ring_buffer_size - dma->data_offset;
copy_bytes = (ring_bytes > buff_bytes) ?
buff_bytes : ring_bytes;
memcpy_fromio(p, dma->addr_virt + dma->data_offset, copy_bytes);
p += copy_bytes;
buf->size += copy_bytes;
buff_bytes -= copy_bytes;
dma->data_size -= copy_bytes;
dma->data_offset += copy_bytes;
if (dma->data_offset == dma->ring_buffer_size)
dma->data_offset = 0;
}
if (buff_bytes > 0) {
ring_bytes = dma->data_size;
copy_bytes = (ring_bytes > buff_bytes) ?
buff_bytes : ring_bytes;
memcpy_fromio(p, dma->addr_virt + dma->data_offset, copy_bytes);
buf->size += copy_bytes;
dma->data_size -= copy_bytes;
dma->data_offset += copy_bytes;
if (dma->data_offset == dma->ring_buffer_size)
dma->data_offset = 0;
}
return 0;
}
static void netup_unidvb_dma_worker(struct work_struct *work)
{
struct netup_dma *dma = container_of(work, struct netup_dma, work);
struct netup_unidvb_dev *ndev = dma->ndev;
struct netup_unidvb_buffer *buf;
unsigned long flags;
spin_lock_irqsave(&dma->lock, flags);
if (dma->data_size == 0) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): data_size == 0\n", __func__);
goto work_done;
}
while (dma->data_size > 0) {
if (list_empty(&dma->free_buffers)) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): no free buffers\n", __func__);
goto work_done;
}
buf = list_first_entry(&dma->free_buffers,
struct netup_unidvb_buffer, list);
if (buf->size >= NETUP_DMA_PACKETS_COUNT * 188) {
dev_dbg(&ndev->pci_dev->dev,
"%s(): buffer overflow, size %d\n",
__func__, buf->size);
goto work_done;
}
if (netup_unidvb_ring_copy(dma, buf))
goto work_done;
if (buf->size == NETUP_DMA_PACKETS_COUNT * 188) {
list_del(&buf->list);
dev_dbg(&ndev->pci_dev->dev,
"%s(): buffer %p done, size %d\n",
__func__, buf, buf->size);
v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
vb2_set_plane_payload(&buf->vb, 0, buf->size);
vb2_buffer_done(&buf->vb, VB2_BUF_STATE_DONE);
}
}
work_done:
dma->data_size = 0;
spin_unlock_irqrestore(&dma->lock, flags);
}
static void netup_unidvb_queue_cleanup(struct netup_dma *dma)
{
struct netup_unidvb_buffer *buf;
unsigned long flags;
spin_lock_irqsave(&dma->lock, flags);
while (!list_empty(&dma->free_buffers)) {
buf = list_first_entry(&dma->free_buffers,
struct netup_unidvb_buffer, list);
list_del(&buf->list);
vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
}
spin_unlock_irqrestore(&dma->lock, flags);
}
static void netup_unidvb_dma_timeout(unsigned long data)
{
struct netup_dma *dma = (struct netup_dma *)data;
struct netup_unidvb_dev *ndev = dma->ndev;
dev_dbg(&ndev->pci_dev->dev, "%s()\n", __func__);
netup_unidvb_queue_cleanup(dma);
}
static int netup_unidvb_dma_init(struct netup_unidvb_dev *ndev, int num)
{
struct netup_dma *dma;
struct device *dev = &ndev->pci_dev->dev;
if (num < 0 || num > 1) {
dev_err(dev, "%s(): unable to register DMA%d\n",
__func__, num);
return -ENODEV;
}
dma = &ndev->dma[num];
dev_info(dev, "%s(): starting DMA%d\n", __func__, num);
dma->num = num;
dma->ndev = ndev;
spin_lock_init(&dma->lock);
INIT_WORK(&dma->work, netup_unidvb_dma_worker);
INIT_LIST_HEAD(&dma->free_buffers);
dma->timeout.function = netup_unidvb_dma_timeout;
dma->timeout.data = (unsigned long)dma;
init_timer(&dma->timeout);
dma->ring_buffer_size = ndev->dma_size / 2;
dma->addr_virt = ndev->dma_virt + dma->ring_buffer_size * num;
dma->addr_phys = (dma_addr_t)((u64)ndev->dma_phys +
dma->ring_buffer_size * num);
dev_info(dev, "%s(): DMA%d buffer virt/phys 0x%p/0x%llx size %d\n",
__func__, num, dma->addr_virt,
(unsigned long long)dma->addr_phys,
dma->ring_buffer_size);
memset_io(dma->addr_virt, 0, dma->ring_buffer_size);
dma->addr_last = dma->addr_phys;
dma->high_addr = (u32)(dma->addr_phys & 0xC0000000);
dma->regs = (struct netup_dma_regs *)(num == 0 ?
ndev->bmmio0 + NETUP_DMA0_ADDR :
ndev->bmmio0 + NETUP_DMA1_ADDR);
writel((NETUP_DMA_BLOCKS_COUNT << 24) |
(NETUP_DMA_PACKETS_COUNT << 8) | 188, &dma->regs->size);
writel((u32)(dma->addr_phys & 0x3FFFFFFF), &dma->regs->start_addr_lo);
writel(0, &dma->regs->start_addr_hi);
writel(dma->high_addr, ndev->bmmio0 + 0x1000);
writel(375000000, &dma->regs->timeout);
msleep(1000);
writel(BIT_DMA_IRQ, &dma->regs->ctrlstat_clear);
return 0;
}
static void netup_unidvb_dma_fini(struct netup_unidvb_dev *ndev, int num)
{
struct netup_dma *dma;
if (num < 0 || num > 1)
return;
dev_dbg(&ndev->pci_dev->dev, "%s(): num %d\n", __func__, num);
dma = &ndev->dma[num];
netup_unidvb_dma_enable(dma, 0);
msleep(50);
cancel_work_sync(&dma->work);
del_timer(&dma->timeout);
}
static int netup_unidvb_dma_setup(struct netup_unidvb_dev *ndev)
{
int res;
res = netup_unidvb_dma_init(ndev, 0);
if (res)
return res;
res = netup_unidvb_dma_init(ndev, 1);
if (res) {
netup_unidvb_dma_fini(ndev, 0);
return res;
}
netup_unidvb_dma_enable(&ndev->dma[0], 0);
netup_unidvb_dma_enable(&ndev->dma[1], 0);
return 0;
}
static int netup_unidvb_ci_setup(struct netup_unidvb_dev *ndev,
struct pci_dev *pci_dev)
{
int res;
writew(NETUP_UNIDVB_IRQ_CI, ndev->bmmio0 + REG_IMASK_SET);
res = netup_unidvb_ci_register(ndev, 0, pci_dev);
if (res)
return res;
res = netup_unidvb_ci_register(ndev, 1, pci_dev);
if (res)
netup_unidvb_ci_unregister(ndev, 0);
return res;
}
static int netup_unidvb_request_mmio(struct pci_dev *pci_dev)
{
if (!request_mem_region(pci_resource_start(pci_dev, 0),
pci_resource_len(pci_dev, 0), NETUP_UNIDVB_NAME)) {
dev_err(&pci_dev->dev,
"%s(): unable to request MMIO bar 0 at 0x%llx\n",
__func__,
(unsigned long long)pci_resource_start(pci_dev, 0));
return -EBUSY;
}
if (!request_mem_region(pci_resource_start(pci_dev, 1),
pci_resource_len(pci_dev, 1), NETUP_UNIDVB_NAME)) {
dev_err(&pci_dev->dev,
"%s(): unable to request MMIO bar 1 at 0x%llx\n",
__func__,
(unsigned long long)pci_resource_start(pci_dev, 1));
release_mem_region(pci_resource_start(pci_dev, 0),
pci_resource_len(pci_dev, 0));
return -EBUSY;
}
return 0;
}
static int netup_unidvb_request_modules(struct device *dev)
{
static const char * const modules[] = {
"lnbh25", "ascot2e", "horus3a", "cxd2841er", NULL
};
const char * const *curr_mod = modules;
int err;
while (*curr_mod != NULL) {
err = request_module(*curr_mod);
if (err) {
dev_warn(dev, "request_module(%s) failed: %d\n",
*curr_mod, err);
}
++curr_mod;
}
return 0;
}
static int netup_unidvb_initdev(struct pci_dev *pci_dev,
const struct pci_device_id *pci_id)
{
u8 board_revision;
u16 board_vendor;
struct netup_unidvb_dev *ndev;
int old_firmware = 0;
netup_unidvb_request_modules(&pci_dev->dev);
/* Check card revision */
if (pci_dev->revision != NETUP_PCI_DEV_REVISION) {
dev_err(&pci_dev->dev,
"netup_unidvb: expected card revision %d, got %d\n",
NETUP_PCI_DEV_REVISION, pci_dev->revision);
dev_err(&pci_dev->dev,
"Please upgrade firmware!\n");
dev_err(&pci_dev->dev,
"Instructions on http://www.netup.tv\n");
old_firmware = 1;
spi_enable = 1;
}
/* allocate device context */
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
goto dev_alloc_err;
memset(ndev, 0, sizeof(*ndev));
ndev->old_fw = old_firmware;
ndev->wq = create_singlethread_workqueue(NETUP_UNIDVB_NAME);
if (!ndev->wq) {
dev_err(&pci_dev->dev,
"%s(): unable to create workqueue\n", __func__);
goto wq_create_err;
}
ndev->pci_dev = pci_dev;
ndev->pci_bus = pci_dev->bus->number;
ndev->pci_slot = PCI_SLOT(pci_dev->devfn);
ndev->pci_func = PCI_FUNC(pci_dev->devfn);
ndev->board_num = ndev->pci_bus*10 + ndev->pci_slot;
pci_set_drvdata(pci_dev, ndev);
/* PCI init */
dev_info(&pci_dev->dev, "%s(): PCI device (%d). Bus:0x%x Slot:0x%x\n",
__func__, ndev->board_num, ndev->pci_bus, ndev->pci_slot);
if (pci_enable_device(pci_dev)) {
dev_err(&pci_dev->dev, "%s(): pci_enable_device failed\n",
__func__);
goto pci_enable_err;
}
/* read PCI info */
pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &board_revision);
pci_read_config_word(pci_dev, PCI_VENDOR_ID, &board_vendor);
if (board_vendor != NETUP_VENDOR_ID) {
dev_err(&pci_dev->dev, "%s(): unknown board vendor 0x%x",
__func__, board_vendor);
goto pci_detect_err;
}
dev_info(&pci_dev->dev,
"%s(): board vendor 0x%x, revision 0x%x\n",
__func__, board_vendor, board_revision);
pci_set_master(pci_dev);
if (!pci_dma_supported(pci_dev, 0xffffffff)) {
dev_err(&pci_dev->dev,
"%s(): 32bit PCI DMA is not supported\n", __func__);
goto pci_detect_err;
}
dev_info(&pci_dev->dev, "%s(): using 32bit PCI DMA\n", __func__);
/* Clear "no snoop" and "relaxed ordering" bits, use default MRRS. */
pcie_capability_clear_and_set_word(pci_dev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_READRQ | PCI_EXP_DEVCTL_RELAX_EN |
PCI_EXP_DEVCTL_NOSNOOP_EN, 0);
/* Adjust PCIe completion timeout. */
pcie_capability_clear_and_set_word(pci_dev,
PCI_EXP_DEVCTL2, 0xf, 0x2);
if (netup_unidvb_request_mmio(pci_dev)) {
dev_err(&pci_dev->dev,
"%s(): unable to request MMIO regions\n", __func__);
goto pci_detect_err;
}
ndev->lmmio0 = ioremap(pci_resource_start(pci_dev, 0),
pci_resource_len(pci_dev, 0));
if (!ndev->lmmio0) {
dev_err(&pci_dev->dev,
"%s(): unable to remap MMIO bar 0\n", __func__);
goto pci_bar0_error;
}
ndev->lmmio1 = ioremap(pci_resource_start(pci_dev, 1),
pci_resource_len(pci_dev, 1));
if (!ndev->lmmio1) {
dev_err(&pci_dev->dev,
"%s(): unable to remap MMIO bar 1\n", __func__);
goto pci_bar1_error;
}
ndev->bmmio0 = (u8 __iomem *)ndev->lmmio0;
ndev->bmmio1 = (u8 __iomem *)ndev->lmmio1;
dev_info(&pci_dev->dev,
"%s(): PCI MMIO at 0x%p (%d); 0x%p (%d); IRQ %d",
__func__,
ndev->lmmio0, (u32)pci_resource_len(pci_dev, 0),
ndev->lmmio1, (u32)pci_resource_len(pci_dev, 1),
pci_dev->irq);
if (request_irq(pci_dev->irq, netup_unidvb_isr, IRQF_SHARED,
"netup_unidvb", pci_dev) < 0) {
dev_err(&pci_dev->dev,
"%s(): can't get IRQ %d\n", __func__, pci_dev->irq);
goto irq_request_err;
}
ndev->dma_size = 2 * 188 *
NETUP_DMA_BLOCKS_COUNT * NETUP_DMA_PACKETS_COUNT;
ndev->dma_virt = dma_alloc_coherent(&pci_dev->dev,
ndev->dma_size, &ndev->dma_phys, GFP_KERNEL);
if (!ndev->dma_virt) {
dev_err(&pci_dev->dev, "%s(): unable to allocate DMA buffer\n",
__func__);
goto dma_alloc_err;
}
netup_unidvb_dev_enable(ndev);
if (spi_enable && netup_spi_init(ndev)) {
dev_warn(&pci_dev->dev,
"netup_unidvb: SPI flash setup failed\n");
goto spi_setup_err;
}
if (old_firmware) {
dev_err(&pci_dev->dev,
"netup_unidvb: card initialization was incomplete\n");
return 0;
}
if (netup_i2c_register(ndev)) {
dev_err(&pci_dev->dev, "netup_unidvb: I2C setup failed\n");
goto i2c_setup_err;
}
/* enable I2C IRQs */
writew(NETUP_UNIDVB_IRQ_I2C0 | NETUP_UNIDVB_IRQ_I2C1,
ndev->bmmio0 + REG_IMASK_SET);
usleep_range(5000, 10000);
if (netup_unidvb_dvb_setup(ndev)) {
dev_err(&pci_dev->dev, "netup_unidvb: DVB setup failed\n");
goto dvb_setup_err;
}
if (netup_unidvb_ci_setup(ndev, pci_dev)) {
dev_err(&pci_dev->dev, "netup_unidvb: CI setup failed\n");
goto ci_setup_err;
}
if (netup_unidvb_dma_setup(ndev)) {
dev_err(&pci_dev->dev, "netup_unidvb: DMA setup failed\n");
goto dma_setup_err;
}
dev_info(&pci_dev->dev,
"netup_unidvb: device has been initialized\n");
return 0;
dma_setup_err:
netup_unidvb_ci_unregister(ndev, 0);
netup_unidvb_ci_unregister(ndev, 1);
ci_setup_err:
netup_unidvb_dvb_fini(ndev, 0);
netup_unidvb_dvb_fini(ndev, 1);
dvb_setup_err:
netup_i2c_unregister(ndev);
i2c_setup_err:
if (ndev->spi)
netup_spi_release(ndev);
spi_setup_err:
dma_free_coherent(&pci_dev->dev, ndev->dma_size,
ndev->dma_virt, ndev->dma_phys);
dma_alloc_err:
free_irq(pci_dev->irq, pci_dev);
irq_request_err:
iounmap(ndev->lmmio1);
pci_bar1_error:
iounmap(ndev->lmmio0);
pci_bar0_error:
release_mem_region(pci_resource_start(pci_dev, 0),
pci_resource_len(pci_dev, 0));
release_mem_region(pci_resource_start(pci_dev, 1),
pci_resource_len(pci_dev, 1));
pci_detect_err:
pci_disable_device(pci_dev);
pci_enable_err:
pci_set_drvdata(pci_dev, NULL);
destroy_workqueue(ndev->wq);
wq_create_err:
kfree(ndev);
dev_alloc_err:
dev_err(&pci_dev->dev,
"%s(): failed to initizalize device\n", __func__);
return -EIO;
}
static void netup_unidvb_finidev(struct pci_dev *pci_dev)
{
struct netup_unidvb_dev *ndev = pci_get_drvdata(pci_dev);
dev_info(&pci_dev->dev, "%s(): trying to stop device\n", __func__);
if (!ndev->old_fw) {
netup_unidvb_dma_fini(ndev, 0);
netup_unidvb_dma_fini(ndev, 1);
netup_unidvb_ci_unregister(ndev, 0);
netup_unidvb_ci_unregister(ndev, 1);
netup_unidvb_dvb_fini(ndev, 0);
netup_unidvb_dvb_fini(ndev, 1);
netup_i2c_unregister(ndev);
}
if (ndev->spi)
netup_spi_release(ndev);
writew(0xffff, ndev->bmmio0 + REG_IMASK_CLEAR);
dma_free_coherent(&ndev->pci_dev->dev, ndev->dma_size,
ndev->dma_virt, ndev->dma_phys);
free_irq(pci_dev->irq, pci_dev);
iounmap(ndev->lmmio0);
iounmap(ndev->lmmio1);
release_mem_region(pci_resource_start(pci_dev, 0),
pci_resource_len(pci_dev, 0));
release_mem_region(pci_resource_start(pci_dev, 1),
pci_resource_len(pci_dev, 1));
pci_disable_device(pci_dev);
pci_set_drvdata(pci_dev, NULL);
destroy_workqueue(ndev->wq);
kfree(ndev);
dev_info(&pci_dev->dev,
"%s(): device has been successfully stopped\n", __func__);
}
static struct pci_device_id netup_unidvb_pci_tbl[] = {
{ PCI_DEVICE(0x1b55, 0x18f6) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, netup_unidvb_pci_tbl);
static struct pci_driver netup_unidvb_pci_driver = {
.name = "netup_unidvb",
.id_table = netup_unidvb_pci_tbl,
.probe = netup_unidvb_initdev,
.remove = netup_unidvb_finidev,
.suspend = NULL,
.resume = NULL,
};
static int __init netup_unidvb_init(void)
{
return pci_register_driver(&netup_unidvb_pci_driver);
}
static void __exit netup_unidvb_fini(void)
{
pci_unregister_driver(&netup_unidvb_pci_driver);
}
module_init(netup_unidvb_init);
module_exit(netup_unidvb_fini);
/*
* netup_unidvb_i2c.c
*
* Internal I2C bus driver for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include "netup_unidvb.h"
#define NETUP_I2C_BUS0_ADDR 0x4800
#define NETUP_I2C_BUS1_ADDR 0x4840
#define NETUP_I2C_TIMEOUT 1000
/* twi_ctrl0_stat reg bits */
#define TWI_IRQEN_COMPL 0x1
#define TWI_IRQEN_ANACK 0x2
#define TWI_IRQEN_DNACK 0x4
#define TWI_IRQ_COMPL (TWI_IRQEN_COMPL << 8)
#define TWI_IRQ_ANACK (TWI_IRQEN_ANACK << 8)
#define TWI_IRQ_DNACK (TWI_IRQEN_DNACK << 8)
#define TWI_IRQ_TX 0x800
#define TWI_IRQ_RX 0x1000
#define TWI_IRQEN (TWI_IRQEN_COMPL | TWI_IRQEN_ANACK | TWI_IRQEN_DNACK)
/* twi_addr_ctrl1 reg bits*/
#define TWI_TRANSFER 0x100
#define TWI_NOSTOP 0x200
#define TWI_SOFT_RESET 0x2000
/* twi_clkdiv reg value */
#define TWI_CLKDIV 156
/* fifo_stat_ctrl reg bits */
#define FIFO_IRQEN 0x8000
#define FIFO_RESET 0x4000
/* FIFO size */
#define FIFO_SIZE 16
struct netup_i2c_fifo_regs {
union {
__u8 data8;
__le16 data16;
__le32 data32;
};
__u8 padding[4];
__le16 stat_ctrl;
} __packed __aligned(1);
struct netup_i2c_regs {
__le16 clkdiv;
__le16 twi_ctrl0_stat;
__le16 twi_addr_ctrl1;
__le16 length;
__u8 padding1[8];
struct netup_i2c_fifo_regs tx_fifo;
__u8 padding2[6];
struct netup_i2c_fifo_regs rx_fifo;
} __packed __aligned(1);
irqreturn_t netup_i2c_interrupt(struct netup_i2c *i2c)
{
u16 reg, tmp;
unsigned long flags;
irqreturn_t iret = IRQ_HANDLED;
spin_lock_irqsave(&i2c->lock, flags);
reg = readw(&i2c->regs->twi_ctrl0_stat);
writew(reg & ~TWI_IRQEN, &i2c->regs->twi_ctrl0_stat);
dev_dbg(i2c->adap.dev.parent,
"%s(): twi_ctrl0_state 0x%x\n", __func__, reg);
if ((reg & TWI_IRQEN_COMPL) != 0 && (reg & TWI_IRQ_COMPL)) {
dev_dbg(i2c->adap.dev.parent,
"%s(): TWI_IRQEN_COMPL\n", __func__);
i2c->state = STATE_DONE;
goto irq_ok;
}
if ((reg & TWI_IRQEN_ANACK) != 0 && (reg & TWI_IRQ_ANACK)) {
dev_dbg(i2c->adap.dev.parent,
"%s(): TWI_IRQEN_ANACK\n", __func__);
i2c->state = STATE_ERROR;
goto irq_ok;
}
if ((reg & TWI_IRQEN_DNACK) != 0 && (reg & TWI_IRQ_DNACK)) {
dev_dbg(i2c->adap.dev.parent,
"%s(): TWI_IRQEN_DNACK\n", __func__);
i2c->state = STATE_ERROR;
goto irq_ok;
}
if ((reg & TWI_IRQ_RX) != 0) {
tmp = readw(&i2c->regs->rx_fifo.stat_ctrl);
writew(tmp & ~FIFO_IRQEN, &i2c->regs->rx_fifo.stat_ctrl);
i2c->state = STATE_WANT_READ;
dev_dbg(i2c->adap.dev.parent,
"%s(): want read\n", __func__);
goto irq_ok;
}
if ((reg & TWI_IRQ_TX) != 0) {
tmp = readw(&i2c->regs->tx_fifo.stat_ctrl);
writew(tmp & ~FIFO_IRQEN, &i2c->regs->tx_fifo.stat_ctrl);
i2c->state = STATE_WANT_WRITE;
dev_dbg(i2c->adap.dev.parent,
"%s(): want write\n", __func__);
goto irq_ok;
}
dev_warn(&i2c->adap.dev, "%s(): not mine interrupt\n", __func__);
iret = IRQ_NONE;
irq_ok:
spin_unlock_irqrestore(&i2c->lock, flags);
if (iret == IRQ_HANDLED)
wake_up(&i2c->wq);
return iret;
}
static void netup_i2c_reset(struct netup_i2c *i2c)
{
dev_dbg(i2c->adap.dev.parent, "%s()\n", __func__);
i2c->state = STATE_DONE;
writew(TWI_SOFT_RESET, &i2c->regs->twi_addr_ctrl1);
writew(TWI_CLKDIV, &i2c->regs->clkdiv);
writew(FIFO_RESET, &i2c->regs->tx_fifo.stat_ctrl);
writew(FIFO_RESET, &i2c->regs->rx_fifo.stat_ctrl);
writew(0x800, &i2c->regs->tx_fifo.stat_ctrl);
writew(0x800, &i2c->regs->rx_fifo.stat_ctrl);
}
static void netup_i2c_fifo_tx(struct netup_i2c *i2c)
{
u8 data;
u32 fifo_space = FIFO_SIZE -
(readw(&i2c->regs->tx_fifo.stat_ctrl) & 0x3f);
u32 msg_length = i2c->msg->len - i2c->xmit_size;
msg_length = (msg_length < fifo_space ? msg_length : fifo_space);
while (msg_length--) {
data = i2c->msg->buf[i2c->xmit_size++];
writeb(data, &i2c->regs->tx_fifo.data8);
dev_dbg(i2c->adap.dev.parent,
"%s(): write 0x%02x\n", __func__, data);
}
if (i2c->xmit_size < i2c->msg->len) {
dev_dbg(i2c->adap.dev.parent,
"%s(): TX IRQ enabled\n", __func__);
writew(readw(&i2c->regs->tx_fifo.stat_ctrl) | FIFO_IRQEN,
&i2c->regs->tx_fifo.stat_ctrl);
}
}
static void netup_i2c_fifo_rx(struct netup_i2c *i2c)
{
u8 data;
u32 fifo_size = readw(&i2c->regs->rx_fifo.stat_ctrl) & 0x3f;
dev_dbg(i2c->adap.dev.parent,
"%s(): RX fifo size %d\n", __func__, fifo_size);
while (fifo_size--) {
data = readb(&i2c->regs->rx_fifo.data8);
if ((i2c->msg->flags & I2C_M_RD) != 0 &&
i2c->xmit_size < i2c->msg->len) {
i2c->msg->buf[i2c->xmit_size++] = data;
dev_dbg(i2c->adap.dev.parent,
"%s(): read 0x%02x\n", __func__, data);
}
}
if (i2c->xmit_size < i2c->msg->len) {
dev_dbg(i2c->adap.dev.parent,
"%s(): RX IRQ enabled\n", __func__);
writew(readw(&i2c->regs->rx_fifo.stat_ctrl) | FIFO_IRQEN,
&i2c->regs->rx_fifo.stat_ctrl);
}
}
static void netup_i2c_start_xfer(struct netup_i2c *i2c)
{
u16 rdflag = ((i2c->msg->flags & I2C_M_RD) ? 1 : 0);
u16 reg = readw(&i2c->regs->twi_ctrl0_stat);
writew(TWI_IRQEN | reg, &i2c->regs->twi_ctrl0_stat);
writew(i2c->msg->len, &i2c->regs->length);
writew(TWI_TRANSFER | (i2c->msg->addr << 1) | rdflag,
&i2c->regs->twi_addr_ctrl1);
dev_dbg(i2c->adap.dev.parent,
"%s(): length %d twi_addr_ctrl1 0x%x twi_ctrl0_stat 0x%x\n",
__func__, readw(&i2c->regs->length),
readw(&i2c->regs->twi_addr_ctrl1),
readw(&i2c->regs->twi_ctrl0_stat));
i2c->state = STATE_WAIT;
i2c->xmit_size = 0;
if (!rdflag)
netup_i2c_fifo_tx(i2c);
else
writew(FIFO_IRQEN | readw(&i2c->regs->rx_fifo.stat_ctrl),
&i2c->regs->rx_fifo.stat_ctrl);
}
static int netup_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
unsigned long flags;
int i, trans_done, res = num;
struct netup_i2c *i2c = i2c_get_adapdata(adap);
u16 reg;
if (num <= 0) {
dev_dbg(i2c->adap.dev.parent,
"%s(): num == %d\n", __func__, num);
return -EINVAL;
}
spin_lock_irqsave(&i2c->lock, flags);
if (i2c->state != STATE_DONE) {
dev_dbg(i2c->adap.dev.parent,
"%s(): i2c->state == %d, resetting I2C\n",
__func__, i2c->state);
netup_i2c_reset(i2c);
}
dev_dbg(i2c->adap.dev.parent, "%s() num %d\n", __func__, num);
for (i = 0; i < num; i++) {
i2c->msg = &msgs[i];
netup_i2c_start_xfer(i2c);
trans_done = 0;
while (!trans_done) {
spin_unlock_irqrestore(&i2c->lock, flags);
if (wait_event_timeout(i2c->wq,
i2c->state != STATE_WAIT,
msecs_to_jiffies(NETUP_I2C_TIMEOUT))) {
spin_lock_irqsave(&i2c->lock, flags);
switch (i2c->state) {
case STATE_WANT_READ:
netup_i2c_fifo_rx(i2c);
break;
case STATE_WANT_WRITE:
netup_i2c_fifo_tx(i2c);
break;
case STATE_DONE:
if ((i2c->msg->flags & I2C_M_RD) != 0 &&
i2c->xmit_size != i2c->msg->len)
netup_i2c_fifo_rx(i2c);
dev_dbg(i2c->adap.dev.parent,
"%s(): msg %d OK\n",
__func__, i);
trans_done = 1;
break;
case STATE_ERROR:
res = -EIO;
dev_dbg(i2c->adap.dev.parent,
"%s(): error state\n",
__func__);
goto done;
default:
dev_dbg(i2c->adap.dev.parent,
"%s(): invalid state %d\n",
__func__, i2c->state);
res = -EINVAL;
goto done;
}
if (!trans_done) {
i2c->state = STATE_WAIT;
reg = readw(
&i2c->regs->twi_ctrl0_stat);
writew(TWI_IRQEN | reg,
&i2c->regs->twi_ctrl0_stat);
}
spin_unlock_irqrestore(&i2c->lock, flags);
} else {
spin_lock_irqsave(&i2c->lock, flags);
dev_dbg(i2c->adap.dev.parent,
"%s(): wait timeout\n", __func__);
res = -ETIMEDOUT;
goto done;
}
spin_lock_irqsave(&i2c->lock, flags);
}
}
done:
spin_unlock_irqrestore(&i2c->lock, flags);
dev_dbg(i2c->adap.dev.parent, "%s(): result %d\n", __func__, res);
return res;
}
static u32 netup_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm netup_i2c_algorithm = {
.master_xfer = netup_i2c_xfer,
.functionality = netup_i2c_func,
};
static struct i2c_adapter netup_i2c_adapter = {
.owner = THIS_MODULE,
.name = NETUP_UNIDVB_NAME,
.class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
.algo = &netup_i2c_algorithm,
};
static int netup_i2c_init(struct netup_unidvb_dev *ndev, int bus_num)
{
int ret;
struct netup_i2c *i2c;
if (bus_num < 0 || bus_num > 1) {
dev_err(&ndev->pci_dev->dev,
"%s(): invalid bus_num %d\n", __func__, bus_num);
return -EINVAL;
}
i2c = &ndev->i2c[bus_num];
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wq);
i2c->regs = (struct netup_i2c_regs *)(ndev->bmmio0 +
(bus_num == 0 ? NETUP_I2C_BUS0_ADDR : NETUP_I2C_BUS1_ADDR));
netup_i2c_reset(i2c);
i2c->adap = netup_i2c_adapter;
i2c->adap.dev.parent = &ndev->pci_dev->dev;
i2c_set_adapdata(&i2c->adap, i2c);
ret = i2c_add_adapter(&i2c->adap);
if (ret) {
dev_err(&ndev->pci_dev->dev,
"%s(): failed to add I2C adapter\n", __func__);
return ret;
}
dev_info(&ndev->pci_dev->dev,
"%s(): registered I2C bus %d at 0x%x\n",
__func__,
bus_num, (bus_num == 0 ?
NETUP_I2C_BUS0_ADDR :
NETUP_I2C_BUS1_ADDR));
return 0;
}
static void netup_i2c_remove(struct netup_unidvb_dev *ndev, int bus_num)
{
struct netup_i2c *i2c;
if (bus_num < 0 || bus_num > 1) {
dev_err(&ndev->pci_dev->dev,
"%s(): invalid bus number %d\n", __func__, bus_num);
return;
}
i2c = &ndev->i2c[bus_num];
netup_i2c_reset(i2c);
/* remove adapter */
i2c_del_adapter(&i2c->adap);
dev_info(&ndev->pci_dev->dev,
"netup_i2c_remove: unregistered I2C bus %d\n", bus_num);
}
int netup_i2c_register(struct netup_unidvb_dev *ndev)
{
int ret;
ret = netup_i2c_init(ndev, 0);
if (ret)
return ret;
ret = netup_i2c_init(ndev, 1);
if (ret) {
netup_i2c_remove(ndev, 0);
return ret;
}
return 0;
}
void netup_i2c_unregister(struct netup_unidvb_dev *ndev)
{
netup_i2c_remove(ndev, 0);
netup_i2c_remove(ndev, 1);
}
/*
* netup_unidvb_spi.c
*
* Internal SPI driver for NetUP Universal Dual DVB-CI
*
* Copyright (C) 2014 NetUP Inc.
* Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru>
* Copyright (C) 2014 Abylay Ospan <aospan@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "netup_unidvb.h"
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/partitions.h>
#include <mtd/mtd-abi.h>
#define NETUP_SPI_CTRL_IRQ 0x1000
#define NETUP_SPI_CTRL_IMASK 0x2000
#define NETUP_SPI_CTRL_START 0x8000
#define NETUP_SPI_CTRL_LAST_CS 0x4000
#define NETUP_SPI_TIMEOUT 6000
enum netup_spi_state {
SPI_STATE_START,
SPI_STATE_DONE,
};
struct netup_spi_regs {
__u8 data[1024];
__le16 control_stat;
__le16 clock_divider;
} __packed __aligned(1);
struct netup_spi {
struct device *dev;
struct spi_master *master;
struct netup_spi_regs *regs;
u8 __iomem *mmio;
spinlock_t lock;
wait_queue_head_t waitq;
enum netup_spi_state state;
};
static char netup_spi_name[64] = "fpga";
static struct mtd_partition netup_spi_flash_partitions = {
.name = netup_spi_name,
.size = 0x1000000, /* 16MB */
.offset = 0,
.mask_flags = MTD_CAP_ROM
};
static struct flash_platform_data spi_flash_data = {
.name = "netup0_m25p128",
.parts = &netup_spi_flash_partitions,
.nr_parts = 1,
};
static struct spi_board_info netup_spi_board = {
.modalias = "m25p128",
.max_speed_hz = 11000000,
.chip_select = 0,
.mode = SPI_MODE_0,
.platform_data = &spi_flash_data,
};
irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
{
u16 reg;
unsigned long flags;
if (!spi) {
dev_dbg(&spi->master->dev,
"%s(): SPI not initialized\n", __func__);
return IRQ_NONE;
}
spin_lock_irqsave(&spi->lock, flags);
reg = readw(&spi->regs->control_stat);
if (!(reg & NETUP_SPI_CTRL_IRQ)) {
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
"%s(): not mine interrupt\n", __func__);
return IRQ_NONE;
}
writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
reg = readw(&spi->regs->control_stat);
writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
spi->state = SPI_STATE_DONE;
wake_up(&spi->waitq);
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
"%s(): SPI interrupt handled\n", __func__);
return IRQ_HANDLED;
}
static int netup_spi_transfer(struct spi_master *master,
struct spi_message *msg)
{
struct netup_spi *spi = spi_master_get_devdata(master);
struct spi_transfer *t;
int result = 0;
u32 tr_size;
/* reset CS */
writew(NETUP_SPI_CTRL_LAST_CS, &spi->regs->control_stat);
writew(0, &spi->regs->control_stat);
list_for_each_entry(t, &msg->transfers, transfer_list) {
tr_size = t->len;
while (tr_size) {
u32 frag_offset = t->len - tr_size;
u32 frag_size = (tr_size > sizeof(spi->regs->data)) ?
sizeof(spi->regs->data) : tr_size;
int frag_last = 0;
if (list_is_last(&t->transfer_list,
&msg->transfers) &&
frag_offset + frag_size == t->len) {
frag_last = 1;
}
if (t->tx_buf) {
memcpy_toio(spi->regs->data,
t->tx_buf + frag_offset,
frag_size);
} else {
memset_io(spi->regs->data,
0, frag_size);
}
spi->state = SPI_STATE_START;
writew((frag_size & 0x3ff) |
NETUP_SPI_CTRL_IMASK |
NETUP_SPI_CTRL_START |
(frag_last ? NETUP_SPI_CTRL_LAST_CS : 0),
&spi->regs->control_stat);
dev_dbg(&spi->master->dev,
"%s(): control_stat 0x%04x\n",
__func__, readw(&spi->regs->control_stat));
wait_event_timeout(spi->waitq,
spi->state != SPI_STATE_START,
msecs_to_jiffies(NETUP_SPI_TIMEOUT));
if (spi->state == SPI_STATE_DONE) {
if (t->rx_buf) {
memcpy_fromio(t->rx_buf + frag_offset,
spi->regs->data, frag_size);
}
} else {
if (spi->state == SPI_STATE_START) {
dev_dbg(&spi->master->dev,
"%s(): transfer timeout\n",
__func__);
} else {
dev_dbg(&spi->master->dev,
"%s(): invalid state %d\n",
__func__, spi->state);
}
result = -EIO;
goto done;
}
tr_size -= frag_size;
msg->actual_length += frag_size;
}
}
done:
msg->status = result;
spi_finalize_current_message(master);
return result;
}
static int netup_spi_setup(struct spi_device *spi)
{
return 0;
}
int netup_spi_init(struct netup_unidvb_dev *ndev)
{
struct spi_master *master;
struct netup_spi *nspi;
master = spi_alloc_master(&ndev->pci_dev->dev,
sizeof(struct netup_spi));
if (!master) {
dev_err(&ndev->pci_dev->dev,
"%s(): unable to alloc SPI master\n", __func__);
return -EINVAL;
}
nspi = spi_master_get_devdata(master);
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->bus_num = -1;
master->num_chipselect = 1;
master->transfer_one_message = netup_spi_transfer;
master->setup = netup_spi_setup;
spin_lock_init(&nspi->lock);
init_waitqueue_head(&nspi->waitq);
nspi->master = master;
nspi->regs = (struct netup_spi_regs *)(ndev->bmmio0 + 0x4000);
writew(2, &nspi->regs->clock_divider);
writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET);
ndev->spi = nspi;
if (spi_register_master(master)) {
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to register SPI bus\n", __func__);
return -EINVAL;
}
snprintf(netup_spi_name,
sizeof(netup_spi_name),
"fpga_%02x:%02x.%01x",
ndev->pci_bus,
ndev->pci_slot,
ndev->pci_func);
if (!spi_new_device(master, &netup_spi_board)) {
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to create SPI device\n", __func__);
return -EINVAL;
}
dev_dbg(&ndev->pci_dev->dev, "%s(): SPI init OK\n", __func__);
return 0;
}
void netup_spi_release(struct netup_unidvb_dev *ndev)
{
u16 reg;
unsigned long flags;
struct netup_spi *spi = ndev->spi;
if (!spi) {
dev_dbg(&spi->master->dev,
"%s(): SPI not initialized\n", __func__);
return;
}
spin_lock_irqsave(&spi->lock, flags);
reg = readw(&spi->regs->control_stat);
writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);
reg = readw(&spi->regs->control_stat);
writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat);
spin_unlock_irqrestore(&spi->lock, flags);
spi_unregister_master(spi->master);
ndev->spi = NULL;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment