Commit 56f5b1cf authored by Paul Zimmerman's avatar Paul Zimmerman Committed by Greg Kroah-Hartman

staging: Core files for the DWC2 driver

The core code provides basic services for accessing and managing
the DWC_otg hardware. These services are used by both the Host
Controller Driver and (in future) the Peripheral Controller Driver.
Signed-off-by: default avatarPaul Zimmerman <paulz@synopsys.com>
Reviewed-by: default avatarFelipe Balbi <balbi@ti.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 6f98b1a2
/*
* core.c - DesignWare HS OTG Controller common routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The Core code provides basic services for accessing and managing the
* DWC_otg hardware. These services are used by both the Host Controller
* Driver and the Peripheral Controller Driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/**
* dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
* used in both device and host modes
*
* @hsotg: Programming view of the DWC_otg controller
*/
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
/* Clear any pending OTG Interrupts */
writel(0xffffffff, hsotg->regs + GOTGINT);
/* Clear any pending interrupts */
writel(0xffffffff, hsotg->regs + GINTSTS);
/* Enable the interrupts in the GINTMSK */
intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
if (hsotg->core_params->dma_enable <= 0)
intmsk |= GINTSTS_RXFLVL;
intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP |
GINTSTS_SESSREQINT;
writel(intmsk, hsotg->regs + GINTMSK);
}
/*
* Initializes the FSLSPClkSel field of the HCFG register depending on the
* PHY type
*/
static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
{
u32 hs_phy_type = hsotg->hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK;
u32 fs_phy_type = hsotg->hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK;
u32 hcfg, val;
if ((hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->core_params->ulpi_fs_ls > 0) ||
hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* Full speed PHY */
val = HCFG_FSLSPCLKSEL_48_MHZ;
} else {
/* High speed PHY running at full speed or high speed */
val = HCFG_FSLSPCLKSEL_30_60_MHZ;
}
dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
hcfg = readl(hsotg->regs + HCFG);
hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
hcfg |= val;
writel(hcfg, hsotg->regs + HCFG);
}
/*
* Do core a soft reset of the core. Be careful with this because it
* resets all the internal state machines of the core.
*/
static void dwc2_core_reset(struct dwc2_hsotg *hsotg)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Wait for AHB master IDLE state */
do {
usleep_range(20000, 40000);
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 50) {
dev_warn(hsotg->dev,
"%s() HANG! AHB Idle GRSTCTL=%0x\n",
__func__, greset);
return;
}
} while (!(greset & GRSTCTL_AHBIDLE));
/* Core Soft Reset */
count = 0;
greset |= GRSTCTL_CSFTRST;
writel(greset, hsotg->regs + GRSTCTL);
do {
usleep_range(20000, 40000);
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 50) {
dev_warn(hsotg->dev,
"%s() HANG! Soft Reset GRSTCTL=%0x\n",
__func__, greset);
break;
}
} while (greset & GRSTCTL_CSFTRST);
/*
* NOTE: This long sleep is _very_ important, otherwise the core will
* not stay in host mode after a connector ID change!
*/
usleep_range(150000, 200000);
}
static void dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, i2cctl;
/*
* core_init() is now called on every switch so only call the
* following for the first time through
*/
if (select_phy) {
dev_dbg(hsotg->dev, "FS PHY selected\n");
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_PHYSEL;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset after a PHY select */
dwc2_core_reset(hsotg);
}
/*
* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
* do this on HNP Dev/Host mode switches (done in dev_init and
* host_init).
*/
if (dwc2_is_host_mode(hsotg))
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->core_params->i2c_enable > 0) {
dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
/* Program GUSBCFG.OtgUtmiFsSel to I2C */
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Program GI2CCTL.I2CEn */
i2cctl = readl(hsotg->regs + GI2CCTL);
i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
i2cctl &= ~GI2CCTL_I2CEN;
writel(i2cctl, hsotg->regs + GI2CCTL);
i2cctl |= GI2CCTL_I2CEN;
writel(i2cctl, hsotg->regs + GI2CCTL);
}
}
static void dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg;
if (!select_phy)
return;
usbcfg = readl(hsotg->regs + GUSBCFG);
/*
* HS PHY parameters. These parameters are preserved during soft reset
* so only program the first time. Do a soft reset immediately after
* setting phyif.
*/
switch (hsotg->core_params->phy_type) {
case DWC2_PHY_TYPE_PARAM_ULPI:
/* ULPI interface */
dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
if (hsotg->core_params->phy_ulpi_ddr > 0)
usbcfg |= GUSBCFG_DDRSEL;
break;
case DWC2_PHY_TYPE_PARAM_UTMI:
/* UTMI+ interface */
dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
if (hsotg->core_params->phy_utmi_width == 16)
usbcfg |= GUSBCFG_PHYIF16;
break;
default:
dev_err(hsotg->dev, "FS PHY selected at HS!\n");
break;
}
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset after setting the PHY parameters */
dwc2_core_reset(hsotg);
}
static void dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, hs_phy_type, fs_phy_type;
if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
/* If FS mode with FS PHY */
dwc2_fs_phy_init(hsotg, select_phy);
} else {
/* High speed PHY */
dwc2_hs_phy_init(hsotg, select_phy);
}
hs_phy_type = hsotg->hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK;
fs_phy_type = hsotg->hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK;
if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
hsotg->core_params->ulpi_fs_ls > 0) {
dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg |= GUSBCFG_ULPI_FS_LS;
usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
writel(usbcfg, hsotg->regs + GUSBCFG);
} else {
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg &= ~GUSBCFG_ULPI_FS_LS;
usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
writel(usbcfg, hsotg->regs + GUSBCFG);
}
}
static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = 0;
switch (hsotg->hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) {
case GHWCFG2_EXT_DMA_ARCH:
dev_err(hsotg->dev, "External DMA Mode not supported\n");
return -EINVAL;
case GHWCFG2_INT_DMA_ARCH:
dev_dbg(hsotg->dev, "Internal DMA Mode\n");
/*
* Old value was GAHBCFG_HBSTLEN_INCR - done for
* Host mode ISOC in issue fix - vahrama
*/
ahbcfg |= GAHBCFG_HBSTLEN_INCR4;
break;
case GHWCFG2_SLAVE_ONLY_ARCH:
default:
dev_dbg(hsotg->dev, "Slave Only Mode\n");
break;
}
dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
hsotg->core_params->dma_enable,
hsotg->core_params->dma_desc_enable);
if (hsotg->core_params->dma_enable > 0) {
if (hsotg->core_params->dma_desc_enable > 0)
dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
else
dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
} else {
dev_dbg(hsotg->dev, "Using Slave mode\n");
hsotg->core_params->dma_desc_enable = 0;
}
if (hsotg->core_params->ahb_single > 0)
ahbcfg |= GAHBCFG_AHB_SINGLE;
if (hsotg->core_params->dma_enable > 0)
ahbcfg |= GAHBCFG_DMA_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
return 0;
}
static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
usbcfg = readl(hsotg->regs + GUSBCFG);
usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
switch (hsotg->hwcfg2 & GHWCFG2_OP_MODE_MASK) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
if (hsotg->core_params->otg_cap ==
DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_HNPCAP;
if (hsotg->core_params->otg_cap !=
DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_SRPCAP;
break;
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
if (hsotg->core_params->otg_cap !=
DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
usbcfg |= GUSBCFG_SRPCAP;
break;
case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
default:
break;
}
writel(usbcfg, hsotg->regs + GUSBCFG);
}
/**
* dwc2_core_init() - Initializes the DWC_otg controller registers and
* prepares the core for device mode or host mode operation
*
* @hsotg: Programming view of the DWC_otg controller
* @select_phy: If true then also set the Phy type
*/
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy)
{
u32 usbcfg, otgctl;
int retval;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
usbcfg = readl(hsotg->regs + GUSBCFG);
/* Set ULPI External VBUS bit if needed */
usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
if (hsotg->core_params->phy_ulpi_ext_vbus ==
DWC2_PHY_ULPI_EXTERNAL_VBUS)
usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
/* Set external TS Dline pulsing bit if needed */
usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
if (hsotg->core_params->ts_dline > 0)
usbcfg |= GUSBCFG_TERMSELDLPULSE;
writel(usbcfg, hsotg->regs + GUSBCFG);
/* Reset the Controller */
dwc2_core_reset(hsotg);
dev_dbg(hsotg->dev, "num_dev_perio_in_ep=%d\n",
hsotg->hwcfg4 >> GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT &
GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK >>
GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT);
hsotg->total_fifo_size = hsotg->hwcfg3 >> GHWCFG3_DFIFO_DEPTH_SHIFT &
GHWCFG3_DFIFO_DEPTH_MASK >> GHWCFG3_DFIFO_DEPTH_SHIFT;
hsotg->rx_fifo_size = readl(hsotg->regs + GRXFSIZ);
hsotg->nperio_tx_fifo_size =
readl(hsotg->regs + GNPTXFSIZ) >> 16 & 0xffff;
dev_dbg(hsotg->dev, "Total FIFO SZ=%d\n", hsotg->total_fifo_size);
dev_dbg(hsotg->dev, "RxFIFO SZ=%d\n", hsotg->rx_fifo_size);
dev_dbg(hsotg->dev, "NP TxFIFO SZ=%d\n", hsotg->nperio_tx_fifo_size);
/*
* This needs to happen in FS mode before any other programming occurs
*/
dwc2_phy_init(hsotg, select_phy);
/* Program the GAHBCFG Register */
retval = dwc2_gahbcfg_init(hsotg);
if (retval)
return retval;
/* Program the GUSBCFG register */
dwc2_gusbcfg_init(hsotg);
/* Program the GOTGCTL register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_OTGVER;
if (hsotg->core_params->otg_ver > 0)
otgctl |= GOTGCTL_OTGVER;
writel(otgctl, hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
/* Clear the SRP success bit for FS-I2c */
hsotg->srp_success = 0;
/* Enable common interrupts */
dwc2_enable_common_interrupts(hsotg);
/*
* Do device or host intialization based on mode during PCD and
* HCD initialization
*/
if (dwc2_is_host_mode(hsotg)) {
dev_dbg(hsotg->dev, "Host Mode\n");
hsotg->op_state = OTG_STATE_A_HOST;
} else {
dev_dbg(hsotg->dev, "Device Mode\n");
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
}
return 0;
}
/**
* dwc2_enable_host_interrupts() - Enables the Host mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
dev_dbg(hsotg->dev, "%s()\n", __func__);
/* Disable all interrupts */
writel(0, hsotg->regs + GINTMSK);
writel(0, hsotg->regs + HAINTMSK);
/* Clear any pending interrupts */
writel(0xffffffff, hsotg->regs + GINTSTS);
/* Enable the common interrupts */
dwc2_enable_common_interrupts(hsotg);
/* Enable host mode interrupts without disturbing common interrupts */
intmsk = readl(hsotg->regs + GINTMSK);
intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
writel(intmsk, hsotg->regs + GINTMSK);
}
/**
* dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk = readl(hsotg->regs + GINTMSK);
/* Disable host mode interrupts without disturbing common interrupts */
intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
writel(intmsk, hsotg->regs + GINTMSK);
}
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
struct dwc2_core_params *params = hsotg->core_params;
u32 rxfsiz, nptxfsiz, ptxfsiz, hptxfsiz, dfifocfg;
if (!(hsotg->hwcfg2 & GHWCFG2_DYNAMIC_FIFO) ||
!params->enable_dynamic_fifo)
return;
dev_dbg(hsotg->dev, "Total FIFO Size=%d\n", hsotg->total_fifo_size);
dev_dbg(hsotg->dev, "Rx FIFO Size=%d\n", params->host_rx_fifo_size);
dev_dbg(hsotg->dev, "NP Tx FIFO Size=%d\n",
params->host_nperio_tx_fifo_size);
dev_dbg(hsotg->dev, "P Tx FIFO Size=%d\n",
params->host_perio_tx_fifo_size);
/* Rx FIFO */
dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n",
readl(hsotg->regs + GRXFSIZ));
writel(params->host_rx_fifo_size, hsotg->regs + GRXFSIZ);
dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
/* Non-periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
readl(hsotg->regs + GNPTXFSIZ));
nptxfsiz = params->host_nperio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
nptxfsiz |= params->host_rx_fifo_size <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
readl(hsotg->regs + GNPTXFSIZ));
/* Periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
readl(hsotg->regs + HPTXFSIZ));
ptxfsiz = params->host_perio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
ptxfsiz |= (params->host_rx_fifo_size +
params->host_nperio_tx_fifo_size) <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
writel(ptxfsiz, hsotg->regs + HPTXFSIZ);
dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
readl(hsotg->regs + HPTXFSIZ));
if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
hsotg->snpsid <= DWC2_CORE_REV_2_94a) {
/*
* Global DFIFOCFG calculation for Host mode -
* include RxFIFO, NPTXFIFO and HPTXFIFO
*/
dfifocfg = readl(hsotg->regs + GDFIFOCFG);
rxfsiz = readl(hsotg->regs + GRXFSIZ) & 0x0000ffff;
nptxfsiz = readl(hsotg->regs + GNPTXFSIZ) >> 16 & 0xffff;
hptxfsiz = readl(hsotg->regs + HPTXFSIZ) >> 16 & 0xffff;
dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
dfifocfg |= (rxfsiz + nptxfsiz + hptxfsiz) <<
GDFIFOCFG_EPINFOBASE_SHIFT &
GDFIFOCFG_EPINFOBASE_MASK;
writel(dfifocfg, hsotg->regs + GDFIFOCFG);
}
}
/**
* dwc2_core_host_init() - Initializes the DWC_otg controller registers for
* Host mode
*
* @hsotg: Programming view of DWC_otg controller
*
* This function flushes the Tx and Rx FIFOs and flushes any entries in the
* request queues. Host channels are reset to ensure that they are ready for
* performing transfers.
*/
void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
u32 hcfg, hfir, otgctl;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
/* Restart the Phy Clock */
writel(0, hsotg->regs + PCGCTL);
/* Initialize Host Configuration Register */
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
hcfg = readl(hsotg->regs + HCFG);
hcfg |= HCFG_FSLSSUPP;
writel(hcfg, hsotg->regs + HCFG);
}
/*
* This bit allows dynamic reloading of the HFIR register during
* runtime. This bit needs to be programmed during inital configuration
* and its value must not be changed during runtime.
*/
if (hsotg->core_params->reload_ctl > 0) {
hfir = readl(hsotg->regs + HFIR);
hfir |= HFIR_RLDCTRL;
writel(hfir, hsotg->regs + HFIR);
}
if (hsotg->core_params->dma_desc_enable > 0) {
u32 op_mode = hsotg->hwcfg2 & GHWCFG2_OP_MODE_MASK;
if (hsotg->snpsid < DWC2_CORE_REV_2_90a ||
!(hsotg->hwcfg4 & GHWCFG4_DESC_DMA) ||
op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
dev_err(hsotg->dev,
"Hardware does not support descriptor DMA mode -\n");
dev_err(hsotg->dev,
"falling back to buffer DMA mode.\n");
hsotg->core_params->dma_desc_enable = 0;
} else {
hcfg = readl(hsotg->regs + HCFG);
hcfg |= HCFG_DESCDMA;
writel(hcfg, hsotg->regs + HCFG);
}
}
/* Configure data FIFO sizes */
dwc2_config_fifos(hsotg);
/* TODO - check this */
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
writel(otgctl, hsotg->regs + GOTGCTL);
/* Make sure the FIFOs are flushed */
dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
dwc2_flush_rx_fifo(hsotg);
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = readl(hsotg->regs + GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
writel(otgctl, hsotg->regs + GOTGCTL);
if (hsotg->core_params->dma_desc_enable <= 0) {
int num_channels, i;
u32 hcchar;
/* Flush out any leftover queued requests */
num_channels = hsotg->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
hcchar = readl(hsotg->regs + HCCHAR(i));
hcchar &= ~HCCHAR_CHENA;
hcchar |= HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
writel(hcchar, hsotg->regs + HCCHAR(i));
}
/* Halt all channels to put them into a known state */
for (i = 0; i < num_channels; i++) {
int count = 0;
hcchar = readl(hsotg->regs + HCCHAR(i));
hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
writel(hcchar, hsotg->regs + HCCHAR(i));
dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
__func__, i);
do {
hcchar = readl(hsotg->regs + HCCHAR(i));
if (++count > 1000) {
dev_err(hsotg->dev,
"Unable to clear enable on channel %d\n",
i);
break;
}
udelay(1);
} while (hcchar & HCCHAR_CHENA);
}
}
/* Turn on the vbus power */
dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
if (hsotg->op_state == OTG_STATE_A_HOST) {
u32 hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
!!(hprt0 & HPRT0_PWR));
if (!(hprt0 & HPRT0_PWR)) {
hprt0 |= HPRT0_PWR;
writel(hprt0, hsotg->regs + HPRT0);
}
}
dwc2_enable_host_interrupts(hsotg);
}
static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
switch (chan->ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
dev_vdbg(hsotg->dev, "control/bulk\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_BBLERR;
} else {
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_NYET;
if (chan->do_ping)
hcintmsk |= HCINTMSK_ACK;
}
if (chan->do_split) {
hcintmsk |= HCINTMSK_NAK;
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
break;
case USB_ENDPOINT_XFER_INT:
dev_vdbg(hsotg->dev, "intr\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
hcintmsk |= HCINTMSK_FRMOVRUN;
if (chan->ep_is_in)
hcintmsk |= HCINTMSK_BBLERR;
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
if (chan->do_split) {
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
break;
case USB_ENDPOINT_XFER_ISOC:
dev_vdbg(hsotg->dev, "isoc\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_FRMOVRUN;
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_BBLERR;
}
break;
default:
dev_err(hsotg->dev, "## Unknown EP type ##\n");
break;
}
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
/*
* For Descriptor DMA mode core halts the channel on AHB error.
* Interrupt is not required.
*/
if (hsotg->core_params->dma_desc_enable <= 0) {
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcintmsk |= HCINTMSK_AHBERR;
} else {
dev_vdbg(hsotg->dev, "desc DMA enabled\n");
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
hcintmsk |= HCINTMSK_XFERCOMPL;
}
if (chan->error_state && !chan->do_split &&
chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
dev_vdbg(hsotg->dev, "setting ACK\n");
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_type != USB_ENDPOINT_XFER_INT)
hcintmsk |= HCINTMSK_NAK;
}
}
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 intmsk;
if (hsotg->core_params->dma_enable > 0) {
dev_vdbg(hsotg->dev, "DMA enabled\n");
dwc2_hc_enable_dma_ints(hsotg, chan);
} else {
dev_vdbg(hsotg->dev, "DMA disabled\n");
dwc2_hc_enable_slave_ints(hsotg, chan);
}
/* Enable the top level host channel interrupt */
intmsk = readl(hsotg->regs + HAINTMSK);
intmsk |= 1 << chan->hc_num;
writel(intmsk, hsotg->regs + HAINTMSK);
dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
/* Make sure host channel interrupts are enabled */
intmsk = readl(hsotg->regs + GINTMSK);
intmsk |= GINTSTS_HCHINT;
writel(intmsk, hsotg->regs + GINTMSK);
dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
}
/**
* dwc2_hc_init() - Prepares a host channel for transferring packets to/from
* a specific endpoint
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The HCCHARn register is set up with the characteristics specified in chan.
* Host channel interrupts that may need to be serviced while this transfer is
* in progress are enabled.
*/
void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u8 hc_num = chan->hc_num;
u32 hcintmsk;
u32 hcchar;
u32 hcsplt = 0;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Clear old interrupt conditions for this host channel */
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
writel(hcintmsk, hsotg->regs + HCINT(hc_num));
/* Enable channel interrupts required for this transfer */
dwc2_hc_enable_ints(hsotg, chan);
/*
* Program the HCCHARn register with the endpoint characteristics for
* the current transfer
*/
hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
if (chan->ep_is_in)
hcchar |= HCCHAR_EPDIR;
if (chan->speed == USB_SPEED_LOW)
hcchar |= HCCHAR_LSPDDEV;
hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
writel(hcchar, hsotg->regs + HCCHAR(hc_num));
dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", hc_num, hcchar);
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, hc_num);
dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
hcchar >> HCCHAR_DEVADDR_SHIFT &
HCCHAR_DEVADDR_MASK >> HCCHAR_DEVADDR_SHIFT);
dev_vdbg(hsotg->dev, " Ep Num: %d\n",
hcchar >> HCCHAR_EPNUM_SHIFT &
HCCHAR_EPNUM_MASK >> HCCHAR_EPNUM_SHIFT);
dev_vdbg(hsotg->dev, " Is In: %d\n", !!(hcchar & HCCHAR_EPDIR));
dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
!!(hcchar & HCCHAR_LSPDDEV));
dev_vdbg(hsotg->dev, " Ep Type: %d\n",
hcchar >> HCCHAR_EPTYPE_SHIFT &
HCCHAR_EPTYPE_MASK >> HCCHAR_EPTYPE_SHIFT);
dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
hcchar >> HCCHAR_MPS_SHIFT &
HCCHAR_MPS_MASK >> HCCHAR_MPS_SHIFT);
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
hcchar >> HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK >> HCCHAR_MULTICNT_SHIFT);
/* Program the HCSPLT register for SPLITs */
if (chan->do_split) {
dev_vdbg(hsotg->dev, "Programming HC %d with split --> %s\n",
hc_num, chan->complete_split ? "CSPLIT" : "SSPLIT");
if (chan->complete_split)
hcsplt |= HCSPLT_COMPSPLT;
hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
HCSPLT_XACTPOS_MASK;
hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
HCSPLT_HUBADDR_MASK;
hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
HCSPLT_PRTADDR_MASK;
dev_vdbg(hsotg->dev, " comp split %d\n",
chan->complete_split);
dev_vdbg(hsotg->dev, " xact pos %d\n", chan->xact_pos);
dev_vdbg(hsotg->dev, " hub addr %d\n", chan->hub_addr);
dev_vdbg(hsotg->dev, " hub port %d\n", chan->hub_port);
dev_vdbg(hsotg->dev, " is_in %d\n", chan->ep_is_in);
dev_vdbg(hsotg->dev, " Max Pkt %d\n",
hcchar >> HCCHAR_MPS_SHIFT &
HCCHAR_MPS_MASK >> HCCHAR_MPS_SHIFT);
dev_vdbg(hsotg->dev, " xferlen %d\n", chan->xfer_len);
}
writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
}
/**
* dwc2_hc_halt() - Attempts to halt a host channel
*
* @hsotg: Controller register interface
* @chan: Host channel to halt
* @halt_status: Reason for halting the channel
*
* This function should only be called in Slave mode or to abort a transfer in
* either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
* controller halts the channel when the transfer is complete or a condition
* occurs that requires application intervention.
*
* In slave mode, checks for a free request queue entry, then sets the Channel
* Enable and Channel Disable bits of the Host Channel Characteristics
* register of the specified channel to intiate the halt. If there is no free
* request queue entry, sets only the Channel Disable bit of the HCCHARn
* register to flush requests for this channel. In the latter case, sets a
* flag to indicate that the host channel needs to be halted when a request
* queue slot is open.
*
* In DMA mode, always sets the Channel Enable and Channel Disable bits of the
* HCCHARn register. The controller ensures there is space in the request
* queue before submitting the halt request.
*
* Some time may elapse before the core flushes any posted requests for this
* host channel and halts. The Channel Halted interrupt handler completes the
* deactivation of the host channel.
*/
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status)
{
u32 nptxsts, hptxsts, hcchar;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
halt_status == DWC2_HC_XFER_AHB_ERR) {
/*
* Disable all channel interrupts except Ch Halted. The QTD
* and QH state associated with this transfer has been cleared
* (in the case of URB_DEQUEUE), so the channel needs to be
* shut down carefully to prevent crashes.
*/
u32 hcintmsk = HCINTMSK_CHHLTD;
dev_vdbg(hsotg->dev, "dequeue/error\n");
writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
/*
* Make sure no other interrupts besides halt are currently
* pending. Handling another interrupt could cause a crash due
* to the QTD and QH state.
*/
writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
/*
* Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
* even if the channel was already halted for some other
* reason
*/
chan->halt_status = halt_status;
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
if (!(hcchar & HCCHAR_CHENA)) {
/*
* The channel is either already halted or it hasn't
* started yet. In DMA mode, the transfer may halt if
* it finishes normally or a condition occurs that
* requires driver intervention. Don't want to halt
* the channel again. In either Slave or DMA mode,
* it's possible that the transfer has been assigned
* to a channel, but not started yet when an URB is
* dequeued. Don't want to halt a channel that hasn't
* started yet.
*/
return;
}
}
if (chan->halt_pending) {
/*
* A halt has already been issued for this channel. This might
* happen when a transfer is aborted by a higher level in
* the stack.
*/
dev_vdbg(hsotg->dev,
"*** %s: Channel %d, chan->halt_pending already set ***\n",
__func__, chan->hc_num);
return;
}
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
/* No need to set the bit in DDMA for disabling the channel */
/* TODO check it everywhere channel is disabled */
if (hsotg->core_params->dma_desc_enable <= 0) {
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcchar |= HCCHAR_CHENA;
} else {
dev_dbg(hsotg->dev, "desc DMA enabled\n");
}
hcchar |= HCCHAR_CHDIS;
if (hsotg->core_params->dma_enable <= 0) {
dev_vdbg(hsotg->dev, "DMA not enabled\n");
hcchar |= HCCHAR_CHENA;
/* Check for space in the request queue to issue the halt */
if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
chan->ep_type == USB_ENDPOINT_XFER_BULK) {
dev_vdbg(hsotg->dev, "control/bulk\n");
nptxsts = readl(hsotg->regs + GNPTXSTS);
if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
} else {
dev_vdbg(hsotg->dev, "isoc/intr\n");
hptxsts = readl(hsotg->regs + HPTXSTS);
if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
hsotg->queuing_high_bandwidth) {
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
}
} else {
dev_vdbg(hsotg->dev, "DMA enabled\n");
}
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
chan->halt_status = halt_status;
if (hcchar & HCCHAR_CHENA) {
dev_vdbg(hsotg->dev, "Channel enabled\n");
chan->halt_pending = 1;
chan->halt_on_queue = 0;
} else {
dev_vdbg(hsotg->dev, "Channel disabled\n");
chan->halt_on_queue = 1;
}
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num);
dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
dev_vdbg(hsotg->dev, " halt_pending: %d\n", chan->halt_pending);
dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", chan->halt_on_queue);
dev_vdbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
}
/**
* dwc2_hc_cleanup() - Clears the transfer state for a host channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to clean up
*
* This function is normally called after a transfer is done and the host
* channel is being released
*/
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u32 hcintmsk;
chan->xfer_started = 0;
/*
* Clear channel interrupt enables and any unhandled channel interrupt
* conditions
*/
writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
}
/**
* dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
* which frame a periodic transfer should occur
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to set up and its properties
* @hcchar: Current value of the HCCHAR register for the specified host channel
*
* This function has no effect on non-periodic transfers
*/
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, u32 *hcchar)
{
u32 hfnum, frnum;
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
hfnum = readl(hsotg->regs + HFNUM);
frnum = hfnum >> HFNUM_FRNUM_SHIFT &
HFNUM_FRNUM_MASK >> HFNUM_FRNUM_SHIFT;
/* 1 if _next_ frame is odd, 0 if it's even */
if (frnum & 0x1)
*hcchar |= HCCHAR_ODDFRM;
}
}
static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
/* Set up the initial PID for the transfer */
if (chan->speed == USB_SPEED_HIGH) {
if (chan->ep_is_in) {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else if (chan->multi_count == 2)
chan->data_pid_start = DWC2_HC_PID_DATA1;
else
chan->data_pid_start = DWC2_HC_PID_DATA2;
} else {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else
chan->data_pid_start = DWC2_HC_PID_MDATA;
}
} else {
chan->data_pid_start = DWC2_HC_PID_DATA0;
}
}
/**
* dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
* the Host Channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. For a channel associated
* with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
* associated with a periodic EP, the periodic Tx FIFO is written.
*
* Upon return the xfer_buf and xfer_count fields in chan are incremented by
* the number of bytes written to the Tx FIFO.
*/
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 i;
u32 remaining_count;
u32 byte_count;
u32 dword_count;
u32 __iomem *data_fifo;
u32 *data_buf = (u32 *)chan->xfer_buf;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
remaining_count = chan->xfer_len - chan->xfer_count;
if (remaining_count > chan->max_packet)
byte_count = chan->max_packet;
else
byte_count = remaining_count;
dword_count = (byte_count + 3) / 4;
if (((unsigned long)data_buf & 0x3) == 0) {
/* xfer_buf is DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++)
writel(*data_buf, data_fifo);
} else {
/* xfer_buf is not DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++) {
u32 data = data_buf[0] | data_buf[1] << 8 |
data_buf[2] << 16 | data_buf[3] << 24;
writel(data, data_fifo);
}
}
chan->xfer_count += byte_count;
chan->xfer_buf += byte_count;
}
/**
* dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
* channel and starts the transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel. The xfer_len value
* may be reduced to accommodate the max widths of the XferSize and
* PktCnt fields in the HCTSIZn register. The multi_count value may be
* changed to reflect the final xfer_len value.
*
* This function may be called in either Slave mode or DMA mode. In Slave mode,
* the caller must ensure that there is sufficient space in the request queue
* and Tx Data FIFO.
*
* For an OUT transfer in Slave mode, it loads a data packet into the
* appropriate FIFO. If necessary, additional data packets are loaded in the
* Host ISR.
*
* For an IN transfer in Slave mode, a data packet is requested. The data
* packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
* additional data packets are requested in the Host ISR.
*
* For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
* register along with a packet count of 1 and the channel is enabled. This
* causes a single PING transaction to occur. Other fields in HCTSIZ are
* simply set to 0 since no data transfer occurs in this case.
*
* For a PING transfer in DMA mode, the HCTSIZ register is initialized with
* all the information required to perform the subsequent data transfer. In
* addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
* controller performs the entire PING protocol, then starts the data
* transfer.
*/
void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
u32 hcchar;
u32 hctsiz = 0;
u16 num_packets;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (chan->do_ping) {
if (hsotg->core_params->dma_enable <= 0) {
dev_vdbg(hsotg->dev, "ping, no DMA\n");
dwc2_hc_do_ping(hsotg, chan);
chan->xfer_started = 1;
return;
} else {
dev_vdbg(hsotg->dev, "ping, DMA\n");
hctsiz |= TSIZ_DOPNG;
}
}
if (chan->do_split) {
dev_vdbg(hsotg->dev, "split\n");
num_packets = 1;
if (chan->complete_split && !chan->ep_is_in)
/*
* For CSPLIT OUT Transfer, set the size to 0 so the
* core doesn't expect any data written to the FIFO
*/
chan->xfer_len = 0;
else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
chan->xfer_len = chan->max_packet;
else if (!chan->ep_is_in && chan->xfer_len > 188)
chan->xfer_len = 188;
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
} else {
dev_vdbg(hsotg->dev, "no split\n");
/*
* Ensure that the transfer length and packet count will fit
* in the widths allocated for them in the HCTSIZn register
*/
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
/*
* Make sure the transfer size is no larger than one
* (micro)frame's worth of data. (A check was done
* when the periodic transfer was accepted to ensure
* that a (micro)frame's worth of data can be
* programmed into a channel.)
*/
u32 max_periodic_len =
chan->multi_count * chan->max_packet;
if (chan->xfer_len > max_periodic_len)
chan->xfer_len = max_periodic_len;
} else if (chan->xfer_len > max_hc_xfer_size) {
/*
* Make sure that xfer_len is a multiple of max packet
* size
*/
chan->xfer_len =
max_hc_xfer_size - chan->max_packet + 1;
}
if (chan->xfer_len > 0) {
num_packets = (chan->xfer_len + chan->max_packet - 1) /
chan->max_packet;
if (num_packets > max_hc_pkt_count) {
num_packets = max_hc_pkt_count;
chan->xfer_len = num_packets * chan->max_packet;
}
} else {
/* Need 1 packet for transfer length of 0 */
num_packets = 1;
}
if (chan->ep_is_in)
/*
* Always program an integral # of max packets for IN
* transfers
*/
chan->xfer_len = num_packets * chan->max_packet;
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
/*
* Make sure that the multi_count field matches the
* actual transfer length
*/
chan->multi_count = num_packets;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
}
chan->start_pkt_count = num_packets;
hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
hctsiz, chan->hc_num);
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num);
dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
hctsiz >> TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK >> TSIZ_XFERSIZE_SHIFT);
dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
hctsiz >> TSIZ_PKTCNT_SHIFT &
TSIZ_PKTCNT_MASK >> TSIZ_PKTCNT_SHIFT);
dev_vdbg(hsotg->dev, " Start PID: %d\n",
hctsiz >> TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK >> TSIZ_SC_MC_PID_SHIFT);
if (hsotg->core_params->dma_enable > 0) {
dma_addr_t dma_addr;
if (chan->align_buf) {
dev_vdbg(hsotg->dev, "align_buf\n");
dma_addr = chan->align_buf;
} else {
dma_addr = chan->xfer_dma;
}
writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
(unsigned long)dma_addr, chan->hc_num);
}
/* Start the split */
if (chan->do_split) {
u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
hcsplt |= HCSPLT_SPLTENA;
writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
}
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK;
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
hcchar >> HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK >> HCCHAR_MULTICNT_SHIFT);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
if (hsotg->core_params->dma_enable <= 0 &&
!chan->ep_is_in && chan->xfer_len > 0)
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
}
/**
* dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
* host channel and starts the transfer in Descriptor DMA mode
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
* Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
* with micro-frame bitmap.
*
* Initializes HCDMA register with descriptor list address and CTD value then
* starts the transfer via enabling the channel.
*/
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hc_dma;
u32 hctsiz = 0;
if (chan->do_ping)
hctsiz |= TSIZ_DOPNG;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
/* Non-zero only for high-speed interrupt endpoints */
hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num);
dev_vdbg(hsotg->dev, " Start PID: %d\n", chan->data_pid_start);
dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
/* Always start from first descriptor */
hc_dma &= ~HCDMA_CTD_MASK;
writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n", hc_dma, chan->hc_num);
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK;
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
hcchar >> HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK >> HCCHAR_MULTICNT_SHIFT);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
}
/**
* dwc2_hc_continue_transfer() - Continues a data transfer that was started by
* a previous call to dwc2_hc_start_transfer()
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The caller must ensure there is sufficient space in the request queue and Tx
* Data FIFO. This function should only be called in Slave mode. In DMA mode,
* the controller acts autonomously to complete transfers programmed to a host
* channel.
*
* For an OUT transfer, a new data packet is loaded into the appropriate FIFO
* if there is any data remaining to be queued. For an IN transfer, another
* data packet is always requested. For the SETUP phase of a control transfer,
* this function does nothing.
*
* Return: 1 if a new request is queued, 0 if no more requests are required
* for this transfer
*/
int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num);
if (chan->do_split)
/* SPLITs always queue just once per channel */
return 0;
if (chan->data_pid_start == DWC2_HC_PID_SETUP)
/* SETUPs are queued only once since they can't be NAK'd */
return 0;
if (chan->ep_is_in) {
/*
* Always queue another request for other IN transfers. If
* back-to-back INs are issued and NAKs are received for both,
* the driver may still be processing the first NAK when the
* second NAK is received. When the interrupt handler clears
* the NAK interrupt for the first NAK, the second NAK will
* not be seen. So we can't depend on the NAK interrupt
* handler to requeue a NAK'd request. Instead, IN requests
* are issued each time this function is called. When the
* transfer completes, the extra requests for the channel will
* be flushed.
*/
u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", hcchar);
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
chan->requests++;
return 1;
}
/* OUT transfers */
if (chan->xfer_count < chan->xfer_len) {
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
u32 hcchar = readl(hsotg->regs +
HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan,
&hcchar);
}
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
chan->requests++;
return 1;
}
return 0;
}
/**
* dwc2_hc_do_ping() - Starts a PING transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. The Do Ping bit is set in
* the HCTSIZ register, then the channel is enabled.
*/
void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hctsiz;
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num);
hctsiz = TSIZ_DOPNG;
hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
}
/**
* dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
* the HFIR register according to PHY type and speed
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: The caller can modify the value of the HFIR register only after the
* Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
* has been set
*/
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
u32 hwcfg2;
u32 hprt0;
int clock = 60; /* default value */
usbcfg = readl(hsotg->regs + GUSBCFG);
hwcfg2 = readl(hsotg->regs + GHWCFG2);
hprt0 = readl(hsotg->regs + HPRT0);
if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
!(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHYSEL) && (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) ==
GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
clock = 48;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 30;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
(hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) ==
GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) && (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) ==
GHWCFG2_FS_PHY_TYPE_DEDICATED)
clock = 48;
if ((hprt0 & HPRT0_SPD_MASK) == 0)
/* High speed case */
return 125 * clock;
else
/* FS/LS case */
return 1000 * clock;
}
/**
* dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
* buffer
*
* @core_if: Programming view of DWC_otg controller
* @dest: Destination buffer for the packet
* @bytes: Number of bytes to copy to the destination
*/
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
u32 *data_buf = (u32 *)dest;
int word_count = (bytes + 3) / 4;
int i;
/*
* Todo: Account for the case where dest is not dword aligned. This
* requires reading data from the FIFO into a u32 temp buffer, then
* moving it into the data buffer.
*/
dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
for (i = 0; i < word_count; i++, data_buf++)
*data_buf = readl(fifo);
}
/**
* dwc2_dump_host_registers() - Prints the host registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
int i;
dev_dbg(hsotg->dev, "Host Global Registers\n");
addr = hsotg->regs + HCFG;
dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HFIR;
dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HFNUM;
dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HPTXSTS;
dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HAINT;
dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HAINTMSK;
dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
if (hsotg->core_params->dma_desc_enable > 0) {
addr = hsotg->regs + HFLBADDR;
dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
}
addr = hsotg->regs + HPRT0;
dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
for (i = 0; i < hsotg->core_params->host_channels; i++) {
dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
addr = hsotg->regs + HCCHAR(i);
dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCSPLT(i);
dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCINT(i);
dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCINTMSK(i);
dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCTSIZ(i);
dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HCDMA(i);
dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
if (hsotg->core_params->dma_desc_enable > 0) {
addr = hsotg->regs + HCDMAB(i);
dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
}
}
#endif
}
/**
* dwc2_dump_global_registers() - Prints the core global registers
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
u32 __iomem *addr;
int i, ep_num;
char *txfsiz;
dev_dbg(hsotg->dev, "Core Global Registers\n");
addr = hsotg->regs + GOTGCTL;
dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GOTGINT;
dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GAHBCFG;
dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GUSBCFG;
dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRSTCTL;
dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GINTSTS;
dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GINTMSK;
dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRXSTSR;
dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GRXFSIZ;
dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GNPTXFSIZ;
dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GNPTXSTS;
dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GI2CCTL;
dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GPVNDCTL;
dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GGPIO;
dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GUID;
dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GSNPSID;
dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG1;
dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG2;
dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG3;
dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GHWCFG4;
dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GLPMCFG;
dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GPWRDN;
dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + GDFIFOCFG;
dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
addr = hsotg->regs + HPTXFSIZ;
dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
if (hsotg->core_params->en_multiple_tx_fifo <= 0) {
ep_num = hsotg->hwcfg4 >> GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT &
GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK >>
GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
txfsiz = "DPTXFSIZ";
} else {
ep_num = hsotg->hwcfg4 >> GHWCFG4_NUM_IN_EPS_SHIFT &
GHWCFG4_NUM_IN_EPS_MASK >> GHWCFG4_NUM_IN_EPS_SHIFT;
txfsiz = "DIENPTXF";
}
for (i = 0; i < ep_num; i++) {
addr = hsotg->regs + DPTXFSIZN(i + 1);
dev_dbg(hsotg->dev, "%s[%d] @0x%08lX : 0x%08X\n", txfsiz, i + 1,
(unsigned long)addr, readl(addr));
}
addr = hsotg->regs + PCGCTL;
dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
(unsigned long)addr, readl(addr));
#endif
}
/**
* dwc2_flush_tx_fifo() - Flushes a Tx FIFO
*
* @hsotg: Programming view of DWC_otg controller
* @num: Tx FIFO to flush
*/
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
greset = GRSTCTL_TXFFLSH;
greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
writel(greset, hsotg->regs + GRSTCTL);
do {
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 10000) {
dev_warn(hsotg->dev,
"%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
__func__, greset,
readl(hsotg->regs + GNPTXSTS));
break;
}
udelay(1);
} while (greset & GRSTCTL_TXFFLSH);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
/**
* dwc2_flush_rx_fifo() - Flushes the Rx FIFO
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
{
u32 greset;
int count = 0;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
greset = GRSTCTL_RXFFLSH;
writel(greset, hsotg->regs + GRSTCTL);
do {
greset = readl(hsotg->regs + GRSTCTL);
if (++count > 10000) {
dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
__func__, greset);
break;
}
udelay(1);
} while (greset & GRSTCTL_RXFFLSH);
/* Wait for at least 3 PHY Clocks */
udelay(1);
}
#define DWC2_PARAM_TEST(a, b, c) ((a) < (b) || (a) > (c))
/* Parameter access functions */
int dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
u32 op_mode;
op_mode = hsotg->hwcfg2 & GHWCFG2_OP_MODE_MASK;
switch (val) {
case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
if (op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
valid = 0;
break;
case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
switch (op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
break;
default:
valid = 0;
break;
}
break;
case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
/* always valid */
break;
default:
valid = 0;
break;
}
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for otg_cap parameter. Check HW configuration.\n",
val);
switch (op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
break;
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
break;
default:
val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
break;
}
dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->otg_cap = val;
return retval;
}
int dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val > 0 && (hsotg->hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) ==
GHWCFG2_SLAVE_ONLY_ARCH)
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for dma_enable parameter. Check HW configuration.\n",
val);
val = (hsotg->hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) !=
GHWCFG2_SLAVE_ONLY_ARCH;
dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->dma_enable = val;
return retval;
}
int dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
!(hsotg->hwcfg4 & GHWCFG4_DESC_DMA)))
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
val);
val = (hsotg->core_params->dma_enable > 0 &&
(hsotg->hwcfg4 & GHWCFG4_DESC_DMA));
dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->dma_desc_enable = val;
return retval;
}
int dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for host_support_fs_low_power\n");
dev_err(hsotg->dev,
"host_support_fs_low_power must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev,
"Setting host_support_fs_low_power to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->host_support_fs_ls_low_power = val;
return retval;
}
int dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val > 0 && !(hsotg->hwcfg2 & GHWCFG2_DYNAMIC_FIFO))
valid = 0;
if (val < 0)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
val);
val = !!(hsotg->hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->enable_dynamic_fifo = val;
return retval;
}
int dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val < 16 || val > readl(hsotg->regs + GRXFSIZ))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
val);
val = readl(hsotg->regs + GRXFSIZ);
dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->host_rx_fifo_size = val;
return retval;
}
int dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val < 16 || val > (readl(hsotg->regs + GNPTXFSIZ) >> 16 & 0xffff))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
val);
val = readl(hsotg->regs + GNPTXFSIZ) >> 16 & 0xffff;
dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
val);
retval = -EINVAL;
}
hsotg->core_params->host_nperio_tx_fifo_size = val;
return retval;
}
int dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (val < 16 || val > (hsotg->hptxfsiz >> 16))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
val);
val = hsotg->hptxfsiz >> 16;
dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
val);
retval = -EINVAL;
}
hsotg->core_params->host_perio_tx_fifo_size = val;
return retval;
}
int dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
int width = hsotg->hwcfg3 >> GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT &
GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK >>
GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
if (val < 2047 || val >= (1 << (width + 11)))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for max_transfer_size. Check HW configuration.\n",
val);
val = (1 << (width + 11)) - 1;
dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->max_transfer_size = val;
return retval;
}
int dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
int width = hsotg->hwcfg3 >> GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT &
GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK >>
GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
if (val < 15 || val > (1 << (width + 4)))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for max_packet_count. Check HW configuration.\n",
val);
val = (1 << (width + 4)) - 1;
dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->max_packet_count = val;
return retval;
}
int dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
int num_chan = hsotg->hwcfg2 >> GHWCFG2_NUM_HOST_CHAN_SHIFT &
GHWCFG2_NUM_HOST_CHAN_MASK >> GHWCFG2_NUM_HOST_CHAN_SHIFT;
if (val < 1 || val > num_chan + 1)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_channels. Check HW configuration.\n",
val);
val = num_chan + 1;
dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->host_channels = val;
return retval;
}
int dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
{
#ifndef NO_FS_PHY_HW_CHECKS
int valid = 0;
u32 hs_phy_type;
u32 fs_phy_type;
#endif
int retval = 0;
if (DWC2_PARAM_TEST(val, DWC2_PHY_TYPE_PARAM_FS,
DWC2_PHY_TYPE_PARAM_ULPI)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for phy_type\n");
dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
}
#ifndef NO_FS_PHY_HW_CHECKS
valid = 0;
#else
val = 0;
dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
retval = -EINVAL;
#endif
}
#ifndef NO_FS_PHY_HW_CHECKS
hs_phy_type = hsotg->hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK;
fs_phy_type = hsotg->hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK;
if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
(hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
valid = 1;
else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
(hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
valid = 1;
else if (val == DWC2_PHY_TYPE_PARAM_FS &&
fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
valid = 1;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for phy_type. Check HW configuration.\n",
val);
val = 0;
if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
val = DWC2_PHY_TYPE_PARAM_UTMI;
else
val = DWC2_PHY_TYPE_PARAM_ULPI;
}
dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
retval = -EINVAL;
}
#endif
hsotg->core_params->phy_type = val;
return retval;
}
static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
{
return hsotg->core_params->phy_type;
}
int dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for speed parameter\n");
dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
}
valid = 0;
}
if (val == 0 && dwc2_get_param_phy_type(hsotg) ==
DWC2_PHY_TYPE_PARAM_FS)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for speed parameter. Check HW configuration.\n",
val);
val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
1 : 0;
dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->speed = val;
return retval;
}
int dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (DWC2_PARAM_TEST(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for host_ls_low_power_phy_clk parameter\n");
dev_err(hsotg->dev,
"host_ls_low_power_phy_clk must be 0 or 1\n");
}
valid = 0;
}
if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
val);
val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
val);
retval = -EINVAL;
}
hsotg->core_params->host_ls_low_power_phy_clk = val;
return retval;
}
int dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->phy_ulpi_ddr = val;
return retval;
}
int dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for phy_ulpi_ext_vbus\n");
dev_err(hsotg->dev,
"phy_ulpi_ext_vbus must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->phy_ulpi_ext_vbus = val;
return retval;
}
int dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 8, 8) && DWC2_PARAM_TEST(val, 16, 16)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for phy_utmi_width\n");
dev_err(hsotg->dev, "phy_utmi_width must be 8 or 16\n");
}
val = 8;
dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->phy_utmi_width = val;
return retval;
}
int dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->ulpi_fs_ls = val;
return retval;
}
int dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for ts_dline\n");
dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->ts_dline = val;
return retval;
}
int dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
{
#ifndef NO_FS_PHY_HW_CHECKS
int valid = 1;
#endif
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
}
#ifndef NO_FS_PHY_HW_CHECKS
valid = 0;
#else
val = 0;
dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
retval = -EINVAL;
#endif
}
#ifndef NO_FS_PHY_HW_CHECKS
if (val == 1 && !(hsotg->hwcfg3 & GHWCFG3_I2C))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for i2c_enable. Check HW configuration.\n",
val);
val = !!(hsotg->hwcfg3 & GHWCFG3_I2C);
dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
retval = -EINVAL;
}
#endif
hsotg->core_params->i2c_enable = val;
return retval;
}
int dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"Wrong value for en_multiple_tx_fifo,\n");
dev_err(hsotg->dev,
"en_multiple_tx_fifo must be 0 or 1\n");
}
valid = 0;
}
if (val == 1 && !(hsotg->hwcfg4 & GHWCFG4_DED_FIFO_EN))
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
val);
val = !!(hsotg->hwcfg4 & GHWCFG4_DED_FIFO_EN);
dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->en_multiple_tx_fifo = val;
return retval;
}
int dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter reload_ctl\n", val);
dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
}
valid = 0;
}
if (val == 1 && hsotg->snpsid < DWC2_CORE_REV_2_92a)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for parameter reload_ctl. Check HW configuration.\n",
val);
val = hsotg->snpsid >= DWC2_CORE_REV_2_92a;
dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->reload_ctl = val;
return retval;
}
int dwc2_set_param_ahb_single(struct dwc2_hsotg *hsotg, int val)
{
int valid = 1;
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter ahb_single\n", val);
dev_err(hsotg->dev, "ahb_single must be 0 or 1\n");
}
valid = 0;
}
if (val > 0 && hsotg->snpsid < DWC2_CORE_REV_2_94a)
valid = 0;
if (!valid) {
if (val >= 0)
dev_err(hsotg->dev,
"%d invalid for parameter ahb_single. Check HW configuration.\n",
val);
val = 0;
dev_dbg(hsotg->dev, "Setting ahb_single to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->ahb_single = val;
return retval;
}
int dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
{
int retval = 0;
if (DWC2_PARAM_TEST(val, 0, 1)) {
if (val >= 0) {
dev_err(hsotg->dev,
"'%d' invalid for parameter otg_ver\n", val);
dev_err(hsotg->dev,
"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
}
val = 0;
dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
retval = -EINVAL;
}
hsotg->core_params->otg_ver = val;
return retval;
}
/*
* This function is called during module intialization to pass module parameters
* for the DWC_otg core. It returns non-0 if any parameters are invalid.
*/
int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
struct dwc2_core_params *params)
{
int retval = 0;
dev_dbg(hsotg->dev, "%s()\n", __func__);
retval |= dwc2_set_param_otg_cap(hsotg, params->otg_cap);
retval |= dwc2_set_param_dma_enable(hsotg, params->dma_enable);
retval |= dwc2_set_param_dma_desc_enable(hsotg,
params->dma_desc_enable);
retval |= dwc2_set_param_host_support_fs_ls_low_power(hsotg,
params->host_support_fs_ls_low_power);
retval |= dwc2_set_param_enable_dynamic_fifo(hsotg,
params->enable_dynamic_fifo);
retval |= dwc2_set_param_host_rx_fifo_size(hsotg,
params->host_rx_fifo_size);
retval |= dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
params->host_nperio_tx_fifo_size);
retval |= dwc2_set_param_host_perio_tx_fifo_size(hsotg,
params->host_perio_tx_fifo_size);
retval |= dwc2_set_param_max_transfer_size(hsotg,
params->max_transfer_size);
retval |= dwc2_set_param_max_packet_count(hsotg,
params->max_packet_count);
retval |= dwc2_set_param_host_channels(hsotg, params->host_channels);
retval |= dwc2_set_param_phy_type(hsotg, params->phy_type);
retval |= dwc2_set_param_speed(hsotg, params->speed);
retval |= dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
params->host_ls_low_power_phy_clk);
retval |= dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
retval |= dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
params->phy_ulpi_ext_vbus);
retval |= dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
retval |= dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
retval |= dwc2_set_param_ts_dline(hsotg, params->ts_dline);
retval |= dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
retval |= dwc2_set_param_en_multiple_tx_fifo(hsotg,
params->en_multiple_tx_fifo);
retval |= dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
retval |= dwc2_set_param_ahb_single(hsotg, params->ahb_single);
retval |= dwc2_set_param_otg_ver(hsotg, params->otg_ver);
return retval;
}
u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
{
return (u16)(hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103);
}
int dwc2_check_core_status(struct dwc2_hsotg *hsotg)
{
if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
return -1;
else
return 0;
}
/**
* dwc2_enable_global_interrupts() - Enables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
ahbcfg |= GAHBCFG_GLBL_INTR_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
}
/**
* dwc2_disable_global_interrupts() - Disables the controller's Global
* Interrupt in the AHB Config register
*
* @hsotg: Programming view of DWC_otg controller
*/
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
writel(ahbcfg, hsotg->regs + GAHBCFG);
}
MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
MODULE_AUTHOR("Synopsys, Inc.");
MODULE_LICENSE("Dual BSD/GPL");
/*
* core.h - DesignWare HS OTG Controller common declarations
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __DWC2_CORE_H__
#define __DWC2_CORE_H__
#include <linux/usb/phy.h>
#include "hw.h"
#ifdef DWC2_LOG_WRITES
static inline void do_write(u32 value, void *addr)
{
writel(value, addr);
pr_info("INFO:: wrote %08x to %p\n", value, addr);
}
#undef writel
#define writel(v, a) do_write(v, a)
#endif
/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS 16
struct dwc2_hsotg;
struct dwc2_host_chan;
/* Device States */
enum dwc2_lx_state {
DWC2_L0, /* On state */
DWC2_L1, /* LPM sleep state */
DWC2_L2, /* USB suspend state */
DWC2_L3, /* Off state */
};
/**
* struct dwc2_core_params - Parameters for configuring the core
*
* @otg_cap: Specifies the OTG capabilities. The driver will
* automatically detect the value for this parameter if
* none is specified.
* 0 - HNP and SRP capable (default)
* 1 - SRP Only capable
* 2 - No HNP/SRP capable
* @dma_enable: Specifies whether to use slave or DMA mode for accessing
* the data FIFOs. The driver will automatically detect the
* value for this parameter if none is specified.
* 0 - Slave
* 1 - DMA (default, if available)
* @dma_desc_enable: When DMA mode is enabled, specifies whether to use
* address DMA mode or descriptor DMA mode for accessing
* the data FIFOs. The driver will automatically detect the
* value for this if none is specified.
* 0 - Address DMA
* 1 - Descriptor DMA (default, if available)
* @speed: Specifies the maximum speed of operation in host and
* device mode. The actual speed depends on the speed of
* the attached device and the value of phy_type.
* 0 - High Speed (default)
* 1 - Full Speed
* @host_support_fs_ls_low_power: Specifies whether low power mode is supported
* when attached to a Full Speed or Low Speed device in
* host mode.
* 0 - Don't support low power mode (default)
* 1 - Support low power mode
* @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
* when connected to a Low Speed device in host mode. This
* parameter is applicable only if
* host_support_fs_ls_low_power is enabled. If phy_type is
* set to FS then defaults to 6 MHZ otherwise 48 MHZ.
* 0 - 48 MHz
* 1 - 6 MHz
* @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
* 1 - Allow dynamic FIFO sizing (default)
* @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
* dynamic FIFO sizing is enabled
* 16 to 32768 (default 1024)
* @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
* in host mode when dynamic FIFO sizing is enabled
* 16 to 32768 (default 1024)
* @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
* host mode when dynamic FIFO sizing is enabled
* 16 to 32768 (default 1024)
* @max_transfer_size: The maximum transfer size supported, in bytes
* 2047 to 65,535 (default 65,535)
* @max_packet_count: The maximum number of packets in a transfer
* 15 to 511 (default 511)
* @host_channels: The number of host channel registers to use
* 1 to 16 (default 12)
* @phy_type: Specifies the type of PHY interface to use. By default,
* the driver will automatically detect the phy_type.
* @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
* is applicable for a phy_type of UTMI+ or ULPI. (For a
* ULPI phy_type, this parameter indicates the data width
* between the MAC and the ULPI Wrapper.) Also, this
* parameter is applicable only if the OTG_HSPHY_WIDTH cC
* parameter was set to "8 and 16 bits", meaning that the
* core has been configured to work at either data path
* width.
* 8 or 16 (default 16)
* @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
* data rate. This parameter is only applicable if phy_type
* is ULPI.
* 0 - single data rate ULPI interface with 8 bit wide
* data bus (default)
* 1 - double data rate ULPI interface with 4 bit wide
* data bus
* @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
* external supply to drive the VBus
* @i2c_enable: Specifies whether to use the I2Cinterface for a full
* speed PHY. This parameter is only applicable if phy_type
* is FS.
* 0 - No (default)
* 1 - Yes
* @ulpi_fs_ls: True to make ULPI phy operate in FS/LS mode only
* @ts_dline: True to enable Term Select Dline pulsing
* @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
* are enabled
* @reload_ctl: True to allow dynamic reloading of HFIR register during
* runtime
* @ahb_single: This bit enables SINGLE transfers for remainder data in
* a transfer for DMA mode of operation.
* 0 - remainder data will be sent using INCR burst size
* 1 - remainder data will be sent using SINGLE burst size
* @otg_ver: OTG version supported
* 0 - 1.3
* 1 - 2.0
*
* The following parameters may be specified when starting the module. These
* parameters define how the DWC_otg controller should be configured.
*/
struct dwc2_core_params {
int otg_cap;
int otg_ver;
int dma_enable;
int dma_desc_enable;
int speed;
int enable_dynamic_fifo;
int en_multiple_tx_fifo;
int host_rx_fifo_size;
int host_nperio_tx_fifo_size;
int host_perio_tx_fifo_size;
int max_transfer_size;
int max_packet_count;
int host_channels;
int phy_type;
int phy_utmi_width;
int phy_ulpi_ddr;
int phy_ulpi_ext_vbus;
int i2c_enable;
int ulpi_fs_ls;
int host_support_fs_ls_low_power;
int host_ls_low_power_phy_clk;
int ts_dline;
int reload_ctl;
int ahb_single;
};
/**
* struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
* and periodic schedules
*
* @dev: The struct device pointer
* @regs: Pointer to controller regs
* @core_params: Parameters that define how the core should be configured
* @hwcfg1: Hardware Configuration - stored here for convenience
* @hwcfg2: Hardware Configuration - stored here for convenience
* @hwcfg3: Hardware Configuration - stored here for convenience
* @hwcfg4: Hardware Configuration - stored here for convenience
* @hptxfsiz: Hardware Configuration - stored here for convenience
* @snpsid: Value from SNPSID register
* @total_fifo_size: Total internal RAM for FIFOs (bytes)
* @rx_fifo_size: Size of Rx FIFO (bytes)
* @nperio_tx_fifo_size: Size of Non-periodic Tx FIFO (Bytes)
* @op_state: The operational State, during transitions (a_host=>
* a_peripheral and b_device=>b_host) this may not match
* the core, but allows the software to determine
* transitions
* @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
* transfer are in process of being queued
* @srp_success: Stores status of SRP request in the case of a FS PHY
* with an I2C interface
* @wq_otg: Workqueue object used for handling of some interrupts
* @wf_otg: Work object for handling Connector ID Status Change
* interrupt
* @wkp_timer: Timer object for handling Wakeup Detected interrupt
* @lx_state: Lx state of connected device
* @flags: Flags for handling root port state changes
* @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
* Transfers associated with these QHs are not currently
* assigned to a host channel.
* @non_periodic_sched_active: Active QHs in the non-periodic schedule.
* Transfers associated with these QHs are currently
* assigned to a host channel.
* @non_periodic_qh_ptr: Pointer to next QH to process in the active
* non-periodic schedule
* @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
* list of QHs for periodic transfers that are _not_
* scheduled for the next frame. Each QH in the list has an
* interval counter that determines when it needs to be
* scheduled for execution. This scheduling mechanism
* allows only a simple calculation for periodic bandwidth
* used (i.e. must assume that all periodic transfers may
* need to execute in the same frame). However, it greatly
* simplifies scheduling and should be sufficient for the
* vast majority of OTG hosts, which need to connect to a
* small number of peripherals at one time. Items move from
* this list to periodic_sched_ready when the QH interval
* counter is 0 at SOF.
* @periodic_sched_ready: List of periodic QHs that are ready for execution in
* the next frame, but have not yet been assigned to host
* channels. Items move from this list to
* periodic_sched_assigned as host channels become
* available during the current frame.
* @periodic_sched_assigned: List of periodic QHs to be executed in the next
* frame that are assigned to host channels. Items move
* from this list to periodic_sched_queued as the
* transactions for the QH are queued to the DWC_otg
* controller.
* @periodic_sched_queued: List of periodic QHs that have been queued for
* execution. Items move from this list to either
* periodic_sched_inactive or periodic_sched_ready when the
* channel associated with the transfer is released. If the
* interval for the QH is 1, the item moves to
* periodic_sched_ready because it must be rescheduled for
* the next frame. Otherwise, the item moves to
* periodic_sched_inactive.
* @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
* This value is in microseconds per (micro)frame. The
* assumption is that all periodic transfers may occur in
* the same (micro)frame.
* @frame_number: Frame number read from the core at SOF. The value ranges
* from 0 to HFNUM_MAX_FRNUM.
* @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
* SOF enable/disable.
* @free_hc_list: Free host channels in the controller. This is a list of
* struct dwc2_host_chan items.
* @periodic_channels: Number of host channels assigned to periodic transfers.
* Currently assuming that there is a dedicated host
* channel for each periodic transaction and at least one
* host channel is available for non-periodic transactions.
* @non_periodic_channels: Number of host channels assigned to non-periodic
* transfers
* @hc_ptr_array: Array of pointers to the host channel descriptors.
* Allows accessing a host channel descriptor given the
* host channel number. This is useful in interrupt
* handlers.
* @status_buf: Buffer used for data received during the status phase of
* a control transfer.
* @status_buf_dma: DMA address for status_buf
* @start_work: Delayed work for handling host A-cable connection
* @reset_work: Delayed work for handling a port reset
* @lock: Spinlock that protects all the driver data structures
* @priv: Stores a pointer to the struct usb_hcd
* @otg_port: OTG port number
* @frame_list: Frame list
* @frame_list_dma: Frame list DMA address
*/
struct dwc2_hsotg {
struct device *dev;
void __iomem *regs;
struct dwc2_core_params *core_params;
u32 hwcfg1;
u32 hwcfg2;
u32 hwcfg3;
u32 hwcfg4;
u32 hptxfsiz;
u32 snpsid;
u16 total_fifo_size;
u16 rx_fifo_size;
u16 nperio_tx_fifo_size;
enum usb_otg_state op_state;
unsigned int queuing_high_bandwidth:1;
unsigned int srp_success:1;
struct workqueue_struct *wq_otg;
struct work_struct wf_otg;
struct timer_list wkp_timer;
enum dwc2_lx_state lx_state;
union dwc2_hcd_internal_flags {
u32 d32;
struct {
unsigned port_connect_status_change:1;
unsigned port_connect_status:1;
unsigned port_reset_change:1;
unsigned port_enable_change:1;
unsigned port_suspend_change:1;
unsigned port_over_current_change:1;
unsigned port_l1_change:1;
unsigned reserved:26;
} b;
} flags;
struct list_head non_periodic_sched_inactive;
struct list_head non_periodic_sched_active;
struct list_head *non_periodic_qh_ptr;
struct list_head periodic_sched_inactive;
struct list_head periodic_sched_ready;
struct list_head periodic_sched_assigned;
struct list_head periodic_sched_queued;
u16 periodic_usecs;
u16 frame_number;
u16 periodic_qh_count;
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
#define FRAME_NUM_ARRAY_SIZE 1000
u16 last_frame_num;
u16 *frame_num_array;
u16 *last_frame_num_array;
int frame_num_idx;
int dumped_frame_num_array;
#endif
struct list_head free_hc_list;
int periodic_channels;
int non_periodic_channels;
struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
u8 *status_buf;
dma_addr_t status_buf_dma;
#define DWC2_HCD_STATUS_BUF_SIZE 64
struct delayed_work start_work;
struct delayed_work reset_work;
spinlock_t lock;
void *priv;
u8 otg_port;
u32 *frame_list;
dma_addr_t frame_list_dma;
/* DWC OTG HW Release versions */
#define DWC2_CORE_REV_2_71a 0x4f54271a
#define DWC2_CORE_REV_2_90a 0x4f54290a
#define DWC2_CORE_REV_2_92a 0x4f54292a
#define DWC2_CORE_REV_2_94a 0x4f54294a
#define DWC2_CORE_REV_3_00a 0x4f54300a
#ifdef DEBUG
u32 frrem_samples;
u64 frrem_accum;
u32 hfnum_7_samples_a;
u64 hfnum_7_frrem_accum_a;
u32 hfnum_0_samples_a;
u64 hfnum_0_frrem_accum_a;
u32 hfnum_other_samples_a;
u64 hfnum_other_frrem_accum_a;
u32 hfnum_7_samples_b;
u64 hfnum_7_frrem_accum_b;
u32 hfnum_0_samples_b;
u64 hfnum_0_frrem_accum_b;
u32 hfnum_other_samples_b;
u64 hfnum_other_frrem_accum_b;
#endif
};
/* Reasons for halting a host channel */
enum dwc2_halt_status {
DWC2_HC_XFER_NO_HALT_STATUS,
DWC2_HC_XFER_COMPLETE,
DWC2_HC_XFER_URB_COMPLETE,
DWC2_HC_XFER_ACK,
DWC2_HC_XFER_NAK,
DWC2_HC_XFER_NYET,
DWC2_HC_XFER_STALL,
DWC2_HC_XFER_XACT_ERR,
DWC2_HC_XFER_FRAME_OVERRUN,
DWC2_HC_XFER_BABBLE_ERR,
DWC2_HC_XFER_DATA_TOGGLE_ERR,
DWC2_HC_XFER_AHB_ERR,
DWC2_HC_XFER_PERIODIC_INCOMPLETE,
DWC2_HC_XFER_URB_DEQUEUE,
};
/*
* The following functions support initialization of the core driver component
* and the DWC_otg controller
*/
extern void dwc2_core_host_init(struct dwc2_hsotg *hsotg);
/*
* Host core Functions.
* The following functions support managing the DWC_otg controller in host
* mode.
*/
extern void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
extern void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status);
extern void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
extern void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
extern void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
extern int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
extern void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
extern void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg);
extern void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg);
extern u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
extern int dwc2_check_core_status(struct dwc2_hsotg *hsotg);
/*
* Common core Functions.
* The following functions support managing the DWC_otg controller in either
* device or host mode.
*/
extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
extern int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy);
extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
/* This function should be called on every hardware interrupt. */
extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
/* OTG Core Parameters */
/*
* Specifies the OTG capabilities. The driver will automatically
* detect the value for this parameter if none is specified.
* 0 - HNP and SRP capable (default)
* 1 - SRP Only capable
* 2 - No HNP/SRP capable
*/
extern int dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
/*
* Specifies whether to use slave or DMA mode for accessing the data
* FIFOs. The driver will automatically detect the value for this
* parameter if none is specified.
* 0 - Slave
* 1 - DMA (default, if available)
*/
extern int dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
/*
* When DMA mode is enabled specifies whether to use
* address DMA or DMA Descritor mode for accessing the data
* FIFOs in device mode. The driver will automatically detect
* the value for this parameter if none is specified.
* 0 - address DMA
* 1 - DMA Descriptor(default, if available)
*/
extern int dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
/*
* Specifies the maximum speed of operation in host and device mode.
* The actual speed depends on the speed of the attached device and
* the value of phy_type. The actual speed depends on the speed of the
* attached device.
* 0 - High Speed (default)
* 1 - Full Speed
*/
extern int dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
#define DWC2_SPEED_PARAM_HIGH 0
#define DWC2_SPEED_PARAM_FULL 1
/*
* Specifies whether low power mode is supported when attached
* to a Full Speed or Low Speed device in host mode.
*
* 0 - Don't support low power mode (default)
* 1 - Support low power mode
*/
extern int dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
int val);
/*
* Specifies the PHY clock rate in low power mode when connected to a
* Low Speed device in host mode. This parameter is applicable only if
* HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
* then defaults to 6 MHZ otherwise 48 MHZ.
*
* 0 - 48 MHz
* 1 - 6 MHz
*/
extern int dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
int val);
#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
/*
* 0 - Use cC FIFO size parameters
* 1 - Allow dynamic FIFO sizing (default)
*/
extern int dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
int val);
/*
* Number of 4-byte words in the Rx FIFO in host mode when dynamic
* FIFO sizing is enabled.
* 16 to 32768 (default 1024)
*/
extern int dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
/*
* Number of 4-byte words in the non-periodic Tx FIFO in host mode
* when Dynamic FIFO sizing is enabled in the core.
* 16 to 32768 (default 256)
*/
extern int dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
int val);
/*
* Number of 4-byte words in the host periodic Tx FIFO when dynamic
* FIFO sizing is enabled.
* 16 to 32768 (default 256)
*/
extern int dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
int val);
/*
* The maximum transfer size supported in bytes.
* 2047 to 65,535 (default 65,535)
*/
extern int dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
/*
* The maximum number of packets in a transfer.
* 15 to 511 (default 511)
*/
extern int dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
/*
* The number of host channel registers to use.
* 1 to 16 (default 11)
* Note: The FPGA configuration supports a maximum of 11 host channels.
*/
extern int dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
/*
* Specifies the type of PHY interface to use. By default, the driver
* will automatically detect the phy_type.
*
* 0 - Full Speed PHY
* 1 - UTMI+ (default)
* 2 - ULPI
*/
extern int dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
#define DWC2_PHY_TYPE_PARAM_FS 0
#define DWC2_PHY_TYPE_PARAM_UTMI 1
#define DWC2_PHY_TYPE_PARAM_ULPI 2
/*
* Specifies the UTMI+ Data Width. This parameter is
* applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
* PHY_TYPE, this parameter indicates the data width between
* the MAC and the ULPI Wrapper.) Also, this parameter is
* applicable only if the OTG_HSPHY_WIDTH cC parameter was set
* to "8 and 16 bits", meaning that the core has been
* configured to work at either data path width.
*
* 8 or 16 bits (default 16)
*/
extern int dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
/*
* Specifies whether the ULPI operates at double or single
* data rate. This parameter is only applicable if PHY_TYPE is
* ULPI.
*
* 0 - single data rate ULPI interface with 8 bit wide data
* bus (default)
* 1 - double data rate ULPI interface with 4 bit wide data
* bus
*/
extern int dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
/*
* Specifies whether to use the internal or external supply to
* drive the vbus with a ULPI phy.
*/
extern int dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
#define DWC2_PHY_ULPI_INTERNAL_VBUS 0
#define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
/*
* Specifies whether to use the I2Cinterface for full speed PHY. This
* parameter is only applicable if PHY_TYPE is FS.
* 0 - No (default)
* 1 - Yes
*/
extern int dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
extern int dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
extern int dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
/*
* Specifies whether dedicated transmit FIFOs are
* enabled for non periodic IN endpoints in device mode
* 0 - No
* 1 - Yes
*/
extern int dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
int val);
extern int dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
extern int dwc2_set_param_ahb_single(struct dwc2_hsotg *hsotg, int val);
extern int dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
/*
* Dump core registers and SPRAM
*/
extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
/*
* Return OTG version - either 1.3 or 2.0
*/
extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
#endif /* __DWC2_CORE_H__ */
/*
* core_intr.c - DesignWare HS OTG Controller common interrupt handling
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the common interrupt handlers
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
static const char *dwc2_op_state_str(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
switch (hsotg->op_state) {
case OTG_STATE_A_HOST:
return "a_host";
case OTG_STATE_A_SUSPEND:
return "a_suspend";
case OTG_STATE_A_PERIPHERAL:
return "a_peripheral";
case OTG_STATE_B_PERIPHERAL:
return "b_peripheral";
case OTG_STATE_B_HOST:
return "b_host";
default:
return "unknown";
}
#else
return "";
#endif
}
/**
* dwc2_handle_mode_mismatch_intr() - Logs a mode mismatch warning message
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_handle_mode_mismatch_intr(struct dwc2_hsotg *hsotg)
{
dev_warn(hsotg->dev, "Mode Mismatch Interrupt: currently in %s mode\n",
dwc2_is_host_mode(hsotg) ? "Host" : "Device");
/* Clear interrupt */
writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
}
/**
* dwc2_handle_otg_intr() - Handles the OTG Interrupts. It reads the OTG
* Interrupt Register (GOTGINT) to determine what interrupt has occurred.
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_handle_otg_intr(struct dwc2_hsotg *hsotg)
{
u32 gotgint;
u32 gotgctl;
u32 gintmsk;
gotgint = readl(hsotg->regs + GOTGINT);
gotgctl = readl(hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint,
dwc2_op_state_str(hsotg));
if (gotgint & GOTGINT_SES_END_DET) {
dev_dbg(hsotg->dev,
" ++OTG Interrupt: Session End Detected++ (%s)\n",
dwc2_op_state_str(hsotg));
gotgctl = readl(hsotg->regs + GOTGCTL);
if (hsotg->op_state == OTG_STATE_B_HOST) {
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
} else {
/*
* If not B_HOST and Device HNP still set, HNP did
* not succeed!
*/
if (gotgctl & GOTGCTL_DEVHNPEN) {
dev_dbg(hsotg->dev, "Session End Detected\n");
dev_err(hsotg->dev,
"Device Not Connected/Responding!\n");
}
/*
* If Session End Detected the B-Cable has been
* disconnected
*/
/* Reset to a clean state */
hsotg->lx_state = DWC2_L0;
}
gotgctl = readl(hsotg->regs + GOTGCTL);
gotgctl &= ~GOTGCTL_DEVHNPEN;
writel(gotgctl, hsotg->regs + GOTGCTL);
}
if (gotgint & GOTGINT_SES_REQ_SUC_STS_CHNG) {
dev_dbg(hsotg->dev,
" ++OTG Interrupt: Session Request Success Status Change++\n");
gotgctl = readl(hsotg->regs + GOTGCTL);
if (gotgctl & GOTGCTL_SESREQSCS) {
if (hsotg->core_params->phy_type ==
DWC2_PHY_TYPE_PARAM_FS
&& hsotg->core_params->i2c_enable > 0) {
hsotg->srp_success = 1;
} else {
/* Clear Session Request */
gotgctl = readl(hsotg->regs + GOTGCTL);
gotgctl &= ~GOTGCTL_SESREQ;
writel(gotgctl, hsotg->regs + GOTGCTL);
}
}
}
if (gotgint & GOTGINT_HST_NEG_SUC_STS_CHNG) {
/*
* Print statements during the HNP interrupt handling
* can cause it to fail
*/
gotgctl = readl(hsotg->regs + GOTGCTL);
/*
* WA for 3.00a- HW is not setting cur_mode, even sometimes
* this does not help
*/
if (hsotg->snpsid >= DWC2_CORE_REV_3_00a)
udelay(100);
if (gotgctl & GOTGCTL_HSTNEGSCS) {
if (dwc2_is_host_mode(hsotg)) {
hsotg->op_state = OTG_STATE_B_HOST;
/*
* Need to disable SOF interrupt immediately.
* When switching from device to host, the PCD
* interrupt handler won't handle the interrupt
* if host mode is already set. The HCD
* interrupt handler won't get called if the
* HCD state is HALT. This means that the
* interrupt does not get handled and Linux
* complains loudly.
*/
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk &= ~GINTSTS_SOF;
writel(gintmsk, hsotg->regs + GINTMSK);
/*
* Call callback function with spin lock
* released
*/
spin_unlock(&hsotg->lock);
/* Initialize the Core for Host mode */
dwc2_hcd_start(hsotg);
spin_lock(&hsotg->lock);
hsotg->op_state = OTG_STATE_B_HOST;
}
} else {
gotgctl = readl(hsotg->regs + GOTGCTL);
gotgctl &= ~(GOTGCTL_HNPREQ | GOTGCTL_DEVHNPEN);
writel(gotgctl, hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "HNP Failed\n");
dev_err(hsotg->dev,
"Device Not Connected/Responding\n");
}
}
if (gotgint & GOTGINT_HST_NEG_DET) {
/*
* The disconnect interrupt is set at the same time as
* Host Negotiation Detected. During the mode switch all
* interrupts are cleared so the disconnect interrupt
* handler will not get executed.
*/
dev_dbg(hsotg->dev,
" ++OTG Interrupt: Host Negotiation Detected++ (%s)\n",
(dwc2_is_host_mode(hsotg) ? "Host" : "Device"));
if (dwc2_is_device_mode(hsotg)) {
dev_dbg(hsotg->dev, "a_suspend->a_peripheral (%d)\n",
hsotg->op_state);
spin_unlock(&hsotg->lock);
dwc2_hcd_disconnect(hsotg);
spin_lock(&hsotg->lock);
hsotg->op_state = OTG_STATE_A_PERIPHERAL;
} else {
/* Need to disable SOF interrupt immediately */
gintmsk = readl(hsotg->regs + GINTMSK);
gintmsk &= ~GINTSTS_SOF;
writel(gintmsk, hsotg->regs + GINTMSK);
spin_unlock(&hsotg->lock);
dwc2_hcd_start(hsotg);
spin_lock(&hsotg->lock);
hsotg->op_state = OTG_STATE_A_HOST;
}
}
if (gotgint & GOTGINT_A_DEV_TOUT_CHG)
dev_dbg(hsotg->dev,
" ++OTG Interrupt: A-Device Timeout Change++\n");
if (gotgint & GOTGINT_DBNCE_DONE)
dev_dbg(hsotg->dev, " ++OTG Interrupt: Debounce Done++\n");
/* Clear GOTGINT */
writel(gotgint, hsotg->regs + GOTGINT);
}
/**
* dwc2_handle_conn_id_status_change_intr() - Handles the Connector ID Status
* Change Interrupt
*
* @hsotg: Programming view of DWC_otg controller
*
* Reads the OTG Interrupt Register (GOTCTL) to determine whether this is a
* Device to Host Mode transition or a Host to Device Mode transition. This only
* occurs when the cable is connected/removed from the PHY connector.
*/
static void dwc2_handle_conn_id_status_change_intr(struct dwc2_hsotg *hsotg)
{
u32 gintmsk = readl(hsotg->regs + GINTMSK);
/* Need to disable SOF interrupt immediately */
gintmsk &= ~GINTSTS_SOF;
writel(gintmsk, hsotg->regs + GINTMSK);
dev_dbg(hsotg->dev, " ++Connector ID Status Change Interrupt++ (%s)\n",
dwc2_is_host_mode(hsotg) ? "Host" : "Device");
/*
* Need to schedule a work, as there are possible DELAY function calls.
* Release lock before scheduling workq as it holds spinlock during
* scheduling.
*/
spin_unlock(&hsotg->lock);
queue_work(hsotg->wq_otg, &hsotg->wf_otg);
spin_lock(&hsotg->lock);
/* Clear interrupt */
writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
}
/**
* dwc2_handle_session_req_intr() - This interrupt indicates that a device is
* initiating the Session Request Protocol to request the host to turn on bus
* power so a new session can begin
*
* @hsotg: Programming view of DWC_otg controller
*
* This handler responds by turning on bus power. If the DWC_otg controller is
* in low power mode, this handler brings the controller out of low power mode
* before turning on bus power.
*/
static void dwc2_handle_session_req_intr(struct dwc2_hsotg *hsotg)
{
dev_dbg(hsotg->dev, "++Session Request Interrupt++\n");
/* Clear interrupt */
writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
}
/*
* This interrupt indicates that the DWC_otg controller has detected a
* resume or remote wakeup sequence. If the DWC_otg controller is in
* low power mode, the handler must brings the controller out of low
* power mode. The controller automatically begins resume signaling.
* The handler schedules a time to stop resume signaling.
*/
static void dwc2_handle_wakeup_detected_intr(struct dwc2_hsotg *hsotg)
{
dev_dbg(hsotg->dev, "++Resume or Remote Wakeup Detected Interrupt++\n");
dev_dbg(hsotg->dev, "%s lxstate = %d\n", __func__, hsotg->lx_state);
if (dwc2_is_device_mode(hsotg)) {
dev_dbg(hsotg->dev, "DSTS=0x%0x\n", readl(hsotg->regs + DSTS));
if (hsotg->lx_state == DWC2_L2) {
u32 dctl = readl(hsotg->regs + DCTL);
/* Clear Remote Wakeup Signaling */
dctl &= ~DCTL_RMTWKUPSIG;
writel(dctl, hsotg->regs + DCTL);
}
/* Change to L0 state */
hsotg->lx_state = DWC2_L0;
} else {
if (hsotg->lx_state != DWC2_L1) {
u32 pcgcctl = readl(hsotg->regs + PCGCTL);
/* Restart the Phy Clock */
pcgcctl &= ~PCGCTL_STOPPCLK;
writel(pcgcctl, hsotg->regs + PCGCTL);
mod_timer(&hsotg->wkp_timer,
jiffies + msecs_to_jiffies(71));
} else {
/* Change to L0 state */
hsotg->lx_state = DWC2_L0;
}
}
/* Clear interrupt */
writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
}
/*
* This interrupt indicates that a device has been disconnected from the
* root port
*/
static void dwc2_handle_disconnect_intr(struct dwc2_hsotg *hsotg)
{
dev_dbg(hsotg->dev, "++Disconnect Detected Interrupt++ (%s) %s\n",
dwc2_is_host_mode(hsotg) ? "Host" : "Device",
dwc2_op_state_str(hsotg));
/* Change to L3 (OFF) state */
hsotg->lx_state = DWC2_L3;
writel(GINTSTS_DISCONNINT, hsotg->regs + GINTSTS);
}
/*
* This interrupt indicates that SUSPEND state has been detected on the USB.
*
* For HNP the USB Suspend interrupt signals the change from "a_peripheral"
* to "a_host".
*
* When power management is enabled the core will be put in low power mode.
*/
static void dwc2_handle_usb_suspend_intr(struct dwc2_hsotg *hsotg)
{
u32 dsts;
dev_dbg(hsotg->dev, "USB SUSPEND\n");
if (dwc2_is_device_mode(hsotg)) {
/*
* Check the Device status register to determine if the Suspend
* state is active
*/
dsts = readl(hsotg->regs + DSTS);
dev_dbg(hsotg->dev, "DSTS=0x%0x\n", dsts);
dev_dbg(hsotg->dev,
"DSTS.Suspend Status=%d HWCFG4.Power Optimize=%d\n",
!!(dsts & DSTS_SUSPSTS),
!!(hsotg->hwcfg4 & GHWCFG4_POWER_OPTIMIZ));
} else {
if (hsotg->op_state == OTG_STATE_A_PERIPHERAL) {
dev_dbg(hsotg->dev, "a_peripheral->a_host\n");
/* Clear the a_peripheral flag, back to a_host */
spin_unlock(&hsotg->lock);
dwc2_hcd_start(hsotg);
spin_lock(&hsotg->lock);
hsotg->op_state = OTG_STATE_A_HOST;
}
}
/* Change to L2 (suspend) state */
hsotg->lx_state = DWC2_L2;
/* Clear interrupt */
writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
}
#define GINTMSK_COMMON (GINTSTS_WKUPINT | GINTSTS_SESSREQINT | \
GINTSTS_CONIDSTSCHNG | GINTSTS_OTGINT | \
GINTSTS_MODEMIS | GINTSTS_DISCONNINT | \
GINTSTS_USBSUSP | GINTSTS_RESTOREDONE | \
GINTSTS_PRTINT)
/*
* This function returns the Core Interrupt register
*/
static u32 dwc2_read_common_intr(struct dwc2_hsotg *hsotg)
{
u32 gintsts;
u32 gintmsk;
u32 gahbcfg;
u32 gintmsk_common = GINTMSK_COMMON;
gintsts = readl(hsotg->regs + GINTSTS);
gintmsk = readl(hsotg->regs + GINTMSK);
gahbcfg = readl(hsotg->regs + GAHBCFG);
#ifdef DEBUG
/* If any common interrupts set */
if (gintsts & gintmsk_common)
dev_dbg(hsotg->dev, "gintsts=%08x gintmsk=%08x\n",
gintsts, gintmsk);
#endif
if (gahbcfg & GAHBCFG_GLBL_INTR_EN)
return gintsts & gintmsk & gintmsk_common;
else
return 0;
}
/*
* Common interrupt handler
*
* The common interrupts are those that occur in both Host and Device mode.
* This handler handles the following interrupts:
* - Mode Mismatch Interrupt
* - OTG Interrupt
* - Connector ID Status Change Interrupt
* - Disconnect Interrupt
* - Session Request Interrupt
* - Resume / Remote Wakeup Detected Interrupt
* - Suspend Interrupt
*/
irqreturn_t dwc2_handle_common_intr(int irq, void *dev)
{
struct dwc2_hsotg *hsotg = dev;
u32 gintsts;
int retval = 0;
if (dwc2_check_core_status(hsotg) < 0) {
dev_warn(hsotg->dev, "Controller is disconnected");
goto out;
}
spin_lock(&hsotg->lock);
gintsts = dwc2_read_common_intr(hsotg);
if (gintsts & ~GINTSTS_PRTINT)
retval = 1;
if (gintsts & GINTSTS_MODEMIS)
dwc2_handle_mode_mismatch_intr(hsotg);
if (gintsts & GINTSTS_OTGINT)
dwc2_handle_otg_intr(hsotg);
if (gintsts & GINTSTS_CONIDSTSCHNG)
dwc2_handle_conn_id_status_change_intr(hsotg);
if (gintsts & GINTSTS_DISCONNINT)
dwc2_handle_disconnect_intr(hsotg);
if (gintsts & GINTSTS_SESSREQINT)
dwc2_handle_session_req_intr(hsotg);
if (gintsts & GINTSTS_WKUPINT)
dwc2_handle_wakeup_detected_intr(hsotg);
if (gintsts & GINTSTS_USBSUSP)
dwc2_handle_usb_suspend_intr(hsotg);
if (gintsts & GINTSTS_RESTOREDONE) {
gintsts = GINTSTS_RESTOREDONE;
writel(gintsts, hsotg->regs + GINTSTS);
dev_dbg(hsotg->dev, " --Restore done interrupt received--\n");
}
if (gintsts & GINTSTS_PRTINT) {
/*
* The port interrupt occurs while in device mode with HPRT0
* Port Enable/Disable
*/
if (dwc2_is_device_mode(hsotg)) {
dev_dbg(hsotg->dev,
" --Port interrupt received in Device mode--\n");
gintsts = GINTSTS_PRTINT;
writel(gintsts, hsotg->regs + GINTSTS);
retval = 1;
}
}
spin_unlock(&hsotg->lock);
out:
return IRQ_RETVAL(retval);
}
EXPORT_SYMBOL_GPL(dwc2_handle_common_intr);
/*
* hw.h - DesignWare HS OTG Controller hardware definitions
*
* Copyright 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __DWC2_HW_H__
#define __DWC2_HW_H__
#define HSOTG_REG(x) (x)
#define GOTGCTL HSOTG_REG(0x000)
#define GOTGCTL_CHIRPEN (1 << 27)
#define GOTGCTL_MULT_VALID_BC_MASK (0x1f << 22)
#define GOTGCTL_MULT_VALID_BC_SHIFT 22
#define GOTGCTL_OTGVER (1 << 20)
#define GOTGCTL_BSESVLD (1 << 19)
#define GOTGCTL_ASESVLD (1 << 18)
#define GOTGCTL_DBNC_SHORT (1 << 17)
#define GOTGCTL_CONID_B (1 << 16)
#define GOTGCTL_DEVHNPEN (1 << 11)
#define GOTGCTL_HSTSETHNPEN (1 << 10)
#define GOTGCTL_HNPREQ (1 << 9)
#define GOTGCTL_HSTNEGSCS (1 << 8)
#define GOTGCTL_SESREQ (1 << 1)
#define GOTGCTL_SESREQSCS (1 << 0)
#define GOTGINT HSOTG_REG(0x004)
#define GOTGINT_DBNCE_DONE (1 << 19)
#define GOTGINT_A_DEV_TOUT_CHG (1 << 18)
#define GOTGINT_HST_NEG_DET (1 << 17)
#define GOTGINT_HST_NEG_SUC_STS_CHNG (1 << 9)
#define GOTGINT_SES_REQ_SUC_STS_CHNG (1 << 8)
#define GOTGINT_SES_END_DET (1 << 2)
#define GAHBCFG HSOTG_REG(0x008)
#define GAHBCFG_AHB_SINGLE (1 << 23)
#define GAHBCFG_NOTI_ALL_DMA_WRIT (1 << 22)
#define GAHBCFG_REM_MEM_SUPP (1 << 21)
#define GAHBCFG_P_TXF_EMP_LVL (1 << 8)
#define GAHBCFG_NP_TXF_EMP_LVL (1 << 7)
#define GAHBCFG_DMA_EN (1 << 5)
#define GAHBCFG_HBSTLEN_MASK (0xf << 1)
#define GAHBCFG_HBSTLEN_SHIFT 1
#define GAHBCFG_HBSTLEN_SINGLE (0 << 1)
#define GAHBCFG_HBSTLEN_INCR (1 << 1)
#define GAHBCFG_HBSTLEN_INCR4 (3 << 1)
#define GAHBCFG_HBSTLEN_INCR8 (5 << 1)
#define GAHBCFG_HBSTLEN_INCR16 (7 << 1)
#define GAHBCFG_GLBL_INTR_EN (1 << 0)
#define GUSBCFG HSOTG_REG(0x00C)
#define GUSBCFG_FORCEDEVMODE (1 << 30)
#define GUSBCFG_FORCEHOSTMODE (1 << 29)
#define GUSBCFG_TXENDDELAY (1 << 28)
#define GUSBCFG_ICTRAFFICPULLREMOVE (1 << 27)
#define GUSBCFG_ICUSBCAP (1 << 26)
#define GUSBCFG_ULPI_INT_PROT_DIS (1 << 25)
#define GUSBCFG_INDICATORPASSTHROUGH (1 << 24)
#define GUSBCFG_INDICATORCOMPLEMENT (1 << 23)
#define GUSBCFG_TERMSELDLPULSE (1 << 22)
#define GUSBCFG_ULPI_INT_VBUS_IND (1 << 21)
#define GUSBCFG_ULPI_EXT_VBUS_DRV (1 << 20)
#define GUSBCFG_ULPI_CLK_SUSP_M (1 << 19)
#define GUSBCFG_ULPI_AUTO_RES (1 << 18)
#define GUSBCFG_ULPI_FS_LS (1 << 17)
#define GUSBCFG_OTG_UTMI_FS_SEL (1 << 16)
#define GUSBCFG_PHY_LP_CLK_SEL (1 << 15)
#define GUSBCFG_USBTRDTIM_MASK (0xf << 10)
#define GUSBCFG_USBTRDTIM_SHIFT 10
#define GUSBCFG_HNPCAP (1 << 9)
#define GUSBCFG_SRPCAP (1 << 8)
#define GUSBCFG_DDRSEL (1 << 7)
#define GUSBCFG_PHYSEL (1 << 6)
#define GUSBCFG_FSINTF (1 << 5)
#define GUSBCFG_ULPI_UTMI_SEL (1 << 4)
#define GUSBCFG_PHYIF16 (1 << 3)
#define GUSBCFG_TOUTCAL_MASK (0x7 << 0)
#define GUSBCFG_TOUTCAL_SHIFT 0
#define GUSBCFG_TOUTCAL_LIMIT 0x7
#define GUSBCFG_TOUTCAL(_x) ((_x) << 0)
#define GRSTCTL HSOTG_REG(0x010)
#define GRSTCTL_AHBIDLE (1 << 31)
#define GRSTCTL_DMAREQ (1 << 30)
#define GRSTCTL_TXFNUM_MASK (0x1f << 6)
#define GRSTCTL_TXFNUM_SHIFT 6
#define GRSTCTL_TXFNUM_LIMIT 0x1f
#define GRSTCTL_TXFNUM(_x) ((_x) << 6)
#define GRSTCTL_TXFFLSH (1 << 5)
#define GRSTCTL_RXFFLSH (1 << 4)
#define GRSTCTL_IN_TKNQ_FLSH (1 << 3)
#define GRSTCTL_FRMCNTRRST (1 << 2)
#define GRSTCTL_HSFTRST (1 << 1)
#define GRSTCTL_CSFTRST (1 << 0)
#define GINTSTS HSOTG_REG(0x014)
#define GINTMSK HSOTG_REG(0x018)
#define GINTSTS_WKUPINT (1 << 31)
#define GINTSTS_SESSREQINT (1 << 30)
#define GINTSTS_DISCONNINT (1 << 29)
#define GINTSTS_CONIDSTSCHNG (1 << 28)
#define GINTSTS_LPMTRANRCVD (1 << 27)
#define GINTSTS_PTXFEMP (1 << 26)
#define GINTSTS_HCHINT (1 << 25)
#define GINTSTS_PRTINT (1 << 24)
#define GINTSTS_RESETDET (1 << 23)
#define GINTSTS_FET_SUSP (1 << 22)
#define GINTSTS_INCOMPL_IP (1 << 21)
#define GINTSTS_INCOMPL_SOIN (1 << 20)
#define GINTSTS_OEPINT (1 << 19)
#define GINTSTS_IEPINT (1 << 18)
#define GINTSTS_EPMIS (1 << 17)
#define GINTSTS_RESTOREDONE (1 << 16)
#define GINTSTS_EOPF (1 << 15)
#define GINTSTS_ISOUTDROP (1 << 14)
#define GINTSTS_ENUMDONE (1 << 13)
#define GINTSTS_USBRST (1 << 12)
#define GINTSTS_USBSUSP (1 << 11)
#define GINTSTS_ERLYSUSP (1 << 10)
#define GINTSTS_I2CINT (1 << 9)
#define GINTSTS_ULPI_CK_INT (1 << 8)
#define GINTSTS_GOUTNAKEFF (1 << 7)
#define GINTSTS_GINNAKEFF (1 << 6)
#define GINTSTS_NPTXFEMP (1 << 5)
#define GINTSTS_RXFLVL (1 << 4)
#define GINTSTS_SOF (1 << 3)
#define GINTSTS_OTGINT (1 << 2)
#define GINTSTS_MODEMIS (1 << 1)
#define GINTSTS_CURMODE_HOST (1 << 0)
#define GRXSTSR HSOTG_REG(0x01C)
#define GRXSTSP HSOTG_REG(0x020)
#define GRXSTS_FN_MASK (0x7f << 25)
#define GRXSTS_FN_SHIFT 25
#define GRXSTS_PKTSTS_MASK (0xf << 17)
#define GRXSTS_PKTSTS_SHIFT 17
#define GRXSTS_PKTSTS_GLOBALOUTNAK (1 << 17)
#define GRXSTS_PKTSTS_OUTRX (2 << 17)
#define GRXSTS_PKTSTS_HCHIN (2 << 17)
#define GRXSTS_PKTSTS_OUTDONE (3 << 17)
#define GRXSTS_PKTSTS_HCHIN_XFER_COMP (3 << 17)
#define GRXSTS_PKTSTS_SETUPDONE (4 << 17)
#define GRXSTS_PKTSTS_DATATOGGLEERR (5 << 17)
#define GRXSTS_PKTSTS_SETUPRX (6 << 17)
#define GRXSTS_PKTSTS_HCHHALTED (7 << 17)
#define GRXSTS_HCHNUM_MASK (0xf << 0)
#define GRXSTS_HCHNUM_SHIFT 0
#define GRXSTS_DPID_MASK (0x3 << 15)
#define GRXSTS_DPID_SHIFT 15
#define GRXSTS_BYTECNT_MASK (0x7ff << 4)
#define GRXSTS_BYTECNT_SHIFT 4
#define GRXSTS_EPNUM_MASK (0xf << 0)
#define GRXSTS_EPNUM_SHIFT 0
#define GRXFSIZ HSOTG_REG(0x024)
#define GNPTXFSIZ HSOTG_REG(0x028)
#define GNPTXFSIZ_NP_TXF_DEP_MASK (0xffff << 16)
#define GNPTXFSIZ_NP_TXF_DEP_SHIFT 16
#define GNPTXFSIZ_NP_TXF_DEP_LIMIT 0xffff
#define GNPTXFSIZ_NP_TXF_DEP(_x) ((_x) << 16)
#define GNPTXFSIZ_NP_TXF_ST_ADDR_MASK (0xffff << 0)
#define GNPTXFSIZ_NP_TXF_ST_ADDR_SHIFT 0
#define GNPTXFSIZ_NP_TXF_ST_ADDR_LIMIT 0xffff
#define GNPTXFSIZ_NP_TXF_ST_ADDR(_x) ((_x) << 0)
#define GNPTXSTS HSOTG_REG(0x02C)
#define GNPTXSTS_NP_TXQ_TOP_MASK (0x7f << 24)
#define GNPTXSTS_NP_TXQ_TOP_SHIFT 24
#define GNPTXSTS_NP_TXQ_SPC_AVAIL_MASK (0xff << 16)
#define GNPTXSTS_NP_TXQ_SPC_AVAIL_SHIFT 16
#define GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(_v) (((_v) >> 16) & 0xff)
#define GNPTXSTS_NP_TXF_SPC_AVAIL_MASK (0xffff << 0)
#define GNPTXSTS_NP_TXF_SPC_AVAIL_SHIFT 0
#define GNPTXSTS_NP_TXF_SPC_AVAIL_GET(_v) (((_v) >> 0) & 0xffff)
#define GI2CCTL HSOTG_REG(0x0030)
#define GI2CCTL_BSYDNE (1 << 31)
#define GI2CCTL_RW (1 << 30)
#define GI2CCTL_I2CDATSE0 (1 << 28)
#define GI2CCTL_I2CDEVADDR_MASK (0x3 << 26)
#define GI2CCTL_I2CDEVADDR_SHIFT 26
#define GI2CCTL_I2CSUSPCTL (1 << 25)
#define GI2CCTL_ACK (1 << 24)
#define GI2CCTL_I2CEN (1 << 23)
#define GI2CCTL_ADDR_MASK (0x7f << 16)
#define GI2CCTL_ADDR_SHIFT 16
#define GI2CCTL_REGADDR_MASK (0xff << 8)
#define GI2CCTL_REGADDR_SHIFT 8
#define GI2CCTL_RWDATA_MASK (0xff << 0)
#define GI2CCTL_RWDATA_SHIFT 0
#define GPVNDCTL HSOTG_REG(0x0034)
#define GGPIO HSOTG_REG(0x0038)
#define GUID HSOTG_REG(0x003c)
#define GSNPSID HSOTG_REG(0x0040)
#define GHWCFG1 HSOTG_REG(0x0044)
#define GHWCFG2 HSOTG_REG(0x0048)
#define GHWCFG2_OTG_ENABLE_IC_USB (1 << 31)
#define GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK (0x1f << 26)
#define GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT 26
#define GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK (0x3 << 24)
#define GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT 24
#define GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK (0x3 << 22)
#define GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT 22
#define GHWCFG2_MULTI_PROC_INT (1 << 20)
#define GHWCFG2_DYNAMIC_FIFO (1 << 19)
#define GHWCFG2_PERIO_EP_SUPPORTED (1 << 18)
#define GHWCFG2_NUM_HOST_CHAN_MASK (0xf << 14)
#define GHWCFG2_NUM_HOST_CHAN_SHIFT 14
#define GHWCFG2_NUM_DEV_EP_MASK (0xf << 10)
#define GHWCFG2_NUM_DEV_EP_SHIFT 10
#define GHWCFG2_FS_PHY_TYPE_MASK (0x3 << 8)
#define GHWCFG2_FS_PHY_TYPE_SHIFT 8
#define GHWCFG2_FS_PHY_TYPE_NOT_SUPPORTED (0 << 8)
#define GHWCFG2_FS_PHY_TYPE_DEDICATED (1 << 8)
#define GHWCFG2_FS_PHY_TYPE_SHARED_UTMI (2 << 8)
#define GHWCFG2_FS_PHY_TYPE_SHARED_ULPI (3 << 8)
#define GHWCFG2_HS_PHY_TYPE_MASK (0x3 << 6)
#define GHWCFG2_HS_PHY_TYPE_SHIFT 6
#define GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED (0 << 6)
#define GHWCFG2_HS_PHY_TYPE_UTMI (1 << 6)
#define GHWCFG2_HS_PHY_TYPE_ULPI (2 << 6)
#define GHWCFG2_HS_PHY_TYPE_UTMI_ULPI (3 << 6)
#define GHWCFG2_POINT2POINT (1 << 5)
#define GHWCFG2_ARCHITECTURE_MASK (0x3 << 3)
#define GHWCFG2_ARCHITECTURE_SHIFT 3
#define GHWCFG2_SLAVE_ONLY_ARCH (0 << 3)
#define GHWCFG2_EXT_DMA_ARCH (1 << 3)
#define GHWCFG2_INT_DMA_ARCH (2 << 3)
#define GHWCFG2_OP_MODE_MASK (0x7 << 0)
#define GHWCFG2_OP_MODE_SHIFT 0
#define GHWCFG2_OP_MODE_HNP_SRP_CAPABLE (0 << 0)
#define GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE (1 << 0)
#define GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE (2 << 0)
#define GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE (3 << 0)
#define GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE (4 << 0)
#define GHWCFG2_OP_MODE_SRP_CAPABLE_HOST (5 << 0)
#define GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST (6 << 0)
#define GHWCFG2_OP_MODE_UNDEFINED (7 << 0)
#define GHWCFG3 HSOTG_REG(0x004c)
#define GHWCFG3_DFIFO_DEPTH_MASK (0xffff << 16)
#define GHWCFG3_DFIFO_DEPTH_SHIFT 16
#define GHWCFG3_OTG_LPM_EN (1 << 15)
#define GHWCFG3_BC_SUPPORT (1 << 14)
#define GHWCFG3_OTG_ENABLE_HSIC (1 << 13)
#define GHWCFG3_ADP_SUPP (1 << 12)
#define GHWCFG3_SYNCH_RESET_TYPE (1 << 11)
#define GHWCFG3_OPTIONAL_FEATURES (1 << 10)
#define GHWCFG3_VENDOR_CTRL_IF (1 << 9)
#define GHWCFG3_I2C (1 << 8)
#define GHWCFG3_OTG_FUNC (1 << 7)
#define GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK (0x7 << 4)
#define GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT 4
#define GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK (0xf << 0)
#define GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT 0
#define GHWCFG4 HSOTG_REG(0x0050)
#define GHWCFG4_DESC_DMA_DYN (1 << 31)
#define GHWCFG4_DESC_DMA (1 << 30)
#define GHWCFG4_NUM_IN_EPS_MASK (0xf << 26)
#define GHWCFG4_NUM_IN_EPS_SHIFT 26
#define GHWCFG4_DED_FIFO_EN (1 << 25)
#define GHWCFG4_SESSION_END_FILT_EN (1 << 24)
#define GHWCFG4_B_VALID_FILT_EN (1 << 23)
#define GHWCFG4_A_VALID_FILT_EN (1 << 22)
#define GHWCFG4_VBUS_VALID_FILT_EN (1 << 21)
#define GHWCFG4_IDDIG_FILT_EN (1 << 20)
#define GHWCFG4_NUM_DEV_MODE_CTRL_EP_MASK (0xf << 16)
#define GHWCFG4_NUM_DEV_MODE_CTRL_EP_SHIFT 16
#define GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK (0x3 << 14)
#define GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT 14
#define GHWCFG4_XHIBER (1 << 7)
#define GHWCFG4_HIBER (1 << 6)
#define GHWCFG4_MIN_AHB_FREQ (1 << 5)
#define GHWCFG4_POWER_OPTIMIZ (1 << 4)
#define GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK (0xf << 0)
#define GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT 0
#define GLPMCFG HSOTG_REG(0x0054)
#define GLPMCFG_INV_SEL_HSIC (1 << 31)
#define GLPMCFG_HSIC_CONNECT (1 << 30)
#define GLPMCFG_RETRY_COUNT_STS_MASK (0x7 << 25)
#define GLPMCFG_RETRY_COUNT_STS_SHIFT 25
#define GLPMCFG_SEND_LPM (1 << 24)
#define GLPMCFG_RETRY_COUNT_MASK (0x7 << 21)
#define GLPMCFG_RETRY_COUNT_SHIFT 21
#define GLPMCFG_LPM_CHAN_INDEX_MASK (0xf << 17)
#define GLPMCFG_LPM_CHAN_INDEX_SHIFT 17
#define GLPMCFG_SLEEP_STATE_RESUMEOK (1 << 16)
#define GLPMCFG_PRT_SLEEP_STS (1 << 15)
#define GLPMCFG_LPM_RESP_MASK (0x3 << 13)
#define GLPMCFG_LPM_RESP_SHIFT 13
#define GLPMCFG_HIRD_THRES_MASK (0x1f << 8)
#define GLPMCFG_HIRD_THRES_SHIFT 8
#define GLPMCFG_HIRD_THRES_EN (0x10 << 8)
#define GLPMCFG_EN_UTMI_SLEEP (1 << 7)
#define GLPMCFG_REM_WKUP_EN (1 << 6)
#define GLPMCFG_HIRD_MASK (0xf << 2)
#define GLPMCFG_HIRD_SHIFT 2
#define GLPMCFG_APPL_RESP (1 << 1)
#define GLPMCFG_LPM_CAP_EN (1 << 0)
#define GPWRDN HSOTG_REG(0x0058)
#define GPWRDN_MULT_VAL_ID_BC_MASK (0x1f << 24)
#define GPWRDN_MULT_VAL_ID_BC_SHIFT 24
#define GPWRDN_ADP_INT (1 << 23)
#define GPWRDN_BSESSVLD (1 << 22)
#define GPWRDN_IDSTS (1 << 21)
#define GPWRDN_LINESTATE_MASK (0x3 << 19)
#define GPWRDN_LINESTATE_SHIFT 19
#define GPWRDN_STS_CHGINT_MSK (1 << 18)
#define GPWRDN_STS_CHGINT (1 << 17)
#define GPWRDN_SRP_DET_MSK (1 << 16)
#define GPWRDN_SRP_DET (1 << 15)
#define GPWRDN_CONNECT_DET_MSK (1 << 14)
#define GPWRDN_CONNECT_DET (1 << 13)
#define GPWRDN_DISCONN_DET_MSK (1 << 12)
#define GPWRDN_DISCONN_DET (1 << 11)
#define GPWRDN_RST_DET_MSK (1 << 10)
#define GPWRDN_RST_DET (1 << 9)
#define GPWRDN_LNSTSCHG_MSK (1 << 8)
#define GPWRDN_LNSTSCHG (1 << 7)
#define GPWRDN_DIS_VBUS (1 << 6)
#define GPWRDN_PWRDNSWTCH (1 << 5)
#define GPWRDN_PWRDNRSTN (1 << 4)
#define GPWRDN_PWRDNCLMP (1 << 3)
#define GPWRDN_RESTORE (1 << 2)
#define GPWRDN_PMUACTV (1 << 1)
#define GPWRDN_PMUINTSEL (1 << 0)
#define GDFIFOCFG HSOTG_REG(0x005c)
#define GDFIFOCFG_EPINFOBASE_MASK (0xffff << 16)
#define GDFIFOCFG_EPINFOBASE_SHIFT 16
#define GDFIFOCFG_GDFIFOCFG_MASK (0xffff << 0)
#define GDFIFOCFG_GDFIFOCFG_SHIFT 0
#define ADPCTL HSOTG_REG(0x0060)
#define ADPCTL_AR_MASK (0x3 << 27)
#define ADPCTL_AR_SHIFT 27
#define ADPCTL_ADP_TMOUT_INT_MSK (1 << 26)
#define ADPCTL_ADP_SNS_INT_MSK (1 << 25)
#define ADPCTL_ADP_PRB_INT_MSK (1 << 24)
#define ADPCTL_ADP_TMOUT_INT (1 << 23)
#define ADPCTL_ADP_SNS_INT (1 << 22)
#define ADPCTL_ADP_PRB_INT (1 << 21)
#define ADPCTL_ADPENA (1 << 20)
#define ADPCTL_ADPRES (1 << 19)
#define ADPCTL_ENASNS (1 << 18)
#define ADPCTL_ENAPRB (1 << 17)
#define ADPCTL_RTIM_MASK (0x7ff << 6)
#define ADPCTL_RTIM_SHIFT 6
#define ADPCTL_PRB_PER_MASK (0x3 << 4)
#define ADPCTL_PRB_PER_SHIFT 4
#define ADPCTL_PRB_DELTA_MASK (0x3 << 2)
#define ADPCTL_PRB_DELTA_SHIFT 2
#define ADPCTL_PRB_DSCHRG_MASK (0x3 << 0)
#define ADPCTL_PRB_DSCHRG_SHIFT 0
#define HPTXFSIZ HSOTG_REG(0x100)
#define DPTXFSIZN(_a) HSOTG_REG(0x104 + (((_a) - 1) * 4))
#define DPTXFSIZN_DP_TXF_SIZE_MASK (0xffff << 16)
#define DPTXFSIZN_DP_TXF_SIZE_SHIFT 16
#define DPTXFSIZN_DP_TXF_SIZE_GET(_v) (((_v) >> 16) & 0xffff)
#define DPTXFSIZN_DP_TXF_SIZE_LIMIT 0xffff
#define DPTXFSIZN_DP_TXF_SIZE(_x) ((_x) << 16)
#define DPTXFSIZN_DP_TXF_ST_ADDR_MASK (0xffff << 0)
#define DPTXFSIZN_DP_TXF_ST_ADDR_SHIFT 0
#define FIFOSIZE_DEPTH_MASK (0xffff << 16)
#define FIFOSIZE_DEPTH_SHIFT 16
#define FIFOSIZE_STARTADDR_MASK (0xffff << 0)
#define FIFOSIZE_STARTADDR_SHIFT 0
/* Device mode registers */
#define DCFG HSOTG_REG(0x800)
#define DCFG_EPMISCNT_MASK (0x1f << 18)
#define DCFG_EPMISCNT_SHIFT 18
#define DCFG_EPMISCNT_LIMIT 0x1f
#define DCFG_EPMISCNT(_x) ((_x) << 18)
#define DCFG_PERFRINT_MASK (0x3 << 11)
#define DCFG_PERFRINT_SHIFT 11
#define DCFG_PERFRINT_LIMIT 0x3
#define DCFG_PERFRINT(_x) ((_x) << 11)
#define DCFG_DEVADDR_MASK (0x7f << 4)
#define DCFG_DEVADDR_SHIFT 4
#define DCFG_DEVADDR_LIMIT 0x7f
#define DCFG_DEVADDR(_x) ((_x) << 4)
#define DCFG_NZ_STS_OUT_HSHK (1 << 2)
#define DCFG_DEVSPD_MASK (0x3 << 0)
#define DCFG_DEVSPD_SHIFT 0
#define DCFG_DEVSPD_HS (0 << 0)
#define DCFG_DEVSPD_FS (1 << 0)
#define DCFG_DEVSPD_LS (2 << 0)
#define DCFG_DEVSPD_FS48 (3 << 0)
#define DCTL HSOTG_REG(0x804)
#define DCTL_PWRONPRGDONE (1 << 11)
#define DCTL_CGOUTNAK (1 << 10)
#define DCTL_SGOUTNAK (1 << 9)
#define DCTL_CGNPINNAK (1 << 8)
#define DCTL_SGNPINNAK (1 << 7)
#define DCTL_TSTCTL_MASK (0x7 << 4)
#define DCTL_TSTCTL_SHIFT 4
#define DCTL_GOUTNAKSTS (1 << 3)
#define DCTL_GNPINNAKSTS (1 << 2)
#define DCTL_SFTDISCON (1 << 1)
#define DCTL_RMTWKUPSIG (1 << 0)
#define DSTS HSOTG_REG(0x808)
#define DSTS_SOFFN_MASK (0x3fff << 8)
#define DSTS_SOFFN_SHIFT 8
#define DSTS_SOFFN_LIMIT 0x3fff
#define DSTS_SOFFN(_x) ((_x) << 8)
#define DSTS_ERRATICERR (1 << 3)
#define DSTS_ENUMSPD_MASK (0x3 << 1)
#define DSTS_ENUMSPD_SHIFT 1
#define DSTS_ENUMSPD_HS (0 << 1)
#define DSTS_ENUMSPD_FS (1 << 1)
#define DSTS_ENUMSPD_LS (2 << 1)
#define DSTS_ENUMSPD_FS48 (3 << 1)
#define DSTS_SUSPSTS (1 << 0)
#define DIEPMSK HSOTG_REG(0x810)
#define DIEPMSK_TXFIFOEMPTY (1 << 7)
#define DIEPMSK_INEPNAKEFFMSK (1 << 6)
#define DIEPMSK_INTKNEPMISMSK (1 << 5)
#define DIEPMSK_INTKNTXFEMPMSK (1 << 4)
#define DIEPMSK_TIMEOUTMSK (1 << 3)
#define DIEPMSK_AHBERRMSK (1 << 2)
#define DIEPMSK_EPDISBLDMSK (1 << 1)
#define DIEPMSK_XFERCOMPLMSK (1 << 0)
#define DOEPMSK HSOTG_REG(0x814)
#define DOEPMSK_BACK2BACKSETUP (1 << 6)
#define DOEPMSK_OUTTKNEPDISMSK (1 << 4)
#define DOEPMSK_SETUPMSK (1 << 3)
#define DOEPMSK_AHBERRMSK (1 << 2)
#define DOEPMSK_EPDISBLDMSK (1 << 1)
#define DOEPMSK_XFERCOMPLMSK (1 << 0)
#define DAINT HSOTG_REG(0x818)
#define DAINTMSK HSOTG_REG(0x81C)
#define DAINT_OUTEP_SHIFT 16
#define DAINT_OUTEP(_x) (1 << ((_x) + 16))
#define DAINT_INEP(_x) (1 << (_x))
#define DTKNQR1 HSOTG_REG(0x820)
#define DTKNQR2 HSOTG_REG(0x824)
#define DTKNQR3 HSOTG_REG(0x830)
#define DTKNQR4 HSOTG_REG(0x834)
#define DVBUSDIS HSOTG_REG(0x828)
#define DVBUSPULSE HSOTG_REG(0x82C)
#define DIEPCTL0 HSOTG_REG(0x900)
#define DIEPCTL(_a) HSOTG_REG(0x900 + ((_a) * 0x20))
#define DOEPCTL0 HSOTG_REG(0xB00)
#define DOEPCTL(_a) HSOTG_REG(0xB00 + ((_a) * 0x20))
/* EP0 specialness:
* bits[29..28] - reserved (no SetD0PID, SetD1PID)
* bits[25..22] - should always be zero, this isn't a periodic endpoint
* bits[10..0] - MPS setting different for EP0
*/
#define D0EPCTL_MPS_MASK (0x3 << 0)
#define D0EPCTL_MPS_SHIFT 0
#define D0EPCTL_MPS_64 (0 << 0)
#define D0EPCTL_MPS_32 (1 << 0)
#define D0EPCTL_MPS_16 (2 << 0)
#define D0EPCTL_MPS_8 (3 << 0)
#define DXEPCTL_EPENA (1 << 31)
#define DXEPCTL_EPDIS (1 << 30)
#define DXEPCTL_SETD1PID (1 << 29)
#define DXEPCTL_SETODDFR (1 << 29)
#define DXEPCTL_SETD0PID (1 << 28)
#define DXEPCTL_SETEVENFR (1 << 28)
#define DXEPCTL_SNAK (1 << 27)
#define DXEPCTL_CNAK (1 << 26)
#define DXEPCTL_TXFNUM_MASK (0xf << 22)
#define DXEPCTL_TXFNUM_SHIFT 22
#define DXEPCTL_TXFNUM_LIMIT 0xf
#define DXEPCTL_TXFNUM(_x) ((_x) << 22)
#define DXEPCTL_STALL (1 << 21)
#define DXEPCTL_SNP (1 << 20)
#define DXEPCTL_EPTYPE_MASK (0x3 << 18)
#define DXEPCTL_EPTYPE_SHIFT 18
#define DXEPCTL_EPTYPE_CONTROL (0 << 18)
#define DXEPCTL_EPTYPE_ISO (1 << 18)
#define DXEPCTL_EPTYPE_BULK (2 << 18)
#define DXEPCTL_EPTYPE_INTTERUPT (3 << 18)
#define DXEPCTL_NAKSTS (1 << 17)
#define DXEPCTL_DPID (1 << 16)
#define DXEPCTL_EOFRNUM (1 << 16)
#define DXEPCTL_USBACTEP (1 << 15)
#define DXEPCTL_NEXTEP_MASK (0xf << 11)
#define DXEPCTL_NEXTEP_SHIFT 11
#define DXEPCTL_NEXTEP_LIMIT 0xf
#define DXEPCTL_NEXTEP(_x) ((_x) << 11)
#define DXEPCTL_MPS_MASK (0x7ff << 0)
#define DXEPCTL_MPS_SHIFT 0
#define DXEPCTL_MPS_LIMIT 0x7ff
#define DXEPCTL_MPS(_x) ((_x) << 0)
#define DIEPINT(_a) HSOTG_REG(0x908 + ((_a) * 0x20))
#define DOEPINT(_a) HSOTG_REG(0xB08 + ((_a) * 0x20))
#define DXEPINT_INEPNAKEFF (1 << 6)
#define DXEPINT_BACK2BACKSETUP (1 << 6)
#define DXEPINT_INTKNEPMIS (1 << 5)
#define DXEPINT_INTKNTXFEMP (1 << 4)
#define DXEPINT_OUTTKNEPDIS (1 << 4)
#define DXEPINT_TIMEOUT (1 << 3)
#define DXEPINT_SETUP (1 << 3)
#define DXEPINT_AHBERR (1 << 2)
#define DXEPINT_EPDISBLD (1 << 1)
#define DXEPINT_XFERCOMPL (1 << 0)
#define DIEPTSIZ0 HSOTG_REG(0x910)
#define DIEPTSIZ0_PKTCNT_MASK (0x3 << 19)
#define DIEPTSIZ0_PKTCNT_SHIFT 19
#define DIEPTSIZ0_PKTCNT_LIMIT 0x3
#define DIEPTSIZ0_PKTCNT(_x) ((_x) << 19)
#define DIEPTSIZ0_XFERSIZE_MASK (0x7f << 0)
#define DIEPTSIZ0_XFERSIZE_SHIFT 0
#define DIEPTSIZ0_XFERSIZE_LIMIT 0x7f
#define DIEPTSIZ0_XFERSIZE(_x) ((_x) << 0)
#define DOEPTSIZ0 HSOTG_REG(0xB10)
#define DOEPTSIZ0_SUPCNT_MASK (0x3 << 29)
#define DOEPTSIZ0_SUPCNT_SHIFT 29
#define DOEPTSIZ0_SUPCNT_LIMIT 0x3
#define DOEPTSIZ0_SUPCNT(_x) ((_x) << 29)
#define DOEPTSIZ0_PKTCNT (1 << 19)
#define DOEPTSIZ0_XFERSIZE_MASK (0x7f << 0)
#define DOEPTSIZ0_XFERSIZE_SHIFT 0
#define DIEPTSIZ(_a) HSOTG_REG(0x910 + ((_a) * 0x20))
#define DOEPTSIZ(_a) HSOTG_REG(0xB10 + ((_a) * 0x20))
#define DXEPTSIZ_MC_MASK (0x3 << 29)
#define DXEPTSIZ_MC_SHIFT 29
#define DXEPTSIZ_MC_LIMIT 0x3
#define DXEPTSIZ_MC(_x) ((_x) << 29)
#define DXEPTSIZ_PKTCNT_MASK (0x3ff << 19)
#define DXEPTSIZ_PKTCNT_SHIFT 19
#define DXEPTSIZ_PKTCNT_LIMIT 0x3ff
#define DXEPTSIZ_PKTCNT_GET(_v) (((_v) >> 19) & 0x3ff)
#define DXEPTSIZ_PKTCNT(_x) ((_x) << 19)
#define DXEPTSIZ_XFERSIZE_MASK (0x7ffff << 0)
#define DXEPTSIZ_XFERSIZE_SHIFT 0
#define DXEPTSIZ_XFERSIZE_LIMIT 0x7ffff
#define DXEPTSIZ_XFERSIZE_GET(_v) (((_v) >> 0) & 0x7ffff)
#define DXEPTSIZ_XFERSIZE(_x) ((_x) << 0)
#define DIEPDMA(_a) HSOTG_REG(0x914 + ((_a) * 0x20))
#define DOEPDMA(_a) HSOTG_REG(0xB14 + ((_a) * 0x20))
#define DTXFSTS(_a) HSOTG_REG(0x918 + ((_a) * 0x20))
#define PCGCTL HSOTG_REG(0x0e00)
#define PCGCTL_IF_DEV_MODE (1 << 31)
#define PCGCTL_P2HD_PRT_SPD_MASK (0x3 << 29)
#define PCGCTL_P2HD_PRT_SPD_SHIFT 29
#define PCGCTL_P2HD_DEV_ENUM_SPD_MASK (0x3 << 27)
#define PCGCTL_P2HD_DEV_ENUM_SPD_SHIFT 27
#define PCGCTL_MAC_DEV_ADDR_MASK (0x7f << 20)
#define PCGCTL_MAC_DEV_ADDR_SHIFT 20
#define PCGCTL_MAX_TERMSEL (1 << 19)
#define PCGCTL_MAX_XCVRSELECT_MASK (0x3 << 17)
#define PCGCTL_MAX_XCVRSELECT_SHIFT 17
#define PCGCTL_PORT_POWER (1 << 16)
#define PCGCTL_PRT_CLK_SEL_MASK (0x3 << 14)
#define PCGCTL_PRT_CLK_SEL_SHIFT 14
#define PCGCTL_ESS_REG_RESTORED (1 << 13)
#define PCGCTL_EXTND_HIBER_SWITCH (1 << 12)
#define PCGCTL_EXTND_HIBER_PWRCLMP (1 << 11)
#define PCGCTL_ENBL_EXTND_HIBER (1 << 10)
#define PCGCTL_RESTOREMODE (1 << 9)
#define PCGCTL_RESETAFTSUSP (1 << 8)
#define PCGCTL_DEEP_SLEEP (1 << 7)
#define PCGCTL_PHY_IN_SLEEP (1 << 6)
#define PCGCTL_ENBL_SLEEP_GATING (1 << 5)
#define PCGCTL_RSTPDWNMODULE (1 << 3)
#define PCGCTL_PWRCLMP (1 << 2)
#define PCGCTL_GATEHCLK (1 << 1)
#define PCGCTL_STOPPCLK (1 << 0)
#define EPFIFO(_a) HSOTG_REG(0x1000 + ((_a) * 0x1000))
/* Host Mode Registers */
#define HCFG HSOTG_REG(0x0400)
#define HCFG_MODECHTIMEN (1 << 31)
#define HCFG_PERSCHEDENA (1 << 26)
#define HCFG_FRLISTEN_MASK (0x3 << 24)
#define HCFG_FRLISTEN_SHIFT 24
#define HCFG_FRLISTEN_8 (0 << 24)
#define FRLISTEN_8_SIZE 8
#define HCFG_FRLISTEN_16 (1 << 24)
#define FRLISTEN_16_SIZE 16
#define HCFG_FRLISTEN_32 (2 << 24)
#define FRLISTEN_32_SIZE 32
#define HCFG_FRLISTEN_64 (3 << 24)
#define FRLISTEN_64_SIZE 64
#define HCFG_DESCDMA (1 << 23)
#define HCFG_RESVALID_MASK (0xff << 8)
#define HCFG_RESVALID_SHIFT 8
#define HCFG_ENA32KHZ (1 << 7)
#define HCFG_FSLSSUPP (1 << 2)
#define HCFG_FSLSPCLKSEL_MASK (0x3 << 0)
#define HCFG_FSLSPCLKSEL_SHIFT 0
#define HCFG_FSLSPCLKSEL_30_60_MHZ (0 << 0)
#define HCFG_FSLSPCLKSEL_48_MHZ (1 << 0)
#define HCFG_FSLSPCLKSEL_6_MHZ (2 << 0)
#define HFIR HSOTG_REG(0x0404)
#define HFIR_FRINT_MASK (0xffff << 0)
#define HFIR_FRINT_SHIFT 0
#define HFIR_RLDCTRL (1 << 16)
#define HFNUM HSOTG_REG(0x0408)
#define HFNUM_FRREM_MASK (0xffff << 16)
#define HFNUM_FRREM_SHIFT 16
#define HFNUM_FRNUM_MASK (0xffff << 0)
#define HFNUM_FRNUM_SHIFT 0
#define HFNUM_MAX_FRNUM 0x3fff
#define HPTXSTS HSOTG_REG(0x0410)
#define TXSTS_QTOP_ODD (1 << 31)
#define TXSTS_QTOP_CHNEP_MASK (0xf << 27)
#define TXSTS_QTOP_CHNEP_SHIFT 27
#define TXSTS_QTOP_TOKEN_MASK (0x3 << 25)
#define TXSTS_QTOP_TOKEN_SHIFT 25
#define TXSTS_QTOP_TERMINATE (1 << 24)
#define TXSTS_QSPCAVAIL_MASK (0xff << 16)
#define TXSTS_QSPCAVAIL_SHIFT 16
#define TXSTS_FSPCAVAIL_MASK (0xffff << 0)
#define TXSTS_FSPCAVAIL_SHIFT 0
#define HAINT HSOTG_REG(0x0414)
#define HAINTMSK HSOTG_REG(0x0418)
#define HFLBADDR HSOTG_REG(0x041c)
#define HPRT0 HSOTG_REG(0x0440)
#define HPRT0_SPD_MASK (0x3 << 17)
#define HPRT0_SPD_SHIFT 17
#define HPRT0_SPD_HIGH_SPEED (0 << 17)
#define HPRT0_SPD_FULL_SPEED (1 << 17)
#define HPRT0_SPD_LOW_SPEED (2 << 17)
#define HPRT0_TSTCTL_MASK (0xf << 13)
#define HPRT0_TSTCTL_SHIFT 13
#define HPRT0_PWR (1 << 12)
#define HPRT0_LNSTS_MASK (0x3 << 10)
#define HPRT0_LNSTS_SHIFT 10
#define HPRT0_RST (1 << 8)
#define HPRT0_SUSP (1 << 7)
#define HPRT0_RES (1 << 6)
#define HPRT0_OVRCURRCHG (1 << 5)
#define HPRT0_OVRCURRACT (1 << 4)
#define HPRT0_ENACHG (1 << 3)
#define HPRT0_ENA (1 << 2)
#define HPRT0_CONNDET (1 << 1)
#define HPRT0_CONNSTS (1 << 0)
#define HCCHAR(_ch) HSOTG_REG(0x0500 + 0x20 * (_ch))
#define HCCHAR_CHENA (1 << 31)
#define HCCHAR_CHDIS (1 << 30)
#define HCCHAR_ODDFRM (1 << 29)
#define HCCHAR_DEVADDR_MASK (0x7f << 22)
#define HCCHAR_DEVADDR_SHIFT 22
#define HCCHAR_MULTICNT_MASK (0x3 << 20)
#define HCCHAR_MULTICNT_SHIFT 20
#define HCCHAR_EPTYPE_MASK (0x3 << 18)
#define HCCHAR_EPTYPE_SHIFT 18
#define HCCHAR_LSPDDEV (1 << 17)
#define HCCHAR_EPDIR (1 << 15)
#define HCCHAR_EPNUM_MASK (0xf << 11)
#define HCCHAR_EPNUM_SHIFT 11
#define HCCHAR_MPS_MASK (0x7ff << 0)
#define HCCHAR_MPS_SHIFT 0
#define HCSPLT(_ch) HSOTG_REG(0x0504 + 0x20 * (_ch))
#define HCSPLT_SPLTENA (1 << 31)
#define HCSPLT_COMPSPLT (1 << 16)
#define HCSPLT_XACTPOS_MASK (0x3 << 14)
#define HCSPLT_XACTPOS_SHIFT 14
#define HCSPLT_XACTPOS_MID (0 << 14)
#define HCSPLT_XACTPOS_END (1 << 14)
#define HCSPLT_XACTPOS_BEGIN (2 << 14)
#define HCSPLT_XACTPOS_ALL (3 << 14)
#define HCSPLT_HUBADDR_MASK (0x7f << 7)
#define HCSPLT_HUBADDR_SHIFT 7
#define HCSPLT_PRTADDR_MASK (0x7f << 0)
#define HCSPLT_PRTADDR_SHIFT 0
#define HCINT(_ch) HSOTG_REG(0x0508 + 0x20 * (_ch))
#define HCINTMSK(_ch) HSOTG_REG(0x050c + 0x20 * (_ch))
#define HCINTMSK_RESERVED14_31 (0x3ffff << 14)
#define HCINTMSK_FRM_LIST_ROLL (1 << 13)
#define HCINTMSK_XCS_XACT (1 << 12)
#define HCINTMSK_BNA (1 << 11)
#define HCINTMSK_DATATGLERR (1 << 10)
#define HCINTMSK_FRMOVRUN (1 << 9)
#define HCINTMSK_BBLERR (1 << 8)
#define HCINTMSK_XACTERR (1 << 7)
#define HCINTMSK_NYET (1 << 6)
#define HCINTMSK_ACK (1 << 5)
#define HCINTMSK_NAK (1 << 4)
#define HCINTMSK_STALL (1 << 3)
#define HCINTMSK_AHBERR (1 << 2)
#define HCINTMSK_CHHLTD (1 << 1)
#define HCINTMSK_XFERCOMPL (1 << 0)
#define HCTSIZ(_ch) HSOTG_REG(0x0510 + 0x20 * (_ch))
#define TSIZ_DOPNG (1 << 31)
#define TSIZ_SC_MC_PID_MASK (0x3 << 29)
#define TSIZ_SC_MC_PID_SHIFT 29
#define TSIZ_SC_MC_PID_DATA0 (0 << 29)
#define TSIZ_SC_MC_PID_DATA2 (1 << 29)
#define TSIZ_SC_MC_PID_DATA1 (2 << 29)
#define TSIZ_SC_MC_PID_MDATA (3 << 29)
#define TSIZ_SC_MC_PID_SETUP (3 << 29)
#define TSIZ_PKTCNT_MASK (0x3ff << 19)
#define TSIZ_PKTCNT_SHIFT 19
#define TSIZ_NTD_MASK (0xff << 8)
#define TSIZ_NTD_SHIFT 8
#define TSIZ_SCHINFO_MASK (0xff << 0)
#define TSIZ_SCHINFO_SHIFT 0
#define TSIZ_XFERSIZE_MASK (0x7ffff << 0)
#define TSIZ_XFERSIZE_SHIFT 0
#define HCDMA(_ch) HSOTG_REG(0x0514 + 0x20 * (_ch))
#define HCDMA_DMA_ADDR_MASK (0x1fffff << 11)
#define HCDMA_DMA_ADDR_SHIFT 11
#define HCDMA_CTD_MASK (0xff << 3)
#define HCDMA_CTD_SHIFT 3
#define HCDMAB(_ch) HSOTG_REG(0x051c + 0x20 * (_ch))
#define HCFIFO(_ch) HSOTG_REG(0x1000 + 0x1000 * (_ch))
/**
* struct dwc2_hcd_dma_desc - Host-mode DMA descriptor structure
*
* @status: DMA descriptor status quadlet
* @buf: DMA descriptor data buffer pointer
*
* DMA Descriptor structure contains two quadlets:
* Status quadlet and Data buffer pointer.
*/
struct dwc2_hcd_dma_desc {
u32 status;
u32 buf;
};
#define HOST_DMA_A (1 << 31)
#define HOST_DMA_STS_MASK (0x3 << 28)
#define HOST_DMA_STS_SHIFT 28
#define HOST_DMA_STS_PKTERR (1 << 28)
#define HOST_DMA_EOL (1 << 26)
#define HOST_DMA_IOC (1 << 25)
#define HOST_DMA_SUP (1 << 24)
#define HOST_DMA_ALT_QTD (1 << 23)
#define HOST_DMA_QTD_OFFSET_MASK (0x3f << 17)
#define HOST_DMA_QTD_OFFSET_SHIFT 17
#define HOST_DMA_ISOC_NBYTES_MASK (0xfff << 0)
#define HOST_DMA_ISOC_NBYTES_SHIFT 0
#define HOST_DMA_NBYTES_MASK (0x1ffff << 0)
#define HOST_DMA_NBYTES_SHIFT 0
#define MAX_DMA_DESC_SIZE 131071
#define MAX_DMA_DESC_NUM_GENERIC 64
#define MAX_DMA_DESC_NUM_HS_ISOC 256
#endif /* __DWC2_HW_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment