Commit 61e12104 authored by Won Kang's avatar Won Kang Committed by Greg Kroah-Hartman

staging: gdm7240: adding LTE USB driver

GCT Semiconductor GDM7240 is 4G LTE chip.
This driver supports GCT reference platform as a USB device.
Signed-off-by: default avatarWon Kang <wonkang@gctsemi.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 17dc1597
......@@ -118,6 +118,8 @@ source "drivers/staging/ozwpan/Kconfig"
source "drivers/staging/gdm72xx/Kconfig"
source "drivers/staging/gdm724x/Kconfig"
source "drivers/staging/silicom/Kconfig"
source "drivers/staging/ced1401/Kconfig"
......
......@@ -52,6 +52,7 @@ obj-$(CONFIG_MFD_NVEC) += nvec/
obj-$(CONFIG_ANDROID) += android/
obj-$(CONFIG_USB_WPAN_HCD) += ozwpan/
obj-$(CONFIG_WIMAX_GDM72XX) += gdm72xx/
obj-$(CONFIG_LTE_GDM724X) += gdm724x/
obj-$(CONFIG_NET_VENDOR_SILICOM) += silicom/
obj-$(CONFIG_CED1401) += ced1401/
obj-$(CONFIG_DRM_IMX) += imx-drm/
......
#
# GCT GDM724x LTE driver configuration
#
config LTE_GDM724X
tristate "GCT GDM724x LTE support"
depends on NET && USB
help
This driver supports GCT GDM724x LTE chip based USB modem devices.
It exposes 4 network devices to be used per PDN and 2 tty devices to be
used for AT commands and DM monitoring applications.
The modules will be called gdmulte.ko and gdmtty.ko
GCT-ATCx can be used for AT Commands
GCT-DMx can be used for LTE protocol monitoring
obj-$(CONFIG_LTE_GDM724X) := gdmulte.o
gdmulte-y += gdm_lte.o netlink_k.o
gdmulte-y += gdm_usb.o gdm_endian.o
obj-$(CONFIG_LTE_GDM724X) += gdmtty.o
gdmtty-y := gdm_tty.o gdm_mux.o
TODO:
- Clean up coding style to meet kernel standard. (80 line limit, netdev_err)
- Remove test for host endian
- Remove confusing macros (endian, hci_send, sdu_send, rcv_with_cb)
- Fixes for every instances of function returning -1
- Check for skb->len in gdm_lte_emulate_arp()
- Use ALIGN() macro for dummy_cnt in up_to_host()
- Error handling in init_usb()
- Explain reason for multiples of 512 bytes in alloc_tx_struct()
- Review use of atomic allocation for tx structs
- No error checking for alloc_tx_struct in do_tx()
Patches to:
Jonathan Kim <jonathankim@gctsemi.com>
Dean ahn <deanahn@gctsemi.com>
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include "gdm_endian.h"
void set_endian(struct gdm_endian *ed, u8 dev_endian)
{
u8 a[2] = {0x12, 0x34};
u8 b[2] = {0, };
u16 c = 0x1234;
if (dev_endian == ENDIANNESS_BIG)
ed->dev_ed = ENDIANNESS_BIG;
else
ed->dev_ed = ENDIANNESS_LITTLE;
memcpy(b, &c, 2);
if (a[0] != b[0])
ed->host_ed = ENDIANNESS_LITTLE;
else
ed->host_ed = ENDIANNESS_BIG;
}
u16 gdm_cpu_to_dev16(struct gdm_endian *ed, u16 x)
{
if (ed->dev_ed == ed->host_ed)
return x;
return Endian16_Swap(x);
}
u16 gdm_dev16_to_cpu(struct gdm_endian *ed, u16 x)
{
if (ed->dev_ed == ed->host_ed)
return x;
return Endian16_Swap(x);
}
u32 gdm_cpu_to_dev32(struct gdm_endian *ed, u32 x)
{
if (ed->dev_ed == ed->host_ed)
return x;
return Endian32_Swap(x);
}
u32 gdm_dev32_to_cpu(struct gdm_endian *ed, u32 x)
{
if (ed->dev_ed == ed->host_ed)
return x;
return Endian32_Swap(x);
}
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __GDM_ENDIAN_H__
#define __GDM_ENDIAN_H__
#include <linux/types.h>
#define Endian16_Swap(value) \
((((u16)((value) & 0x00FF)) << 8) | \
(((u16)((value) & 0xFF00)) >> 8))
#define Endian32_Swap(value) \
((((u32)((value) & 0x000000FF)) << 24) | \
(((u32)((value) & 0x0000FF00)) << 8) | \
(((u32)((value) & 0x00FF0000)) >> 8) | \
(((u32)((value) & 0xFF000000)) >> 24))
enum {
ENDIANNESS_MIN = 0,
ENDIANNESS_UNKNOWN,
ENDIANNESS_LITTLE,
ENDIANNESS_BIG,
ENDIANNESS_MIDDLE,
ENDIANNESS_MAX
};
struct gdm_endian {
u8 dev_ed;
u8 host_ed;
};
void set_endian(struct gdm_endian *ed, u8 dev_endian);
u16 gdm_cpu_to_dev16(struct gdm_endian *ed, u16 x);
u16 gdm_dev16_to_cpu(struct gdm_endian *ed, u16 x);
u32 gdm_cpu_to_dev32(struct gdm_endian *ed, u32 x);
u32 gdm_dev32_to_cpu(struct gdm_endian *ed, u32 x);
#endif /*__GDM_ENDIAN_H__*/
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/version.h>
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/uaccess.h>
#include <net/ndisc.h>
#include "gdm_lte.h"
#include "netlink_k.h"
#include "hci.h"
#include "hci_packet.h"
#include "gdm_endian.h"
#include "lte_ioctl.h"
/*
* Netlink protocol number
*/
#define NETLINK_LTE 30
/*
* Default MTU Size
*/
#define DEFAULT_MTU_SIZE 1500
#define gdm_dev_endian(n) (\
n->phy_dev->get_endian(n->phy_dev->priv_dev))
#define gdm_lte_hci_send(n, d, l) (\
n->phy_dev->send_hci_func(n->phy_dev->priv_dev, d, l, NULL, NULL))
#define gdm_lte_sdu_send(n, d, l, c, b, i, t) (\
n->phy_dev->send_sdu_func(n->phy_dev->priv_dev, d, l, n->pdn_table.dft_eps_id, 0, c, b, i, t))
#define gdm_lte_rcv_with_cb(n, c, b, e) (\
n->rcv_func(n->priv_dev, c, b, e))
#define IP_VERSION_4 4
#define IP_VERSION_6 6
static struct {
int ref_cnt;
struct sock *sock;
} lte_event;
static struct device_type wwan_type = {
.name = "wwan",
};
static int gdm_lte_open(struct net_device *dev)
{
netif_start_queue(dev);
return 0;
}
static int gdm_lte_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
return 0;
}
static void tx_complete(void *arg)
{
struct nic *nic = arg;
if (netif_queue_stopped(nic->netdev))
netif_wake_queue(nic->netdev);
}
static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
{
int ret;
ret = netif_rx_ni(skb);
if (ret == NET_RX_DROP) {
printk(KERN_ERR "glte: rx - dropped\n");
nic->stats.rx_dropped++;
} else {
nic->stats.rx_packets++;
nic->stats.rx_bytes += skb->len + ETH_HLEN;
}
return 0;
}
int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct arphdr *arp_in;
struct arphdr *arp_out;
struct arpdata {
u8 ar_sha[ETH_ALEN];
u8 ar_sip[4];
u8 ar_tha[ETH_ALEN];
u8 ar_tip[4];
};
struct arpdata *arp_data_in;
struct arpdata *arp_data_out;
u8 arp_temp[60];
void *mac_header_data;
u32 mac_header_len;
/* Format the mac header so that it can be put to skb */
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
mac_header_data = &eth;
mac_header_len = ETH_HLEN;
}
/* Get the pointer of the original request */
arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len + sizeof(struct arphdr));
/* Get the pointer of the outgoing response */
arp_out = (struct arphdr *)arp_temp;
arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
/* Copy the arp header */
memcpy(arp_out, arp_in, sizeof(struct arphdr));
arp_out->ar_op = htons(ARPOP_REPLY);
/* Copy the arp payload: based on 2 bytes of mac and fill the IP */
arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
/* Fill the destination mac with source mac of the received packet */
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
/* Fill the source mac with nic's source mac */
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
/* Alloc skb and reserve align */
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
memcpy(skb_put(skb_out, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb_out, sizeof(struct arphdr)), arp_out, sizeof(struct arphdr));
memcpy(skb_put(skb_out, sizeof(struct arpdata)), arp_data_out, sizeof(struct arpdata));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
int icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
{
unsigned short *w = ptr;
int sum = 0;
int i;
union {
struct {
u8 ph_src[16];
u8 ph_dst[16];
u32 ph_len;
u8 ph_zero[3];
u8 ph_nxt;
} ph __packed;
u16 pa[20];
} pseudo_header;
memset(&pseudo_header, 0, sizeof(pseudo_header));
memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
pseudo_header.ph.ph_len = ipv6->payload_len;
pseudo_header.ph.ph_nxt = ipv6->nexthdr;
w = (u16 *)&pseudo_header;
for (i = 0; i < sizeof(pseudo_header.pa) / sizeof(pseudo_header.pa[0]); i++)
sum += pseudo_header.pa[i];
w = ptr;
while (len > 1) {
sum += *w++;
len -= 2;
}
sum = (sum >> 16) + (sum & 0xFFFF);
sum += (sum >> 16);
sum = ~sum & 0xffff;
return sum;
}
int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct neighbour_advertisement {
u8 target_address[16];
u8 type;
u8 length;
u8 link_layer_address[6];
};
struct neighbour_advertisement na;
struct neighbour_solicitation {
u8 target_address[16];
};
struct neighbour_solicitation *ns;
struct ipv6hdr *ipv6_in;
struct ipv6hdr ipv6_out;
struct icmp6hdr *icmp6_in;
struct icmp6hdr icmp6_out;
void *mac_header_data;
u32 mac_header_len;
/* Format the mac header so that it can be put to skb */
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
return -1;
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
if (ntohs(eth.h_proto) != ETH_P_IPV6)
return -1;
mac_header_data = &eth;
mac_header_len = ETH_HLEN;
}
/* Check if this is IPv6 ICMP packet */
ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
return -1;
/* Check if this is NDP packet */
icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len + sizeof(struct ipv6hdr));
if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
return -1;
} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) { /* Check NS */
u8 icmp_na[sizeof(struct icmp6hdr) + sizeof(struct neighbour_advertisement)];
u8 zero_addr8[16] = {0,};
if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
/* Duplicate Address Detection: Source IP is all zero */
return 0;
icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
icmp6_out.icmp6_code = 0;
icmp6_out.icmp6_cksum = 0;
icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000); /* R=0, S=1, O=1 */
ns = (struct neighbour_solicitation *)(skb_in->data + mac_header_len + sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
memcpy(&na.target_address, ns->target_address, 16);
na.type = 0x02;
na.length = 1;
na.link_layer_address[0] = 0x00;
na.link_layer_address[1] = 0x0a;
na.link_layer_address[2] = 0x3b;
na.link_layer_address[3] = 0xaf;
na.link_layer_address[4] = 0x63;
na.link_layer_address[5] = 0xc7;
memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
memcpy(ipv6_out.daddr.in6_u.u6_addr8, ipv6_in->saddr.in6_u.u6_addr8, 16);
ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) + sizeof(struct neighbour_advertisement));
memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
memcpy(icmp_na + sizeof(struct icmp6hdr), &na, sizeof(struct neighbour_advertisement));
icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out, (u16 *)icmp_na, sizeof(icmp_na));
} else {
return -1;
}
/* Fill the destination mac with source mac of the received packet */
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
/* Fill the source mac with nic's source mac */
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
/* Alloc skb and reserve align */
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
memcpy(skb_put(skb_out, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb_out, sizeof(struct ipv6hdr)), &ipv6_out, sizeof(struct ipv6hdr));
memcpy(skb_put(skb_out, sizeof(struct icmp6hdr)), &icmp6_out, sizeof(struct icmp6hdr));
memcpy(skb_put(skb_out, sizeof(struct neighbour_advertisement)), &na, sizeof(struct neighbour_advertisement));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
{
struct nic *nic = netdev_priv(dev);
struct ethhdr *eth;
struct vlan_ethhdr *vlan_eth;
struct iphdr *ip;
struct ipv6hdr *ipv6;
int mac_proto;
void *network_data;
u32 nic_type = 0;
/* NIC TYPE is based on the nic_id of this net_device */
nic_type = 0x00000010 | nic->nic_id;
/* Get ethernet protocol */
eth = (struct ethhdr *)skb->data;
if (ntohs(eth->h_proto) == ETH_P_8021Q) {
vlan_eth = (struct vlan_ethhdr *)skb->data;
mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
network_data = skb->data + VLAN_ETH_HLEN;
nic_type |= NIC_TYPE_F_VLAN;
} else {
mac_proto = ntohs(eth->h_proto);
network_data = skb->data + ETH_HLEN;
}
/* Process packet for nic type */
switch (mac_proto) {
case ETH_P_ARP:
nic_type |= NIC_TYPE_ARP;
break;
case ETH_P_IP:
nic_type |= NIC_TYPE_F_IPV4;
ip = (struct iphdr *)network_data;
/* Check DHCPv4 */
if (ip->protocol == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(network_data + sizeof(struct iphdr));
if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
case ETH_P_IPV6:
nic_type |= NIC_TYPE_F_IPV6;
ipv6 = (struct ipv6hdr *)network_data;
if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
struct icmp6hdr *icmp6 = (struct icmp6hdr *)(network_data + sizeof(struct ipv6hdr));
if (/*icmp6->icmp6_type == NDISC_ROUTER_SOLICITATION || */
icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
nic_type |= NIC_TYPE_ICMPV6;
} else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
struct udphdr *udp = (struct udphdr *)(network_data + sizeof(struct ipv6hdr));
if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
default:
break;
}
return nic_type;
}
static int gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
u32 nic_type;
void *data_buf;
int data_len;
int idx;
int ret = 0;
nic_type = gdm_lte_tx_nic_type(dev, skb);
if (nic_type == 0) {
printk(KERN_ERR "glte: tx - invalid nic_type\n");
return -1;
}
if (nic_type & NIC_TYPE_ARP) {
if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
if (nic_type & NIC_TYPE_ICMPV6) {
if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
/*
Need byte shift (that is, remove VLAN tag) if there is one
For the case of ARP, this breaks the offset as vlan_ethhdr+4 is treated as ethhdr
However, it shouldn't be a problem as the reponse starts from arp_hdr and ethhdr
is created by this driver based on the NIC mac
*/
if (nic_type & NIC_TYPE_F_VLAN) {
struct vlan_ethhdr *vlan_eth = (struct vlan_ethhdr *)skb->data;
nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
} else {
nic->vlan_id = 0;
data_buf = skb->data;
data_len = skb->len;
}
/* If it is a ICMPV6 packet, clear all the other bits : for backward compatibilty with the firmware */
if (nic_type & NIC_TYPE_ICMPV6)
nic_type = NIC_TYPE_ICMPV6;
/* If it is not a dhcp packet, clear all the flag bits : original NIC, otherwise the special flag (IPVX | DHCP) */
if (!(nic_type & NIC_TYPE_F_DHCP))
nic_type &= NIC_TYPE_MASK;
sscanf(dev->name, "lte%d", &idx);
ret = gdm_lte_sdu_send(nic,
data_buf,
data_len,
tx_complete,
nic,
idx,
nic_type);
if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
netif_stop_queue(dev);
if (ret == TX_NO_BUFFER)
ret = 0;
else
ret = -ENOSPC;
} else if (ret == TX_NO_DEV) {
ret = -ENODEV;
}
/* Updates tx stats */
if (ret) {
nic->stats.tx_dropped++;
} else {
nic->stats.tx_packets++;
nic->stats.tx_bytes += data_len;
}
dev_kfree_skb(skb);
return 0;
}
static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
return &nic->stats;
}
static void get_dev_endian(struct data_t *data, struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
unsigned long ret;
ret = copy_to_user(data->buf, gdm_dev_endian(nic), sizeof(struct dev_endian_t));
if (ret)
printk(KERN_INFO "glte: state - failed to copy\n");
}
static int gdm_lte_ioctl_get_data(struct wm_req_t *req, struct net_device *dev)
{
u16 id = req->data_id;
switch (id) {
case GET_ENDIAN_INFO:
/* required for the user space application to find out device endian */
get_dev_endian(&req->data, dev);
break;
default:
printk(KERN_ERR "glte: ioctl - unknown type %d\n", id);
break;
}
return 0;
}
static int gdm_lte_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct wm_req_t *req = (struct wm_req_t *)ifr;
if (cmd != SIOCLTEIOCTL || req->cmd != SIOCG_DATA || req->data_id >= 100)
return -EOPNOTSUPP;
return gdm_lte_ioctl_get_data(req, dev);
}
static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
{
struct nic *nic = netdev_priv(dev);
struct hci_packet *hci = (struct hci_packet *)buf;
int idx;
sscanf(dev->name, "lte%d", &idx);
return netlink_send(lte_event.sock, idx, 0, buf,
gdm_dev16_to_cpu(gdm_dev_endian(nic), hci->len) + HCI_HEADER_SIZE);
}
static void gdm_lte_event_rcv(struct net_device *dev, u16 type, void *msg, int len)
{
struct nic *nic = netdev_priv(dev);
gdm_lte_hci_send(nic, msg, len);
}
int gdm_lte_event_init(void)
{
if (lte_event.ref_cnt == 0)
lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
if (lte_event.sock) {
lte_event.ref_cnt++;
return 0;
}
printk(KERN_ERR "glte: event init failed\n");
return -1;
}
void gdm_lte_event_exit(void)
{
if (lte_event.sock && --lte_event.ref_cnt == 0) {
netlink_exit(lte_event.sock);
lte_event.sock = NULL;
}
}
static u8 find_dev_index(u32 nic_type)
{
u8 index;
index = (u8)(nic_type & 0x0000000f);
if (index > MAX_NIC_TYPE)
index = 0;
return index;
}
static void gdm_lte_netif_rx(struct net_device *dev, char *buf, int len, int flagged_nic_type)
{
u32 nic_type;
struct nic *nic;
struct sk_buff *skb;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
void *mac_header_data;
u32 mac_header_len;
char ip_version = 0;
nic_type = flagged_nic_type & NIC_TYPE_MASK;
nic = netdev_priv(dev);
if (flagged_nic_type & NIC_TYPE_F_DHCP) {
/* Change the destination mac address with the one requested the IP */
if (flagged_nic_type & NIC_TYPE_F_IPV4) {
struct dhcp_packet {
u8 op; /* BOOTREQUEST or BOOTREPLY */
u8 htype; /* hardware address type. 1 = 10mb ethernet */
u8 hlen; /* hardware address length */
u8 hops; /* used by relay agents only */
u32 xid; /* unique id */
u16 secs; /* elapsed since client began acquisition/renewal */
u16 flags; /* only one flag so far: */
#define BROADCAST_FLAG 0x8000 /* "I need broadcast replies" */
u32 ciaddr; /* client IP (if client is in BOUND, RENEW or REBINDING state) */
u32 yiaddr; /* 'your' (client) IP address */
/* IP address of next server to use in bootstrap, returned in DHCPOFFER, DHCPACK by server */
u32 siaddr_nip;
u32 gateway_nip; /* relay agent IP address */
u8 chaddr[16]; /* link-layer client hardware address (MAC) */
u8 sname[64]; /* server host name (ASCIZ) */
u8 file[128]; /* boot file name (ASCIZ) */
u32 cookie; /* fixed first four option bytes (99,130,83,99 dec) */
} __packed;
void *addr = buf + sizeof(struct iphdr) + sizeof(struct udphdr) + offsetof(struct dhcp_packet, chaddr);
memcpy(nic->dest_mac_addr, addr, ETH_ALEN);
}
}
if (nic->vlan_id > 0) {
mac_header_data = (void *)&vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
mac_header_data = (void *)&eth;
mac_header_len = ETH_HLEN;
}
/* Format the data so that it can be put to skb */
memcpy(mac_header_data, nic->dest_mac_addr, ETH_ALEN);
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
if (nic_type == NIC_TYPE_ARP) {
/* Should be response: Only happens because there was a request from the host */
eth.h_proto = htons(ETH_P_ARP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
} else {
ip_version = buf[0] >> 4;
if (ip_version == IP_VERSION_4) {
eth.h_proto = htons(ETH_P_IP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
} else if (ip_version == IP_VERSION_6) {
eth.h_proto = htons(ETH_P_IPV6);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
} else {
printk(KERN_ERR "glte: Unknown IP version %d\n", ip_version);
return;
}
}
/* Alloc skb and reserve align */
skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
if (!skb)
return;
skb_reserve(skb, NET_IP_ALIGN);
memcpy(skb_put(skb, mac_header_len), mac_header_data, mac_header_len);
memcpy(skb_put(skb, len), buf, len);
skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb->dev = dev;
skb_reset_mac_header(skb);
skb_pull(skb, ETH_HLEN);
gdm_lte_rx(skb, nic, nic_type);
}
static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct net_device *dev;
struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
struct sdu *sdu = NULL;
u8 *data = (u8 *)multi_sdu->data;
u16 i = 0;
u16 num_packet;
u16 hci_len;
u16 cmd_evt;
u32 nic_type;
u8 index;
hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), multi_sdu->len);
num_packet = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), multi_sdu->num_packet);
for (i = 0; i < num_packet; i++) {
sdu = (struct sdu *)data;
cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->cmd_evt);
hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->len);
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->nic_type);
if (cmd_evt != LTE_RX_SDU) {
printk(KERN_ERR "glte: rx sdu wrong hci %04x\n", cmd_evt);
return;
}
if (hci_len < 12) {
printk(KERN_ERR "glte: rx sdu invalid len %d\n", hci_len);
return;
}
index = find_dev_index(nic_type);
if (index < MAX_NIC_TYPE) {
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, (char *)sdu->data, (int)(hci_len-12), nic_type);
} else {
printk(KERN_ERR "glte: rx sdu invalid nic_type : %x\n", nic_type);
}
data += ((hci_len+3) & 0xfffc) + HCI_HEADER_SIZE;
}
}
static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
{
struct nic *nic = netdev_priv(dev);
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
if (pdn_table->activate) {
nic->pdn_table.activate = pdn_table->activate;
nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(gdm_dev_endian(nic), pdn_table->dft_eps_id);
nic->pdn_table.nic_type = gdm_dev32_to_cpu(gdm_dev_endian(nic), pdn_table->nic_type);
printk(KERN_INFO "glte: pdn %s activated, nic_type=0x%x\n",
dev->name, nic->pdn_table.nic_type);
} else {
memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
printk(KERN_INFO "glte: pdn %s deactivated\n",
dev->name);
}
}
static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct hci_packet *hci = (struct hci_packet *)buf;
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
struct sdu *sdu;
struct net_device *dev;
int ret = 0;
u16 cmd_evt;
u32 nic_type;
u8 index;
if (!len)
return ret;
cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), hci->cmd_evt);
dev = phy_dev->dev[0];
if (dev == NULL)
return 0;
switch (cmd_evt) {
case LTE_RX_SDU:
sdu = (struct sdu *)hci->data;
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), sdu->nic_type);
index = find_dev_index(nic_type);
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, hci->data, len, nic_type);
break;
case LTE_RX_MULTI_SDU:
gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
break;
case LTE_LINK_ON_OFF_INDICATION:
{
struct hci_connect_ind *connect_ind = (struct hci_connect_ind *)buf;
printk(KERN_INFO "glte: link %s\n",
connect_ind->connect ? "on" : "off");
}
break;
case LTE_PDN_TABLE_IND:
pdn_table = (struct hci_pdn_table_ind *)buf;
nic_type = gdm_dev32_to_cpu(phy_dev->get_endian(phy_dev->priv_dev), pdn_table->nic_type);
index = find_dev_index(nic_type);
dev = phy_dev->dev[index];
gdm_lte_pdn_table(dev, buf, len);
/* Fall through */
default:
ret = gdm_lte_event_send(dev, buf, len);
break;
}
return ret;
}
static int rx_complete(void *arg, void *data, int len, int context)
{
struct phy_dev *phy_dev = (struct phy_dev *)arg;
return gdm_lte_receive_pkt(phy_dev, (char *)data, len);
}
void start_rx_proc(struct phy_dev *phy_dev)
{
int i;
for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
gdm_lte_rcv_with_cb(phy_dev, rx_complete, phy_dev, USB_COMPLETE);
}
static struct net_device_ops gdm_netdev_ops = {
.ndo_open = gdm_lte_open,
.ndo_stop = gdm_lte_close,
.ndo_set_config = gdm_lte_set_config,
.ndo_start_xmit = gdm_lte_tx,
.ndo_get_stats = gdm_lte_stats,
.ndo_do_ioctl = gdm_lte_ioctl,
};
static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest, u8 *mac_address, u8 index)
{
/* Form the dev_addr */
if (!mac_address)
memcpy(dev_addr, gdm_lte_macaddr, ETH_ALEN);
else
memcpy(dev_addr, mac_address, ETH_ALEN);
/* The last byte of the mac address should be less than or equal to 0xFC */
dev_addr[ETH_ALEN-1] += index;
/* Create random nic src and copy the first 3 bytes to be the same as dev_addr */
random_ether_addr(nic_src);
memcpy(nic_src, dev_addr, 3);
/* Copy the nic_dest from dev_addr*/
memcpy(nic_dest, dev_addr, ETH_ALEN);
}
static void validate_mac_address(u8 *mac_address)
{
/* if zero address or multicast bit set, restore the default value */
if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
printk(KERN_ERR "glte: MAC invalid, restoring default\n");
memcpy(mac_address, gdm_lte_macaddr, 6);
}
}
int register_lte_device(struct phy_dev *phy_dev, struct device *dev, u8 *mac_address)
{
struct nic *nic;
struct net_device *net;
char pdn_dev_name[16];
int ret = 0;
u8 index;
validate_mac_address(mac_address);
for (index = 0; index < MAX_NIC_TYPE; index++) {
/* Create device name lteXpdnX */
sprintf(pdn_dev_name, "lte%%dpdn%d", index);
/* Allocate netdev */
net = alloc_netdev(sizeof(struct nic), pdn_dev_name, ether_setup);
if (net == NULL) {
printk(KERN_ERR "glte: alloc_netdev failed\n");
ret = -ENOMEM;
goto err;
}
net->netdev_ops = &gdm_netdev_ops;
net->flags &= ~IFF_MULTICAST;
net->mtu = DEFAULT_MTU_SIZE;
nic = netdev_priv(net);
memset(nic, 0, sizeof(struct nic));
nic->netdev = net;
nic->phy_dev = phy_dev;
nic->nic_id = index;
form_mac_address(
net->dev_addr,
nic->src_mac_addr,
nic->dest_mac_addr,
mac_address,
index);
SET_NETDEV_DEV(net, dev);
SET_NETDEV_DEVTYPE(net, &wwan_type);
ret = register_netdev(net);
if (ret)
goto err;
netif_carrier_on(net);
phy_dev->dev[index] = net;
}
return 0;
err:
unregister_lte_device(phy_dev);
return ret;
}
void unregister_lte_device(struct phy_dev *phy_dev)
{
struct net_device *net;
int index;
for (index = 0; index < MAX_NIC_TYPE; index++) {
net = phy_dev->dev[index];
if (net == NULL)
continue;
unregister_netdev(net);
free_netdev(net);
}
}
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _GDM_LTE_H_
#define _GDM_LTE_H_
#include <linux/netdevice.h>
#include <linux/version.h>
#include <linux/types.h>
#include "gdm_endian.h"
#define MAX_NIC_TYPE 4
#define MAX_RX_SUBMIT_COUNT 3
#define DRIVER_VERSION "3.7.17.0"
enum TX_ERROR_CODE {
TX_NO_ERROR = 0,
TX_NO_DEV,
TX_NO_SPC,
TX_NO_BUFFER,
};
enum CALLBACK_CONTEXT {
KERNEL_THREAD = 0,
USB_COMPLETE,
};
struct pdn_table {
u8 activate;
u32 dft_eps_id;
u32 nic_type;
} __packed;
struct nic;
struct phy_dev {
void *priv_dev;
struct net_device *dev[MAX_NIC_TYPE];
int (*send_hci_func)(void *priv_dev, void *data, int len,
void (*cb)(void *cb_data), void *cb_data);
int (*send_sdu_func)(void *priv_dev, void *data, int len,
unsigned int dftEpsId, unsigned int epsId,
void (*cb)(void *cb_data), void *cb_data,
int dev_idx, int nic_type);
int (*rcv_func)(void *priv_dev,
int (*cb)(void *cb_data, void *data, int len, int context),
void *cb_data, int context);
struct gdm_endian *(*get_endian)(void *priv_dev);
};
struct nic {
struct net_device *netdev;
struct phy_dev *phy_dev;
struct net_device_stats stats;
struct pdn_table pdn_table;
u8 dest_mac_addr[ETH_ALEN];
u8 src_mac_addr[ETH_ALEN];
u32 nic_id;
u16 vlan_id;
};
int gdm_lte_event_init(void);
void gdm_lte_event_exit(void);
void start_rx_proc(struct phy_dev *phy_dev);
int register_lte_device(struct phy_dev *phy_dev, struct device *dev, u8 *mac_address);
void unregister_lte_device(struct phy_dev *phy_dev);
#endif /* _GDM_LTE_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/usb.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/slab.h>
#include <linux/usb/cdc.h>
#include "gdm_mux.h"
#include "gdm_tty.h"
struct workqueue_struct *mux_rx_wq;
static u16 packet_type[TTY_MAX_COUNT] = {0xF011, 0xF010};
#define USB_DEVICE_CDC_DATA(vid, pid) \
.match_flags = \
USB_DEVICE_ID_MATCH_DEVICE |\
USB_DEVICE_ID_MATCH_INT_CLASS |\
USB_DEVICE_ID_MATCH_INT_SUBCLASS,\
.idVendor = vid,\
.idProduct = pid,\
.bInterfaceClass = USB_CLASS_COMM,\
.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM
static const struct usb_device_id id_table[] = {
{ USB_DEVICE_CDC_DATA(0x1076, 0x8000) }, /* GCT GDM7240 */
{ USB_DEVICE_CDC_DATA(0x1076, 0x8f00) }, /* GCT GDM7243 */
{ USB_DEVICE_CDC_DATA(0x1076, 0x9000) }, /* GCT GDM7243 */
{ USB_DEVICE_CDC_DATA(0x1d74, 0x2300) }, /* LGIT Phoenix */
{}
};
MODULE_DEVICE_TABLE(usb, id_table);
int packet_type_to_index(u16 packetType)
{
int i;
for (i = 0; i < TTY_MAX_COUNT; i++) {
if (packet_type[i] == packetType)
return i;
}
return -1;
}
static struct mux_tx *alloc_mux_tx(int len)
{
struct mux_tx *t = NULL;
t = kzalloc(sizeof(struct mux_tx), GFP_ATOMIC);
if (!t)
return NULL;
t->urb = usb_alloc_urb(0, GFP_ATOMIC);
t->buf = kmalloc(MUX_TX_MAX_SIZE, GFP_ATOMIC);
if (!t->urb || !t->buf) {
usb_free_urb(t->urb);
kfree(t->buf);
kfree(t);
return NULL;
}
return t;
}
static void free_mux_tx(struct mux_tx *t)
{
if (t) {
usb_free_urb(t->urb);
kfree(t->buf);
kfree(t);
}
}
static struct mux_rx *alloc_mux_rx(void)
{
struct mux_rx *r = NULL;
r = kzalloc(sizeof(struct mux_rx), GFP_ATOMIC);
if (!r)
return NULL;
r->urb = usb_alloc_urb(0, GFP_ATOMIC);
r->buf = kmalloc(MUX_RX_MAX_SIZE, GFP_ATOMIC);
if (!r->urb || !r->buf) {
usb_free_urb(r->urb);
kfree(r->buf);
kfree(r);
return NULL;
}
return r;
}
static void free_mux_rx(struct mux_rx *r)
{
if (r) {
usb_free_urb(r->urb);
kfree(r->buf);
kfree(r);
}
}
static struct mux_rx *get_rx_struct(struct rx_cxt *rx)
{
struct mux_rx *r;
unsigned long flags;
spin_lock_irqsave(&rx->free_list_lock, flags);
if (list_empty(&rx->rx_free_list)) {
spin_unlock_irqrestore(&rx->free_list_lock, flags);
return NULL;
}
r = list_entry(rx->rx_free_list.prev, struct mux_rx, free_list);
list_del(&r->free_list);
spin_unlock_irqrestore(&rx->free_list_lock, flags);
return r;
}
static void put_rx_struct(struct rx_cxt *rx, struct mux_rx *r)
{
unsigned long flags;
spin_lock_irqsave(&rx->free_list_lock, flags);
list_add_tail(&r->free_list, &rx->rx_free_list);
spin_unlock_irqrestore(&rx->free_list_lock, flags);
}
static int up_to_host(struct mux_rx *r)
{
struct mux_dev *mux_dev = (struct mux_dev *)r->mux_dev;
struct mux_pkt_header *mux_header;
unsigned int start_flag;
unsigned int payload_size;
unsigned short packet_type;
int remain;
int dummy_cnt;
u32 packet_size_sum = r->offset;
int index;
int ret = TO_HOST_INVALID_PACKET;
int len = r->len;
while (1) {
mux_header = (struct mux_pkt_header *)(r->buf + packet_size_sum);
start_flag = __le32_to_cpu(mux_header->start_flag);
payload_size = __le32_to_cpu(mux_header->payload_size);
packet_type = __le16_to_cpu(mux_header->packet_type);
if (start_flag != START_FLAG) {
printk(KERN_ERR "glte: invalid START_FLAG %x\n",
start_flag);
break;
}
remain = (MUX_HEADER_SIZE + payload_size) % 4;
dummy_cnt = remain ? (4-remain) : 0;
if (len - packet_size_sum <
MUX_HEADER_SIZE + payload_size + dummy_cnt) {
printk(KERN_ERR "glte: invalid payload : %d %d %04x\n",
payload_size, len,
packet_type
);
break;
}
index = packet_type_to_index(packet_type);
if (index < 0) {
printk(KERN_ERR "glte: invalid index %d\n", index);
break;
}
ret = r->callback(mux_header->data,
payload_size,
index,
mux_dev->minor[index],
RECV_PACKET_PROCESS_CONTINUE
);
if (ret == TO_HOST_BUFFER_REQUEST_FAIL) {
r->offset += packet_size_sum;
break;
}
packet_size_sum += MUX_HEADER_SIZE + payload_size + dummy_cnt;
if (len - packet_size_sum <= MUX_HEADER_SIZE + 2) {
ret = r->callback(NULL,
0,
index,
mux_dev->minor[index],
RECV_PACKET_PROCESS_COMPLETE
);
break;
}
}
return ret;
}
static void do_rx(struct work_struct *work)
{
struct mux_dev *mux_dev =
container_of(work, struct mux_dev , work_rx.work);
struct mux_rx *r;
struct rx_cxt *rx = (struct rx_cxt *)&mux_dev->rx;
unsigned long flags;
int ret = 0;
while (1) {
spin_lock_irqsave(&rx->to_host_lock, flags);
if (list_empty(&rx->to_host_list)) {
spin_unlock_irqrestore(&rx->to_host_lock, flags);
break;
}
r = list_entry(rx->to_host_list.next, struct mux_rx, to_host_list);
list_del(&r->to_host_list);
spin_unlock_irqrestore(&rx->to_host_lock, flags);
ret = up_to_host(r);
if (ret == TO_HOST_BUFFER_REQUEST_FAIL)
printk(KERN_ERR "glte: failed to send mux data to host\n");
else
put_rx_struct(rx, r);
}
}
static void remove_rx_submit_list(struct mux_rx *r, struct rx_cxt *rx)
{
unsigned long flags;
struct mux_rx *r_remove, *r_remove_next;
spin_lock_irqsave(&rx->submit_list_lock, flags);
list_for_each_entry_safe(r_remove, r_remove_next, &rx->rx_submit_list, rx_submit_list) {
if (r == r_remove)
list_del(&r->rx_submit_list);
}
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
}
static void gdm_mux_rcv_complete(struct urb *urb)
{
struct mux_rx *r = urb->context;
struct mux_dev *mux_dev = (struct mux_dev *)r->mux_dev;
struct rx_cxt *rx = &mux_dev->rx;
unsigned long flags;
remove_rx_submit_list(r, rx);
if (urb->status) {
if (mux_dev->usb_state == PM_NORMAL)
printk(KERN_ERR "glte: gdm_mux_rcv_complete urb status error %d\n", urb->status);
put_rx_struct(rx, r);
} else {
r->len = r->urb->actual_length;
spin_lock_irqsave(&rx->to_host_lock, flags);
list_add_tail(&r->to_host_list, &rx->to_host_list);
queue_work(mux_rx_wq, &mux_dev->work_rx.work);
spin_unlock_irqrestore(&rx->to_host_lock, flags);
}
}
static int gdm_mux_recv(void *priv_dev,
int (*cb)(void *data, int len, int tty_index, int minor, int complete)
)
{
struct mux_dev *mux_dev = priv_dev;
struct usb_device *usbdev = mux_dev->usbdev;
struct mux_rx *r;
struct rx_cxt *rx = &mux_dev->rx;
unsigned long flags;
int ret;
if (!usbdev) {
printk(KERN_ERR "glte: device is disconnected\n");
return -ENODEV;
}
r = get_rx_struct(rx);
if (!r) {
printk(KERN_ERR "glte: get_rx_struct fail\n");
return -ENOMEM;
}
r->offset = 0;
r->mux_dev = (void *)mux_dev;
r->callback = cb;
mux_dev->rx_cb = cb;
usb_fill_bulk_urb(r->urb,
usbdev,
usb_rcvbulkpipe(usbdev, 0x86),
r->buf,
MUX_RX_MAX_SIZE,
gdm_mux_rcv_complete,
r);
spin_lock_irqsave(&rx->submit_list_lock, flags);
list_add_tail(&r->rx_submit_list, &rx->rx_submit_list);
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
ret = usb_submit_urb(r->urb, GFP_KERNEL);
if (ret) {
spin_lock_irqsave(&rx->submit_list_lock, flags);
list_del(&r->rx_submit_list);
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
put_rx_struct(rx, r);
printk(KERN_ERR "glte: usb_submit_urb ret=%d\n", ret);
}
usb_mark_last_busy(usbdev);
return ret;
}
static void gdm_mux_send_complete(struct urb *urb)
{
struct mux_tx *t = urb->context;
if (urb->status == -ECONNRESET) {
printk(KERN_INFO "glte: CONNRESET\n");
free_mux_tx(t);
return;
}
if (t->callback)
t->callback(t->cb_data);
free_mux_tx(t);
}
static int gdm_mux_send(void *priv_dev, void *data, int len, int tty_index,
void (*cb)(void *data), void *cb_data)
{
struct mux_dev *mux_dev = priv_dev;
struct usb_device *usbdev = mux_dev->usbdev;
struct mux_pkt_header *mux_header;
struct mux_tx *t = NULL;
static u32 seq_num = 1;
int remain;
int dummy_cnt;
int total_len;
int ret;
unsigned long flags;
if (mux_dev->usb_state == PM_SUSPEND) {
ret = usb_autopm_get_interface(mux_dev->intf);
if (!ret)
usb_autopm_put_interface(mux_dev->intf);
}
spin_lock_irqsave(&mux_dev->write_lock, flags);
remain = (MUX_HEADER_SIZE + len) % 4;
dummy_cnt = remain ? (4 - remain) : 0;
total_len = len + MUX_HEADER_SIZE + dummy_cnt;
t = alloc_mux_tx(total_len);
if (!t) {
printk(KERN_ERR "glte: alloc_mux_tx fail\n");
spin_unlock_irqrestore(&mux_dev->write_lock, flags);
return -ENOMEM;
}
mux_header = (struct mux_pkt_header *)t->buf;
mux_header->start_flag = __cpu_to_le32(START_FLAG);
mux_header->seq_num = __cpu_to_le32(seq_num++);
mux_header->payload_size = __cpu_to_le32((u32)len);
mux_header->packet_type = __cpu_to_le16(packet_type[tty_index]);
memcpy(t->buf+MUX_HEADER_SIZE, data, len);
memset(t->buf+MUX_HEADER_SIZE+len, 0, dummy_cnt);
t->len = total_len;
t->callback = cb;
t->cb_data = cb_data;
usb_fill_bulk_urb(t->urb,
usbdev,
usb_sndbulkpipe(usbdev, 5),
t->buf,
total_len,
gdm_mux_send_complete,
t);
ret = usb_submit_urb(t->urb, GFP_KERNEL);
spin_unlock_irqrestore(&mux_dev->write_lock, flags);
if (ret)
printk(KERN_ERR "glte: usb_submit_urb Error : %d\n", ret);
usb_mark_last_busy(usbdev);
return ret;
}
static int gdm_mux_send_control(void *priv_dev, int request, int value, void *buf, int len)
{
struct mux_dev *mux_dev = priv_dev;
struct usb_device *usbdev = mux_dev->usbdev;
int ret;
ret = usb_control_msg(usbdev,
usb_sndctrlpipe(usbdev, 0),
request,
USB_RT_ACM,
value,
2,
buf,
len,
5000
);
if (ret < 0)
printk(KERN_ERR "glte: usb_control_msg error : %d\n", ret);
return ret < 0 ? ret : 0;
}
static void release_usb(struct mux_dev *mux_dev)
{
struct rx_cxt *rx = &mux_dev->rx;
struct mux_rx *r, *r_next;
unsigned long flags;
cancel_delayed_work(&mux_dev->work_rx);
spin_lock_irqsave(&rx->submit_list_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->rx_submit_list, rx_submit_list) {
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
usb_kill_urb(r->urb);
spin_lock_irqsave(&rx->submit_list_lock, flags);
}
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
spin_lock_irqsave(&rx->free_list_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->rx_free_list, free_list) {
list_del(&r->free_list);
free_mux_rx(r);
}
spin_unlock_irqrestore(&rx->free_list_lock, flags);
spin_lock_irqsave(&rx->to_host_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->to_host_list, to_host_list) {
if (r->mux_dev == (void *)mux_dev) {
list_del(&r->to_host_list);
free_mux_rx(r);
}
}
spin_unlock_irqrestore(&rx->to_host_lock, flags);
}
static int init_usb(struct mux_dev *mux_dev)
{
struct mux_rx *r;
struct rx_cxt *rx = &mux_dev->rx;
int ret = 0;
int i;
spin_lock_init(&mux_dev->write_lock);
INIT_LIST_HEAD(&rx->to_host_list);
INIT_LIST_HEAD(&rx->rx_submit_list);
INIT_LIST_HEAD(&rx->rx_free_list);
spin_lock_init(&rx->to_host_lock);
spin_lock_init(&rx->submit_list_lock);
spin_lock_init(&rx->free_list_lock);
for (i = 0; i < MAX_ISSUE_NUM * 2; i++) {
r = alloc_mux_rx();
if (r == NULL) {
ret = -ENOMEM;
break;
}
list_add(&r->free_list, &rx->rx_free_list);
}
INIT_DELAYED_WORK(&mux_dev->work_rx, do_rx);
return ret;
}
static int gdm_mux_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct mux_dev *mux_dev = NULL;
struct tty_dev *tty_dev = NULL;
u16 idVendor, idProduct;
int bInterfaceNumber;
int ret = 0;
int i;
struct usb_device *usbdev = interface_to_usbdev(intf);
bInterfaceNumber = intf->cur_altsetting->desc.bInterfaceNumber;
idVendor = __le16_to_cpu(usbdev->descriptor.idVendor);
idProduct = __le16_to_cpu(usbdev->descriptor.idProduct);
printk(KERN_INFO "glte: mux vid = 0x%04x pid = 0x%04x\n",
idVendor, idProduct);
if (bInterfaceNumber != 2) {
ret = -ENODEV;
goto out;
}
mux_dev = kzalloc(sizeof(struct mux_dev), GFP_KERNEL);
if (!mux_dev) {
ret = -ENOMEM;
goto out;
}
tty_dev = kzalloc(sizeof(struct tty_dev), GFP_KERNEL);
if (!tty_dev) {
kfree(mux_dev);
ret = -ENOMEM;
goto out;
}
mux_dev->usbdev = usbdev;
mux_dev->control_intf = intf;
ret = init_usb(mux_dev);
if (ret < 0)
goto out;
tty_dev->priv_dev = (void *)mux_dev;
tty_dev->send_func = gdm_mux_send;
tty_dev->recv_func = gdm_mux_recv;
tty_dev->send_control = gdm_mux_send_control;
if (register_lte_tty_device(tty_dev, &intf->dev) < 0) {
unregister_lte_tty_device(tty_dev);
mux_dev = tty_dev->priv_dev;
ret = -1;
goto out;
}
for (i = 0; i < TTY_MAX_COUNT; i++)
mux_dev->minor[i] = tty_dev->minor[i];
out:
if (ret < 0) {
kfree(tty_dev);
if (mux_dev) {
release_usb(mux_dev);
kfree(mux_dev);
}
} else {
mux_dev->intf = intf;
mux_dev->usb_state = PM_NORMAL;
}
usb_get_dev(usbdev);
usb_set_intfdata(intf, tty_dev);
return ret;
}
static void gdm_mux_disconnect(struct usb_interface *intf)
{
struct tty_dev *tty_dev;
struct mux_dev *mux_dev;
struct usb_device *usbdev = interface_to_usbdev(intf);
tty_dev = usb_get_intfdata(intf);
mux_dev = tty_dev->priv_dev;
release_usb(mux_dev);
unregister_lte_tty_device(tty_dev);
kfree(mux_dev);
kfree(tty_dev);
usb_put_dev(usbdev);
}
static int gdm_mux_suspend(struct usb_interface *intf, pm_message_t pm_msg)
{
struct tty_dev *tty_dev;
struct mux_dev *mux_dev;
struct rx_cxt *rx;
struct mux_rx *r, *r_next;
unsigned long flags;
tty_dev = usb_get_intfdata(intf);
mux_dev = tty_dev->priv_dev;
rx = &mux_dev->rx;
if (mux_dev->usb_state != PM_NORMAL) {
printk(KERN_ERR "glte: usb suspend - invalid state\n");
return -1;
}
mux_dev->usb_state = PM_SUSPEND;
spin_lock_irqsave(&rx->submit_list_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->rx_submit_list, rx_submit_list) {
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
usb_kill_urb(r->urb);
spin_lock_irqsave(&rx->submit_list_lock, flags);
}
spin_unlock_irqrestore(&rx->submit_list_lock, flags);
return 0;
}
static int gdm_mux_resume(struct usb_interface *intf)
{
struct tty_dev *tty_dev;
struct mux_dev *mux_dev;
u8 i;
tty_dev = usb_get_intfdata(intf);
mux_dev = tty_dev->priv_dev;
if (mux_dev->usb_state != PM_SUSPEND) {
printk(KERN_ERR "glte: usb resume - invalid state\n");
return -1;
}
mux_dev->usb_state = PM_NORMAL;
for (i = 0; i < MAX_ISSUE_NUM; i++)
gdm_mux_recv(mux_dev, mux_dev->rx_cb);
return 0;
}
static struct usb_driver gdm_mux_driver = {
.name = "gdm_mux",
.probe = gdm_mux_probe,
.disconnect = gdm_mux_disconnect,
.id_table = id_table,
.supports_autosuspend = 1,
.suspend = gdm_mux_suspend,
.resume = gdm_mux_resume,
.reset_resume = gdm_mux_resume,
};
static int __init gdm_usb_mux_init(void)
{
mux_rx_wq = create_workqueue("mux_rx_wq");
if (mux_rx_wq == NULL) {
printk(KERN_ERR "glte: work queue create fail");
return -1;
}
register_lte_tty_driver();
return usb_register(&gdm_mux_driver);
}
static void __exit gdm_usb_mux_exit(void)
{
unregister_lte_tty_driver();
if (mux_rx_wq) {
flush_workqueue(mux_rx_wq);
destroy_workqueue(mux_rx_wq);
}
usb_deregister(&gdm_mux_driver);
}
module_init(gdm_usb_mux_init);
module_exit(gdm_usb_mux_exit);
MODULE_DESCRIPTION("GCT LTE TTY Device Driver");
MODULE_LICENSE("GPL");
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _GDM_MUX_H_
#define _GDM_MUX_H_
#include <linux/types.h>
#include <linux/usb.h>
#include <linux/list.h>
#define PM_NORMAL 0
#define PM_SUSPEND 1
#define USB_RT_ACM (USB_TYPE_CLASS | USB_RECIP_INTERFACE)
#define START_FLAG 0xA512485A
#define MUX_HEADER_SIZE 14
#define MUX_TX_MAX_SIZE (1024*10)
#define MUX_RX_MAX_SIZE (1024*30)
#define AT_PKT_TYPE 0xF011
#define DM_PKT_TYPE 0xF010
#define RETRY_TIMER 30 /* msec */
struct mux_pkt_header {
unsigned int start_flag;
unsigned int seq_num;
unsigned int payload_size;
unsigned short packet_type;
unsigned char data[0];
};
struct mux_tx {
struct urb *urb;
u8 *buf;
int len;
void (*callback)(void *cb_data);
void *cb_data;
};
struct mux_rx {
struct list_head free_list;
struct list_head rx_submit_list;
struct list_head to_host_list;
struct urb *urb;
u8 *buf;
void *mux_dev;
u32 offset;
u32 len;
int (*callback)(void *data, int len, int tty_index, int minor, int complete);
};
struct rx_cxt {
struct list_head to_host_list;
struct list_head rx_submit_list;
struct list_head rx_free_list;
spinlock_t to_host_lock;
spinlock_t submit_list_lock;
spinlock_t free_list_lock;
};
struct mux_dev {
struct usb_device *usbdev;
struct usb_interface *control_intf;
struct usb_interface *data_intf;
struct rx_cxt rx;
struct delayed_work work_rx;
struct usb_interface *intf;
int usb_state;
int (*rx_cb)(void *data, int len, int tty_index, int minor, int complete);
spinlock_t write_lock;
u8 minor[2];
};
#endif /* _GDM_MUX_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb/cdc.h>
#include <linux/serial.h>
#include "gdm_tty.h"
#define GDM_TTY_MAJOR 0
#define GDM_TTY_MINOR 32
#define ACM_CTRL_DTR 0x01
#define ACM_CTRL_RTS 0x02
#define ACM_CTRL_DSR 0x02
#define ACM_CTRL_RI 0x08
#define ACM_CTRL_DCD 0x01
#define WRITE_SIZE 2048
#define MUX_TX_MAX_SIZE 2048
#define gdm_tty_send(n, d, l, i, c, b) (\
n->tty_dev->send_func(n->tty_dev->priv_dev, d, l, i, c, b))
#define gdm_tty_recv(n, c) (\
n->tty_dev->recv_func(n->tty_dev->priv_dev, c))
#define gdm_tty_send_control(n, r, v, d, l) (\
n->tty_dev->send_control(n->tty_dev->priv_dev, r, v, d, l))
#define acm_set_comm_feature(n, v) \
gdm_tty_send_control(n, 0x02, v, NULL, 0)
#define GDM_TTY_READY(tty_str) (tty_str && tty_str->tty_dev && tty_str->port.count)
struct tty_driver *g_tty_drv[TTY_MAX_COUNT] = {NULL, };
struct tty_str *g_tty_str[TTY_MAX_COUNT][GDM_TTY_MINOR] = {{NULL, }, };
static char *DRIVER_STRING[TTY_MAX_COUNT] = {"GCTATC", "GCTDM"};
static char *DEVICE_STRING[TTY_MAX_COUNT] = {"GCT-ATC", "GCT-DM"};
static DEFINE_MUTEX(open_mutex);
static struct tty_port_operations gdm_tty_port_ops = {
};
static int gdm_tty_open(struct tty_struct *tty, struct file *filp)
{
struct tty_str *tty_str = NULL;
int i;
int ret = 0;
mutex_lock(&open_mutex);
for (i = 0; i < TTY_MAX_COUNT; i++) {
if (!strcmp(tty->driver->driver_name, DRIVER_STRING[i])) {
tty_str = g_tty_str[i][tty->index];
break;
}
}
if (!tty_str) {
printk(KERN_INFO "glte: no tty device\n");
mutex_unlock(&open_mutex);
return -ENODEV;
}
set_bit(TTY_NO_WRITE_SPLIT, &tty->flags);
tty->driver_data = tty_str;
tty_port_tty_set(&tty_str->port, tty);
tty_str->port.count++;
set_bit(ASYNCB_INITIALIZED, &tty_str->port.flags);
ret = tty_port_block_til_ready(&tty_str->port, tty, filp);
mutex_unlock(&open_mutex);
return ret;
}
static void gdm_tty_close(struct tty_struct *tty, struct file *filp)
{
struct tty_str *tty_str = tty->driver_data;
int i;
if (!tty_str) {
printk(KERN_INFO "glte: tty device already close\n");
return;
}
if (tty_str->port.count != 0) {
tty_port_close_start(&tty_str->port, tty, filp);
tty_port_close_end(&tty_str->port, tty);
if (tty_str->port.count == 0)
tty_port_tty_set(&tty_str->port, NULL);
tty_str->port.tty = NULL;
}
if (!tty_str->tty_dev) {
for (i = 0; i < TTY_MAX_COUNT; i++) {
if (!strcmp(tty->driver->driver_name, DRIVER_STRING[i]))
break;
}
if (i < TTY_MAX_COUNT) {
tty_unregister_device(g_tty_drv[i], tty->index);
tty_port_tty_set(&tty_str->port, NULL);
kfree(tty_str);
g_tty_str[i][tty->index] = NULL;
}
}
}
static int gdm_tty_recv_complete(void *data, int len, int index, int minor, int complete)
{
struct tty_str *tty_str = g_tty_str[index][minor];
struct tty_struct *tty;
if (!GDM_TTY_READY(tty_str)) {
if (complete == RECV_PACKET_PROCESS_COMPLETE)
gdm_tty_recv(tty_str, gdm_tty_recv_complete);
return TO_HOST_PORT_CLOSE;
}
if (!data || !len)
goto complete_routine;
tty = tty_port_tty_get(&tty_str->port);
if (tty_buffer_request_room(tty, len) == len) {
tty_insert_flip_string(tty, data, len);
tty_flip_buffer_push(tty);
} else {
tty_kref_put(tty);
return TO_HOST_BUFFER_REQUEST_FAIL;
}
tty_kref_put(tty);
complete_routine:
if (complete == RECV_PACKET_PROCESS_COMPLETE)
gdm_tty_recv(tty_str, gdm_tty_recv_complete);
return TO_HOST_SUCCESS;
}
static void gdm_tty_send_complete(void *arg)
{
struct tty_str *tty_str = (struct tty_str *)arg;
struct tty_struct *tty;
if (!GDM_TTY_READY(tty_str))
return;
tty = tty_port_tty_get(&tty_str->port);
tty_wakeup(tty);
tty_kref_put(tty);
}
static int gdm_tty_write(struct tty_struct *tty, const unsigned char *buf, int len)
{
struct tty_str *tty_str = tty->driver_data;
int remain = len;
int sent_len = 0;
int sending_len = 0;
if (!GDM_TTY_READY(tty_str))
return -ENODEV;
if (!len)
return 0;
while (1) {
sending_len = remain > MUX_TX_MAX_SIZE ? MUX_TX_MAX_SIZE : remain;
gdm_tty_send(tty_str,
(void *)(buf+sent_len),
sending_len,
tty_str->tty_drv_index,
gdm_tty_send_complete,
tty_str
);
sent_len += sending_len;
remain -= sending_len;
if (remain <= 0)
break;
}
return len;
}
static int gdm_tty_write_room(struct tty_struct *tty)
{
struct tty_str *tty_str = tty->driver_data;
if (!GDM_TTY_READY(tty_str))
return -ENODEV;
return WRITE_SIZE;
}
static int gdm_tty_tiocmget(struct tty_struct *tty)
{
struct tty_str *tty_str = tty->driver_data;
if (!GDM_TTY_READY(tty_str))
return -ENODEV;
return (0 & ACM_CTRL_DTR ? TIOCM_DTR : 0) |
(0 & ACM_CTRL_RTS ? TIOCM_RTS : 0) |
(0 & ACM_CTRL_DSR ? TIOCM_DSR : 0) |
(0 & ACM_CTRL_RI ? TIOCM_RI : 0) |
(0 & ACM_CTRL_DCD ? TIOCM_CD : 0) |
TIOCM_CTS;
}
static int gdm_tty_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear)
{
struct tty_str *tty_str = tty->driver_data;
if (!GDM_TTY_READY(tty_str))
return -ENODEV;
return 1;
}
int register_lte_tty_device(struct tty_dev *tty_dev, struct device *dev)
{
struct tty_str *tty_str;
int i, j;
for (i = 0; i < TTY_MAX_COUNT; i++) {
for (j = 0; j < GDM_TTY_MINOR; j++) {
if (!g_tty_str[i][j])
break;
}
if (j == GDM_TTY_MINOR) {
tty_dev->minor[i] = j;
return -1;
}
tty_str = kmalloc(sizeof(struct tty_str), GFP_KERNEL);
if (!tty_str)
return -ENOMEM;
g_tty_str[i][j] = tty_str;
tty_str->tty_dev = tty_dev;
tty_str->tty_drv_index = i;
tty_dev->minor[i] = j;
tty_port_init(&tty_str->port);
tty_str->port.ops = &gdm_tty_port_ops;
if (strcmp(DEVICE_STRING[i], "GCT-ATC") != 0)
dev = NULL;
tty_register_device(g_tty_drv[i], j, dev);
}
acm_set_comm_feature(tty_str, 1);
for (i = 0; i < MAX_ISSUE_NUM; i++)
gdm_tty_recv(tty_str, gdm_tty_recv_complete);
return 0;
}
void unregister_lte_tty_device(struct tty_dev *tty_dev)
{
struct tty_str *tty_str;
int i;
for (i = 0; i < TTY_MAX_COUNT; i++) {
if (tty_dev->minor[i] >= GDM_TTY_MINOR)
continue;
tty_str = g_tty_str[i][tty_dev->minor[i]];
if (!tty_str)
continue;
tty_str->tty_dev = NULL;
if (!tty_str->port.count) {
tty_unregister_device(g_tty_drv[i], tty_dev->minor[i]);
tty_port_tty_set(&tty_str->port, NULL);
kfree(tty_str);
g_tty_str[i][tty_dev->minor[i]] = NULL;
}
}
}
static void gdm_tty_set_termios(struct tty_struct *tty, struct ktermios *termios_old)
{
return;
}
static const struct tty_operations gdm_tty_ops = {
.open = gdm_tty_open,
.close = gdm_tty_close,
.write = gdm_tty_write,
.write_room = gdm_tty_write_room,
.tiocmget = gdm_tty_tiocmget,
.tiocmset = gdm_tty_tiocmset,
.set_termios = gdm_tty_set_termios,
};
int register_lte_tty_driver(void)
{
struct tty_driver *tty_driver = NULL;
int i;
int ret;
for (i = 0; i < TTY_MAX_COUNT; i++) {
tty_driver = alloc_tty_driver(GDM_TTY_MINOR);
if (!tty_driver) {
printk(KERN_ERR "glte: alloc_tty_driver fail\n");
return -ENOMEM;
}
tty_driver->owner = THIS_MODULE;
tty_driver->driver_name = DRIVER_STRING[i];
tty_driver->name = DEVICE_STRING[i];
tty_driver->major = GDM_TTY_MAJOR;
tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
tty_driver->subtype = SERIAL_TYPE_NORMAL;
tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_driver->init_termios = tty_std_termios;
tty_driver->init_termios.c_cflag = B9600 | CS8 | HUPCL | CLOCAL;
tty_driver->init_termios.c_lflag = ISIG | ICANON | IEXTEN;
tty_set_operations(tty_driver, &gdm_tty_ops);
ret = tty_register_driver(tty_driver);
g_tty_drv[i] = tty_driver;
}
return ret;
}
void unregister_lte_tty_driver(void)
{
struct tty_driver *tty_driver;
int i;
for (i = 0; i < TTY_MAX_COUNT; i++) {
tty_driver = g_tty_drv[i];
if (tty_driver) {
tty_unregister_driver(tty_driver);
put_tty_driver(tty_driver);
}
}
}
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _GDM_TTY_H_
#define _GDM_TTY_H_
#include <linux/version.h>
#include <linux/types.h>
#include <linux/tty.h>
#define TTY_MAX_COUNT 2
#define MAX_ISSUE_NUM 3
enum TO_HOST_RESULT {
TO_HOST_SUCCESS = 0,
TO_HOST_BUFFER_REQUEST_FAIL = 1,
TO_HOST_PORT_CLOSE = 2,
TO_HOST_INVALID_PACKET = 3,
};
enum RECV_PACKET_PROCESS {
RECV_PACKET_PROCESS_COMPLETE = 0,
RECV_PACKET_PROCESS_CONTINUE = 1,
};
struct tty_dev {
void *priv_dev;
int (*send_func)(void *priv_dev, void *data, int len, int tty_index,
void (*cb)(void *cb_data), void *cb_data);
int (*recv_func)(void *priv_dev, int (*cb)(void *data, int len, int tty_index, int minor, int complete));
int (*send_control)(void *priv_dev, int request, int value, void *data, int len);
u8 minor[2];
};
struct tty_str {
struct tty_dev *tty_dev;
int tty_drv_index;
struct tty_port port;
};
int register_lte_tty_driver(void);
void unregister_lte_tty_driver(void);
int register_lte_tty_device(struct tty_dev *tty_dev, struct device *dev);
void unregister_lte_tty_device(struct tty_dev *tty_dev);
#endif /* _GDM_USB_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/usb.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/usb/cdc.h>
#include <linux/wait.h>
#include <linux/if_ether.h>
#include <linux/pm_runtime.h>
#include "gdm_usb.h"
#include "gdm_lte.h"
#include "hci.h"
#include "hci_packet.h"
#include "gdm_endian.h"
#define USB_DEVICE_CDC_DATA(vid, pid) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS,\
.idVendor = vid,\
.idProduct = pid,\
.bInterfaceClass = USB_CLASS_COMM,\
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET
#define USB_DEVICE_MASS_DATA(vid, pid) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO,\
.idVendor = vid,\
.idProduct = pid,\
.bInterfaceSubClass = USB_SC_SCSI, \
.bInterfaceClass = USB_CLASS_MASS_STORAGE,\
.bInterfaceProtocol = USB_PR_BULK
static const struct usb_device_id id_table[] = {
{ USB_DEVICE_CDC_DATA(VID_GCT, PID_GDM7240) }, /* GCT GDM7240 */
{ USB_DEVICE_CDC_DATA(VID_GCT, PID_GDM7243) }, /* GCT GDM7243 */
{ }
};
MODULE_DEVICE_TABLE(usb, id_table);
static struct workqueue_struct *usb_tx_wq;
static struct workqueue_struct *usb_rx_wq;
static void do_tx(struct work_struct *work);
static void do_rx(struct work_struct *work);
static int gdm_usb_recv(void *priv_dev,
int (*cb)(void *cb_data, void *data, int len, int context),
void *cb_data,
int context);
static int request_mac_address(struct lte_udev *udev)
{
u8 buf[16] = {0,};
struct hci_packet *hci = (struct hci_packet *)buf;
struct usb_device *usbdev = udev->usbdev;
int actual;
int ret = -1;
hci->cmd_evt = gdm_cpu_to_dev16(&udev->gdm_ed, LTE_GET_INFORMATION);
hci->len = gdm_cpu_to_dev16(&udev->gdm_ed, 1);
hci->data[0] = MAC_ADDRESS;
ret = usb_bulk_msg(usbdev, usb_sndbulkpipe(usbdev, 2), buf, 5,
&actual, 1000);
udev->request_mac_addr = 1;
return ret;
}
static struct usb_tx *alloc_tx_struct(int len)
{
struct usb_tx *t = NULL;
int ret = 0;
t = kmalloc(sizeof(struct usb_tx), GFP_ATOMIC);
if (!t) {
ret = -ENOMEM;
goto out;
}
memset(t, 0, sizeof(struct usb_tx));
t->urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!(len % 512))
len++;
t->buf = kmalloc(len, GFP_ATOMIC);
if (!t->urb || !t->buf) {
ret = -ENOMEM;
goto out;
}
out:
if (ret < 0) {
if (t) {
usb_free_urb(t->urb);
kfree(t->buf);
kfree(t);
}
return NULL;
}
return t;
}
static struct usb_tx_sdu *alloc_tx_sdu_struct(void)
{
struct usb_tx_sdu *t_sdu = NULL;
int ret = 0;
t_sdu = kmalloc(sizeof(struct usb_tx_sdu), GFP_ATOMIC);
if (!t_sdu) {
ret = -ENOMEM;
goto out;
}
memset(t_sdu, 0, sizeof(struct usb_tx_sdu));
t_sdu->buf = kmalloc(SDU_BUF_SIZE, GFP_ATOMIC);
if (!t_sdu->buf) {
ret = -ENOMEM;
goto out;
}
out:
if (ret < 0) {
if (t_sdu) {
kfree(t_sdu->buf);
kfree(t_sdu);
}
return NULL;
}
return t_sdu;
}
static void free_tx_struct(struct usb_tx *t)
{
if (t) {
usb_free_urb(t->urb);
kfree(t->buf);
kfree(t);
}
}
static void free_tx_sdu_struct(struct usb_tx_sdu *t_sdu)
{
if (t_sdu) {
kfree(t_sdu->buf);
kfree(t_sdu);
}
}
static struct usb_tx_sdu *get_tx_sdu_struct(struct tx_cxt *tx, int *no_spc)
{
struct usb_tx_sdu *t_sdu;
if (list_empty(&tx->free_list))
return NULL;
t_sdu = list_entry(tx->free_list.next, struct usb_tx_sdu, list);
list_del(&t_sdu->list);
tx->avail_count--;
*no_spc = list_empty(&tx->free_list) ? 1 : 0;
return t_sdu;
}
static void put_tx_struct(struct tx_cxt *tx, struct usb_tx_sdu *t_sdu)
{
list_add_tail(&t_sdu->list, &tx->free_list);
tx->avail_count++;
}
static struct usb_rx *alloc_rx_struct(void)
{
struct usb_rx *r = NULL;
int ret = 0;
r = kmalloc(sizeof(struct usb_rx), GFP_ATOMIC);
if (!r) {
ret = -ENOMEM;
goto out;
}
r->urb = usb_alloc_urb(0, GFP_ATOMIC);
r->buf = kmalloc(RX_BUF_SIZE, GFP_ATOMIC);
if (!r->urb || !r->buf) {
ret = -ENOMEM;
goto out;
}
out:
if (ret < 0) {
if (r) {
usb_free_urb(r->urb);
kfree(r->buf);
kfree(r);
}
return NULL;
}
return r;
}
static void free_rx_struct(struct usb_rx *r)
{
if (r) {
usb_free_urb(r->urb);
kfree(r->buf);
kfree(r);
}
}
static struct usb_rx *get_rx_struct(struct rx_cxt *rx, int *no_spc)
{
struct usb_rx *r;
unsigned long flags;
spin_lock_irqsave(&rx->rx_lock, flags);
if (list_empty(&rx->free_list)) {
spin_unlock_irqrestore(&rx->rx_lock, flags);
return NULL;
}
r = list_entry(rx->free_list.next, struct usb_rx, free_list);
list_del(&r->free_list);
rx->avail_count--;
*no_spc = list_empty(&rx->free_list) ? 1 : 0;
spin_unlock_irqrestore(&rx->rx_lock, flags);
return r;
}
static void put_rx_struct(struct rx_cxt *rx, struct usb_rx *r)
{
unsigned long flags;
spin_lock_irqsave(&rx->rx_lock, flags);
list_add_tail(&r->free_list, &rx->free_list);
rx->avail_count++;
spin_unlock_irqrestore(&rx->rx_lock, flags);
}
static void release_usb(struct lte_udev *udev)
{
struct rx_cxt *rx = &udev->rx;
struct tx_cxt *tx = &udev->tx;
struct usb_tx *t, *t_next;
struct usb_rx *r, *r_next;
struct usb_tx_sdu *t_sdu, *t_sdu_next;
unsigned long flags;
spin_lock_irqsave(&tx->lock, flags);
list_for_each_entry_safe(t_sdu, t_sdu_next, &tx->sdu_list, list)
{
list_del(&t_sdu->list);
free_tx_sdu_struct(t_sdu);
}
list_for_each_entry_safe(t, t_next, &tx->hci_list, list)
{
list_del(&t->list);
free_tx_struct(t);
}
list_for_each_entry_safe(t_sdu, t_sdu_next, &tx->free_list, list)
{
list_del(&t_sdu->list);
free_tx_sdu_struct(t_sdu);
}
spin_unlock_irqrestore(&tx->lock, flags);
spin_lock_irqsave(&rx->submit_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->rx_submit_list, rx_submit_list)
{
spin_unlock_irqrestore(&rx->submit_lock, flags);
usb_kill_urb(r->urb);
spin_lock_irqsave(&rx->submit_lock, flags);
}
spin_unlock_irqrestore(&rx->submit_lock, flags);
spin_lock_irqsave(&rx->rx_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->free_list, free_list)
{
list_del(&r->free_list);
free_rx_struct(r);
}
spin_unlock_irqrestore(&rx->rx_lock, flags);
spin_lock_irqsave(&rx->to_host_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->to_host_list, to_host_list)
{
if (r->index == (void *)udev) {
list_del(&r->to_host_list);
free_rx_struct(r);
}
}
spin_unlock_irqrestore(&rx->to_host_lock, flags);
}
static int init_usb(struct lte_udev *udev)
{
int ret = 0;
int i;
struct tx_cxt *tx = &udev->tx;
struct rx_cxt *rx = &udev->rx;
struct usb_tx_sdu *t_sdu = NULL;
struct usb_rx *r = NULL;
udev->send_complete = 1;
udev->tx_stop = 0;
udev->request_mac_addr = 0;
udev->usb_state = PM_NORMAL;
INIT_LIST_HEAD(&tx->sdu_list);
INIT_LIST_HEAD(&tx->hci_list);
INIT_LIST_HEAD(&tx->free_list);
INIT_LIST_HEAD(&rx->rx_submit_list);
INIT_LIST_HEAD(&rx->free_list);
INIT_LIST_HEAD(&rx->to_host_list);
spin_lock_init(&tx->lock);
spin_lock_init(&rx->rx_lock);
spin_lock_init(&rx->submit_lock);
spin_lock_init(&rx->to_host_lock);
tx->avail_count = 0;
rx->avail_count = 0;
udev->rx_cb = NULL;
for (i = 0; i < MAX_NUM_SDU_BUF; i++) {
t_sdu = alloc_tx_sdu_struct();
if (t_sdu == NULL) {
ret = -ENOMEM;
goto fail;
}
list_add(&t_sdu->list, &tx->free_list);
tx->avail_count++;
}
for (i = 0; i < MAX_RX_SUBMIT_COUNT*2; i++) {
r = alloc_rx_struct();
if (r == NULL) {
ret = -ENOMEM;
goto fail;
}
list_add(&r->free_list, &rx->free_list);
rx->avail_count++;
}
INIT_DELAYED_WORK(&udev->work_tx, do_tx);
INIT_DELAYED_WORK(&udev->work_rx, do_rx);
return 0;
fail:
return ret;
}
static int set_mac_address(u8 *data, void *arg)
{
struct phy_dev *phy_dev = (struct phy_dev *)arg;
struct lte_udev *udev = phy_dev->priv_dev;
struct tlv *tlv = (struct tlv *)data;
u8 mac_address[ETH_ALEN] = {0, };
if (tlv->type == MAC_ADDRESS && udev->request_mac_addr) {
memcpy(mac_address, tlv->data, tlv->len);
if (register_lte_device(phy_dev, &udev->intf->dev, mac_address) < 0)
printk(KERN_ERR "glte: register lte device failed\n");
udev->request_mac_addr = 0;
return 1;
}
return 0;
}
static void do_rx(struct work_struct *work)
{
struct lte_udev *udev = container_of(work, struct lte_udev, work_rx.work);
struct rx_cxt *rx = &udev->rx;
struct usb_rx *r;
struct hci_packet *hci;
struct phy_dev *phy_dev;
u16 cmd_evt;
int ret;
unsigned long flags;
while (1) {
spin_lock_irqsave(&rx->to_host_lock, flags);
if (list_empty(&rx->to_host_list)) {
spin_unlock_irqrestore(&rx->to_host_lock, flags);
break;
}
r = list_entry(rx->to_host_list.next, struct usb_rx, to_host_list);
list_del(&r->to_host_list);
spin_unlock_irqrestore(&rx->to_host_lock, flags);
phy_dev = (struct phy_dev *)r->cb_data;
udev = (struct lte_udev *)phy_dev->priv_dev;
hci = (struct hci_packet *)r->buf;
cmd_evt = gdm_dev16_to_cpu(&udev->gdm_ed, hci->cmd_evt);
switch (cmd_evt) {
case LTE_GET_INFORMATION_RESULT:
if (set_mac_address(hci->data, r->cb_data) == 0) {
ret = r->callback(r->cb_data,
r->buf,
r->urb->actual_length,
KERNEL_THREAD);
}
break;
default:
if (r->callback) {
ret = r->callback(r->cb_data,
r->buf,
r->urb->actual_length,
KERNEL_THREAD);
if (ret == -EAGAIN)
printk(KERN_ERR "glte: failed to send received data\n");
}
break;
}
put_rx_struct(rx, r);
gdm_usb_recv(udev,
r->callback,
r->cb_data,
USB_COMPLETE);
}
}
static void remove_rx_submit_list(struct usb_rx *r, struct rx_cxt *rx)
{
unsigned long flags;
struct usb_rx *r_remove, *r_remove_next;
spin_lock_irqsave(&rx->submit_lock, flags);
list_for_each_entry_safe(r_remove, r_remove_next, &rx->rx_submit_list, rx_submit_list)
{
if (r == r_remove) {
list_del(&r->rx_submit_list);
break;
}
}
spin_unlock_irqrestore(&rx->submit_lock, flags);
}
static void gdm_usb_rcv_complete(struct urb *urb)
{
struct usb_rx *r = urb->context;
struct rx_cxt *rx = r->rx;
unsigned long flags;
struct lte_udev *udev = container_of(r->rx, struct lte_udev, rx);
struct usb_device *usbdev = udev->usbdev;
remove_rx_submit_list(r, rx);
if (!urb->status && r->callback) {
spin_lock_irqsave(&rx->to_host_lock, flags);
list_add_tail(&r->to_host_list, &rx->to_host_list);
queue_work(usb_rx_wq, &udev->work_rx.work);
spin_unlock_irqrestore(&rx->to_host_lock, flags);
} else {
if (urb->status && udev->usb_state == PM_NORMAL)
printk(KERN_ERR "glte: gdm_usb_rcv_complete urb status error %d\n", urb->status);
put_rx_struct(rx, r);
}
usb_mark_last_busy(usbdev);
}
static int gdm_usb_recv(void *priv_dev,
int (*cb)(void *cb_data, void *data, int len, int context),
void *cb_data,
int context)
{
struct lte_udev *udev = priv_dev;
struct usb_device *usbdev = udev->usbdev;
struct rx_cxt *rx = &udev->rx;
struct usb_rx *r;
int no_spc;
int ret;
unsigned long flags;
if (!udev->usbdev) {
printk(KERN_ERR "glte: invalid device\n");
return -ENODEV;
}
r = get_rx_struct(rx, &no_spc);
if (!r) {
printk(KERN_ERR "glte: Out of Memory\n");
return -ENOMEM;
}
udev->rx_cb = cb;
r->callback = cb;
r->cb_data = cb_data;
r->index = (void *)udev;
r->rx = rx;
usb_fill_bulk_urb(r->urb,
usbdev,
usb_rcvbulkpipe(usbdev, 0x83),
r->buf,
RX_BUF_SIZE,
gdm_usb_rcv_complete,
r);
spin_lock_irqsave(&rx->submit_lock, flags);
list_add_tail(&r->rx_submit_list, &rx->rx_submit_list);
spin_unlock_irqrestore(&rx->submit_lock, flags);
if (context == KERNEL_THREAD)
ret = usb_submit_urb(r->urb, GFP_KERNEL);
else
ret = usb_submit_urb(r->urb, GFP_ATOMIC);
if (ret) {
spin_lock_irqsave(&rx->submit_lock, flags);
list_del(&r->rx_submit_list);
spin_unlock_irqrestore(&rx->submit_lock, flags);
printk(KERN_ERR "glte: usb_submit_urb fail (%p)\n", r);
put_rx_struct(rx, r);
}
return ret;
}
static void gdm_usb_send_complete(struct urb *urb)
{
struct usb_tx *t = urb->context;
struct tx_cxt *tx = t->tx;
struct lte_udev *udev = container_of(tx, struct lte_udev, tx);
unsigned long flags;
if (urb->status == -ECONNRESET) {
printk(KERN_INFO "glte: CONNRESET\n");
return;
}
if (t->callback)
t->callback(t->cb_data);
free_tx_struct(t);
spin_lock_irqsave(&tx->lock, flags);
udev->send_complete = 1;
queue_work(usb_tx_wq, &udev->work_tx.work);
spin_unlock_irqrestore(&tx->lock, flags);
}
static int send_tx_packet(struct usb_device *usbdev, struct usb_tx *t, u32 len)
{
int ret = 0;
if (!(len%512))
len++;
usb_fill_bulk_urb(t->urb,
usbdev,
usb_sndbulkpipe(usbdev, 2),
t->buf,
len,
gdm_usb_send_complete,
t);
ret = usb_submit_urb(t->urb, GFP_ATOMIC);
if (ret)
printk(KERN_ERR "glte: usb_submit_urb fail %d\n", ret);
usb_mark_last_busy(usbdev);
return ret;
}
static u32 packet_aggregation(struct lte_udev *udev, u8 *send_buf)
{
struct tx_cxt *tx = &udev->tx;
struct usb_tx_sdu *t_sdu = NULL;
struct multi_sdu *multi_sdu = (struct multi_sdu *)send_buf;
u16 send_len = 0;
u16 num_packet = 0;
unsigned long flags;
multi_sdu->cmd_evt = gdm_cpu_to_dev16(&udev->gdm_ed, LTE_TX_MULTI_SDU);
while (num_packet < MAX_PACKET_IN_MULTI_SDU) {
spin_lock_irqsave(&tx->lock, flags);
if (list_empty(&tx->sdu_list)) {
spin_unlock_irqrestore(&tx->lock, flags);
break;
}
t_sdu = list_entry(tx->sdu_list.next, struct usb_tx_sdu, list);
if (send_len + t_sdu->len > MAX_SDU_SIZE) {
spin_unlock_irqrestore(&tx->lock, flags);
break;
}
list_del(&t_sdu->list);
spin_unlock_irqrestore(&tx->lock, flags);
memcpy(multi_sdu->data + send_len, t_sdu->buf, t_sdu->len);
send_len += (t_sdu->len + 3) & 0xfffc;
num_packet++;
if (tx->avail_count > 10)
t_sdu->callback(t_sdu->cb_data);
spin_lock_irqsave(&tx->lock, flags);
put_tx_struct(tx, t_sdu);
spin_unlock_irqrestore(&tx->lock, flags);
}
multi_sdu->len = gdm_cpu_to_dev16(&udev->gdm_ed, send_len);
multi_sdu->num_packet = gdm_cpu_to_dev16(&udev->gdm_ed, num_packet);
return send_len + offsetof(struct multi_sdu, data);
}
static void do_tx(struct work_struct *work)
{
struct lte_udev *udev = container_of(work, struct lte_udev, work_tx.work);
struct usb_device *usbdev = udev->usbdev;
struct tx_cxt *tx = &udev->tx;
struct usb_tx *t = NULL;
int is_send = 0;
u32 len = 0;
unsigned long flags;
if (!usb_autopm_get_interface(udev->intf))
usb_autopm_put_interface(udev->intf);
if (udev->usb_state == PM_SUSPEND)
return;
spin_lock_irqsave(&tx->lock, flags);
if (!udev->send_complete) {
spin_unlock_irqrestore(&tx->lock, flags);
return;
} else {
udev->send_complete = 0;
}
if (!list_empty(&tx->hci_list)) {
t = list_entry(tx->hci_list.next, struct usb_tx, list);
list_del(&t->list);
len = t->len;
t->is_sdu = 0;
is_send = 1;
} else if (!list_empty(&tx->sdu_list)) {
if (udev->tx_stop) {
udev->send_complete = 1;
spin_unlock_irqrestore(&tx->lock, flags);
return;
}
t = alloc_tx_struct(TX_BUF_SIZE);
t->callback = NULL;
t->tx = tx;
t->is_sdu = 1;
is_send = 1;
}
if (!is_send) {
udev->send_complete = 1;
spin_unlock_irqrestore(&tx->lock, flags);
return;
}
spin_unlock_irqrestore(&tx->lock, flags);
if (t->is_sdu)
len = packet_aggregation(udev, t->buf);
if (send_tx_packet(usbdev, t, len)) {
printk(KERN_ERR "glte: send_tx_packet fail\n");
t->callback = NULL;
gdm_usb_send_complete(t->urb);
}
}
#define SDU_PARAM_LEN 12
static int gdm_usb_sdu_send(void *priv_dev, void *data, int len,
unsigned int dftEpsId, unsigned int epsId,
void (*cb)(void *data), void *cb_data,
int dev_idx, int nic_type)
{
struct lte_udev *udev = priv_dev;
struct tx_cxt *tx = &udev->tx;
struct usb_tx_sdu *t_sdu;
struct sdu *sdu = NULL;
unsigned long flags;
int no_spc = 0;
u16 send_len;
if (!udev->usbdev) {
printk(KERN_ERR "glte: sdu send - invalid device\n");
return TX_NO_DEV;
}
spin_lock_irqsave(&tx->lock, flags);
t_sdu = get_tx_sdu_struct(tx, &no_spc);
spin_unlock_irqrestore(&tx->lock, flags);
if (t_sdu == NULL) {
printk(KERN_ERR "glte: sdu send - free list empty\n");
return TX_NO_SPC;
}
sdu = (struct sdu *)t_sdu->buf;
sdu->cmd_evt = gdm_cpu_to_dev16(&udev->gdm_ed, LTE_TX_SDU);
if (nic_type == NIC_TYPE_ARP) {
send_len = len + SDU_PARAM_LEN;
memcpy(sdu->data, data, len);
} else {
send_len = len - ETH_HLEN;
send_len += SDU_PARAM_LEN;
memcpy(sdu->data, data+ETH_HLEN, len-ETH_HLEN);
}
sdu->len = gdm_cpu_to_dev16(&udev->gdm_ed, send_len);
sdu->dftEpsId = gdm_cpu_to_dev32(&udev->gdm_ed, dftEpsId);
sdu->bearer_ID = gdm_cpu_to_dev32(&udev->gdm_ed, epsId);
sdu->nic_type = gdm_cpu_to_dev32(&udev->gdm_ed, nic_type);
t_sdu->len = send_len + HCI_HEADER_SIZE;
t_sdu->callback = cb;
t_sdu->cb_data = cb_data;
spin_lock_irqsave(&tx->lock, flags);
list_add_tail(&t_sdu->list, &tx->sdu_list);
queue_work(usb_tx_wq, &udev->work_tx.work);
spin_unlock_irqrestore(&tx->lock, flags);
if (no_spc)
return TX_NO_BUFFER;
return 0;
}
static int gdm_usb_hci_send(void *priv_dev, void *data, int len,
void (*cb)(void *data), void *cb_data)
{
struct lte_udev *udev = priv_dev;
struct tx_cxt *tx = &udev->tx;
struct usb_tx *t;
unsigned long flags;
if (!udev->usbdev) {
printk(KERN_ERR "glte: hci send - invalid device\n");
return -ENODEV;
}
t = alloc_tx_struct(len);
if (t == NULL) {
printk(KERN_ERR "glte: hci_send - out of memory\n");
return -ENOMEM;
}
memcpy(t->buf, data, len);
t->callback = cb;
t->cb_data = cb_data;
t->len = len;
t->tx = tx;
t->is_sdu = 0;
spin_lock_irqsave(&tx->lock, flags);
list_add_tail(&t->list, &tx->hci_list);
queue_work(usb_tx_wq, &udev->work_tx.work);
spin_unlock_irqrestore(&tx->lock, flags);
return 0;
}
static struct gdm_endian *gdm_usb_get_endian(void *priv_dev)
{
struct lte_udev *udev = priv_dev;
return &udev->gdm_ed;
}
static int gdm_usb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
int ret = 0;
struct phy_dev *phy_dev = NULL;
struct lte_udev *udev = NULL;
u16 idVendor, idProduct;
int bInterfaceNumber;
struct usb_device *usbdev = interface_to_usbdev(intf);
bInterfaceNumber = intf->cur_altsetting->desc.bInterfaceNumber;
idVendor = __le16_to_cpu(usbdev->descriptor.idVendor);
idProduct = __le16_to_cpu(usbdev->descriptor.idProduct);
printk(KERN_INFO "glte: net vid = 0x%04x pid = 0x%04x\n", idVendor, idProduct);
if (bInterfaceNumber > NETWORK_INTERFACE) {
printk(KERN_INFO "glte: not a network device");
return -1;
}
phy_dev = kmalloc(sizeof(struct phy_dev), GFP_ATOMIC);
if (!phy_dev) {
ret = -ENOMEM;
goto out;
}
udev = kmalloc(sizeof(struct lte_udev), GFP_ATOMIC);
if (!udev) {
ret = -ENOMEM;
goto out;
}
memset(phy_dev, 0, sizeof(struct phy_dev));
memset(udev, 0, sizeof(struct lte_udev));
phy_dev->priv_dev = (void *)udev;
phy_dev->send_hci_func = gdm_usb_hci_send;
phy_dev->send_sdu_func = gdm_usb_sdu_send;
phy_dev->rcv_func = gdm_usb_recv;
phy_dev->get_endian = gdm_usb_get_endian;
udev->usbdev = usbdev;
ret = init_usb(udev);
if (ret < 0) {
printk(KERN_ERR "glte: init_usb func fail\n");
goto out;
}
udev->intf = intf;
intf->needs_remote_wakeup = 1;
usb_enable_autosuspend(usbdev);
pm_runtime_set_autosuspend_delay(&usbdev->dev, AUTO_SUSPEND_TIMER);
/* List up hosts with big endians, otherwise, defaults to little endian */
if (idProduct == PID_GDM7243)
set_endian(&udev->gdm_ed, ENDIANNESS_BIG);
else
set_endian(&udev->gdm_ed, ENDIANNESS_LITTLE);
ret = request_mac_address(udev);
if (ret < 0) {
printk(KERN_ERR "glte: request Mac address failed\n");
goto out;
}
start_rx_proc(phy_dev);
out:
if (ret < 0) {
kfree(phy_dev);
if (udev) {
release_usb(udev);
kfree(udev);
}
}
usb_get_dev(usbdev);
usb_set_intfdata(intf, phy_dev);
return ret;
}
static void gdm_usb_disconnect(struct usb_interface *intf)
{
struct phy_dev *phy_dev;
struct lte_udev *udev;
u16 idVendor, idProduct;
struct usb_device *usbdev;
usbdev = interface_to_usbdev(intf);
idVendor = __le16_to_cpu(usbdev->descriptor.idVendor);
idProduct = __le16_to_cpu(usbdev->descriptor.idProduct);
phy_dev = usb_get_intfdata(intf);
udev = phy_dev->priv_dev;
unregister_lte_device(phy_dev);
release_usb(udev);
kfree(udev);
udev = NULL;
kfree(phy_dev);
phy_dev = NULL;
usb_put_dev(usbdev);
}
static int gdm_usb_suspend(struct usb_interface *intf, pm_message_t pm_msg)
{
struct phy_dev *phy_dev;
struct lte_udev *udev;
struct rx_cxt *rx;
struct usb_rx *r;
struct usb_rx *r_next;
unsigned long flags;
phy_dev = usb_get_intfdata(intf);
udev = phy_dev->priv_dev;
rx = &udev->rx;
if (udev->usb_state != PM_NORMAL) {
printk(KERN_ERR "glte: usb suspend - invalid state");
return -1;
}
udev->usb_state = PM_SUSPEND;
spin_lock_irqsave(&rx->submit_lock, flags);
list_for_each_entry_safe(r, r_next, &rx->rx_submit_list, rx_submit_list)
{
spin_unlock_irqrestore(&rx->submit_lock, flags);
usb_kill_urb(r->urb);
spin_lock_irqsave(&rx->submit_lock, flags);
}
spin_unlock_irqrestore(&rx->submit_lock, flags);
return 0;
}
static int gdm_usb_resume(struct usb_interface *intf)
{
struct phy_dev *phy_dev;
struct lte_udev *udev;
struct tx_cxt *tx;
struct rx_cxt *rx;
unsigned long flags;
int issue_count;
int i;
phy_dev = usb_get_intfdata(intf);
udev = phy_dev->priv_dev;
rx = &udev->rx;
if (udev->usb_state != PM_SUSPEND) {
printk(KERN_ERR "glte: usb resume - invalid state");
return -1;
}
udev->usb_state = PM_NORMAL;
spin_lock_irqsave(&rx->rx_lock, flags);
issue_count = rx->avail_count - MAX_RX_SUBMIT_COUNT;
spin_unlock_irqrestore(&rx->rx_lock, flags);
if (issue_count >= 0) {
for (i = 0; i < issue_count; i++)
gdm_usb_recv(phy_dev->priv_dev,
udev->rx_cb,
phy_dev,
USB_COMPLETE);
}
tx = &udev->tx;
spin_lock_irqsave(&tx->lock, flags);
queue_work(usb_tx_wq, &udev->work_tx.work);
spin_unlock_irqrestore(&tx->lock, flags);
return 0;
}
static struct usb_driver gdm_usb_lte_driver = {
.name = "gdm_lte",
.probe = gdm_usb_probe,
.disconnect = gdm_usb_disconnect,
.id_table = id_table,
.supports_autosuspend = 1,
.suspend = gdm_usb_suspend,
.resume = gdm_usb_resume,
.reset_resume = gdm_usb_resume,
};
static int __init gdm_usb_lte_init(void)
{
if (gdm_lte_event_init() < 0) {
printk(KERN_ERR "glte: error creating event\n");
return -1;
}
usb_tx_wq = create_workqueue("usb_tx_wq");
if (usb_tx_wq == NULL)
return -1;
usb_rx_wq = create_workqueue("usb_rx_wq");
if (usb_rx_wq == NULL)
return -1;
return usb_register(&gdm_usb_lte_driver);
}
static void __exit gdm_usb_lte_exit(void)
{
gdm_lte_event_exit();
usb_deregister(&gdm_usb_lte_driver);
if (usb_tx_wq) {
flush_workqueue(usb_tx_wq);
destroy_workqueue(usb_tx_wq);
}
if (usb_rx_wq) {
flush_workqueue(usb_rx_wq);
destroy_workqueue(usb_rx_wq);
}
}
module_init(gdm_usb_lte_init);
module_exit(gdm_usb_lte_exit);
MODULE_VERSION(DRIVER_VERSION);
MODULE_DESCRIPTION("GCT LTE USB Device Driver");
MODULE_LICENSE("GPL");
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _GDM_USB_H_
#define _GDM_USB_H_
#include <linux/version.h>
#include <linux/types.h>
#include <linux/usb.h>
#include <linux/list.h>
#include <linux/time.h>
#include "gdm_endian.h"
#include "hci_packet.h"
#define PM_NORMAL 0
#define PM_SUSPEND 1
#define AUTO_SUSPEND_TIMER 5000 /* ms */
#define RX_BUF_SIZE (1024*32)
#define TX_BUF_SIZE (1024*32)
#define SDU_BUF_SIZE 2048
#define MAX_SDU_SIZE (1024*30)
#define MAX_PACKET_IN_MULTI_SDU 256
#define VID_GCT 0x1076
#define PID_GDM7240 0x8000
#define PID_GDM7243 0x9000
#define NETWORK_INTERFACE 1
#define USB_SC_SCSI 0x06
#define USB_PR_BULK 0x50
#define MAX_NUM_SDU_BUF 64
struct usb_tx {
struct list_head list;
struct urb *urb;
u8 *buf;
u32 len;
void (*callback)(void *cb_data);
void *cb_data;
struct tx_cxt *tx;
u8 is_sdu;
};
struct usb_tx_sdu {
struct list_head list;
u8 *buf;
u32 len;
void (*callback)(void *cb_data);
void *cb_data;
};
struct usb_rx {
struct list_head to_host_list;
struct list_head free_list;
struct list_head rx_submit_list;
struct rx_cxt *rx;
struct urb *urb;
u8 *buf;
int (*callback)(void *cb_data, void *data, int len, int context);
void *cb_data;
void *index;
};
struct tx_cxt {
struct list_head sdu_list;
struct list_head hci_list;
struct list_head free_list;
u32 avail_count;
spinlock_t lock;
};
struct rx_cxt {
struct list_head to_host_list;
struct list_head rx_submit_list;
struct list_head free_list;
u32 avail_count;
spinlock_t to_host_lock;
spinlock_t rx_lock;
spinlock_t submit_lock;
};
struct lte_udev {
struct usb_device *usbdev;
struct gdm_endian gdm_ed;
struct tx_cxt tx;
struct rx_cxt rx;
struct delayed_work work_tx;
struct delayed_work work_rx;
u8 send_complete;
u8 tx_stop;
struct usb_interface *intf;
int (*rx_cb)(void *cb_data, void *data, int len, int context);
int usb_state;
u8 request_mac_addr;
};
#endif /* _GDM_USB_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _HCI_H_
#define _HCI_H_
#define LTE_GET_INFORMATION 0x3002
#define LTE_GET_INFORMATION_RESULT 0xB003
#define MAC_ADDRESS 0xA2
#define LTE_LINK_ON_OFF_INDICATION 0xB133
#define LTE_PDN_TABLE_IND 0xB143
#define LTE_TX_SDU 0x3200
#define LTE_RX_SDU 0xB201
#define LTE_TX_MULTI_SDU 0x3202
#define LTE_RX_MULTI_SDU 0xB203
#define LTE_DL_SDU_FLOW_CONTROL 0x3305
#define LTE_UL_SDU_FLOW_CONTROL 0xB306
#define LTE_AT_CMD_TO_DEVICE 0x3307
#define LTE_AT_CMD_FROM_DEVICE 0xB308
#define LTE_SDIO_DM_SEND_PKT 0x3312
#define LTE_SDIO_DM_RECV_PKT 0xB313
#define LTE_NV_RESTORE_REQUEST 0xB30C
#define LTE_NV_RESTORE_RESPONSE 0x330D
#define LTE_NV_SAVE_REQUEST 0xB30E
#define NV_TYPE_LTE_INFO 0x00
#define NV_TYPE_BOARD_CONFIG 0x01
#define NV_TYPE_RF_CAL 0x02
#define NV_TYPE_TEMP 0x03
#define NV_TYPE_NET_INFO 0x04
#define NV_TYPE_SAFETY_INFO 0x05
#define NV_TYPE_CDMA_CAL 0x06
#define NV_TYPE_VENDOR 0x07
#define NV_TYPE_ALL 0xff
#define LTE_NV_SAVE_RESPONSE 0x330F
#define LTE_AT_CMD_TO_DEVICE_EXT 0x3323
#define LTE_AT_CMD_FROM_DEVICE_EXT 0xB324
#endif /* _HCI_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _HCI_PACKET_H_
#define _HCI_PACKET_H_
#define HCI_HEADER_SIZE 4
/*
* The NIC type definition:
* For backward compatibility, lower 16 bits used as they were.
* Lower 16 bit: NIC_TYPE values
* Uppoer 16 bit: NIC_TYPE Flags
*/
#define NIC_TYPE_NIC0 0x00000010
#define NIC_TYPE_NIC1 0x00000011
#define NIC_TYPE_NIC2 0x00000012
#define NIC_TYPE_NIC3 0x00000013
#define NIC_TYPE_ARP 0x00000100
#define NIC_TYPE_ICMPV6 0x00000200
#define NIC_TYPE_MASK 0x0000FFFF
#define NIC_TYPE_F_IPV4 0x00010000
#define NIC_TYPE_F_IPV6 0x00020000
#define NIC_TYPE_F_DHCP 0x00040000
#define NIC_TYPE_F_NDP 0x00080000
#define NIC_TYPE_F_VLAN 0x00100000
struct hci_packet {
u16 cmd_evt;
u16 len;
u8 data[0];
} __packed;
struct tlv {
u8 type;
u8 len;
u8 *data[1];
} __packed;
struct sdu_header {
u16 cmd_evt;
u16 len;
u32 dftEpsId;
u32 bearer_ID;
u32 nic_type;
} __packed;
struct sdu {
u16 cmd_evt;
u16 len;
u32 dftEpsId;
u32 bearer_ID;
u32 nic_type;
u8 data[0];
} __packed;
struct multi_sdu {
u16 cmd_evt;
u16 len;
u16 num_packet;
u16 reserved;
u8 data[0];
} __packed;
struct hci_pdn_table_ind {
u16 cmd_evt;
u16 len;
u8 activate;
u32 dft_eps_id;
u32 nic_type;
u8 pdn_type;
u8 ipv4_addr[4];
u8 ipv6_intf_id[8];
} __packed;
struct hci_connect_ind {
u16 cmd_evt;
u16 len;
u32 connect;
} __packed;
#endif /* _HCI_PACKET_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _LTE_IOCTL_H_
#define _LTE_IOCTL_H_
#define SIOCLTEIOCTL SIOCDEVPRIVATE
#define SIOCG_DATA 0x8D10
#define SIOCS_DATA 0x8D11
/*
* For historical reason, ioctl number and structure must be maintained
*/
enum {
LINK_ON,
LINK_OFF,
GET_NETWORK_STATICS,
RX_STOP,
RX_RESUME,
GET_DRV_VER,
GET_SDIO_DEVICE_STATUS,
GET_ENDIAN_INFO,
};
struct dev_endian_t {
unsigned char dev_endian;
unsigned char host_endian;
} __packed;
struct data_t {
long len;
void *buf;
} __packed;
struct wm_req_t {
union {
char ifrn_name[IFNAMSIZ];
} ifr_ifrn;
unsigned short cmd;
unsigned short data_id;
struct data_t data;
} __packed;
#ifndef ifr_name
#define ifr_name (ifr_ifrn.ifrm_name)
#endif
#endif /* _LTE_IOCTL_H_ */
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/version.h>
#include <linux/export.h>
#include <linux/etherdevice.h>
#include <linux/netlink.h>
#include <asm/byteorder.h>
#include <net/sock.h>
#include "netlink_k.h"
#if defined(DEFINE_MUTEX)
static DEFINE_MUTEX(netlink_mutex);
#else
static struct semaphore netlink_mutex;
#define mutex_lock(x) down(x)
#define mutex_unlock(x) up(x)
#endif
#define ND_MAX_GROUP 30
#define ND_IFINDEX_LEN sizeof(int)
#define ND_NLMSG_SPACE(len) (NLMSG_SPACE(len) + ND_IFINDEX_LEN)
#define ND_NLMSG_DATA(nlh) ((void *)((char *)NLMSG_DATA(nlh) + ND_IFINDEX_LEN))
#define ND_NLMSG_S_LEN(len) (len+ND_IFINDEX_LEN)
#define ND_NLMSG_R_LEN(nlh) (nlh->nlmsg_len-ND_IFINDEX_LEN)
#define ND_NLMSG_IFIDX(nlh) NLMSG_DATA(nlh)
#define ND_MAX_MSG_LEN (1024 * 32)
static void (*rcv_cb)(struct net_device *dev, u16 type, void *msg, int len);
static void netlink_rcv_cb(struct sk_buff *skb)
{
struct nlmsghdr *nlh;
struct net_device *dev;
u32 mlen;
void *msg;
int ifindex;
if (!rcv_cb) {
printk(KERN_ERR "glte: nl cb - unregistered\n");
return;
}
if (skb->len < NLMSG_SPACE(0)) {
printk(KERN_ERR "glte: nl cb - invalid skb length\n");
return;
}
nlh = (struct nlmsghdr *)skb->data;
if (skb->len < nlh->nlmsg_len || nlh->nlmsg_len > ND_MAX_MSG_LEN) {
printk(KERN_ERR "glte: nl cb - invalid length (%d,%d)\n",
skb->len, nlh->nlmsg_len);
return;
}
memcpy(&ifindex, ND_NLMSG_IFIDX(nlh), ND_IFINDEX_LEN);
msg = ND_NLMSG_DATA(nlh);
mlen = ND_NLMSG_R_LEN(nlh);
dev = dev_get_by_index(&init_net, ifindex);
if (dev) {
rcv_cb(dev, nlh->nlmsg_type, msg, mlen);
dev_put(dev);
} else {
printk(KERN_ERR "glte: nl cb - dev (%d) not found\n", ifindex);
}
}
static void netlink_rcv(struct sk_buff *skb)
{
mutex_lock(&netlink_mutex);
netlink_rcv_cb(skb);
mutex_unlock(&netlink_mutex);
}
struct sock *netlink_init(int unit,
void (*cb)(struct net_device *dev, u16 type, void *msg, int len))
{
struct sock *sock;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
struct netlink_kernel_cfg cfg = {
.input = netlink_rcv,
};
#endif
#if !defined(DEFINE_MUTEX)
init_MUTEX(&netlink_mutex);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0)
sock = netlink_kernel_create(&init_net, unit, 0, netlink_rcv, NULL,
THIS_MODULE);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)
sock = netlink_kernel_create(&init_net, unit, THIS_MODULE, &cfg);
#else
sock = netlink_kernel_create(&init_net, unit, &cfg);
#endif
if (sock)
rcv_cb = cb;
return sock;
}
void netlink_exit(struct sock *sock)
{
sock_release(sock->sk_socket);
}
int netlink_send(struct sock *sock, int group, u16 type, void *msg, int len)
{
static u32 seq;
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
int ret = 0;
if (group > ND_MAX_GROUP)
return -EINVAL;
if (!netlink_has_listeners(sock, group+1))
return -ESRCH;
skb = alloc_skb(NLMSG_SPACE(len), GFP_ATOMIC);
if (!skb)
return -ENOMEM;
seq++;
nlh = nlmsg_put(skb, 0, seq, type, len, 0);
memcpy(NLMSG_DATA(nlh), msg, len);
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)
NETLINK_CB(skb).pid = 0;
#else
NETLINK_CB(skb).portid = 0;
#endif
NETLINK_CB(skb).dst_group = 0;
ret = netlink_broadcast(sock, skb, 0, group+1, GFP_ATOMIC);
if (!ret)
return len;
if (ret != -ESRCH)
printk(KERN_ERR "glte: nl broadcast g=%d, t=%d, l=%d, r=%d\n",
group, type, len, ret);
else if (netlink_has_listeners(sock, group+1))
return -EAGAIN;
return ret;
}
/*
* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _NETLINK_K_H
#define _NETLINK_K_H
#include <linux/netdevice.h>
#include <net/sock.h>
struct sock *netlink_init(int unit,
void (*cb)(struct net_device *dev, u16 type, void *msg, int len));
void netlink_exit(struct sock *sock);
int netlink_send(struct sock *sock, int group, u16 type, void *msg, int len);
#endif /* _NETLINK_K_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment