Commit 56a68a50 authored by Adrian Bunk's avatar Adrian Bunk Committed by Jens Axboe

more ACSI removal

This patch removes some code that became dead code after the ATARI_ACSI
removal.

It also indirectly fixes the following bug introduced by
commit c2bcf3b8:

 config ATARI_SLM
        tristate "Atari SLM laser printer support"
-       depends on ATARI && ATARI_ACSI!=n
+       depends on ATARI
Acked-by: default avatarGeert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: default avatarAdrian Bunk <bunk@stusta.de>
Signed-off-by: default avatarJens Axboe <jens.axboe@oracle.com>
parent 5874c18b
......@@ -82,13 +82,6 @@ Valid names are:
/dev/fd : -> 0x0200 (floppy disk)
/dev/xda: -> 0x0c00 (first XT disk, unused in Linux/m68k)
/dev/xdb: -> 0x0c40 (second XT disk, unused in Linux/m68k)
/dev/ada: -> 0x1c00 (first ACSI device)
/dev/adb: -> 0x1c10 (second ACSI device)
/dev/adc: -> 0x1c20 (third ACSI device)
/dev/add: -> 0x1c30 (forth ACSI device)
The last four names are available only if the kernel has been compiled
with Atari and ACSI support.
The name must be followed by a decimal number, that stands for the
partition number. Internally, the value of the number is just
......
......@@ -146,12 +146,6 @@ at1700.c:
irq = 0
(Probes ports: 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300)
atari_bionet.c:
Supports full autoprobing. (m68k/Atari)
atari_pamsnet.c:
Supports full autoprobing. (m68k/Atari)
atarilance.c:
Supports full autoprobing. (m68k/Atari)
......
......@@ -59,17 +59,6 @@ config AMIGA_Z2RAM
To compile this driver as a module, choose M here: the
module will be called z2ram.
config ATARI_SLM
tristate "Atari SLM laser printer support"
depends on ATARI
help
If you have an Atari SLM laser printer, say Y to include support for
it in the kernel. Otherwise, say N. This driver is also available as
a module ( = code which can be inserted in and removed from the
running kernel whenever you want). The module will be called
acsi_slm. Be warned: the driver needs much ST-RAM and can cause
problems due to that fact!
config BLK_DEV_XD
tristate "XT hard disk support"
depends on ISA && ISA_DMA_API
......
......@@ -9,7 +9,6 @@ obj-$(CONFIG_MAC_FLOPPY) += swim3.o
obj-$(CONFIG_BLK_DEV_FD) += floppy.o
obj-$(CONFIG_AMIGA_FLOPPY) += amiflop.o
obj-$(CONFIG_ATARI_FLOPPY) += ataflop.o
obj-$(CONFIG_ATARI_SLM) += acsi_slm.o
obj-$(CONFIG_AMIGA_Z2RAM) += z2ram.o
obj-$(CONFIG_BLK_DEV_RAM) += rd.o
obj-$(CONFIG_BLK_DEV_LOOP) += loop.o
......
/*
* acsi_slm.c -- Device driver for the Atari SLM laser printer
*
* Copyright 1995 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
*/
/*
Notes:
The major number for SLM printers is 28 (like ACSI), but as a character
device, not block device. The minor number is the number of the printer (if
you have more than one SLM; currently max. 2 (#define-constant) SLMs are
supported). The device can be opened for reading and writing. If reading it,
you get some status infos (MODE SENSE data). Writing mode is used for the data
to be printed. Some ioctls allow to get the printer status and to tune printer
modes and some internal variables.
A special problem of the SLM driver is the timing and thus the buffering of
the print data. The problem is that all the data for one page must be present
in memory when printing starts, else --when swapping occurs-- the timing could
not be guaranteed. There are several ways to assure this:
1) Reserve a buffer of 1196k (maximum page size) statically by
atari_stram_alloc(). The data are collected there until they're complete,
and then printing starts. Since the buffer is reserved, no further
considerations about memory and swapping are needed. So this is the
simplest method, but it needs a lot of memory for just the SLM.
An striking advantage of this method is (supposed the SLM_CONT_CNT_REPROG
method works, see there), that there are no timing problems with the DMA
anymore.
2) The other method would be to reserve the buffer dynamically each time
printing is required. I could think of looking at mem_map where the
largest unallocted ST-RAM area is, taking the area, and then extending it
by swapping out the neighbored pages, until the needed size is reached.
This requires some mm hacking, but seems possible. The only obstacle could
be pages that cannot be swapped out (reserved pages)...
3) Another possibility would be to leave the real data in user space and to
work with two dribble buffers of about 32k in the driver: While the one
buffer is DMAed to the SLM, the other can be filled with new data. But
to keep the timing, that requires that the user data remain in memory and
are not swapped out. Requires mm hacking, too, but maybe not so bad as
method 2).
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/fs.h>
#include <linux/major.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_acsi.h>
#include <asm/atari_stdma.h>
#include <asm/atari_stram.h>
#include <asm/atari_SLM.h>
#undef DEBUG
/* Define this if the page data are continuous in physical memory. That
* requires less reprogramming of the ST-DMA */
#define SLM_CONTINUOUS_DMA
/* Use continuous reprogramming of the ST-DMA counter register. This is
* --strictly speaking-- not allowed, Atari recommends not to look at the
* counter register while a DMA is going on. But I don't know if that applies
* only for reading the register, or also writing to it. Writing only works
* fine for me... The advantage is that the timing becomes absolutely
* uncritical: Just update each, say 200ms, the counter reg to its maximum,
* and the DMA will work until the status byte interrupt occurs.
*/
#define SLM_CONT_CNT_REPROG
#define CMDSET_TARG_LUN(cmd,targ,lun) \
do { \
cmd[0] = (cmd[0] & ~0xe0) | (targ)<<5; \
cmd[1] = (cmd[1] & ~0xe0) | (lun)<<5; \
} while(0)
#define START_TIMER(to) mod_timer(&slm_timer, jiffies + (to))
#define STOP_TIMER() del_timer(&slm_timer)
static char slmreqsense_cmd[6] = { 0x03, 0, 0, 0, 0, 0 };
static char slmprint_cmd[6] = { 0x0a, 0, 0, 0, 0, 0 };
static char slminquiry_cmd[6] = { 0x12, 0, 0, 0, 0, 0x80 };
static char slmmsense_cmd[6] = { 0x1a, 0, 0, 0, 255, 0 };
#if 0
static char slmmselect_cmd[6] = { 0x15, 0, 0, 0, 0, 0 };
#endif
#define MAX_SLM 2
static struct slm {
unsigned target; /* target number */
unsigned lun; /* LUN in target controller */
atomic_t wr_ok; /* set to 0 if output part busy */
atomic_t rd_ok; /* set to 0 if status part busy */
} slm_info[MAX_SLM];
int N_SLM_Printers = 0;
/* printer buffer */
static unsigned char *SLMBuffer; /* start of buffer */
static unsigned char *BufferP; /* current position in buffer */
static int BufferSize; /* length of buffer for page size */
typedef enum { IDLE, FILLING, PRINTING } SLMSTATE;
static SLMSTATE SLMState;
static int SLMBufOwner; /* SLM# currently using the buffer */
/* DMA variables */
#ifndef SLM_CONT_CNT_REPROG
static unsigned long SLMCurAddr; /* current base addr of DMA chunk */
static unsigned long SLMEndAddr; /* expected end addr */
static unsigned long SLMSliceSize; /* size of one DMA chunk */
#endif
static int SLMError;
/* wait queues */
static DECLARE_WAIT_QUEUE_HEAD(slm_wait); /* waiting for buffer */
static DECLARE_WAIT_QUEUE_HEAD(print_wait); /* waiting for printing finished */
/* status codes */
#define SLMSTAT_OK 0x00
#define SLMSTAT_ORNERY 0x02
#define SLMSTAT_TONER 0x03
#define SLMSTAT_WARMUP 0x04
#define SLMSTAT_PAPER 0x05
#define SLMSTAT_DRUM 0x06
#define SLMSTAT_INJAM 0x07
#define SLMSTAT_THRJAM 0x08
#define SLMSTAT_OUTJAM 0x09
#define SLMSTAT_COVER 0x0a
#define SLMSTAT_FUSER 0x0b
#define SLMSTAT_IMAGER 0x0c
#define SLMSTAT_MOTOR 0x0d
#define SLMSTAT_VIDEO 0x0e
#define SLMSTAT_SYSTO 0x10
#define SLMSTAT_OPCODE 0x12
#define SLMSTAT_DEVNUM 0x15
#define SLMSTAT_PARAM 0x1a
#define SLMSTAT_ACSITO 0x1b /* driver defined */
#define SLMSTAT_NOTALL 0x1c /* driver defined */
static char *SLMErrors[] = {
/* 0x00 */ "OK and ready",
/* 0x01 */ NULL,
/* 0x02 */ "ornery printer",
/* 0x03 */ "toner empty",
/* 0x04 */ "warming up",
/* 0x05 */ "paper empty",
/* 0x06 */ "drum empty",
/* 0x07 */ "input jam",
/* 0x08 */ "through jam",
/* 0x09 */ "output jam",
/* 0x0a */ "cover open",
/* 0x0b */ "fuser malfunction",
/* 0x0c */ "imager malfunction",
/* 0x0d */ "motor malfunction",
/* 0x0e */ "video malfunction",
/* 0x0f */ NULL,
/* 0x10 */ "printer system timeout",
/* 0x11 */ NULL,
/* 0x12 */ "invalid operation code",
/* 0x13 */ NULL,
/* 0x14 */ NULL,
/* 0x15 */ "invalid device number",
/* 0x16 */ NULL,
/* 0x17 */ NULL,
/* 0x18 */ NULL,
/* 0x19 */ NULL,
/* 0x1a */ "invalid parameter list",
/* 0x1b */ "ACSI timeout",
/* 0x1c */ "not all printed"
};
#define N_ERRORS (sizeof(SLMErrors)/sizeof(*SLMErrors))
/* real (driver caused) error? */
#define IS_REAL_ERROR(x) (x > 0x10)
static struct {
char *name;
int w, h;
} StdPageSize[] = {
{ "Letter", 2400, 3180 },
{ "Legal", 2400, 4080 },
{ "A4", 2336, 3386 },
{ "B5", 2016, 2914 }
};
#define N_STD_SIZES (sizeof(StdPageSize)/sizeof(*StdPageSize))
#define SLM_BUFFER_SIZE (2336*3386/8) /* A4 for now */
#define SLM_DMA_AMOUNT 255 /* #sectors to program the DMA for */
#ifdef SLM_CONTINUOUS_DMA
# define SLM_DMA_INT_OFFSET 0 /* DMA goes until seccnt 0, no offs */
# define SLM_DMA_END_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_SLICE_SIZE(w) (255*512)
#else
# define SLM_DMA_INT_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_DMA_END_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_SLICE_SIZE(w) ((254*512)/(w/8)*(w/8))
#endif
/* calculate the number of jiffies to wait for 'n' bytes */
#ifdef SLM_CONT_CNT_REPROG
#define DMA_TIME_FOR(n) 50
#define DMA_STARTUP_TIME 0
#else
#define DMA_TIME_FOR(n) (n/1400-1)
#define DMA_STARTUP_TIME 650
#endif
/***************************** Prototypes *****************************/
static char *slm_errstr( int stat );
static int slm_getstats( char *buffer, int device );
static ssize_t slm_read( struct file* file, char *buf, size_t count, loff_t
*ppos );
static void start_print( int device );
static irqreturn_t slm_interrupt(int irc, void *data);
static void slm_test_ready( unsigned long dummy );
static void set_dma_addr( unsigned long paddr );
static unsigned long get_dma_addr( void );
static ssize_t slm_write( struct file *file, const char *buf, size_t count,
loff_t *ppos );
static int slm_ioctl( struct inode *inode, struct file *file, unsigned int
cmd, unsigned long arg );
static int slm_open( struct inode *inode, struct file *file );
static int slm_release( struct inode *inode, struct file *file );
static int slm_req_sense( int device );
static int slm_mode_sense( int device, char *buffer, int abs_flag );
#if 0
static int slm_mode_select( int device, char *buffer, int len, int
default_flag );
#endif
static int slm_get_pagesize( int device, int *w, int *h );
/************************* End of Prototypes **************************/
static DEFINE_TIMER(slm_timer, slm_test_ready, 0, 0);
static const struct file_operations slm_fops = {
.owner = THIS_MODULE,
.read = slm_read,
.write = slm_write,
.ioctl = slm_ioctl,
.open = slm_open,
.release = slm_release,
};
/* ---------------------------------------------------------------------- */
/* Status Functions */
static char *slm_errstr( int stat )
{ char *p;
static char str[22];
stat &= 0x1f;
if (stat >= 0 && stat < N_ERRORS && (p = SLMErrors[stat]))
return( p );
sprintf( str, "unknown status 0x%02x", stat );
return( str );
}
static int slm_getstats( char *buffer, int device )
{ int len = 0, stat, i, w, h;
unsigned char buf[256];
stat = slm_mode_sense( device, buf, 0 );
if (IS_REAL_ERROR(stat))
return( -EIO );
#define SHORTDATA(i) ((buf[i] << 8) | buf[i+1])
#define BOOLDATA(i,mask) ((buf[i] & mask) ? "on" : "off")
w = SHORTDATA( 3 );
h = SHORTDATA( 1 );
len += sprintf( buffer+len, "Status\t\t%s\n",
slm_errstr( stat ) );
len += sprintf( buffer+len, "Page Size\t%dx%d",
w, h );
for( i = 0; i < N_STD_SIZES; ++i ) {
if (w == StdPageSize[i].w && h == StdPageSize[i].h)
break;
}
if (i < N_STD_SIZES)
len += sprintf( buffer+len, " (%s)", StdPageSize[i].name );
buffer[len++] = '\n';
len += sprintf( buffer+len, "Top/Left Margin\t%d/%d\n",
SHORTDATA( 5 ), SHORTDATA( 7 ) );
len += sprintf( buffer+len, "Manual Feed\t%s\n",
BOOLDATA( 9, 0x01 ) );
len += sprintf( buffer+len, "Input Select\t%d\n",
(buf[9] >> 1) & 7 );
len += sprintf( buffer+len, "Auto Select\t%s\n",
BOOLDATA( 9, 0x10 ) );
len += sprintf( buffer+len, "Prefeed Paper\t%s\n",
BOOLDATA( 9, 0x20 ) );
len += sprintf( buffer+len, "Thick Pixels\t%s\n",
BOOLDATA( 9, 0x40 ) );
len += sprintf( buffer+len, "H/V Resol.\t%d/%d dpi\n",
SHORTDATA( 12 ), SHORTDATA( 10 ) );
len += sprintf( buffer+len, "System Timeout\t%d\n",
buf[14] );
len += sprintf( buffer+len, "Scan Time\t%d\n",
SHORTDATA( 15 ) );
len += sprintf( buffer+len, "Page Count\t%d\n",
SHORTDATA( 17 ) );
len += sprintf( buffer+len, "In/Out Cap.\t%d/%d\n",
SHORTDATA( 19 ), SHORTDATA( 21 ) );
len += sprintf( buffer+len, "Stagger Output\t%s\n",
BOOLDATA( 23, 0x01 ) );
len += sprintf( buffer+len, "Output Select\t%d\n",
(buf[23] >> 1) & 7 );
len += sprintf( buffer+len, "Duplex Print\t%s\n",
BOOLDATA( 23, 0x10 ) );
len += sprintf( buffer+len, "Color Sep.\t%s\n",
BOOLDATA( 23, 0x20 ) );
return( len );
}
static ssize_t slm_read( struct file *file, char *buf, size_t count,
loff_t *ppos )
{
struct inode *node = file->f_path.dentry->d_inode;
unsigned long page;
int length;
int end;
if (!(page = __get_free_page( GFP_KERNEL )))
return( -ENOMEM );
length = slm_getstats( (char *)page, iminor(node) );
if (length < 0) {
count = length;
goto out;
}
if (file->f_pos >= length) {
count = 0;
goto out;
}
if (count + file->f_pos > length)
count = length - file->f_pos;
end = count + file->f_pos;
if (copy_to_user(buf, (char *)page + file->f_pos, count)) {
count = -EFAULT;
goto out;
}
file->f_pos = end;
out: free_page( page );
return( count );
}
/* ---------------------------------------------------------------------- */
/* Printing */
static void start_print( int device )
{ struct slm *sip = &slm_info[device];
unsigned char *cmd;
unsigned long paddr;
int i;
stdma_lock( slm_interrupt, NULL );
CMDSET_TARG_LUN( slmprint_cmd, sip->target, sip->lun );
cmd = slmprint_cmd;
paddr = virt_to_phys( SLMBuffer );
dma_cache_maintenance( paddr, virt_to_phys(BufferP)-paddr, 1 );
DISABLE_IRQ();
/* Low on A1 */
dma_wd.dma_mode_status = 0x88;
MFPDELAY();
/* send the command bytes except the last */
for( i = 0; i < 5; ++i ) {
DMA_LONG_WRITE( *cmd++, 0x8a );
udelay(20);
if (!acsi_wait_for_IRQ( HZ/2 )) {
SLMError = 1;
return; /* timeout */
}
}
/* last command byte */
DMA_LONG_WRITE( *cmd++, 0x82 );
MFPDELAY();
/* set DMA address */
set_dma_addr( paddr );
/* program DMA for write and select sector counter reg */
dma_wd.dma_mode_status = 0x192;
MFPDELAY();
/* program for 255*512 bytes and start DMA */
DMA_LONG_WRITE( SLM_DMA_AMOUNT, 0x112 );
#ifndef SLM_CONT_CNT_REPROG
SLMCurAddr = paddr;
SLMEndAddr = paddr + SLMSliceSize + SLM_DMA_INT_OFFSET;
#endif
START_TIMER( DMA_STARTUP_TIME + DMA_TIME_FOR( SLMSliceSize ));
#if !defined(SLM_CONT_CNT_REPROG) && defined(DEBUG)
printk( "SLM: CurAddr=%#lx EndAddr=%#lx timer=%ld\n",
SLMCurAddr, SLMEndAddr, DMA_TIME_FOR( SLMSliceSize ) );
#endif
ENABLE_IRQ();
}
/* Only called when an error happened or at the end of a page */
static irqreturn_t slm_interrupt(int irc, void *data)
{ unsigned long addr;
int stat;
STOP_TIMER();
addr = get_dma_addr();
stat = acsi_getstatus();
SLMError = (stat < 0) ? SLMSTAT_ACSITO :
(addr < virt_to_phys(BufferP)) ? SLMSTAT_NOTALL :
stat;
dma_wd.dma_mode_status = 0x80;
MFPDELAY();
#ifdef DEBUG
printk( "SLM: interrupt, addr=%#lx, error=%d\n", addr, SLMError );
#endif
wake_up( &print_wait );
stdma_release();
ENABLE_IRQ();
return IRQ_HANDLED;
}
static void slm_test_ready( unsigned long dummy )
{
#ifdef SLM_CONT_CNT_REPROG
/* program for 255*512 bytes again */
dma_wd.fdc_acces_seccount = SLM_DMA_AMOUNT;
START_TIMER( DMA_TIME_FOR(0) );
#ifdef DEBUG
printk( "SLM: reprogramming timer for %d jiffies, addr=%#lx\n",
DMA_TIME_FOR(0), get_dma_addr() );
#endif
#else /* !SLM_CONT_CNT_REPROG */
unsigned long flags, addr;
int d, ti;
#ifdef DEBUG
struct timeval start_tm, end_tm;
int did_wait = 0;
#endif
local_irq_save(flags);
addr = get_dma_addr();
if ((d = SLMEndAddr - addr) > 0) {
local_irq_restore(flags);
/* slice not yet finished, decide whether to start another timer or to
* busy-wait */
ti = DMA_TIME_FOR( d );
if (ti > 0) {
#ifdef DEBUG
printk( "SLM: reprogramming timer for %d jiffies, rest %d bytes\n",
ti, d );
#endif
START_TIMER( ti );
return;
}
/* wait for desired end address to be reached */
#ifdef DEBUG
do_gettimeofday( &start_tm );
did_wait = 1;
#endif
local_irq_disable();
while( get_dma_addr() < SLMEndAddr )
barrier();
}
/* slice finished, start next one */
SLMCurAddr += SLMSliceSize;
#ifdef SLM_CONTINUOUS_DMA
/* program for 255*512 bytes again */
dma_wd.fdc_acces_seccount = SLM_DMA_AMOUNT;
#else
/* set DMA address;
* add 2 bytes for the ones in the SLM controller FIFO! */
set_dma_addr( SLMCurAddr + 2 );
/* toggle DMA to write and select sector counter reg */
dma_wd.dma_mode_status = 0x92;
MFPDELAY();
dma_wd.dma_mode_status = 0x192;
MFPDELAY();
/* program for 255*512 bytes and start DMA */
DMA_LONG_WRITE( SLM_DMA_AMOUNT, 0x112 );
#endif
local_irq_restore(flags);
#ifdef DEBUG
if (did_wait) {
int ms;
do_gettimeofday( &end_tm );
ms = (end_tm.tv_sec*1000000+end_tm.tv_usec) -
(start_tm.tv_sec*1000000+start_tm.tv_usec);
printk( "SLM: did %ld.%ld ms busy waiting for %d bytes\n",
ms/1000, ms%1000, d );
}
else
printk( "SLM: didn't wait (!)\n" );
#endif
if ((unsigned char *)PTOV( SLMCurAddr + SLMSliceSize ) >= BufferP) {
/* will be last slice, no timer necessary */
#ifdef DEBUG
printk( "SLM: CurAddr=%#lx EndAddr=%#lx last slice -> no timer\n",
SLMCurAddr, SLMEndAddr );
#endif
}
else {
/* not last slice */
SLMEndAddr = SLMCurAddr + SLMSliceSize + SLM_DMA_INT_OFFSET;
START_TIMER( DMA_TIME_FOR( SLMSliceSize ));
#ifdef DEBUG
printk( "SLM: CurAddr=%#lx EndAddr=%#lx timer=%ld\n",
SLMCurAddr, SLMEndAddr, DMA_TIME_FOR( SLMSliceSize ) );
#endif
}
#endif /* SLM_CONT_CNT_REPROG */
}
static void set_dma_addr( unsigned long paddr )
{ unsigned long flags;
local_irq_save(flags);
dma_wd.dma_lo = (unsigned char)paddr;
paddr >>= 8;
MFPDELAY();
dma_wd.dma_md = (unsigned char)paddr;
paddr >>= 8;
MFPDELAY();
if (ATARIHW_PRESENT( EXTD_DMA ))
st_dma_ext_dmahi = (unsigned short)paddr;
else
dma_wd.dma_hi = (unsigned char)paddr;
MFPDELAY();
local_irq_restore(flags);
}
static unsigned long get_dma_addr( void )
{ unsigned long addr;
addr = dma_wd.dma_lo & 0xff;
MFPDELAY();
addr |= (dma_wd.dma_md & 0xff) << 8;
MFPDELAY();
addr |= (dma_wd.dma_hi & 0xff) << 16;
MFPDELAY();
return( addr );
}
static ssize_t slm_write( struct file *file, const char *buf, size_t count,
loff_t *ppos )
{
struct inode *node = file->f_path.dentry->d_inode;
int device = iminor(node);
int n, filled, w, h;
while( SLMState == PRINTING ||
(SLMState == FILLING && SLMBufOwner != device) ) {
interruptible_sleep_on( &slm_wait );
if (signal_pending(current))
return( -ERESTARTSYS );
}
if (SLMState == IDLE) {
/* first data of page: get current page size */
if (slm_get_pagesize( device, &w, &h ))
return( -EIO );
BufferSize = w*h/8;
if (BufferSize > SLM_BUFFER_SIZE)
return( -ENOMEM );
SLMState = FILLING;
SLMBufOwner = device;
}
n = count;
filled = BufferP - SLMBuffer;
if (filled + n > BufferSize)
n = BufferSize - filled;
if (copy_from_user(BufferP, buf, n))
return -EFAULT;
BufferP += n;
filled += n;
if (filled == BufferSize) {
/* Check the paper size again! The user may have switched it in the
* time between starting the data and finishing them. Would end up in
* a trashy page... */
if (slm_get_pagesize( device, &w, &h ))
return( -EIO );
if (BufferSize != w*h/8) {
printk( KERN_NOTICE "slm%d: page size changed while printing\n",
device );
return( -EAGAIN );
}
SLMState = PRINTING;
/* choose a slice size that is a multiple of the line size */
#ifndef SLM_CONT_CNT_REPROG
SLMSliceSize = SLM_SLICE_SIZE(w);
#endif
start_print( device );
sleep_on( &print_wait );
if (SLMError && IS_REAL_ERROR(SLMError)) {
printk( KERN_ERR "slm%d: %s\n", device, slm_errstr(SLMError) );
n = -EIO;
}
SLMState = IDLE;
BufferP = SLMBuffer;
wake_up_interruptible( &slm_wait );
}
return( n );
}
/* ---------------------------------------------------------------------- */
/* ioctl Functions */
static int slm_ioctl( struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg )
{ int device = iminor(inode), err;
/* I can think of setting:
* - manual feed
* - paper format
* - copy count
* - ...
* but haven't implemented that yet :-)
* BTW, has anybody better docs about the MODE SENSE/MODE SELECT data?
*/
switch( cmd ) {
case SLMIORESET: /* reset buffer, i.e. empty the buffer */
if (!(file->f_mode & 2))
return( -EINVAL );
if (SLMState == PRINTING)
return( -EBUSY );
SLMState = IDLE;
BufferP = SLMBuffer;
wake_up_interruptible( &slm_wait );
return( 0 );
case SLMIOGSTAT: { /* get status */
int stat;
char *str;
stat = slm_req_sense( device );
if (arg) {
str = slm_errstr( stat );
if (put_user(stat,
(long *)&((struct SLM_status *)arg)->stat))
return -EFAULT;
if (copy_to_user( ((struct SLM_status *)arg)->str, str,
strlen(str) + 1))
return -EFAULT;
}
return( stat );
}
case SLMIOGPSIZE: { /* get paper size */
int w, h;
if ((err = slm_get_pagesize( device, &w, &h ))) return( err );
if (put_user(w, (long *)&((struct SLM_paper_size *)arg)->width))
return -EFAULT;
if (put_user(h, (long *)&((struct SLM_paper_size *)arg)->height))
return -EFAULT;
return( 0 );
}
case SLMIOGMFEED: /* get manual feed */
return( -EINVAL );
case SLMIOSPSIZE: /* set paper size */
return( -EINVAL );
case SLMIOSMFEED: /* set manual feed */
return( -EINVAL );
}
return( -EINVAL );
}
/* ---------------------------------------------------------------------- */
/* Opening and Closing */
static int slm_open( struct inode *inode, struct file *file )
{ int device;
struct slm *sip;
device = iminor(inode);
if (device >= N_SLM_Printers)
return( -ENXIO );
sip = &slm_info[device];
if (file->f_mode & 2) {
/* open for writing is exclusive */
if ( !atomic_dec_and_test(&sip->wr_ok) ) {
atomic_inc(&sip->wr_ok);
return( -EBUSY );
}
}
if (file->f_mode & 1) {
/* open for reading is exclusive */
if ( !atomic_dec_and_test(&sip->rd_ok) ) {
atomic_inc(&sip->rd_ok);
return( -EBUSY );
}
}
return( 0 );
}
static int slm_release( struct inode *inode, struct file *file )
{ int device;
struct slm *sip;
device = iminor(inode);
sip = &slm_info[device];
if (file->f_mode & 2)
atomic_inc( &sip->wr_ok );
if (file->f_mode & 1)
atomic_inc( &sip->rd_ok );
return( 0 );
}
/* ---------------------------------------------------------------------- */
/* ACSI Primitives for the SLM */
static int slm_req_sense( int device )
{ int stat, rv;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmreqsense_cmd, sip->target, sip->lun );
if (!acsicmd_nodma( slmreqsense_cmd, 0 ) ||
(stat = acsi_getstatus()) < 0)
rv = SLMSTAT_ACSITO;
else
rv = stat & 0x1f;
ENABLE_IRQ();
stdma_release();
return( rv );
}
static int slm_mode_sense( int device, char *buffer, int abs_flag )
{ unsigned char stat, len;
int rv = 0;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmmsense_cmd, sip->target, sip->lun );
slmmsense_cmd[5] = abs_flag ? 0x80 : 0;
if (!acsicmd_nodma( slmmsense_cmd, 0 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extstatus( &stat, 1 )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extstatus( &len, 1 )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
buffer[0] = len;
if (!acsi_extstatus( buffer+1, len )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
acsi_end_extstatus();
rv = stat & 0x1f;
the_end:
ENABLE_IRQ();
stdma_release();
return( rv );
}
#if 0
/* currently unused */
static int slm_mode_select( int device, char *buffer, int len,
int default_flag )
{ int stat, rv;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmmselect_cmd, sip->target, sip->lun );
slmmselect_cmd[5] = default_flag ? 0x80 : 0;
if (!acsicmd_nodma( slmmselect_cmd, 0 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!default_flag) {
unsigned char c = len;
if (!acsi_extcmd( &c, 1 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extcmd( buffer, len )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
}
stat = acsi_getstatus();
rv = (stat < 0 ? SLMSTAT_ACSITO : stat);
the_end:
ENABLE_IRQ();
stdma_release();
return( rv );
}
#endif
static int slm_get_pagesize( int device, int *w, int *h )
{ char buf[256];
int stat;
stat = slm_mode_sense( device, buf, 0 );
ENABLE_IRQ();
stdma_release();
if (stat != SLMSTAT_OK)
return( -EIO );
*w = (buf[3] << 8) | buf[4];
*h = (buf[1] << 8) | buf[2];
return( 0 );
}
/* ---------------------------------------------------------------------- */
/* Initialization */
int attach_slm( int target, int lun )
{ static int did_register;
int len;
if (N_SLM_Printers >= MAX_SLM) {
printk( KERN_WARNING "Too much SLMs\n" );
return( 0 );
}
/* do an INQUIRY */
udelay(100);
CMDSET_TARG_LUN( slminquiry_cmd, target, lun );
if (!acsicmd_nodma( slminquiry_cmd, 0 )) {
inq_timeout:
printk( KERN_ERR "SLM inquiry command timed out.\n" );
inq_fail:
acsi_end_extstatus();
return( 0 );
}
/* read status and header of return data */
if (!acsi_extstatus( SLMBuffer, 6 ))
goto inq_timeout;
if (SLMBuffer[1] != 2) { /* device type == printer? */
printk( KERN_ERR "SLM inquiry returned device type != printer\n" );
goto inq_fail;
}
len = SLMBuffer[5];
/* read id string */
if (!acsi_extstatus( SLMBuffer, len ))
goto inq_timeout;
acsi_end_extstatus();
SLMBuffer[len] = 0;
if (!did_register) {
did_register = 1;
}
slm_info[N_SLM_Printers].target = target;
slm_info[N_SLM_Printers].lun = lun;
atomic_set(&slm_info[N_SLM_Printers].wr_ok, 1 );
atomic_set(&slm_info[N_SLM_Printers].rd_ok, 1 );
printk( KERN_INFO " Printer: %s\n", SLMBuffer );
printk( KERN_INFO "Detected slm%d at id %d lun %d\n",
N_SLM_Printers, target, lun );
N_SLM_Printers++;
return( 1 );
}
int slm_init( void )
{
int i;
if (register_chrdev( ACSI_MAJOR, "slm", &slm_fops )) {
printk( KERN_ERR "Unable to get major %d for ACSI SLM\n", ACSI_MAJOR );
return -EBUSY;
}
if (!(SLMBuffer = atari_stram_alloc( SLM_BUFFER_SIZE, "SLM" ))) {
printk( KERN_ERR "Unable to get SLM ST-Ram buffer.\n" );
unregister_chrdev( ACSI_MAJOR, "slm" );
return -ENOMEM;
}
BufferP = SLMBuffer;
SLMState = IDLE;
return 0;
}
#ifdef MODULE
/* from acsi.c */
void acsi_attach_SLMs( int (*attach_func)( int, int ) );
int init_module(void)
{
int err;
if ((err = slm_init()))
return( err );
/* This calls attach_slm() for every target/lun where acsi.c detected a
* printer */
acsi_attach_SLMs( attach_slm );
return( 0 );
}
void cleanup_module(void)
{
if (unregister_chrdev( ACSI_MAJOR, "slm" ) != 0)
printk( KERN_ERR "acsi_slm: cleanup_module failed\n");
atari_stram_free( SLMBuffer );
}
#endif
......@@ -405,22 +405,6 @@ config ATARILANCE
on the AMD Lance chipset: RieblCard (with or without battery), or
PAMCard VME (also the version by Rhotron, with different addresses).
config ATARI_BIONET
tristate "BioNet-100 support"
depends on ATARI && ATARI_ACSI && BROKEN
help
Say Y to include support for BioData's BioNet-100 Ethernet adapter
for the ACSI port. The driver works (has to work...) with a polled
I/O scheme, so it's rather slow :-(
config ATARI_PAMSNET
tristate "PAMsNet support"
depends on ATARI && ATARI_ACSI && BROKEN
help
Say Y to include support for the PAMsNet Ethernet adapter for the
ACSI port ("ACSI node"). The driver works (has to work...) with a
polled I/O scheme, so it's rather slow :-(
config SUN3LANCE
tristate "Sun3/Sun3x on-board LANCE support"
depends on SUN3 || SUN3X
......
......@@ -180,8 +180,6 @@ obj-$(CONFIG_MIPS_SIM_NET) += mipsnet.o
obj-$(CONFIG_SGI_IOC3_ETH) += ioc3-eth.o
obj-$(CONFIG_DECLANCE) += declance.o
obj-$(CONFIG_ATARILANCE) += atarilance.o
obj-$(CONFIG_ATARI_BIONET) += atari_bionet.o
obj-$(CONFIG_ATARI_PAMSNET) += atari_pamsnet.o
obj-$(CONFIG_A2065) += a2065.o
obj-$(CONFIG_HYDRA) += hydra.o
obj-$(CONFIG_ARIADNE) += ariadne.o
......
......@@ -75,8 +75,6 @@ extern struct net_device *atarilance_probe(int unit);
extern struct net_device *sun3lance_probe(int unit);
extern struct net_device *sun3_82586_probe(int unit);
extern struct net_device *apne_probe(int unit);
extern struct net_device *bionet_probe(int unit);
extern struct net_device *pamsnet_probe(int unit);
extern struct net_device *cs89x0_probe(int unit);
extern struct net_device *hplance_probe(int unit);
extern struct net_device *bagetlance_probe(int unit);
......@@ -264,12 +262,6 @@ static struct devprobe2 m68k_probes[] __initdata = {
#ifdef CONFIG_APNE /* A1200 PCMCIA NE2000 */
{apne_probe, 0},
#endif
#ifdef CONFIG_ATARI_BIONET /* Atari Bionet Ethernet board */
{bionet_probe, 0},
#endif
#ifdef CONFIG_ATARI_PAMSNET /* Atari PAMsNet Ethernet board */
{pamsnet_probe, 0},
#endif
#ifdef CONFIG_MVME147_NET /* MVME147 internal Ethernet */
{mvme147lance_probe, 0},
#endif
......
/* bionet.c BioNet-100 device driver for linux68k.
*
* Version: @(#)bionet.c 1.0 02/06/96
*
* Author: Hartmut Laue <laue@ifk-mp.uni-kiel.de>
* and Torsten Narjes <narjes@ifk-mp.uni-kiel.de>
*
* Little adaptions for integration into pl7 by Roman Hodek
*
* Some changes in bionet_poll_rx by Karl-Heinz Lohner
*
What is it ?
------------
This driver controls the BIONET-100 LAN-Adapter which connects
an ATARI ST/TT via the ACSI-port to an Ethernet-based network.
This version can be compiled as a loadable module (See the
compile command at the bottom of this file).
At load time, you can optionally set the debugging level and the
fastest response time on the command line of 'insmod'.
'bionet_debug'
controls the amount of diagnostic messages:
0 : no messages
>0 : see code for meaning of printed messages
'bionet_min_poll_time' (always >=1)
gives the time (in jiffies) between polls. Low values
increase the system load (beware!)
When loaded, a net device with the name 'bio0' becomes available,
which can be controlled with the usual 'ifconfig' command.
It is possible to compile this driver into the kernel like other
(net) drivers. For this purpose, some source files (e.g. config-files
makefiles, Space.c) must be changed accordingly. (You may refer to
other drivers how to do it.) In this case, the device will be detected
at boot time and (probably) appear as 'eth0'.
This code is based on several sources:
- The driver code for a parallel port ethernet adapter by
Donald Becker (see file 'atp.c' from the PC linux distribution)
- The ACSI code by Roman Hodek for the ATARI-ACSI harddisk support
and DMA handling.
- Very limited information about moving packets in and out of the
BIONET-adapter from the TCP package for TOS by BioData GmbH.
Theory of Operation
-------------------
Because the ATARI DMA port is usually shared between several
devices (eg. harddisk, floppy) we cannot block the ACSI bus
while waiting for interrupts. Therefore we use a polling mechanism
to fetch packets from the adapter. For the same reason, we send
packets without checking that the previous packet has been sent to
the LAN. We rely on the higher levels of the networking code to detect
missing packets and resend them.
Before we access the ATARI DMA controller, we check if another
process is using the DMA. If not, we lock the DMA, perform one or
more packet transfers and unlock the DMA before returning.
We do not use 'stdma_lock' unconditionally because it is unclear
if the networking code can be set to sleep, which will happen if
another (possibly slow) device is using the DMA controller.
The polling is done via timer interrupts which periodically
'simulate' an interrupt from the Ethernet adapter. The time (in jiffies)
between polls varies depending on an estimate of the net activity.
The allowed range is given by the variable 'bionet_min_poll_time'
for the lower (fastest) limit and the constant 'MAX_POLL_TIME'
for the higher (slowest) limit.
Whenever a packet arrives, we switch to fastest response by setting
the polling time to its lowest limit. If the following poll fails,
because no packets have arrived, we increase the time for the next
poll. When the net activity is low, the polling time effectively
stays at its maximum value, resulting in the lowest load for the
machine.
*/
#define MAX_POLL_TIME 10
static char version[] =
"bionet.c:v1.0 06-feb-96 (c) Hartmut Laue.\n";
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/setup.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_acsi.h>
#include <asm/atari_stdma.h>
/* use 0 for production, 1 for verification, >2 for debug
*/
#ifndef NET_DEBUG
#define NET_DEBUG 0
#endif
/*
* Global variable 'bionet_debug'. Can be set at load time by 'insmod'
*/
unsigned int bionet_debug = NET_DEBUG;
module_param(bionet_debug, int, 0);
MODULE_PARM_DESC(bionet_debug, "bionet debug level (0-2)");
MODULE_LICENSE("GPL");
static unsigned int bionet_min_poll_time = 2;
/* Information that need to be kept for each board.
*/
struct net_local {
struct net_device_stats stats;
long open_time; /* for debugging */
int poll_time; /* polling time varies with net load */
};
static struct nic_pkt_s { /* packet format */
unsigned char status;
unsigned char dummy;
unsigned char l_lo, l_hi;
unsigned char buffer[3000];
} *nic_packet;
unsigned char *phys_nic_packet;
/* Index to functions, as function prototypes.
*/
static int bionet_open(struct net_device *dev);
static int bionet_send_packet(struct sk_buff *skb, struct net_device *dev);
static void bionet_poll_rx(struct net_device *);
static int bionet_close(struct net_device *dev);
static struct net_device_stats *net_get_stats(struct net_device *dev);
static void bionet_tick(unsigned long);
static DEFINE_TIMER(bionet_timer, bionet_tick, 0, 0);
#define STRAM_ADDR(a) (((a) & 0xff000000) == 0)
/* The following routines access the ethernet board connected to the
* ACSI port via the st_dma chip.
*/
#define NODE_ADR 0x60
#define C_READ 8
#define C_WRITE 0x0a
#define C_GETEA 0x0f
#define C_SETCR 0x0e
static int
sendcmd(unsigned int a0, unsigned int mod, unsigned int cmd) {
unsigned int c;
dma_wd.dma_mode_status = (mod | ((a0) ? 2 : 0) | 0x88);
dma_wd.fdc_acces_seccount = cmd;
dma_wd.dma_mode_status = (mod | 0x8a);
if( !acsi_wait_for_IRQ(HZ/2) ) /* wait for cmd ack */
return -1; /* timeout */
c = dma_wd.fdc_acces_seccount;
return (c & 0xff);
}
static void
set_status(int cr) {
sendcmd(0,0x100,NODE_ADR | C_SETCR); /* CMD: SET CR */
sendcmd(1,0x100,cr);
dma_wd.dma_mode_status = 0x80;
}
static int
get_status(unsigned char *adr) {
int i,c;
DISABLE_IRQ();
c = sendcmd(0,0x00,NODE_ADR | C_GETEA); /* CMD: GET ETH ADR*/
if( c < 0 ) goto gsend;
/* now read status bytes */
for (i=0; i<6; i++) {
dma_wd.fdc_acces_seccount = 0; /* request next byte */
if( !acsi_wait_for_IRQ(HZ/2) ) { /* wait for cmd ack */
c = -1;
goto gsend; /* timeout */
}
c = dma_wd.fdc_acces_seccount;
*adr++ = (unsigned char)c;
}
c = 1;
gsend:
dma_wd.dma_mode_status = 0x80;
return c;
}
static irqreturn_t
bionet_intr(int irq, void *data) {
return IRQ_HANDLED;
}
static int
get_frame(unsigned long paddr, int odd) {
int c;
unsigned long flags;
DISABLE_IRQ();
local_irq_save(flags);
dma_wd.dma_mode_status = 0x9a;
dma_wd.dma_mode_status = 0x19a;
dma_wd.dma_mode_status = 0x9a;
dma_wd.fdc_acces_seccount = 0x04; /* sector count (was 5) */
dma_wd.dma_lo = (unsigned char)paddr;
paddr >>= 8;
dma_wd.dma_md = (unsigned char)paddr;
paddr >>= 8;
dma_wd.dma_hi = (unsigned char)paddr;
local_irq_restore(flags);
c = sendcmd(0,0x00,NODE_ADR | C_READ); /* CMD: READ */
if( c < 128 ) goto rend;
/* now read block */
c = sendcmd(1,0x00,odd); /* odd flag for address shift */
dma_wd.dma_mode_status = 0x0a;
if( !acsi_wait_for_IRQ(100) ) { /* wait for DMA to complete */
c = -1;
goto rend;
}
dma_wd.dma_mode_status = 0x8a;
dma_wd.dma_mode_status = 0x18a;
dma_wd.dma_mode_status = 0x8a;
c = dma_wd.fdc_acces_seccount;
dma_wd.dma_mode_status = 0x88;
c = dma_wd.fdc_acces_seccount;
c = 1;
rend:
dma_wd.dma_mode_status = 0x80;
udelay(40);
acsi_wait_for_noIRQ(20);
return c;
}
static int
hardware_send_packet(unsigned long paddr, int cnt) {
unsigned int c;
unsigned long flags;
DISABLE_IRQ();
local_irq_save(flags);
dma_wd.dma_mode_status = 0x19a;
dma_wd.dma_mode_status = 0x9a;
dma_wd.dma_mode_status = 0x19a;
dma_wd.dma_lo = (unsigned char)paddr;
paddr >>= 8;
dma_wd.dma_md = (unsigned char)paddr;
paddr >>= 8;
dma_wd.dma_hi = (unsigned char)paddr;
dma_wd.fdc_acces_seccount = 0x4; /* sector count */
local_irq_restore(flags);
c = sendcmd(0,0x100,NODE_ADR | C_WRITE); /* CMD: WRITE */
c = sendcmd(1,0x100,cnt&0xff);
c = sendcmd(1,0x100,cnt>>8);
/* now write block */
dma_wd.dma_mode_status = 0x10a; /* DMA enable */
if( !acsi_wait_for_IRQ(100) ) /* wait for DMA to complete */
goto end;
dma_wd.dma_mode_status = 0x19a; /* DMA disable ! */
c = dma_wd.fdc_acces_seccount;
end:
c = sendcmd(1,0x100,0);
c = sendcmd(1,0x100,0);
dma_wd.dma_mode_status = 0x180;
udelay(40);
acsi_wait_for_noIRQ(20);
return( c & 0x02);
}
/* Check for a network adaptor of this type, and return '0' if one exists.
*/
struct net_device * __init bionet_probe(int unit)
{
struct net_device *dev;
unsigned char station_addr[6];
static unsigned version_printed;
static int no_more_found; /* avoid "Probing for..." printed 4 times */
int i;
int err;
if (!MACH_IS_ATARI || no_more_found)
return ERR_PTR(-ENODEV);
dev = alloc_etherdev(sizeof(struct net_local));
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0) {
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
}
SET_MODULE_OWNER(dev);
printk("Probing for BioNet 100 Adapter...\n");
stdma_lock(bionet_intr, NULL);
i = get_status(station_addr); /* Read the station address PROM. */
ENABLE_IRQ();
stdma_release();
/* Check the first three octets of the S.A. for the manufactor's code.
*/
if( i < 0
|| station_addr[0] != 'B'
|| station_addr[1] != 'I'
|| station_addr[2] != 'O' ) {
no_more_found = 1;
printk( "No BioNet 100 found.\n" );
free_netdev(dev);
return ERR_PTR(-ENODEV);
}
if (bionet_debug > 0 && version_printed++ == 0)
printk(version);
printk("%s: %s found, eth-addr: %02x-%02x-%02x:%02x-%02x-%02x.\n",
dev->name, "BioNet 100",
station_addr[0], station_addr[1], station_addr[2],
station_addr[3], station_addr[4], station_addr[5]);
/* Initialize the device structure. */
nic_packet = (struct nic_pkt_s *)acsi_buffer;
phys_nic_packet = (unsigned char *)phys_acsi_buffer;
if (bionet_debug > 0) {
printk("nic_packet at 0x%p, phys at 0x%p\n",
nic_packet, phys_nic_packet );
}
dev->open = bionet_open;
dev->stop = bionet_close;
dev->hard_start_xmit = bionet_send_packet;
dev->get_stats = net_get_stats;
/* Fill in the fields of the device structure with ethernet-generic
* values. This should be in a common file instead of per-driver.
*/
for (i = 0; i < ETH_ALEN; i++) {
#if 0
dev->broadcast[i] = 0xff;
#endif
dev->dev_addr[i] = station_addr[i];
}
err = register_netdev(dev);
if (!err)
return dev;
free_netdev(dev);
return ERR_PTR(err);
}
/* Open/initialize the board. This is called (in the current kernel)
sometime after booting when the 'ifconfig' program is run.
This routine should set everything up anew at each open, even
registers that "should" only need to be set once at boot, so that
there is non-reboot way to recover if something goes wrong.
*/
static int
bionet_open(struct net_device *dev) {
struct net_local *lp = netdev_priv(dev);
if (bionet_debug > 0)
printk("bionet_open\n");
stdma_lock(bionet_intr, NULL);
/* Reset the hardware here.
*/
set_status(4);
lp->open_time = 0; /*jiffies*/
lp->poll_time = MAX_POLL_TIME;
dev->tbusy = 0;
dev->interrupt = 0;
dev->start = 1;
stdma_release();
bionet_timer.data = (long)dev;
bionet_timer.expires = jiffies + lp->poll_time;
add_timer(&bionet_timer);
return 0;
}
static int
bionet_send_packet(struct sk_buff *skb, struct net_device *dev) {
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
/* Block a timer-based transmit from overlapping. This could better be
* done with atomic_swap(1, dev->tbusy), but set_bit() works as well.
*/
local_irq_save(flags);
if (stdma_islocked()) {
local_irq_restore(flags);
lp->stats.tx_errors++;
}
else {
int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
unsigned long buf = virt_to_phys(skb->data);
int stat;
stdma_lock(bionet_intr, NULL);
local_irq_restore(flags);
if( !STRAM_ADDR(buf+length-1) ) {
skb_copy_from_linear_data(skb, nic_packet->buffer,
length);
buf = (unsigned long)&((struct nic_pkt_s *)phys_nic_packet)->buffer;
}
if (bionet_debug >1) {
u_char *data = nic_packet->buffer, *p;
int i;
printk( "%s: TX pkt type 0x%4x from ", dev->name,
((u_short *)data)[6]);
for( p = &data[6], i = 0; i < 6; i++ )
printk("%02x%s", *p++,i != 5 ? ":" : "" );
printk(" to ");
for( p = data, i = 0; i < 6; i++ )
printk("%02x%s", *p++,i != 5 ? ":" : "" "\n" );
printk( "%s: ", dev->name );
printk(" data %02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x"
" %02x%02x%02x%02x len %d\n",
data[12], data[13], data[14], data[15], data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23], data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31], data[32], data[33],
length );
}
dma_cache_maintenance(buf, length, 1);
stat = hardware_send_packet(buf, length);
ENABLE_IRQ();
stdma_release();
dev->trans_start = jiffies;
dev->tbusy = 0;
lp->stats.tx_packets++;
lp->stats.tx_bytes+=length;
}
dev_kfree_skb(skb);
return 0;
}
/* We have a good packet(s), get it/them out of the buffers.
*/
static void
bionet_poll_rx(struct net_device *dev) {
struct net_local *lp = netdev_priv(dev);
int boguscount = 10;
int pkt_len, status;
unsigned long flags;
local_irq_save(flags);
/* ++roman: Take care at locking the ST-DMA... This must be done with ints
* off, since otherwise an int could slip in between the question and the
* locking itself, and then we'd go to sleep... And locking itself is
* necessary to keep the floppy_change timer from working with ST-DMA
* registers. */
if (stdma_islocked()) {
local_irq_restore(flags);
return;
}
stdma_lock(bionet_intr, NULL);
DISABLE_IRQ();
local_irq_restore(flags);
if( lp->poll_time < MAX_POLL_TIME ) lp->poll_time++;
while(boguscount--) {
status = get_frame((unsigned long)phys_nic_packet, 0);
if( status == 0 ) break;
/* Good packet... */
dma_cache_maintenance((unsigned long)phys_nic_packet, 1520, 0);
pkt_len = (nic_packet->l_hi << 8) | nic_packet->l_lo;
lp->poll_time = bionet_min_poll_time; /* fast poll */
if( pkt_len >= 60 && pkt_len <= 1520 ) {
/* ^^^^ war 1514 KHL */
/* Malloc up new buffer.
*/
struct sk_buff *skb = dev_alloc_skb( pkt_len + 2 );
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n",
dev->name);
lp->stats.rx_dropped++;
break;
}
skb_reserve( skb, 2 ); /* 16 Byte align */
skb_put( skb, pkt_len ); /* make room */
/* 'skb->data' points to the start of sk_buff data area.
*/
skb_copy_to_linear_data(skb, nic_packet->buffer,
pkt_len);
skb->protocol = eth_type_trans( skb, dev );
netif_rx(skb);
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes+=pkt_len;
/* If any worth-while packets have been received, dev_rint()
has done a mark_bh(INET_BH) for us and will work on them
when we get to the bottom-half routine.
*/
if (bionet_debug >1) {
u_char *data = nic_packet->buffer, *p;
int i;
printk( "%s: RX pkt type 0x%4x from ", dev->name,
((u_short *)data)[6]);
for( p = &data[6], i = 0; i < 6; i++ )
printk("%02x%s", *p++,i != 5 ? ":" : "" );
printk(" to ");
for( p = data, i = 0; i < 6; i++ )
printk("%02x%s", *p++,i != 5 ? ":" : "" "\n" );
printk( "%s: ", dev->name );
printk(" data %02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x"
" %02x%02x%02x%02x len %d\n",
data[12], data[13], data[14], data[15], data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23], data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31], data[32], data[33],
pkt_len );
}
}
else {
printk(" Packet has wrong length: %04d bytes\n", pkt_len);
lp->stats.rx_errors++;
}
}
stdma_release();
ENABLE_IRQ();
return;
}
/* bionet_tick: called by bionet_timer. Reads packets from the adapter,
* passes them to the higher layers and restarts the timer.
*/
static void
bionet_tick(unsigned long data) {
struct net_device *dev = (struct net_device *)data;
struct net_local *lp = netdev_priv(dev);
if( bionet_debug > 0 && (lp->open_time++ & 7) == 8 )
printk("bionet_tick: %ld\n", lp->open_time);
if( !stdma_islocked() ) bionet_poll_rx(dev);
bionet_timer.expires = jiffies + lp->poll_time;
add_timer(&bionet_timer);
}
/* The inverse routine to bionet_open().
*/
static int
bionet_close(struct net_device *dev) {
struct net_local *lp = netdev_priv(dev);
if (bionet_debug > 0)
printk("bionet_close, open_time=%ld\n", lp->open_time);
del_timer(&bionet_timer);
stdma_lock(bionet_intr, NULL);
set_status(0);
lp->open_time = 0;
dev->tbusy = 1;
dev->start = 0;
stdma_release();
return 0;
}
/* Get the current statistics.
This may be called with the card open or closed.
*/
static struct net_device_stats *net_get_stats(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
return &lp->stats;
}
#ifdef MODULE
static struct net_device *bio_dev;
int init_module(void)
{
bio_dev = bionet_probe(-1);
if (IS_ERR(bio_dev))
return PTR_ERR(bio_dev);
return 0;
}
void cleanup_module(void)
{
unregister_netdev(bio_dev);
free_netdev(bio_dev);
}
#endif /* MODULE */
/* Local variables:
* compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/include
-b m68k-linuxaout -Wall -Wstrict-prototypes -O2
-fomit-frame-pointer -pipe -DMODULE -I../../net/inet -c bionet.c"
* version-control: t
* kept-new-versions: 5
* tab-width: 8
* End:
*/
/* atari_pamsnet.c PAMsNet device driver for linux68k.
*
* Version: @(#)PAMsNet.c 0.2ß 03/31/96
*
* Author: Torsten Lang <Torsten.Lang@ap.physik.uni-giessen.de>
* <Torsten.Lang@jung.de>
*
* This driver is based on my driver PAMSDMA.c for MiNT-Net and
* on the driver bionet.c written by
* Hartmut Laue <laue@ifk-mp.uni-kiel.de>
* and Torsten Narjes <narjes@ifk-mp.uni-kiel.de>
*
* Little adaptions for integration into pl7 by Roman Hodek
*
What is it ?
------------
This driver controls the PAMsNet LAN-Adapter which connects
an ATARI ST/TT via the ACSI-port to an Ethernet-based network.
This version can be compiled as a loadable module (See the
compile command at the bottom of this file).
At load time, you can optionally set the debugging level and the
fastest response time on the command line of 'insmod'.
'pamsnet_debug'
controls the amount of diagnostic messages:
0 : no messages
>0 : see code for meaning of printed messages
'pamsnet_min_poll_time' (always >=1)
gives the time (in jiffies) between polls. Low values
increase the system load (beware!)
When loaded, a net device with the name 'eth?' becomes available,
which can be controlled with the usual 'ifconfig' command.
It is possible to compile this driver into the kernel like other
(net) drivers. For this purpose, some source files (e.g. config-files
makefiles, Space.c) must be changed accordingly. (You may refer to
other drivers how to do it.) In this case, the device will be detected
at boot time and (probably) appear as 'eth0'.
Theory of Operation
-------------------
Because the ATARI DMA port is usually shared between several
devices (eg. harddisk, floppy) we cannot block the ACSI bus
while waiting for interrupts. Therefore we use a polling mechanism
to fetch packets from the adapter. For the same reason, we send
packets without checking that the previous packet has been sent to
the LAN. We rely on the higher levels of the networking code to detect
missing packets and resend them.
Before we access the ATARI DMA controller, we check if another
process is using the DMA. If not, we lock the DMA, perform one or
more packet transfers and unlock the DMA before returning.
We do not use 'stdma_lock' unconditionally because it is unclear
if the networking code can be set to sleep, which will happen if
another (possibly slow) device is using the DMA controller.
The polling is done via timer interrupts which periodically
'simulate' an interrupt from the Ethernet adapter. The time (in jiffies)
between polls varies depending on an estimate of the net activity.
The allowed range is given by the variable 'bionet_min_poll_time'
for the lower (fastest) limit and the constant 'MAX_POLL_TIME'
for the higher (slowest) limit.
Whenever a packet arrives, we switch to fastest response by setting
the polling time to its lowest limit. If the following poll fails,
because no packets have arrived, we increase the time for the next
poll. When the net activity is low, the polling time effectively
stays at its maximum value, resulting in the lowest load for the
machine.
*/
#define MAX_POLL_TIME 10
static char *version =
"pamsnet.c:v0.2beta 30-mar-96 (c) Torsten Lang.\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_stdma.h>
#include <asm/atari_acsi.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#undef READ
#undef WRITE
/* use 0 for production, 1 for verification, >2 for debug
*/
#ifndef NET_DEBUG
#define NET_DEBUG 0
#endif
/*
* Global variable 'pamsnet_debug'. Can be set at load time by 'insmod'
*/
unsigned int pamsnet_debug = NET_DEBUG;
module_param(pamsnet_debug, int, 0);
MODULE_PARM_DESC(pamsnet_debug, "pamsnet debug enable (0-1)");
MODULE_LICENSE("GPL");
static unsigned int pamsnet_min_poll_time = 2;
/* Information that need to be kept for each board.
*/
struct net_local {
struct net_device_stats stats;
long open_time; /* for debugging */
int poll_time; /* polling time varies with net load */
};
static struct nic_pkt_s { /* packet format */
unsigned char buffer[2048];
} *nic_packet = 0;
unsigned char *phys_nic_packet;
typedef unsigned char HADDR[6]; /* 6-byte hardware address of lance */
/* Index to functions, as function prototypes.
*/
static void start (int target);
static int stop (int target);
static int testpkt (int target);
static int sendpkt (int target, unsigned char *buffer, int length);
static int receivepkt (int target, unsigned char *buffer);
static int inquiry (int target, unsigned char *buffer);
static HADDR *read_hw_addr(int target, unsigned char *buffer);
static void setup_dma (void *address, unsigned rw_flag, int num_blocks);
static int send_first (int target, unsigned char byte);
static int send_1_5 (int lun, unsigned char *command, int dma);
static int get_status (void);
static int calc_received (void *start_address);
static int pamsnet_open(struct net_device *dev);
static int pamsnet_send_packet(struct sk_buff *skb, struct net_device *dev);
static void pamsnet_poll_rx(struct net_device *);
static int pamsnet_close(struct net_device *dev);
static struct net_device_stats *net_get_stats(struct net_device *dev);
static void pamsnet_tick(unsigned long);
static irqreturn_t pamsnet_intr(int irq, void *data);
static DEFINE_TIMER(pamsnet_timer, pamsnet_tick, 0, 0);
#define STRAM_ADDR(a) (((a) & 0xff000000) == 0)
typedef struct
{
unsigned char reserved1[0x38];
HADDR hwaddr;
unsigned char reserved2[0x1c2];
} DMAHWADDR;
/*
* Definitions of commands understood by the PAMs DMA adaptor.
*
* In general the DMA adaptor uses LUN 0, 5, 6 and 7 on one ID changeable
* by the PAM's Net software.
*
* LUN 0 works as a harddisk. You can boot the PAM's Net driver there.
* LUN 5 works as a harddisk and lets you access the RAM and some I/O HW
* area. In sector 0, bytes 0x38-0x3d you find the ethernet HW address
* of the adaptor.
* LUN 6 works as a harddisk and lets you access the firmware ROM.
* LUN 7 lets you send and receive packets.
*
* Some commands like the INQUIRY command work identical on all used LUNs.
*
* UNKNOWN1 seems to read some data.
* Command length is 6 bytes.
* UNKNOWN2 seems to read some data (command byte 1 must be !=0). The
* following bytes seem to be something like an allocation length.
* Command length is 6 bytes.
* READPKT reads a packet received by the DMA adaptor.
* Command length is 6 bytes.
* WRITEPKT sends a packet transferred by the following DMA phase. The length
* of the packet is transferred in command bytes 3 and 4.
* The adaptor automatically replaces the src hw address in an ethernet
* packet by its own hw address.
* Command length is 6 bytes.
* INQUIRY has the same function as the INQUIRY command supported by harddisks
* and other SCSI devices. It lets you detect which device you found
* at a given address.
* Command length is 6 bytes.
* START initializes the DMA adaptor. After this command it is able to send
* and receive packets. There is no status byte returned!
* Command length is 1 byte.
* NUMPKTS gives back the number of received packets waiting in the queue in
* the status byte.
* Command length is 1 byte.
* UNKNOWN3
* UNKNOWN4 Function of these three commands is unknown.
* UNKNOWN5 The command length of these three commands is 1 byte.
* DESELECT immediately deselects the DMA adaptor. May important with interrupt
* driven operation.
* Command length is 1 byte.
* STOP resets the DMA adaptor. After this command packets can no longer
* be received or transferred.
* Command length is 6 byte.
*/
enum {UNKNOWN1=3, READPKT=8, UNKNOWN2, WRITEPKT=10, INQUIRY=18, START,
NUMPKTS=22, UNKNOWN3, UNKNOWN4, UNKNOWN5, DESELECT, STOP};
#define READSECTOR READPKT
#define WRITESECTOR WRITEPKT
u_char *inquire8="MV PAM's NET/GK";
#define DMALOW dma_wd.dma_lo
#define DMAMID dma_wd.dma_md
#define DMAHIGH dma_wd.dma_hi
#define DACCESS dma_wd.fdc_acces_seccount
#define MFP_GPIP mfp.par_dt_reg
/* Some useful functions */
#define INT (!(MFP_GPIP & 0x20))
#define DELAY ({MFP_GPIP; MFP_GPIP; MFP_GPIP;})
#define WRITEMODE(value) \
({ u_short dummy = value; \
__asm__ volatile("movew %0, 0xFFFF8606" : : "d"(dummy)); \
DELAY; \
})
#define WRITEBOTH(value1, value2) \
({ u_long dummy = (u_long)(value1)<<16 | (u_short)(value2); \
__asm__ volatile("movel %0, 0xFFFF8604" : : "d"(dummy)); \
DELAY; \
})
/* Definitions for DMODE */
#define READ 0x000
#define WRITE 0x100
#define DMA_FDC 0x080
#define DMA_ACSI 0x000
#define DMA_DISABLE 0x040
#define SEC_COUNT 0x010
#define DMA_WINDOW 0x000
#define REG_ACSI 0x008
#define REG_FDC 0x000
#define A1 0x002
/* Timeout constants */
#define TIMEOUTCMD HZ/2 /* ca. 500ms */
#define TIMEOUTDMA HZ /* ca. 1s */
#define COMMAND_DELAY 500 /* ca. 0.5ms */
unsigned rw;
int lance_target = -1;
int if_up = 0;
/* The following routines access the ethernet board connected to the
* ACSI port via the st_dma chip.
*/
/* The following lowlevel routines work on physical addresses only and assume
* that eventually needed buffers are
* - completely located in ST RAM
* - are contigous in the physical address space
*/
/* Setup the DMA counter */
static void
setup_dma (void *address, unsigned rw_flag, int num_blocks)
{
WRITEMODE((unsigned) rw_flag | DMA_FDC | SEC_COUNT | REG_ACSI |
A1);
WRITEMODE((unsigned)(rw_flag ^ WRITE) | DMA_FDC | SEC_COUNT | REG_ACSI |
A1);
WRITEMODE((unsigned) rw_flag | DMA_FDC | SEC_COUNT | REG_ACSI |
A1);
DMALOW = (unsigned char)((unsigned long)address & 0xFF);
DMAMID = (unsigned char)(((unsigned long)address >> 8) & 0xFF);
DMAHIGH = (unsigned char)(((unsigned long)address >> 16) & 0xFF);
WRITEBOTH((unsigned)num_blocks & 0xFF,
rw_flag | DMA_FDC | DMA_WINDOW | REG_ACSI | A1);
rw = rw_flag;
}
/* Send the first byte of an command block */
static int
send_first (int target, unsigned char byte)
{
rw = READ;
acsi_delay_end(COMMAND_DELAY);
/*
* wake up ACSI
*/
WRITEMODE(DMA_FDC | DMA_WINDOW | REG_ACSI);
/*
* write command byte
*/
WRITEBOTH((target << 5) | (byte & 0x1F), DMA_FDC |
DMA_WINDOW | REG_ACSI | A1);
return (!acsi_wait_for_IRQ(TIMEOUTCMD));
}
/* Send the rest of an command block */
static int
send_1_5 (int lun, unsigned char *command, int dma)
{
int i, j;
for (i=0; i<5; i++) {
WRITEBOTH((!i ? (((lun & 0x7) << 5) | (command[i] & 0x1F))
: command[i]),
rw | REG_ACSI | DMA_WINDOW |
((i < 4) ? DMA_FDC
: (dma ? DMA_ACSI
: DMA_FDC)) | A1);
if (i < 4 && (j = !acsi_wait_for_IRQ(TIMEOUTCMD)))
return (j);
}
return (0);
}
/* Read a status byte */
static int
get_status (void)
{
WRITEMODE(DMA_FDC | DMA_WINDOW | REG_ACSI | A1);
acsi_delay_start();
return ((int)(DACCESS & 0xFF));
}
/* Calculate the number of received bytes */
static int
calc_received (void *start_address)
{
return (int)(
(((unsigned long)DMAHIGH << 16) | ((unsigned)DMAMID << 8) | DMALOW)
- (unsigned long)start_address);
}
/* The following midlevel routines still work on physical addresses ... */
/* start() starts the PAM's DMA adaptor */
static void
start (int target)
{
send_first(target, START);
}
/* stop() stops the PAM's DMA adaptor and returns a value of zero in case of success */
static int
stop (int target)
{
int ret = -1;
unsigned char cmd_buffer[5];
if (send_first(target, STOP))
goto bad;
cmd_buffer[0] = cmd_buffer[1] = cmd_buffer[2] =
cmd_buffer[3] = cmd_buffer[4] = 0;
if (send_1_5(7, cmd_buffer, 0) ||
!acsi_wait_for_IRQ(TIMEOUTDMA) ||
get_status())
goto bad;
ret = 0;
bad:
return (ret);
}
/* testpkt() returns the number of received packets waiting in the queue */
static int
testpkt(int target)
{
int ret = -1;
if (send_first(target, NUMPKTS))
goto bad;
ret = get_status();
bad:
return (ret);
}
/* inquiry() returns 0 when PAM's DMA found, -1 when timeout, -2 otherwise */
/* Please note: The buffer is for internal use only but must be defined! */
static int
inquiry (int target, unsigned char *buffer)
{
int ret = -1;
unsigned char *vbuffer = phys_to_virt((unsigned long)buffer);
unsigned char cmd_buffer[5];
if (send_first(target, INQUIRY))
goto bad;
setup_dma(buffer, READ, 1);
vbuffer[8] = vbuffer[27] = 0; /* Avoid confusion with previous read data */
cmd_buffer[0] = cmd_buffer[1] = cmd_buffer[2] = cmd_buffer[4] = 0;
cmd_buffer[3] = 48;
if (send_1_5(5, cmd_buffer, 1) ||
!acsi_wait_for_IRQ(TIMEOUTDMA) ||
get_status() ||
(calc_received(buffer) < 32))
goto bad;
dma_cache_maintenance((unsigned long)(buffer+8), 20, 0);
if (memcmp(inquire8, vbuffer+8, 20))
goto bad;
ret = 0;
bad:
if (!!NET_DEBUG) {
vbuffer[8+20]=0;
printk("inquiry of target %d: %s\n", target, vbuffer+8);
}
return (ret);
}
/*
* read_hw_addr() reads the sector containing the hwaddr and returns
* a pointer to it (virtual address!) or 0 in case of an error
*/
static HADDR
*read_hw_addr(int target, unsigned char *buffer)
{
HADDR *ret = 0;
unsigned char cmd_buffer[5];
if (send_first(target, READSECTOR))
goto bad;
setup_dma(buffer, READ, 1);
cmd_buffer[0] = cmd_buffer[1] = cmd_buffer[2] = cmd_buffer[4] = 0;
cmd_buffer[3] = 1;
if (send_1_5(5, cmd_buffer, 1) ||
!acsi_wait_for_IRQ(TIMEOUTDMA) ||
get_status())
goto bad;
ret = phys_to_virt((unsigned long)&(((DMAHWADDR *)buffer)->hwaddr));
dma_cache_maintenance((unsigned long)buffer, 512, 0);
bad:
return (ret);
}
static irqreturn_t
pamsnet_intr(int irq, void *data)
{
return IRQ_HANDLED;
}
/* receivepkt() loads a packet to a given buffer and returns its length */
static int
receivepkt (int target, unsigned char *buffer)
{
int ret = -1;
unsigned char cmd_buffer[5];
if (send_first(target, READPKT))
goto bad;
setup_dma(buffer, READ, 3);
cmd_buffer[0] = cmd_buffer[1] = cmd_buffer[2] = cmd_buffer[4] = 0;
cmd_buffer[3] = 3;
if (send_1_5(7, cmd_buffer, 1) ||
!acsi_wait_for_IRQ(TIMEOUTDMA) ||
get_status())
goto bad;
ret = calc_received(buffer);
bad:
return (ret);
}
/* sendpkt() sends a packet and returns a value of zero when the packet was sent
successfully */
static int
sendpkt (int target, unsigned char *buffer, int length)
{
int ret = -1;
unsigned char cmd_buffer[5];
if (send_first(target, WRITEPKT))
goto bad;
setup_dma(buffer, WRITE, 3);
cmd_buffer[0] = cmd_buffer[1] = cmd_buffer[4] = 0;
cmd_buffer[2] = length >> 8;
cmd_buffer[3] = length & 0xFF;
if (send_1_5(7, cmd_buffer, 1) ||
!acsi_wait_for_IRQ(TIMEOUTDMA) ||
get_status())
goto bad;
ret = 0;
bad:
return (ret);
}
/* The following higher level routines work on virtual addresses and convert them to
* physical addresses when passed to the lowlevel routines. It's up to the higher level
* routines to copy data from Alternate RAM to ST RAM if neccesary!
*/
/* Check for a network adaptor of this type, and return '0' if one exists.
*/
struct net_device * __init pamsnet_probe (int unit)
{
struct net_device *dev;
int i;
HADDR *hwaddr;
int err;
unsigned char station_addr[6];
static unsigned version_printed;
/* avoid "Probing for..." printed 4 times - the driver is supporting only one adapter now! */
static int no_more_found;
if (no_more_found)
return ERR_PTR(-ENODEV);
no_more_found = 1;
dev = alloc_etherdev(sizeof(struct net_local));
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0) {
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
}
SET_MODULE_OWNER(dev);
printk("Probing for PAM's Net/GK Adapter...\n");
/* Allocate the DMA buffer here since we need it for probing! */
nic_packet = (struct nic_pkt_s *)acsi_buffer;
phys_nic_packet = (unsigned char *)phys_acsi_buffer;
if (pamsnet_debug > 0) {
printk("nic_packet at 0x%p, phys at 0x%p\n",
nic_packet, phys_nic_packet );
}
stdma_lock(pamsnet_intr, NULL);
DISABLE_IRQ();
for (i=0; i<8; i++) {
/* Do two inquiries to cover cases with strange equipment on previous ID */
/* blocking the ACSI bus (like the SLMC804 laser printer controller... */
inquiry(i, phys_nic_packet);
if (!inquiry(i, phys_nic_packet)) {
lance_target = i;
break;
}
}
if (!!NET_DEBUG)
printk("ID: %d\n",i);
if (lance_target >= 0) {
if (!(hwaddr = read_hw_addr(lance_target, phys_nic_packet)))
lance_target = -1;
else
memcpy (station_addr, hwaddr, ETH_ALEN);
}
ENABLE_IRQ();
stdma_release();
if (lance_target < 0) {
printk("No PAM's Net/GK found.\n");
free_netdev(dev);
return ERR_PTR(-ENODEV);
}
if (pamsnet_debug > 0 && version_printed++ == 0)
printk(version);
printk("%s: %s found on target %01d, eth-addr: %02x:%02x:%02x:%02x:%02x:%02x.\n",
dev->name, "PAM's Net/GK", lance_target,
station_addr[0], station_addr[1], station_addr[2],
station_addr[3], station_addr[4], station_addr[5]);
/* Initialize the device structure. */
dev->open = pamsnet_open;
dev->stop = pamsnet_close;
dev->hard_start_xmit = pamsnet_send_packet;
dev->get_stats = net_get_stats;
/* Fill in the fields of the device structure with ethernet-generic
* values. This should be in a common file instead of per-driver.
*/
for (i = 0; i < ETH_ALEN; i++) {
#if 0
dev->broadcast[i] = 0xff;
#endif
dev->dev_addr[i] = station_addr[i];
}
err = register_netdev(dev);
if (!err)
return dev;
free_netdev(dev);
return ERR_PTR(err);
}
/* Open/initialize the board. This is called (in the current kernel)
sometime after booting when the 'ifconfig' program is run.
This routine should set everything up anew at each open, even
registers that "should" only need to be set once at boot, so that
there is non-reboot way to recover if something goes wrong.
*/
static int
pamsnet_open(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
if (pamsnet_debug > 0)
printk("pamsnet_open\n");
stdma_lock(pamsnet_intr, NULL);
DISABLE_IRQ();
/* Reset the hardware here.
*/
if (!if_up)
start(lance_target);
if_up = 1;
lp->open_time = 0; /*jiffies*/
lp->poll_time = MAX_POLL_TIME;
dev->tbusy = 0;
dev->interrupt = 0;
dev->start = 1;
ENABLE_IRQ();
stdma_release();
pamsnet_timer.data = (long)dev;
pamsnet_timer.expires = jiffies + lp->poll_time;
add_timer(&pamsnet_timer);
return 0;
}
static int
pamsnet_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
/* Block a timer-based transmit from overlapping. This could better be
* done with atomic_swap(1, dev->tbusy), but set_bit() works as well.
*/
local_irq_save(flags);
if (stdma_islocked()) {
local_irq_restore(flags);
lp->stats.tx_errors++;
}
else {
int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
unsigned long buf = virt_to_phys(skb->data);
int stat;
stdma_lock(pamsnet_intr, NULL);
DISABLE_IRQ();
local_irq_restore(flags);
if( !STRAM_ADDR(buf+length-1) ) {
skb_copy_from_linear_data(skb, nic_packet->buffer,
length);
buf = (unsigned long)phys_nic_packet;
}
dma_cache_maintenance(buf, length, 1);
stat = sendpkt(lance_target, (unsigned char *)buf, length);
ENABLE_IRQ();
stdma_release();
dev->trans_start = jiffies;
dev->tbusy = 0;
lp->stats.tx_packets++;
lp->stats.tx_bytes+=length;
}
dev_kfree_skb(skb);
return 0;
}
/* We have a good packet(s), get it/them out of the buffers.
*/
static void
pamsnet_poll_rx(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
int boguscount;
int pkt_len;
struct sk_buff *skb;
unsigned long flags;
local_irq_save(flags);
/* ++roman: Take care at locking the ST-DMA... This must be done with ints
* off, since otherwise an int could slip in between the question and the
* locking itself, and then we'd go to sleep... And locking itself is
* necessary to keep the floppy_change timer from working with ST-DMA
* registers. */
if (stdma_islocked()) {
local_irq_restore(flags);
return;
}
stdma_lock(pamsnet_intr, NULL);
DISABLE_IRQ();
local_irq_restore(flags);
boguscount = testpkt(lance_target);
if( lp->poll_time < MAX_POLL_TIME ) lp->poll_time++;
while(boguscount--) {
pkt_len = receivepkt(lance_target, phys_nic_packet);
if( pkt_len < 60 ) break;
/* Good packet... */
dma_cache_maintenance((unsigned long)phys_nic_packet, pkt_len, 0);
lp->poll_time = pamsnet_min_poll_time; /* fast poll */
if( pkt_len >= 60 && pkt_len <= 2048 ) {
if (pkt_len > 1514)
pkt_len = 1514;
/* Malloc up new buffer.
*/
skb = alloc_skb(pkt_len, GFP_ATOMIC);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n",
dev->name);
lp->stats.rx_dropped++;
break;
}
skb->len = pkt_len;
skb->dev = dev;
/* 'skb->data' points to the start of sk_buff data area.
*/
skb_copy_to_linear_data(skb, nic_packet->buffer,
pkt_len);
netif_rx(skb);
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes+=pkt_len;
}
}
/* If any worth-while packets have been received, dev_rint()
has done a mark_bh(INET_BH) for us and will work on them
when we get to the bottom-half routine.
*/
ENABLE_IRQ();
stdma_release();
return;
}
/* pamsnet_tick: called by pamsnet_timer. Reads packets from the adapter,
* passes them to the higher layers and restarts the timer.
*/
static void
pamsnet_tick(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct net_local *lp = netdev_priv(dev);
if( pamsnet_debug > 0 && (lp->open_time++ & 7) == 8 )
printk("pamsnet_tick: %ld\n", lp->open_time);
pamsnet_poll_rx(dev);
pamsnet_timer.expires = jiffies + lp->poll_time;
add_timer(&pamsnet_timer);
}
/* The inverse routine to pamsnet_open().
*/
static int
pamsnet_close(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
if (pamsnet_debug > 0)
printk("pamsnet_close, open_time=%ld\n", lp->open_time);
del_timer(&pamsnet_timer);
stdma_lock(pamsnet_intr, NULL);
DISABLE_IRQ();
if (if_up)
stop(lance_target);
if_up = 0;
lp->open_time = 0;
dev->tbusy = 1;
dev->start = 0;
ENABLE_IRQ();
stdma_release();
return 0;
}
/* Get the current statistics.
This may be called with the card open or closed.
*/
static struct net_device_stats *net_get_stats(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
return &lp->stats;
}
#ifdef MODULE
static struct net_device *pam_dev;
int init_module(void)
{
pam_dev = pamsnet_probe(-1);
if (IS_ERR(pam_dev))
return PTR_ERR(pam_dev);
return 0;
}
void cleanup_module(void)
{
unregister_netdev(pam_dev);
free_netdev(pam_dev);
}
#endif /* MODULE */
/* Local variables:
* compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/include
-b m68k-linuxaout -Wall -Wstrict-prototypes -O2
-fomit-frame-pointer -pipe -DMODULE -I../../net/inet -c atari_pamsnet.c"
* version-control: t
* kept-new-versions: 5
* tab-width: 8
* End:
*/
#ifndef _ATARI_SLM_H
#define _ATARI_SLM_H
/* Atari SLM laser printer specific ioctls */
#define SLMIOGSTAT 0xa100
#define SLMIOGPSIZE 0xa101
#define SLMIOGMFEED 0xa102
#define SLMIORESET 0xa140
#define SLMIOSPSIZE 0xa181
#define SLMIOSMFEED 0xa182
/* Status returning structure (SLMIOGSTAT) */
struct SLM_status {
int stat; /* numeric status code */
char str[40]; /* status string */
};
/* Paper size structure (SLMIO[GS]PSIZE) */
struct SLM_paper_size {
int width;
int height;
};
#endif /* _ATARI_SLM_H */
#ifndef _ASM_ATARI_ACSI_H
#define _ASM_ATARI_ACSI_H
/* Functions exported by drivers/block/acsi.c */
void acsi_delay_start( void );
void acsi_delay_end( long usec );
int acsi_wait_for_IRQ( unsigned timeout );
int acsi_wait_for_noIRQ( unsigned timeout );
int acsicmd_nodma( const char *cmd, int enable);
int acsi_getstatus( void );
int acsi_extstatus( char *buffer, int cnt );
void acsi_end_extstatus( void );
int acsi_extcmd( unsigned char *buffer, int cnt );
/* The ACSI buffer is guarantueed to reside in ST-RAM and may be used by other
* drivers that work on the ACSI bus, too. It's data are valid only as long as
* the ST-DMA is locked. */
extern char *acsi_buffer;
extern unsigned long phys_acsi_buffer;
/* Utility macros */
/* Send one data byte over the bus and set mode for next operation
* with one move.l -- Atari recommends this...
*/
#define DMA_LONG_WRITE(data,mode) \
do { \
*((unsigned long *)&dma_wd.fdc_acces_seccount) = \
((data)<<16) | (mode); \
} while(0)
#define ENABLE_IRQ() atari_turnon_irq( IRQ_MFP_ACSI )
#define DISABLE_IRQ() atari_turnoff_irq( IRQ_MFP_ACSI )
#endif /* _ASM_ATARI_ACSI_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment