Commit 5648e56d authored by Serge Semin's avatar Serge Semin Committed by Jon Mason

NTB: ntb_perf: Add full multi-port NTB API support

Former NTB Performance driver could only work with NTB devices, which
got Scratchpads available and had just two ports. Since there are
devices, which don't have Scratchpads and got more than two peer
ports, the performance measuring tool needs to be rewritten. This
patch adds the ability to test any available NTB peer.
Additionally it allows to set NTB memory windows up using any
available data exchange interface: Scratchpad or Message registers.
Some cleanups are also added here.
Signed-off-by: default avatarSerge Semin <fancer.lancer@gmail.com>
Signed-off-by: default avatarJon Mason <jdmason@kudzu.us>
parent 7f46c8b3
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* GPL LICENSE SUMMARY * GPL LICENSE SUMMARY
* *
* Copyright(c) 2015 Intel Corporation. All rights reserved. * Copyright(c) 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2017 T-Platforms. All Rights Reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as * it under the terms of version 2 of the GNU General Public License as
...@@ -13,6 +14,7 @@ ...@@ -13,6 +14,7 @@
* BSD LICENSE * BSD LICENSE
* *
* Copyright(c) 2015 Intel Corporation. All rights reserved. * Copyright(c) 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2017 T-Platforms. All Rights Reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions * modification, are permitted provided that the following conditions
...@@ -43,856 +45,1472 @@ ...@@ -43,856 +45,1472 @@
* PCIe NTB Perf Linux driver * PCIe NTB Perf Linux driver
*/ */
/*
* How to use this tool, by example.
*
* Assuming $DBG_DIR is something like:
* '/sys/kernel/debug/ntb_perf/0000:00:03.0'
* Suppose aside from local device there is at least one remote device
* connected to NTB with index 0.
*-----------------------------------------------------------------------------
* Eg: install driver with specified chunk/total orders and dma-enabled flag
*
* root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma
*-----------------------------------------------------------------------------
* Eg: check NTB ports (index) and MW mapping information
*
* root@self# cat $DBG_DIR/info
*-----------------------------------------------------------------------------
* Eg: start performance test with peer (index 0) and get the test metrics
*
* root@self# echo 0 > $DBG_DIR/run
* root@self# cat $DBG_DIR/run
*/
#include <linux/init.h> #include <linux/init.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/kthread.h> #include <linux/sched.h>
#include <linux/time.h> #include <linux/wait.h>
#include <linux/timer.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/ktime.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/sizes.h> #include <linux/sizes.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ntb.h> #include <linux/ntb.h>
#include <linux/mutex.h>
#define DRIVER_NAME "ntb_perf" #define DRIVER_NAME "ntb_perf"
#define DRIVER_DESCRIPTION "PCIe NTB Performance Measurement Tool" #define DRIVER_VERSION "2.0"
#define DRIVER_VERSION "1.0"
#define DRIVER_AUTHOR "Dave Jiang <dave.jiang@intel.com>"
#define PERF_LINK_DOWN_TIMEOUT 10
#define PERF_VERSION 0xffff0001
#define MAX_THREADS 32
#define MAX_TEST_SIZE SZ_1M
#define MAX_SRCS 32
#define DMA_OUT_RESOURCE_TO msecs_to_jiffies(50)
#define DMA_RETRIES 20
#define SZ_4G (1ULL << 32)
#define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */
#define PIDX NTB_DEF_PEER_IDX
MODULE_LICENSE("Dual BSD/GPL"); MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRIVER_VERSION); MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>");
MODULE_DESCRIPTION(DRIVER_DESCRIPTION); MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool");
#define MAX_THREADS_CNT 32
#define DEF_THREADS_CNT 1
#define MAX_CHUNK_SIZE SZ_1M
#define MAX_CHUNK_ORDER 20 /* no larger than 1M */
#define DMA_TRIES 100
#define DMA_MDELAY 10
#define MSG_TRIES 500
#define MSG_UDELAY_LOW 1000
#define MSG_UDELAY_HIGH 2000
static struct dentry *perf_debugfs_dir; #define PERF_BUF_LEN 1024
static unsigned long max_mw_size; static unsigned long max_mw_size;
module_param(max_mw_size, ulong, 0644); module_param(max_mw_size, ulong, 0644);
MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows"); MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size");
static unsigned int seg_order = 19; /* 512K */ static unsigned char chunk_order = 19; /* 512K */
module_param(seg_order, uint, 0644); module_param(chunk_order, byte, 0644);
MODULE_PARM_DESC(seg_order, "size order [2^n] of buffer segment for testing"); MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer");
static unsigned int run_order = 32; /* 4G */ static unsigned char total_order = 30; /* 1G */
module_param(run_order, uint, 0644); module_param(total_order, byte, 0644);
MODULE_PARM_DESC(run_order, "size order [2^n] of total data to transfer"); MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer");
static bool use_dma; /* default to 0 */ static bool use_dma; /* default to 0 */
module_param(use_dma, bool, 0644); module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance"); MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance");
static bool on_node = true; /* default to 1 */ /*==============================================================================
module_param(on_node, bool, 0644); * Perf driver data definition
MODULE_PARM_DESC(on_node, "Run threads only on NTB device node (default: true)"); *==============================================================================
*/
struct perf_mw { enum perf_cmd {
phys_addr_t phys_addr; PERF_CMD_INVAL = -1,/* invalid spad command */
resource_size_t phys_size; PERF_CMD_SSIZE = 0, /* send out buffer size */
void __iomem *vbase; PERF_CMD_RSIZE = 1, /* recv in buffer size */
size_t xlat_size; PERF_CMD_SXLAT = 2, /* send in buffer xlat */
size_t buf_size; PERF_CMD_RXLAT = 3, /* recv out buffer xlat */
void *virt_addr; PERF_CMD_CLEAR = 4, /* clear allocated memory */
dma_addr_t dma_addr; PERF_STS_DONE = 5, /* init is done */
PERF_STS_LNKUP = 6, /* link up state flag */
}; };
struct perf_ctx; struct perf_ctx;
struct pthr_ctx { struct perf_peer {
struct task_struct *thread;
struct perf_ctx *perf; struct perf_ctx *perf;
int pidx;
int gidx;
/* Outbound MW params */
u64 outbuf_xlat;
resource_size_t outbuf_size;
void __iomem *outbuf;
/* Inbound MW params */
dma_addr_t inbuf_xlat;
resource_size_t inbuf_size;
void *inbuf;
/* NTB connection setup service */
struct work_struct service;
unsigned long sts;
};
#define to_peer_service(__work) \
container_of(__work, struct perf_peer, service)
struct perf_thread {
struct perf_ctx *perf;
int tidx;
/* DMA-based test sync parameters */
atomic_t dma_sync; atomic_t dma_sync;
wait_queue_head_t dma_wait;
struct dma_chan *dma_chan; struct dma_chan *dma_chan;
int dma_prep_err;
int src_idx; /* Data source and measured statistics */
void *srcs[MAX_SRCS]; void *src;
wait_queue_head_t *wq;
int status;
u64 copied; u64 copied;
u64 diff_us; ktime_t duration;
int status;
struct work_struct work;
}; };
#define to_thread_work(__work) \
container_of(__work, struct perf_thread, work)
struct perf_ctx { struct perf_ctx {
struct ntb_dev *ntb; struct ntb_dev *ntb;
spinlock_t db_lock;
struct perf_mw mw; /* Global device index and peers descriptors */
bool link_is_up; int gidx;
struct delayed_work link_work; int pcnt;
wait_queue_head_t link_wq; struct perf_peer *peers;
u8 perf_threads;
/* mutex ensures only one set of threads run at once */ /* Performance measuring work-threads interface */
struct mutex run_mutex; unsigned long busy_flag;
struct pthr_ctx pthr_ctx[MAX_THREADS]; wait_queue_head_t twait;
atomic_t tsync; atomic_t tsync;
atomic_t tdone; u8 tcnt;
}; struct perf_peer *test_peer;
struct perf_thread threads[MAX_THREADS_CNT];
enum { /* Scratchpad/Message IO operations */
VERSION = 0, int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data);
MW_SZ_HIGH, int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd,
MW_SZ_LOW, u64 *data);
MAX_SPAD
struct dentry *dbgfs_dir;
}; };
/*
* Scratchpads-base commands interface
*/
#define PERF_SPAD_CNT(_pcnt) \
(3*((_pcnt) + 1))
#define PERF_SPAD_CMD(_gidx) \
(3*(_gidx))
#define PERF_SPAD_LDATA(_gidx) \
(3*(_gidx) + 1)
#define PERF_SPAD_HDATA(_gidx) \
(3*(_gidx) + 2)
#define PERF_SPAD_NOTIFY(_gidx) \
(BIT_ULL(_gidx))
/*
* Messages-base commands interface
*/
#define PERF_MSG_CNT 3
#define PERF_MSG_CMD 0
#define PERF_MSG_LDATA 1
#define PERF_MSG_HDATA 2
/*==============================================================================
* Static data declarations
*==============================================================================
*/
static struct dentry *perf_dbgfs_topdir;
static struct workqueue_struct *perf_wq __read_mostly;
/*==============================================================================
* NTB cross-link commands execution service
*==============================================================================
*/
static void perf_terminate_test(struct perf_ctx *perf);
static inline bool perf_link_is_up(struct perf_peer *peer)
{
u64 link;
link = ntb_link_is_up(peer->perf->ntb, NULL, NULL);
return !!(link & BIT_ULL_MASK(peer->pidx));
}
static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
u64 data)
{
struct perf_ctx *perf = peer->perf;
int try;
u32 sts;
dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
/*
* Perform predefined number of attempts before give up.
* We are sending the data to the port specific scratchpad, so
* to prevent a multi-port access race-condition. Additionally
* there is no need in local locking since only thread-safe
* service work is using this method.
*/
for (try = 0; try < MSG_TRIES; try++) {
if (!perf_link_is_up(peer))
return -ENOLINK;
sts = ntb_peer_spad_read(perf->ntb, peer->pidx,
PERF_SPAD_CMD(perf->gidx));
if (le32_to_cpu(sts) != PERF_CMD_INVAL) {
usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
continue;
}
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_LDATA(perf->gidx),
cpu_to_le32(lower_32_bits(data)));
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_HDATA(perf->gidx),
cpu_to_le32(upper_32_bits(data)));
mmiowb();
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_CMD(perf->gidx),
cpu_to_le32(cmd));
mmiowb();
ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx));
dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n",
PERF_SPAD_NOTIFY(peer->gidx));
break;
}
return try < MSG_TRIES ? 0 : -EAGAIN;
}
static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx,
enum perf_cmd *cmd, u64 *data)
{
struct perf_peer *peer;
u32 val;
ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
/*
* We start scanning all over, since cleared DB may have been set
* by any peer. Yes, it makes peer with smaller index being
* serviced with greater priority, but it's convenient for spad
* and message code unification and simplicity.
*/
for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) {
peer = &perf->peers[*pidx];
if (!perf_link_is_up(peer))
continue;
val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx));
val = le32_to_cpu(val);
if (val == PERF_CMD_INVAL)
continue;
*cmd = val;
val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx));
*data = le32_to_cpu(val);
val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx));
*data |= (u64)le32_to_cpu(val) << 32;
/* Next command can be retrieved from now */
ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx),
cpu_to_le32(PERF_CMD_INVAL));
dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
return 0;
}
return -ENODATA;
}
static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
u64 data)
{
struct perf_ctx *perf = peer->perf;
int try, ret;
u64 outbits;
dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
/*
* Perform predefined number of attempts before give up. Message
* registers are free of race-condition problem when accessed
* from different ports, so we don't need splitting registers
* by global device index. We also won't have local locking,
* since the method is used from service work only.
*/
outbits = ntb_msg_outbits(perf->ntb);
for (try = 0; try < MSG_TRIES; try++) {
if (!perf_link_is_up(peer))
return -ENOLINK;
ret = ntb_msg_clear_sts(perf->ntb, outbits);
if (ret)
return ret;
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA,
cpu_to_le32(lower_32_bits(data)));
if (ntb_msg_read_sts(perf->ntb) & outbits) {
usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
continue;
}
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA,
cpu_to_le32(upper_32_bits(data)));
mmiowb();
/* This call shall trigger peer message event */
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD,
cpu_to_le32(cmd));
break;
}
return try < MSG_TRIES ? 0 : -EAGAIN;
}
static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx,
enum perf_cmd *cmd, u64 *data)
{
u64 inbits;
u32 val;
inbits = ntb_msg_inbits(perf->ntb);
if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3)
return -ENODATA;
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD);
*cmd = le32_to_cpu(val);
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA);
*data = le32_to_cpu(val);
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA);
*data |= (u64)le32_to_cpu(val) << 32;
/* Next command can be retrieved from now */
ntb_msg_clear_sts(perf->ntb, inbits);
dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
return 0;
}
static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data)
{
struct perf_ctx *perf = peer->perf;
if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT)
return perf->cmd_send(peer, cmd, data);
dev_err(&perf->ntb->dev, "Send invalid command\n");
return -EINVAL;
}
static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd)
{
switch (cmd) {
case PERF_CMD_SSIZE:
case PERF_CMD_RSIZE:
case PERF_CMD_SXLAT:
case PERF_CMD_RXLAT:
case PERF_CMD_CLEAR:
break;
default:
dev_err(&peer->perf->ntb->dev, "Exec invalid command\n");
return -EINVAL;
}
/* No need of memory barrier, since bit ops have invernal lock */
set_bit(cmd, &peer->sts);
dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd);
(void)queue_work(system_highpri_wq, &peer->service);
return 0;
}
static int perf_cmd_recv(struct perf_ctx *perf)
{
struct perf_peer *peer;
int ret, pidx, cmd;
u64 data;
while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) {
peer = &perf->peers[pidx];
switch (cmd) {
case PERF_CMD_SSIZE:
peer->inbuf_size = data;
return perf_cmd_exec(peer, PERF_CMD_RSIZE);
case PERF_CMD_SXLAT:
peer->outbuf_xlat = data;
return perf_cmd_exec(peer, PERF_CMD_RXLAT);
default:
dev_err(&perf->ntb->dev, "Recv invalid command\n");
return -EINVAL;
}
}
/* Return 0 if no data left to process, otherwise an error */
return ret == -ENODATA ? 0 : ret;
}
static void perf_link_event(void *ctx) static void perf_link_event(void *ctx)
{ {
struct perf_ctx *perf = ctx; struct perf_ctx *perf = ctx;
struct perf_peer *peer;
bool lnk_up;
int pidx;
if (ntb_link_is_up(perf->ntb, NULL, NULL) == 1) { for (pidx = 0; pidx < perf->pcnt; pidx++) {
schedule_delayed_work(&perf->link_work, 2*HZ); peer = &perf->peers[pidx];
} else {
dev_dbg(&perf->ntb->pdev->dev, "link down\n");
if (!perf->link_is_up) lnk_up = perf_link_is_up(peer);
cancel_delayed_work_sync(&perf->link_work);
perf->link_is_up = false; if (lnk_up &&
!test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) {
perf_cmd_exec(peer, PERF_CMD_SSIZE);
} else if (!lnk_up &&
test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) {
perf_cmd_exec(peer, PERF_CMD_CLEAR);
}
} }
} }
static void perf_db_event(void *ctx, int vec) static void perf_db_event(void *ctx, int vec)
{ {
struct perf_ctx *perf = ctx; struct perf_ctx *perf = ctx;
u64 db_bits, db_mask;
db_mask = ntb_db_vector_mask(perf->ntb, vec); dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec,
db_bits = ntb_db_read(perf->ntb); ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb));
dev_dbg(&perf->ntb->dev, "doorbell vec %d mask %#llx bits %#llx\n", /* Just receive all available commands */
vec, db_mask, db_bits); (void)perf_cmd_recv(perf);
}
static void perf_msg_event(void *ctx)
{
struct perf_ctx *perf = ctx;
dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n",
ntb_msg_read_sts(perf->ntb));
/* Messages are only sent one-by-one */
(void)perf_cmd_recv(perf);
} }
static const struct ntb_ctx_ops perf_ops = { static const struct ntb_ctx_ops perf_ops = {
.link_event = perf_link_event, .link_event = perf_link_event,
.db_event = perf_db_event, .db_event = perf_db_event,
.msg_event = perf_msg_event
}; };
static void perf_copy_callback(void *data) static void perf_free_outbuf(struct perf_peer *peer)
{ {
struct pthr_ctx *pctx = data; (void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
}
static int perf_setup_outbuf(struct perf_peer *peer)
{
struct perf_ctx *perf = peer->perf;
int ret;
/* Outbuf size can be unaligned due to custom max_mw_size */
ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
peer->outbuf_xlat, peer->outbuf_size);
if (ret) {
dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n");
return ret;
}
atomic_dec(&pctx->dma_sync); /* Initialization is finally done */
set_bit(PERF_STS_DONE, &peer->sts);
return 0;
} }
static ssize_t perf_copy(struct pthr_ctx *pctx, char __iomem *dst, static void perf_free_inbuf(struct perf_peer *peer)
char *src, size_t size)
{ {
struct perf_ctx *perf = pctx->perf; if (!peer->inbuf)
struct dma_async_tx_descriptor *txd; return;
struct dma_chan *chan = pctx->dma_chan;
struct dma_device *device;
struct dmaengine_unmap_data *unmap;
dma_cookie_t cookie;
size_t src_off, dst_off;
struct perf_mw *mw = &perf->mw;
void __iomem *vbase;
void __iomem *dst_vaddr;
dma_addr_t dst_phys;
int retries = 0;
if (!use_dma) { (void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
memcpy_toio(dst, src, size); dma_free_coherent(&peer->perf->ntb->dev, peer->inbuf_size,
return size; peer->inbuf, peer->inbuf_xlat);
peer->inbuf = NULL;
}
static int perf_setup_inbuf(struct perf_peer *peer)
{
resource_size_t xlat_align, size_align, size_max;
struct perf_ctx *perf = peer->perf;
int ret;
/* Get inbound MW parameters */
ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx,
&xlat_align, &size_align, &size_max);
if (ret) {
dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n");
return ret;
} }
if (!chan) { if (peer->inbuf_size > size_max) {
dev_err(&perf->ntb->dev, "DMA engine does not exist\n"); dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n",
&peer->inbuf_size, &size_max);
return -EINVAL; return -EINVAL;
} }
device = chan->device; peer->inbuf_size = round_up(peer->inbuf_size, size_align);
src_off = (uintptr_t)src & ~PAGE_MASK;
dst_off = (uintptr_t __force)dst & ~PAGE_MASK;
if (!is_dma_copy_aligned(device, src_off, dst_off, size)) perf_free_inbuf(peer);
return -ENODEV;
vbase = mw->vbase; peer->inbuf = dma_alloc_coherent(&perf->ntb->dev, peer->inbuf_size,
dst_vaddr = dst; &peer->inbuf_xlat, GFP_KERNEL);
dst_phys = mw->phys_addr + (dst_vaddr - vbase); if (!peer->inbuf) {
dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n",
unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT); &peer->inbuf_size);
if (!unmap)
return -ENOMEM; return -ENOMEM;
}
if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) {
dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n");
goto err_free_inbuf;
}
unmap->len = size; ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
unmap->addr[0] = dma_map_page(device->dev, virt_to_page(src), peer->inbuf_xlat, peer->inbuf_size);
src_off, size, DMA_TO_DEVICE); if (ret) {
if (dma_mapping_error(device->dev, unmap->addr[0])) dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n");
goto err_get_unmap; goto err_free_inbuf;
}
unmap->to_cnt = 1; /*
* We submit inbuf xlat transmission cmd for execution here to follow
* the code architecture, even though this method is called from service
* work itself so the command will be executed right after it returns.
*/
(void)perf_cmd_exec(peer, PERF_CMD_SXLAT);
do { return 0;
txd = device->device_prep_dma_memcpy(chan, dst_phys,
unmap->addr[0], err_free_inbuf:
size, DMA_PREP_INTERRUPT); perf_free_inbuf(peer);
if (!txd) {
set_current_state(TASK_INTERRUPTIBLE); return ret;
schedule_timeout(DMA_OUT_RESOURCE_TO); }
static void perf_service_work(struct work_struct *work)
{
struct perf_peer *peer = to_peer_service(work);
if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts))
perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size);
if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts))
perf_setup_inbuf(peer);
if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts))
perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat);
if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts))
perf_setup_outbuf(peer);
if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) {
clear_bit(PERF_STS_DONE, &peer->sts);
if (test_bit(0, &peer->perf->busy_flag) &&
peer == peer->perf->test_peer) {
dev_warn(&peer->perf->ntb->dev,
"Freeing while test on-fly\n");
perf_terminate_test(peer->perf);
} }
} while (!txd && (++retries < DMA_RETRIES)); perf_free_outbuf(peer);
perf_free_inbuf(peer);
}
}
static int perf_init_service(struct perf_ctx *perf)
{
u64 mask;
if (!txd) { if (ntb_peer_mw_count(perf->ntb) < perf->pcnt + 1) {
pctx->dma_prep_err++; dev_err(&perf->ntb->dev, "Not enough memory windows\n");
goto err_get_unmap; return -EINVAL;
} }
txd->callback = perf_copy_callback; if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) {
txd->callback_param = pctx; perf->cmd_send = perf_msg_cmd_send;
dma_set_unmap(txd, unmap); perf->cmd_recv = perf_msg_cmd_recv;
cookie = dmaengine_submit(txd); dev_dbg(&perf->ntb->dev, "Message service initialized\n");
if (dma_submit_error(cookie))
goto err_set_unmap;
dmaengine_unmap_put(unmap); return 0;
}
atomic_inc(&pctx->dma_sync); dev_dbg(&perf->ntb->dev, "Message service unsupported\n");
dma_async_issue_pending(chan);
return size; mask = GENMASK_ULL(perf->pcnt, 0);
if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) &&
(ntb_db_valid_mask(perf->ntb) & mask) == mask) {
perf->cmd_send = perf_spad_cmd_send;
perf->cmd_recv = perf_spad_cmd_recv;
dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n");
err_set_unmap:
dmaengine_unmap_put(unmap);
err_get_unmap:
dmaengine_unmap_put(unmap);
return 0; return 0;
}
dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n");
dev_err(&perf->ntb->dev, "Command services unsupported\n");
return -EINVAL;
} }
static int perf_move_data(struct pthr_ctx *pctx, char __iomem *dst, char *src, static int perf_enable_service(struct perf_ctx *perf)
u64 buf_size, u64 win_size, u64 total)
{ {
int chunks, total_chunks, i; u64 mask, incmd_bit;
int copied_chunks = 0; int ret, sidx, scnt;
u64 copied = 0, result;
char __iomem *tmp = dst;
u64 perf, diff_us;
ktime_t kstart, kstop, kdiff;
unsigned long last_sleep = jiffies;
chunks = div64_u64(win_size, buf_size); mask = ntb_db_valid_mask(perf->ntb);
total_chunks = div64_u64(total, buf_size); (void)ntb_db_set_mask(perf->ntb, mask);
kstart = ktime_get();
for (i = 0; i < total_chunks; i++) { ret = ntb_set_ctx(perf->ntb, perf, &perf_ops);
result = perf_copy(pctx, tmp, src, buf_size); if (ret)
copied += result; return ret;
copied_chunks++;
if (copied_chunks == chunks) {
tmp = dst;
copied_chunks = 0;
} else
tmp += buf_size;
/* Probably should schedule every 5s to prevent soft hang. */ if (perf->cmd_send == perf_msg_cmd_send) {
if (unlikely((jiffies - last_sleep) > 5 * HZ)) { u64 inbits, outbits;
last_sleep = jiffies;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
if (unlikely(kthread_should_stop())) inbits = ntb_msg_inbits(perf->ntb);
break; outbits = ntb_msg_outbits(perf->ntb);
} (void)ntb_msg_set_mask(perf->ntb, inbits | outbits);
if (use_dma) { incmd_bit = BIT_ULL(__ffs64(inbits));
pr_debug("%s: All DMA descriptors submitted\n", current->comm); ret = ntb_msg_clear_mask(perf->ntb, incmd_bit);
while (atomic_read(&pctx->dma_sync) != 0) {
if (kthread_should_stop()) dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit);
break; } else {
msleep(20); scnt = ntb_spad_count(perf->ntb);
for (sidx = 0; sidx < scnt; sidx++)
ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL);
incmd_bit = PERF_SPAD_NOTIFY(perf->gidx);
ret = ntb_db_clear_mask(perf->ntb, incmd_bit);
dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit);
} }
if (ret) {
ntb_clear_ctx(perf->ntb);
return ret;
} }
kstop = ktime_get(); ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
kdiff = ktime_sub(kstop, kstart); /* Might be not necessary */
diff_us = ktime_to_us(kdiff); ntb_link_event(perf->ntb);
pr_debug("%s: copied %llu bytes\n", current->comm, copied); return 0;
}
pr_debug("%s: lasted %llu usecs\n", current->comm, diff_us); static void perf_disable_service(struct perf_ctx *perf)
{
int pidx;
perf = div64_u64(copied, diff_us); ntb_link_disable(perf->ntb);
pr_debug("%s: MBytes/s: %llu\n", current->comm, perf); if (perf->cmd_send == perf_msg_cmd_send) {
u64 inbits;
pctx->copied = copied; inbits = ntb_msg_inbits(perf->ntb);
pctx->diff_us = diff_us; (void)ntb_msg_set_mask(perf->ntb, inbits);
} else {
(void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
}
return 0; ntb_clear_ctx(perf->ntb);
for (pidx = 0; pidx < perf->pcnt; pidx++)
perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR);
for (pidx = 0; pidx < perf->pcnt; pidx++)
flush_work(&perf->peers[pidx].service);
} }
static bool perf_dma_filter_fn(struct dma_chan *chan, void *node) /*==============================================================================
* Performance measuring work-thread
*==============================================================================
*/
static void perf_dma_copy_callback(void *data)
{ {
/* Is the channel required to be on the same node as the device? */ struct perf_thread *pthr = data;
if (!on_node)
return true;
return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; atomic_dec(&pthr->dma_sync);
wake_up(&pthr->dma_wait);
} }
static int ntb_perf_thread(void *data) static int perf_copy_chunk(struct perf_thread *pthr,
void __iomem *dst, void *src, size_t len)
{ {
struct pthr_ctx *pctx = data; struct dma_async_tx_descriptor *tx;
struct perf_ctx *perf = pctx->perf; struct dmaengine_unmap_data *unmap;
struct pci_dev *pdev = perf->ntb->pdev; struct device *dma_dev;
struct perf_mw *mw = &perf->mw; int try = 0, ret = 0;
char __iomem *dst;
u64 win_size, buf_size, total;
void *src;
int rc, node, i;
struct dma_chan *dma_chan = NULL;
pr_debug("kthread %s starting...\n", current->comm); if (!use_dma) {
memcpy_toio(dst, src, len);
goto ret_check_tsync;
}
node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE; dma_dev = pthr->dma_chan->device->dev;
if (use_dma && !pctx->dma_chan) { if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src),
dma_cap_mask_t dma_mask; offset_in_page(dst), len))
return -EIO;
dma_cap_zero(dma_mask); unmap = dmaengine_get_unmap_data(dma_dev, 2, GFP_NOWAIT);
dma_cap_set(DMA_MEMCPY, dma_mask); if (!unmap)
dma_chan = dma_request_channel(dma_mask, perf_dma_filter_fn, return -ENOMEM;
(void *)(unsigned long)node);
if (!dma_chan) { unmap->len = len;
pr_warn("%s: cannot acquire DMA channel, quitting\n", unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src),
current->comm); offset_in_page(src), len, DMA_TO_DEVICE);
return -ENODEV; if (dma_mapping_error(dma_dev, unmap->addr[0])) {
ret = -EIO;
goto err_free_resource;
} }
pctx->dma_chan = dma_chan; unmap->to_cnt = 1;
unmap->addr[1] = dma_map_page(dma_dev, virt_to_page(dst),
offset_in_page(dst), len, DMA_FROM_DEVICE);
if (dma_mapping_error(dma_dev, unmap->addr[1])) {
ret = -EIO;
goto err_free_resource;
} }
unmap->from_cnt = 1;
for (i = 0; i < MAX_SRCS; i++) { do {
pctx->srcs[i] = kmalloc_node(MAX_TEST_SIZE, GFP_KERNEL, node); tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, unmap->addr[1],
if (!pctx->srcs[i]) { unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
rc = -ENOMEM; if (!tx)
goto err; msleep(DMA_MDELAY);
} while (!tx && (try++ < DMA_TRIES));
if (!tx) {
ret = -EIO;
goto err_free_resource;
} }
tx->callback = perf_dma_copy_callback;
tx->callback_param = pthr;
dma_set_unmap(tx, unmap);
if (dma_submit_error(dmaengine_submit(tx))) {
dmaengine_unmap_put(unmap);
goto err_free_resource;
} }
win_size = mw->phys_size; dmaengine_unmap_put(unmap);
buf_size = 1ULL << seg_order;
total = 1ULL << run_order;
if (buf_size > MAX_TEST_SIZE) atomic_inc(&pthr->dma_sync);
buf_size = MAX_TEST_SIZE; dma_async_issue_pending(pthr->dma_chan);
dst = (char __iomem *)mw->vbase; ret_check_tsync:
return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR;
atomic_inc(&perf->tsync); err_free_resource:
while (atomic_read(&perf->tsync) != perf->perf_threads) dmaengine_unmap_put(unmap);
schedule();
src = pctx->srcs[pctx->src_idx]; return ret;
pctx->src_idx = (pctx->src_idx + 1) & (MAX_SRCS - 1); }
rc = perf_move_data(pctx, dst, src, buf_size, win_size, total); static bool perf_dma_filter(struct dma_chan *chan, void *data)
{
struct perf_ctx *perf = data;
int node;
atomic_dec(&perf->tsync); node = dev_to_node(&perf->ntb->dev);
if (rc < 0) { return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev);
pr_err("%s: failed\n", current->comm); }
rc = -ENXIO;
goto err;
}
for (i = 0; i < MAX_SRCS; i++) { static int perf_init_test(struct perf_thread *pthr)
kfree(pctx->srcs[i]); {
pctx->srcs[i] = NULL; struct perf_ctx *perf = pthr->perf;
dma_cap_mask_t dma_mask;
pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL,
dev_to_node(&perf->ntb->dev));
if (!pthr->src)
return -ENOMEM;
get_random_bytes(pthr->src, perf->test_peer->outbuf_size);
if (!use_dma)
return 0;
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf);
if (!pthr->dma_chan) {
dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n",
pthr->tidx);
atomic_dec(&perf->tsync);
wake_up(&perf->twait);
kfree(pthr->src);
return -ENODEV;
} }
atomic_inc(&perf->tdone); atomic_set(&pthr->dma_sync, 0);
wake_up(pctx->wq);
rc = 0; return 0;
goto done; }
err: static int perf_run_test(struct perf_thread *pthr)
for (i = 0; i < MAX_SRCS; i++) { {
kfree(pctx->srcs[i]); struct perf_peer *peer = pthr->perf->test_peer;
pctx->srcs[i] = NULL; struct perf_ctx *perf = pthr->perf;
void __iomem *flt_dst, *bnd_dst;
u64 total_size, chunk_size;
void *flt_src;
int ret = 0;
total_size = 1ULL << total_order;
chunk_size = 1ULL << chunk_order;
chunk_size = min_t(u64, peer->outbuf_size, chunk_size);
flt_src = pthr->src;
bnd_dst = peer->outbuf + peer->outbuf_size;
flt_dst = peer->outbuf;
pthr->duration = ktime_get();
/* Copied field is cleared on test launch stage */
while (pthr->copied < total_size) {
ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size);
if (ret) {
dev_err(&perf->ntb->dev, "%d: Got error %d on test\n",
pthr->tidx, ret);
return ret;
} }
if (dma_chan) { pthr->copied += chunk_size;
dma_release_channel(dma_chan);
pctx->dma_chan = NULL; flt_dst += chunk_size;
flt_src += chunk_size;
if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) {
flt_dst = peer->outbuf;
flt_src = pthr->src;
} }
done: /* Give up CPU to give a chance for other threads to use it */
/* Wait until we are told to stop */
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
schedule(); schedule();
} }
__set_current_state(TASK_RUNNING);
return rc; return 0;
} }
static void perf_free_mw(struct perf_ctx *perf) static int perf_sync_test(struct perf_thread *pthr)
{ {
struct perf_mw *mw = &perf->mw; struct perf_ctx *perf = pthr->perf;
struct pci_dev *pdev = perf->ntb->pdev;
if (!mw->virt_addr) if (!use_dma)
return; goto no_dma_ret;
ntb_mw_clear_trans(perf->ntb, PIDX, 0); wait_event(pthr->dma_wait,
dma_free_coherent(&pdev->dev, mw->buf_size, (atomic_read(&pthr->dma_sync) == 0 ||
mw->virt_addr, mw->dma_addr); atomic_read(&perf->tsync) < 0));
mw->xlat_size = 0;
mw->buf_size = 0;
mw->virt_addr = NULL;
}
static int perf_set_mw(struct perf_ctx *perf, resource_size_t size) if (atomic_read(&perf->tsync) < 0)
{ return -EINTR;
struct perf_mw *mw = &perf->mw;
size_t xlat_size, buf_size;
resource_size_t xlat_align;
resource_size_t xlat_align_size;
int rc;
if (!size) no_dma_ret:
return -EINVAL; pthr->duration = ktime_sub(ktime_get(), pthr->duration);
rc = ntb_mw_get_align(perf->ntb, PIDX, 0, &xlat_align, dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n",
&xlat_align_size, NULL); pthr->tidx, pthr->copied);
if (rc)
return rc;
xlat_size = round_up(size, xlat_align_size); dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n",
buf_size = round_up(size, xlat_align); pthr->tidx, ktime_to_us(pthr->duration));
dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx,
div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
if (mw->xlat_size == xlat_size)
return 0; return 0;
}
if (mw->buf_size) static void perf_clear_test(struct perf_thread *pthr)
perf_free_mw(perf); {
struct perf_ctx *perf = pthr->perf;
mw->xlat_size = xlat_size; if (!use_dma)
mw->buf_size = buf_size; goto no_dma_notify;
/*
* If test finished without errors, termination isn't needed.
* We call it anyway just to be sure of the transfers completion.
*/
(void)dmaengine_terminate_sync(pthr->dma_chan);
dma_release_channel(pthr->dma_chan);
no_dma_notify:
atomic_dec(&perf->tsync);
wake_up(&perf->twait);
kfree(pthr->src);
}
mw->virt_addr = dma_alloc_coherent(&perf->ntb->pdev->dev, buf_size, static void perf_thread_work(struct work_struct *work)
&mw->dma_addr, GFP_KERNEL); {
if (!mw->virt_addr) { struct perf_thread *pthr = to_thread_work(work);
mw->xlat_size = 0; int ret;
mw->buf_size = 0;
/*
* Perform stages in compliance with use_dma flag value.
* Test status is changed only if error happened, otherwise
* status -ENODATA is kept while test is on-fly. Results
* synchronization is performed only if test fininshed
* without an error or interruption.
*/
ret = perf_init_test(pthr);
if (ret) {
pthr->status = ret;
return;
} }
rc = ntb_mw_set_trans(perf->ntb, PIDX, 0, mw->dma_addr, mw->xlat_size); ret = perf_run_test(pthr);
if (rc) { if (ret) {
dev_err(&perf->ntb->dev, "Unable to set mw0 translation\n"); pthr->status = ret;
perf_free_mw(perf); goto err_clear_test;
return -EIO;
} }
return 0; pthr->status = perf_sync_test(pthr);
err_clear_test:
perf_clear_test(pthr);
} }
static void perf_link_work(struct work_struct *work) static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt)
{ {
struct perf_ctx *perf = if (tcnt == 0 || tcnt > MAX_THREADS_CNT)
container_of(work, struct perf_ctx, link_work.work); return -EINVAL;
struct ntb_dev *ndev = perf->ntb;
struct pci_dev *pdev = ndev->pdev; if (test_and_set_bit_lock(0, &perf->busy_flag))
u32 val; return -EBUSY;
u64 size;
int rc;
dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__); perf->tcnt = tcnt;
size = perf->mw.phys_size; clear_bit_unlock(0, &perf->busy_flag);
if (max_mw_size && size > max_mw_size) return 0;
size = max_mw_size; }
static void perf_terminate_test(struct perf_ctx *perf)
{
int tidx;
ntb_peer_spad_write(ndev, PIDX, MW_SZ_HIGH, upper_32_bits(size)); atomic_set(&perf->tsync, -1);
ntb_peer_spad_write(ndev, PIDX, MW_SZ_LOW, lower_32_bits(size)); wake_up(&perf->twait);
ntb_peer_spad_write(ndev, PIDX, VERSION, PERF_VERSION);
/* now read what peer wrote */ for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
val = ntb_spad_read(ndev, VERSION); wake_up(&perf->threads[tidx].dma_wait);
if (val != PERF_VERSION) { cancel_work_sync(&perf->threads[tidx].work);
dev_dbg(&pdev->dev, "Remote version = %#x\n", val);
goto out;
} }
}
val = ntb_spad_read(ndev, MW_SZ_HIGH); static int perf_submit_test(struct perf_peer *peer)
size = (u64)val << 32; {
struct perf_ctx *perf = peer->perf;
struct perf_thread *pthr;
int tidx, ret;
val = ntb_spad_read(ndev, MW_SZ_LOW); if (!test_bit(PERF_STS_DONE, &peer->sts))
size |= val; return -ENOLINK;
dev_dbg(&pdev->dev, "Remote MW size = %#llx\n", size); if (test_and_set_bit_lock(0, &perf->busy_flag))
return -EBUSY;
rc = perf_set_mw(perf, size); perf->test_peer = peer;
if (rc) atomic_set(&perf->tsync, perf->tcnt);
goto out1;
perf->link_is_up = true; for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
wake_up(&perf->link_wq); pthr = &perf->threads[tidx];
return; pthr->status = -ENODATA;
pthr->copied = 0;
pthr->duration = ktime_set(0, 0);
if (tidx < perf->tcnt)
(void)queue_work(perf_wq, &pthr->work);
}
ret = wait_event_interruptible(perf->twait,
atomic_read(&perf->tsync) <= 0);
if (ret == -ERESTARTSYS) {
perf_terminate_test(perf);
ret = -EINTR;
}
out1: clear_bit_unlock(0, &perf->busy_flag);
perf_free_mw(perf);
out: return ret;
if (ntb_link_is_up(ndev, NULL, NULL) == 1)
schedule_delayed_work(&perf->link_work,
msecs_to_jiffies(PERF_LINK_DOWN_TIMEOUT));
} }
static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf) static int perf_read_stats(struct perf_ctx *perf, char *buf,
size_t size, ssize_t *pos)
{ {
struct perf_mw *mw; struct perf_thread *pthr;
int rc; int tidx;
mw = &perf->mw; if (test_and_set_bit_lock(0, &perf->busy_flag))
return -EBUSY;
rc = ntb_peer_mw_get_addr(ntb, 0, &mw->phys_addr, &mw->phys_size); (*pos) += scnprintf(buf + *pos, size - *pos,
if (rc) " Peer %d test statistics:\n", perf->test_peer->pidx);
return rc;
perf->mw.vbase = ioremap_wc(mw->phys_addr, mw->phys_size); for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
if (!mw->vbase) pthr = &perf->threads[tidx];
return -ENOMEM;
if (pthr->status == -ENODATA)
continue;
if (pthr->status) {
(*pos) += scnprintf(buf + *pos, size - *pos,
"%d: error status %d\n", tidx, pthr->status);
continue;
}
(*pos) += scnprintf(buf + *pos, size - *pos,
"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
tidx, pthr->copied, ktime_to_us(pthr->duration),
div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
}
clear_bit_unlock(0, &perf->busy_flag);
return 0; return 0;
} }
static ssize_t debugfs_run_read(struct file *filp, char __user *ubuf, static void perf_init_threads(struct perf_ctx *perf)
size_t count, loff_t *offp) {
struct perf_thread *pthr;
int tidx;
perf->tcnt = DEF_THREADS_CNT;
perf->test_peer = &perf->peers[0];
init_waitqueue_head(&perf->twait);
for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
pthr = &perf->threads[tidx];
pthr->perf = perf;
pthr->tidx = tidx;
pthr->status = -ENODATA;
init_waitqueue_head(&pthr->dma_wait);
INIT_WORK(&pthr->work, perf_thread_work);
}
}
static void perf_clear_threads(struct perf_ctx *perf)
{ {
struct perf_ctx *perf = filp->private_data; perf_terminate_test(perf);
}
/*==============================================================================
* DebugFS nodes
*==============================================================================
*/
static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
struct perf_peer *peer;
size_t buf_size;
ssize_t pos = 0;
int ret, pidx;
char *buf; char *buf;
ssize_t ret, out_off = 0;
struct pthr_ctx *pctx;
int i;
u64 rate;
if (!perf) buf_size = min_t(size_t, size, 0x1000U);
return 0;
buf = kmalloc(1024, GFP_KERNEL); buf = kmalloc(buf_size, GFP_KERNEL);
if (!buf) if (!buf)
return -ENOMEM; return -ENOMEM;
if (mutex_is_locked(&perf->run_mutex)) { pos += scnprintf(buf + pos, buf_size - pos,
out_off = scnprintf(buf, 64, "running\n"); " Performance measuring tool info:\n\n");
goto read_from_buf;
pos += scnprintf(buf + pos, buf_size - pos,
"Local port %d, Global index %d\n", ntb_port_number(perf->ntb),
perf->gidx);
pos += scnprintf(buf + pos, buf_size - pos, "Test status: ");
if (test_bit(0, &perf->busy_flag)) {
pos += scnprintf(buf + pos, buf_size - pos,
"on-fly with port %d (%d)\n",
ntb_peer_port_number(perf->ntb, perf->test_peer->pidx),
perf->test_peer->pidx);
} else {
pos += scnprintf(buf + pos, buf_size - pos, "idle\n");
} }
for (i = 0; i < MAX_THREADS; i++) { for (pidx = 0; pidx < perf->pcnt; pidx++) {
pctx = &perf->pthr_ctx[i]; peer = &perf->peers[pidx];
if (pctx->status == -ENODATA) pos += scnprintf(buf + pos, buf_size - pos,
break; "Port %d (%d), Global index %d:\n",
ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx,
peer->gidx);
pos += scnprintf(buf + pos, buf_size - pos,
"\tLink status: %s\n",
test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down");
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer addr 0x%pK\n", peer->outbuf);
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer size %pa\n", &peer->outbuf_size);
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat);
if (pctx->status) { if (!peer->inbuf) {
out_off += scnprintf(buf + out_off, 1024 - out_off, pos += scnprintf(buf + pos, buf_size - pos,
"%d: error %d\n", i, "\tIn buffer addr: unallocated\n");
pctx->status);
continue; continue;
} }
rate = div64_u64(pctx->copied, pctx->diff_us); pos += scnprintf(buf + pos, buf_size - pos,
out_off += scnprintf(buf + out_off, 1024 - out_off, "\tIn buffer addr 0x%pK\n", peer->inbuf);
"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
i, pctx->copied, pctx->diff_us, rate); pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer size %pa\n", &peer->inbuf_size);
pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat);
} }
read_from_buf: ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_off);
kfree(buf); kfree(buf);
return ret; return ret;
} }
static void threads_cleanup(struct perf_ctx *perf) static const struct file_operations perf_dbgfs_info = {
.open = simple_open,
.read = perf_dbgfs_read_info
};
static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp)
{ {
struct pthr_ctx *pctx; struct perf_ctx *perf = filep->private_data;
int i; ssize_t ret, pos = 0;
char *buf;
for (i = 0; i < MAX_THREADS; i++) { buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL);
pctx = &perf->pthr_ctx[i]; if (!buf)
if (pctx->thread) { return -ENOMEM;
pctx->status = kthread_stop(pctx->thread);
pctx->thread = NULL;
}
}
}
static void perf_clear_thread_status(struct perf_ctx *perf) ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos);
{ if (ret)
int i; goto err_free;
ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
err_free:
kfree(buf);
for (i = 0; i < MAX_THREADS; i++) return ret;
perf->pthr_ctx[i].status = -ENODATA;
} }
static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf, static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf,
size_t count, loff_t *offp) size_t size, loff_t *offp)
{ {
struct perf_ctx *perf = filp->private_data; struct perf_ctx *perf = filep->private_data;
int node, i; struct perf_peer *peer;
DECLARE_WAIT_QUEUE_HEAD(wq); int pidx, ret;
if (wait_event_interruptible(perf->link_wq, perf->link_is_up)) ret = kstrtoint_from_user(ubuf, size, 0, &pidx);
return -ENOLINK; if (ret)
return ret;
if (perf->perf_threads == 0) if (pidx < 0 || pidx >= perf->pcnt)
return -EINVAL; return -EINVAL;
if (!mutex_trylock(&perf->run_mutex)) peer = &perf->peers[pidx];
return -EBUSY;
perf_clear_thread_status(perf); ret = perf_submit_test(peer);
if (ret)
return ret;
if (perf->perf_threads > MAX_THREADS) { return size;
perf->perf_threads = MAX_THREADS; }
pr_info("Reset total threads to: %u\n", MAX_THREADS);
}
/* no greater than 1M */ static const struct file_operations perf_dbgfs_run = {
if (seg_order > MAX_SEG_ORDER) { .open = simple_open,
seg_order = MAX_SEG_ORDER; .read = perf_dbgfs_read_run,
pr_info("Fix seg_order to %u\n", seg_order); .write = perf_dbgfs_write_run
} };
if (run_order < seg_order) { static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf,
run_order = seg_order; size_t size, loff_t *offp)
pr_info("Fix run_order to %u\n", run_order); {
} struct perf_ctx *perf = filep->private_data;
char buf[8];
ssize_t pos;
node = on_node ? dev_to_node(&perf->ntb->pdev->dev) pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt);
: NUMA_NO_NODE;
atomic_set(&perf->tdone, 0);
/* launch kernel thread */ return simple_read_from_buffer(ubuf, size, offp, buf, pos);
for (i = 0; i < perf->perf_threads; i++) { }
struct pthr_ctx *pctx;
pctx = &perf->pthr_ctx[i]; static ssize_t perf_dbgfs_write_tcnt(struct file *filep,
atomic_set(&pctx->dma_sync, 0); const char __user *ubuf,
pctx->perf = perf; size_t size, loff_t *offp)
pctx->wq = &wq; {
pctx->thread = struct perf_ctx *perf = filep->private_data;
kthread_create_on_node(ntb_perf_thread, int ret;
(void *)pctx, u8 val;
node, "ntb_perf %d", i);
if (IS_ERR(pctx->thread)) {
pctx->thread = NULL;
goto err;
} else {
wake_up_process(pctx->thread);
}
}
wait_event_interruptible(wq, ret = kstrtou8_from_user(ubuf, size, 0, &val);
atomic_read(&perf->tdone) == perf->perf_threads); if (ret)
return ret;
threads_cleanup(perf); ret = perf_set_tcnt(perf, val);
mutex_unlock(&perf->run_mutex); if (ret)
return count; return ret;
err: return size;
threads_cleanup(perf);
mutex_unlock(&perf->run_mutex);
return -ENXIO;
} }
static const struct file_operations ntb_perf_debugfs_run = { static const struct file_operations perf_dbgfs_tcnt = {
.owner = THIS_MODULE,
.open = simple_open, .open = simple_open,
.read = debugfs_run_read, .read = perf_dbgfs_read_tcnt,
.write = debugfs_run_write, .write = perf_dbgfs_write_tcnt
}; };
static int perf_debugfs_setup(struct perf_ctx *perf) static void perf_setup_dbgfs(struct perf_ctx *perf)
{ {
struct pci_dev *pdev = perf->ntb->pdev; struct pci_dev *pdev = perf->ntb->pdev;
struct dentry *debugfs_node_dir;
struct dentry *debugfs_run;
struct dentry *debugfs_threads;
struct dentry *debugfs_seg_order;
struct dentry *debugfs_run_order;
struct dentry *debugfs_use_dma;
struct dentry *debugfs_on_node;
if (!debugfs_initialized())
return -ENODEV;
/* Assumpion: only one NTB device in the system */ perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir);
if (!perf_debugfs_dir) { if (!perf->dbgfs_dir) {
perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); dev_warn(&perf->ntb->dev, "DebugFS unsupported\n");
if (!perf_debugfs_dir) return;
return -ENODEV;
} }
debugfs_node_dir = debugfs_create_dir(pci_name(pdev), debugfs_create_file("info", 0600, perf->dbgfs_dir, perf,
perf_debugfs_dir); &perf_dbgfs_info);
if (!debugfs_node_dir)
goto err;
debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR,
debugfs_node_dir, perf,
&ntb_perf_debugfs_run);
if (!debugfs_run)
goto err;
debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR,
debugfs_node_dir,
&perf->perf_threads);
if (!debugfs_threads)
goto err;
debugfs_seg_order = debugfs_create_u32("seg_order", 0600,
debugfs_node_dir,
&seg_order);
if (!debugfs_seg_order)
goto err;
debugfs_run_order = debugfs_create_u32("run_order", 0600,
debugfs_node_dir,
&run_order);
if (!debugfs_run_order)
goto err;
debugfs_use_dma = debugfs_create_bool("use_dma", 0600,
debugfs_node_dir,
&use_dma);
if (!debugfs_use_dma)
goto err;
debugfs_on_node = debugfs_create_bool("on_node", 0600,
debugfs_node_dir,
&on_node);
if (!debugfs_on_node)
goto err;
return 0; debugfs_create_file("run", 0600, perf->dbgfs_dir, perf,
&perf_dbgfs_run);
err: debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf,
debugfs_remove_recursive(perf_debugfs_dir); &perf_dbgfs_tcnt);
perf_debugfs_dir = NULL;
return -ENODEV; /* They are made read-only for test exec safety and integrity */
debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order);
debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order);
debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma);
} }
static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) static void perf_clear_dbgfs(struct perf_ctx *perf)
{
debugfs_remove_recursive(perf->dbgfs_dir);
}
/*==============================================================================
* Basic driver initialization
*==============================================================================
*/
static struct perf_ctx *perf_create_data(struct ntb_dev *ntb)
{ {
struct pci_dev *pdev = ntb->pdev;
struct perf_ctx *perf; struct perf_ctx *perf;
int node;
int rc = 0;
if (ntb_spad_count(ntb) < MAX_SPAD) { perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL);
dev_err(&ntb->dev, "Not enough scratch pad registers for %s", if (!perf)
DRIVER_NAME); return ERR_PTR(-ENOMEM);
return -EIO;
}
if (!ntb->ops->mw_set_trans) { perf->pcnt = ntb_peer_port_count(ntb);
dev_err(&ntb->dev, "Need inbound MW based NTB API\n"); perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers),
return -EINVAL; GFP_KERNEL);
if (!perf->peers)
return ERR_PTR(-ENOMEM);
perf->ntb = ntb;
return perf;
}
static int perf_setup_peer_mw(struct perf_peer *peer)
{
struct perf_ctx *perf = peer->perf;
phys_addr_t phys_addr;
int ret;
/* Get outbound MW parameters and map it */
ret = ntb_peer_mw_get_addr(perf->ntb, peer->gidx, &phys_addr,
&peer->outbuf_size);
if (ret)
return ret;
peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr,
peer->outbuf_size);
if (!peer->outbuf)
return -ENOMEM;
if (max_mw_size && peer->outbuf_size > max_mw_size) {
peer->outbuf_size = max_mw_size;
dev_warn(&peer->perf->ntb->dev,
"Peer %d outbuf reduced to %#llx\n", peer->pidx,
peer->outbuf_size);
} }
if (ntb_peer_port_count(ntb) != NTB_DEF_PEER_CNT) return 0;
dev_warn(&ntb->dev, "Multi-port NTB devices unsupported\n"); }
node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE; static int perf_init_peers(struct perf_ctx *perf)
perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node); {
if (!perf) { struct perf_peer *peer;
rc = -ENOMEM; int pidx, lport, ret;
goto err_perf;
lport = ntb_port_number(perf->ntb);
perf->gidx = -1;
for (pidx = 0; pidx < perf->pcnt; pidx++) {
peer = &perf->peers[pidx];
peer->perf = perf;
peer->pidx = pidx;
if (lport < ntb_peer_port_number(perf->ntb, pidx)) {
if (perf->gidx == -1)
perf->gidx = pidx;
peer->gidx = pidx + 1;
} else {
peer->gidx = pidx;
} }
INIT_WORK(&peer->service, perf_service_work);
}
if (perf->gidx == -1)
perf->gidx = pidx;
perf->ntb = ntb; for (pidx = 0; pidx < perf->pcnt; pidx++) {
perf->perf_threads = 1; ret = perf_setup_peer_mw(&perf->peers[pidx]);
atomic_set(&perf->tsync, 0); if (ret)
mutex_init(&perf->run_mutex); return ret;
spin_lock_init(&perf->db_lock); }
perf_setup_mw(ntb, perf);
init_waitqueue_head(&perf->link_wq);
INIT_DELAYED_WORK(&perf->link_work, perf_link_work);
rc = ntb_set_ctx(ntb, perf, &perf_ops); dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx);
if (rc)
goto err_ctx;
perf->link_is_up = false; return 0;
ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); }
ntb_link_event(ntb);
rc = perf_debugfs_setup(perf); static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
if (rc) {
goto err_ctx; struct perf_ctx *perf;
int ret;
perf_clear_thread_status(perf); perf = perf_create_data(ntb);
if (IS_ERR(perf))
return PTR_ERR(perf);
return 0; ret = perf_init_peers(perf);
if (ret)
return ret;
err_ctx: perf_init_threads(perf);
cancel_delayed_work_sync(&perf->link_work);
kfree(perf); ret = perf_init_service(perf);
err_perf: if (ret)
return rc; return ret;
ret = perf_enable_service(perf);
if (ret)
return ret;
perf_setup_dbgfs(perf);
return 0;
} }
static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb) static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
{ {
struct perf_ctx *perf = ntb->ctx; struct perf_ctx *perf = ntb->ctx;
int i;
dev_dbg(&perf->ntb->dev, "%s called\n", __func__); perf_clear_dbgfs(perf);
mutex_lock(&perf->run_mutex); perf_disable_service(perf);
cancel_delayed_work_sync(&perf->link_work); perf_clear_threads(perf);
}
ntb_clear_ctx(ntb); static struct ntb_client perf_client = {
ntb_link_disable(ntb); .ops = {
.probe = perf_probe,
.remove = perf_remove
}
};
debugfs_remove_recursive(perf_debugfs_dir); static int __init perf_init(void)
perf_debugfs_dir = NULL; {
int ret;
if (use_dma) { if (chunk_order > MAX_CHUNK_ORDER) {
for (i = 0; i < MAX_THREADS; i++) { chunk_order = MAX_CHUNK_ORDER;
struct pthr_ctx *pctx = &perf->pthr_ctx[i]; pr_info("Chunk order reduced to %hhu\n", chunk_order);
}
if (pctx->dma_chan) if (total_order < chunk_order) {
dma_release_channel(pctx->dma_chan); total_order = chunk_order;
pr_info("Total data order reduced to %hhu\n", total_order);
} }
perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0);
if (!perf_wq)
return -ENOMEM;
if (debugfs_initialized())
perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
ret = ntb_register_client(&perf_client);
if (ret) {
debugfs_remove_recursive(perf_dbgfs_topdir);
destroy_workqueue(perf_wq);
} }
kfree(perf); return ret;
} }
module_init(perf_init);
static void __exit perf_exit(void)
{
ntb_unregister_client(&perf_client);
debugfs_remove_recursive(perf_dbgfs_topdir);
destroy_workqueue(perf_wq);
}
module_exit(perf_exit);
static struct ntb_client perf_client = {
.ops = {
.probe = perf_probe,
.remove = perf_remove,
},
};
module_ntb_client(perf_client);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment