Commit 63ee04c8 authored by Gilad Ben-Yossef's avatar Gilad Ben-Yossef Committed by Herbert Xu

crypto: ccree - add skcipher support

Add CryptoCell skcipher support
Signed-off-by: default avatarGilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 4c3f9727
# SPDX-License-Identifier: GPL-2.0 # SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_CRYPTO_DEV_CCREE) := ccree.o obj-$(CONFIG_CRYPTO_DEV_CCREE) := ccree.o
ccree-y := cc_driver.o cc_buffer_mgr.o cc_request_mgr.o cc_ivgen.o cc_sram_mgr.o ccree-y := cc_driver.o cc_buffer_mgr.o cc_request_mgr.o cc_cipher.o cc_ivgen.o cc_sram_mgr.o
ccree-$(CONFIG_DEBUG_FS) += cc_debugfs.o ccree-$(CONFIG_DEBUG_FS) += cc_debugfs.o
ccree-$(CONFIG_PM) += cc_pm.o ccree-$(CONFIG_PM) += cc_pm.o
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include "cc_buffer_mgr.h" #include "cc_buffer_mgr.h"
#include "cc_lli_defs.h" #include "cc_lli_defs.h"
#include "cc_cipher.h"
enum dma_buffer_type { enum dma_buffer_type {
DMA_NULL_TYPE = -1, DMA_NULL_TYPE = -1,
...@@ -347,6 +348,130 @@ static int cc_map_sg(struct device *dev, struct scatterlist *sg, ...@@ -347,6 +348,130 @@ static int cc_map_sg(struct device *dev, struct scatterlist *sg,
return 0; return 0;
} }
void cc_unmap_cipher_request(struct device *dev, void *ctx,
unsigned int ivsize, struct scatterlist *src,
struct scatterlist *dst)
{
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
if (req_ctx->gen_ctx.iv_dma_addr) {
dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n",
&req_ctx->gen_ctx.iv_dma_addr, ivsize);
dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr,
ivsize,
req_ctx->is_giv ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
}
/* Release pool */
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI &&
req_ctx->mlli_params.mlli_virt_addr) {
dma_pool_free(req_ctx->mlli_params.curr_pool,
req_ctx->mlli_params.mlli_virt_addr,
req_ctx->mlli_params.mlli_dma_addr);
}
dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
if (src != dst) {
dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst));
}
}
int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
unsigned int ivsize, unsigned int nbytes,
void *info, struct scatterlist *src,
struct scatterlist *dst, gfp_t flags)
{
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
struct mlli_params *mlli_params = &req_ctx->mlli_params;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
struct device *dev = drvdata_to_dev(drvdata);
struct buffer_array sg_data;
u32 dummy = 0;
int rc = 0;
u32 mapped_nents = 0;
req_ctx->dma_buf_type = CC_DMA_BUF_DLLI;
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
/* Map IV buffer */
if (ivsize) {
dump_byte_array("iv", (u8 *)info, ivsize);
req_ctx->gen_ctx.iv_dma_addr =
dma_map_single(dev, (void *)info,
ivsize,
req_ctx->is_giv ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) {
dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
ivsize, info);
return -ENOMEM;
}
dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
ivsize, info, &req_ctx->gen_ctx.iv_dma_addr);
} else {
req_ctx->gen_ctx.iv_dma_addr = 0;
}
/* Map the src SGL */
rc = cc_map_sg(dev, src, nbytes, DMA_BIDIRECTIONAL, &req_ctx->in_nents,
LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents);
if (rc) {
rc = -ENOMEM;
goto cipher_exit;
}
if (mapped_nents > 1)
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
if (src == dst) {
/* Handle inplace operation */
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
req_ctx->out_nents = 0;
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
nbytes, 0, true,
&req_ctx->in_mlli_nents);
}
} else {
/* Map the dst sg */
if (cc_map_sg(dev, dst, nbytes, DMA_BIDIRECTIONAL,
&req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
&dummy, &mapped_nents)) {
rc = -ENOMEM;
goto cipher_exit;
}
if (mapped_nents > 1)
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
nbytes, 0, true,
&req_ctx->in_mlli_nents);
cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst,
nbytes, 0, true,
&req_ctx->out_mlli_nents);
}
}
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
mlli_params->curr_pool = buff_mgr->mlli_buffs_pool;
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
if (rc)
goto cipher_exit;
}
dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n",
cc_dma_buf_type(req_ctx->dma_buf_type));
return 0;
cipher_exit:
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
return rc;
}
int cc_buffer_mgr_init(struct cc_drvdata *drvdata) int cc_buffer_mgr_init(struct cc_drvdata *drvdata)
{ {
struct buff_mgr_handle *buff_mgr_handle; struct buff_mgr_handle *buff_mgr_handle;
......
...@@ -40,6 +40,14 @@ int cc_buffer_mgr_init(struct cc_drvdata *drvdata); ...@@ -40,6 +40,14 @@ int cc_buffer_mgr_init(struct cc_drvdata *drvdata);
int cc_buffer_mgr_fini(struct cc_drvdata *drvdata); int cc_buffer_mgr_fini(struct cc_drvdata *drvdata);
int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
unsigned int ivsize, unsigned int nbytes,
void *info, struct scatterlist *src,
struct scatterlist *dst, gfp_t flags);
void cc_unmap_cipher_request(struct device *dev, void *ctx, unsigned int ivsize,
struct scatterlist *src, struct scatterlist *dst);
int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx, int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx,
struct scatterlist *src, unsigned int nbytes, struct scatterlist *src, unsigned int nbytes,
bool do_update, gfp_t flags); bool do_update, gfp_t flags);
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
#include <linux/kernel.h>
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <crypto/des.h>
#include <crypto/xts.h>
#include <crypto/scatterwalk.h>
#include "cc_driver.h"
#include "cc_lli_defs.h"
#include "cc_buffer_mgr.h"
#include "cc_cipher.h"
#include "cc_request_mgr.h"
#define MAX_ABLKCIPHER_SEQ_LEN 6
#define template_skcipher template_u.skcipher
#define CC_MIN_AES_XTS_SIZE 0x10
#define CC_MAX_AES_XTS_SIZE 0x2000
struct cc_cipher_handle {
struct list_head alg_list;
};
struct cc_user_key_info {
u8 *key;
dma_addr_t key_dma_addr;
};
struct cc_hw_key_info {
enum cc_hw_crypto_key key1_slot;
enum cc_hw_crypto_key key2_slot;
};
struct cc_cipher_ctx {
struct cc_drvdata *drvdata;
int keylen;
int key_round_number;
int cipher_mode;
int flow_mode;
unsigned int flags;
struct cc_user_key_info user;
struct cc_hw_key_info hw;
struct crypto_shash *shash_tfm;
};
static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (size) {
case CC_AES_128_BIT_KEY_SIZE:
case CC_AES_192_BIT_KEY_SIZE:
if (ctx_p->cipher_mode != DRV_CIPHER_XTS &&
ctx_p->cipher_mode != DRV_CIPHER_ESSIV &&
ctx_p->cipher_mode != DRV_CIPHER_BITLOCKER)
return 0;
break;
case CC_AES_256_BIT_KEY_SIZE:
return 0;
case (CC_AES_192_BIT_KEY_SIZE * 2):
case (CC_AES_256_BIT_KEY_SIZE * 2):
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER)
return 0;
break;
default:
break;
}
case S_DIN_to_DES:
if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
return 0;
break;
default:
break;
}
return -EINVAL;
}
static int validate_data_size(struct cc_cipher_ctx *ctx_p,
unsigned int size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (ctx_p->cipher_mode) {
case DRV_CIPHER_XTS:
if (size >= CC_MIN_AES_XTS_SIZE &&
size <= CC_MAX_AES_XTS_SIZE &&
IS_ALIGNED(size, AES_BLOCK_SIZE))
return 0;
break;
case DRV_CIPHER_CBC_CTS:
if (size >= AES_BLOCK_SIZE)
return 0;
break;
case DRV_CIPHER_OFB:
case DRV_CIPHER_CTR:
return 0;
case DRV_CIPHER_ECB:
case DRV_CIPHER_CBC:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
if (IS_ALIGNED(size, AES_BLOCK_SIZE))
return 0;
break;
default:
break;
}
break;
case S_DIN_to_DES:
if (IS_ALIGNED(size, DES_BLOCK_SIZE))
return 0;
break;
default:
break;
}
return -EINVAL;
}
static int cc_cipher_init(struct crypto_tfm *tfm)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
int rc = 0;
dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
crypto_tfm_alg_name(tfm));
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct cipher_req_ctx));
ctx_p->cipher_mode = cc_alg->cipher_mode;
ctx_p->flow_mode = cc_alg->flow_mode;
ctx_p->drvdata = cc_alg->drvdata;
/* Allocate key buffer, cache line aligned */
ctx_p->user.key = kmalloc(max_key_buf_size, GFP_KERNEL);
if (!ctx_p->user.key)
return -ENOMEM;
dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
ctx_p->user.key);
/* Map key buffer */
ctx_p->user.key_dma_addr = dma_map_single(dev, (void *)ctx_p->user.key,
max_key_buf_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
max_key_buf_size, ctx_p->user.key);
return -ENOMEM;
}
dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* Alloc hash tfm for essiv */
ctx_p->shash_tfm = crypto_alloc_shash("sha256-generic", 0, 0);
if (IS_ERR(ctx_p->shash_tfm)) {
dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
return PTR_ERR(ctx_p->shash_tfm);
}
}
return rc;
}
static void cc_cipher_exit(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct cc_crypto_alg *cc_alg =
container_of(alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
dev_dbg(dev, "Clearing context @%p for %s\n",
crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* Free hash tfm for essiv */
crypto_free_shash(ctx_p->shash_tfm);
ctx_p->shash_tfm = NULL;
}
/* Unmap key buffer */
dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
DMA_TO_DEVICE);
dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
&ctx_p->user.key_dma_addr);
/* Free key buffer in context */
kzfree(ctx_p->user.key);
dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
}
struct tdes_keys {
u8 key1[DES_KEY_SIZE];
u8 key2[DES_KEY_SIZE];
u8 key3[DES_KEY_SIZE];
};
static enum cc_hw_crypto_key hw_key_to_cc_hw_key(int slot_num)
{
switch (slot_num) {
case 0:
return KFDE0_KEY;
case 1:
return KFDE1_KEY;
case 2:
return KFDE2_KEY;
case 3:
return KFDE3_KEY;
}
return END_OF_KEYS;
}
static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
u32 tmp[DES3_EDE_EXPKEY_WORDS];
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", (u8 *)key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
if (validate_keys_sizes(ctx_p, keylen)) {
dev_err(dev, "Unsupported key size %d.\n", keylen);
crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (cc_is_hw_key(tfm)) {
/* setting HW key slots */
struct arm_hw_key_info *hki = (struct arm_hw_key_info *)key;
if (ctx_p->flow_mode != S_DIN_to_AES) {
dev_err(dev, "HW key not supported for non-AES flows\n");
return -EINVAL;
}
ctx_p->hw.key1_slot = hw_key_to_cc_hw_key(hki->hw_key1);
if (ctx_p->hw.key1_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key1 number (%d)\n",
hki->hw_key1);
return -EINVAL;
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER) {
if (hki->hw_key1 == hki->hw_key2) {
dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
hki->hw_key1, hki->hw_key2);
return -EINVAL;
}
ctx_p->hw.key2_slot =
hw_key_to_cc_hw_key(hki->hw_key2);
if (ctx_p->hw.key2_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key2 number (%d)\n",
hki->hw_key2);
return -EINVAL;
}
}
ctx_p->keylen = keylen;
dev_dbg(dev, "cc_is_hw_key ret 0");
return 0;
}
/*
* Verify DES weak keys
* Note that we're dropping the expanded key since the
* HW does the expansion on its own.
*/
if (ctx_p->flow_mode == S_DIN_to_DES) {
if (keylen == DES3_EDE_KEY_SIZE &&
__des3_ede_setkey(tmp, &tfm->crt_flags, key,
DES3_EDE_KEY_SIZE)) {
dev_dbg(dev, "weak 3DES key");
return -EINVAL;
} else if (!des_ekey(tmp, key) &&
(crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
dev_dbg(dev, "weak DES key");
return -EINVAL;
}
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
xts_check_key(tfm, key, keylen)) {
dev_dbg(dev, "weak XTS key");
return -EINVAL;
}
/* STAT_PHASE_1: Copy key to ctx */
dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
memcpy(ctx_p->user.key, key, keylen);
if (keylen == 24)
memset(ctx_p->user.key + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* sha256 for key2 - use sw implementation */
int key_len = keylen >> 1;
int err;
SHASH_DESC_ON_STACK(desc, ctx_p->shash_tfm);
desc->tfm = ctx_p->shash_tfm;
err = crypto_shash_digest(desc, ctx_p->user.key, key_len,
ctx_p->user.key + key_len);
if (err) {
dev_err(dev, "Failed to hash ESSIV key.\n");
return err;
}
}
dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
ctx_p->keylen = keylen;
dev_dbg(dev, "return safely");
return 0;
}
static void cc_setup_cipher_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, unsigned int nbytes,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
unsigned int key_len = ctx_p->keylen;
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
unsigned int du_size = nbytes;
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
if (cc_alg->data_unit)
du_size = cc_alg->data_unit;
switch (cipher_mode) {
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Load cipher state */
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
NS_BIT);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_cipher_mode(&desc[*seq_size], cipher_mode);
if (cipher_mode == DRV_CIPHER_CTR ||
cipher_mode == DRV_CIPHER_OFB) {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
} else {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
}
(*seq_size)++;
/*FALLTHROUGH*/
case DRV_CIPHER_ECB:
/* Load key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (flow_mode == S_DIN_to_AES) {
if (cc_is_hw_key(tfm)) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI,
key_dma_addr, ((key_len == 24) ?
AES_MAX_KEY_SIZE :
key_len), NS_BIT);
}
set_key_size_aes(&desc[*seq_size], key_len);
} else {
/*des*/
set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
key_len, NS_BIT);
set_key_size_des(&desc[*seq_size], key_len);
}
set_flow_mode(&desc[*seq_size], flow_mode);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
case DRV_CIPHER_BITLOCKER:
/* Load AES key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_is_hw_key(tfm)) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
(key_len / 2), NS_BIT);
}
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_flow_mode(&desc[*seq_size], flow_mode);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
(*seq_size)++;
/* load XEX key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_is_hw_key(tfm)) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key2_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI,
(key_dma_addr + (key_len / 2)),
(key_len / 2), NS_BIT);
}
set_xex_data_unit_size(&desc[*seq_size], du_size);
set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
(*seq_size)++;
/* Set state */
hw_desc_init(&desc[*seq_size]);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_flow_mode(&desc[*seq_size], flow_mode);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_cipher_data(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes,
void *areq, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
unsigned int flow_mode = ctx_p->flow_mode;
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
flow_mode = DIN_AES_DOUT;
break;
case S_DIN_to_DES:
flow_mode = DIN_DES_DOUT;
break;
default:
dev_err(dev, "invalid flow mode, flow_mode = %d\n", flow_mode);
return;
}
/* Process */
if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(src), nbytes);
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(dst), nbytes);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
nbytes, NS_BIT);
set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
nbytes, NS_BIT, (!areq ? 0 : 1));
if (areq)
set_queue_last_ind(&desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
} else {
/* bypass */
dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
&req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len,
(unsigned int)ctx_p->drvdata->mlli_sram_addr);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI,
req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len, NS_BIT);
set_dout_sram(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->mlli_params.mlli_len);
set_flow_mode(&desc[*seq_size], BYPASS);
(*seq_size)++;
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_MLLI,
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT);
if (req_ctx->out_nents == 0) {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
(unsigned int)ctx_p->drvdata->mlli_sram_addr,
(unsigned int)ctx_p->drvdata->mlli_sram_addr);
set_dout_mlli(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT,
(!areq ? 0 : 1));
} else {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
(unsigned int)ctx_p->drvdata->mlli_sram_addr,
(unsigned int)ctx_p->drvdata->mlli_sram_addr +
(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
set_dout_mlli(&desc[*seq_size],
(ctx_p->drvdata->mlli_sram_addr +
(LLI_ENTRY_BYTE_SIZE *
req_ctx->in_mlli_nents)),
req_ctx->out_mlli_nents, NS_BIT,
(!areq ? 0 : 1));
}
if (areq)
set_queue_last_ind(&desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
}
}
static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
{
struct skcipher_request *req = (struct skcipher_request *)cc_req;
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
kzfree(req_ctx->iv);
/*
* The crypto API expects us to set the req->iv to the last
* ciphertext block. For encrypt, simply copy from the result.
* For decrypt, we must copy from a saved buffer since this
* could be an in-place decryption operation and the src is
* lost by this point.
*/
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
memcpy(req->iv, req_ctx->backup_info, ivsize);
kzfree(req_ctx->backup_info);
} else if (!err) {
scatterwalk_map_and_copy(req->iv, req->dst,
(req->cryptlen - ivsize),
ivsize, 0);
}
skcipher_request_complete(req, err);
}
static int cc_cipher_process(struct skcipher_request *req,
enum drv_crypto_direction direction)
{
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
unsigned int nbytes = req->cryptlen;
void *iv = req->iv;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_hw_desc desc[MAX_ABLKCIPHER_SEQ_LEN];
struct cc_crypto_req cc_req = {};
int rc, cts_restore_flag = 0;
unsigned int seq_len = 0;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
"Encrypt" : "Decrypt"), req, iv, nbytes);
/* STAT_PHASE_0: Init and sanity checks */
/* TODO: check data length according to mode */
if (validate_data_size(ctx_p, nbytes)) {
dev_err(dev, "Unsupported data size %d.\n", nbytes);
crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
rc = -EINVAL;
goto exit_process;
}
if (nbytes == 0) {
/* No data to process is valid */
rc = 0;
goto exit_process;
}
/* The IV we are handed may be allocted from the stack so
* we must copy it to a DMAable buffer before use.
*/
req_ctx->iv = kmalloc(ivsize, flags);
if (!req_ctx->iv) {
rc = -ENOMEM;
goto exit_process;
}
memcpy(req_ctx->iv, iv, ivsize);
/*For CTS in case of data size aligned to 16 use CBC mode*/
if (((nbytes % AES_BLOCK_SIZE) == 0) &&
ctx_p->cipher_mode == DRV_CIPHER_CBC_CTS) {
ctx_p->cipher_mode = DRV_CIPHER_CBC;
cts_restore_flag = 1;
}
/* Setup request structure */
cc_req.user_cb = (void *)cc_cipher_complete;
cc_req.user_arg = (void *)req;
#ifdef ENABLE_CYCLE_COUNT
cc_req.op_type = (direction == DRV_CRYPTO_DIRECTION_DECRYPT) ?
STAT_OP_TYPE_DECODE : STAT_OP_TYPE_ENCODE;
#endif
/* Setup request context */
req_ctx->gen_ctx.op_type = direction;
/* STAT_PHASE_1: Map buffers */
rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
req_ctx->iv, src, dst, flags);
if (rc) {
dev_err(dev, "map_request() failed\n");
goto exit_process;
}
/* STAT_PHASE_2: Create sequence */
/* Setup processing */
cc_setup_cipher_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
/* Data processing */
cc_setup_cipher_data(tfm, req_ctx, dst, src, nbytes, req, desc,
&seq_len);
/* do we need to generate IV? */
if (req_ctx->is_giv) {
cc_req.ivgen_dma_addr[0] = req_ctx->gen_ctx.iv_dma_addr;
cc_req.ivgen_dma_addr_len = 1;
/* set the IV size (8/16 B long)*/
cc_req.ivgen_size = ivsize;
}
/* STAT_PHASE_3: Lock HW and push sequence */
rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
&req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
/* Failed to send the request or request completed
* synchronously
*/
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
}
exit_process:
if (cts_restore_flag)
ctx_p->cipher_mode = DRV_CIPHER_CBC_CTS;
if (rc != -EINPROGRESS && rc != -EBUSY) {
kzfree(req_ctx->backup_info);
kzfree(req_ctx->iv);
}
return rc;
}
static int cc_cipher_encrypt(struct skcipher_request *req)
{
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
req_ctx->is_giv = false;
req_ctx->backup_info = NULL;
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
}
static int cc_cipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
gfp_t flags = cc_gfp_flags(&req->base);
/*
* Allocate and save the last IV sized bytes of the source, which will
* be lost in case of in-place decryption and might be needed for CTS.
*/
req_ctx->backup_info = kmalloc(ivsize, flags);
if (!req_ctx->backup_info)
return -ENOMEM;
scatterwalk_map_and_copy(req_ctx->backup_info, req->src,
(req->cryptlen - ivsize), ivsize, 0);
req_ctx->is_giv = false;
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
}
/* Block cipher alg */
static const struct cc_alg_template skcipher_algs[] = {
{
.name = "xts(aes)",
.driver_name = "xts-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
},
{
.name = "xts512(aes)",
.driver_name = "xts-aes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
},
{
.name = "xts4096(aes)",
.driver_name = "xts-aes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
},
{
.name = "essiv(aes)",
.driver_name = "essiv-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
},
{
.name = "essiv512(aes)",
.driver_name = "essiv-aes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
},
{
.name = "essiv4096(aes)",
.driver_name = "essiv-aes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
},
{
.name = "bitlocker(aes)",
.driver_name = "bitlocker-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
},
{
.name = "bitlocker512(aes)",
.driver_name = "bitlocker-aes-du512-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 512,
},
{
.name = "bitlocker4096(aes)",
.driver_name = "bitlocker-aes-du4096-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_BITLOCKER,
.flow_mode = S_DIN_to_AES,
.data_unit = 4096,
},
{
.name = "ecb(aes)",
.driver_name = "ecb-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_AES,
},
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
},
{
.name = "ofb(aes)",
.driver_name = "ofb-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_OFB,
.flow_mode = S_DIN_to_AES,
},
{
.name = "cts1(cbc(aes))",
.driver_name = "cts1-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC_CTS,
.flow_mode = S_DIN_to_AES,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
},
{
.name = "ecb(des3_ede)",
.driver_name = "ecb-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
},
{
.name = "ecb(des)",
.driver_name = "ecb-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
},
};
static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
struct device *dev)
{
struct cc_crypto_alg *t_alg;
struct skcipher_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &t_alg->skcipher_alg;
memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
tmpl->driver_name);
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CC_CRA_PRIO;
alg->base.cra_blocksize = tmpl->blocksize;
alg->base.cra_alignmask = 0;
alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
alg->base.cra_init = cc_cipher_init;
alg->base.cra_exit = cc_cipher_exit;
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_TYPE_SKCIPHER;
t_alg->cipher_mode = tmpl->cipher_mode;
t_alg->flow_mode = tmpl->flow_mode;
t_alg->data_unit = tmpl->data_unit;
return t_alg;
}
int cc_cipher_free(struct cc_drvdata *drvdata)
{
struct cc_crypto_alg *t_alg, *n;
struct cc_cipher_handle *cipher_handle = drvdata->cipher_handle;
if (cipher_handle) {
/* Remove registered algs */
list_for_each_entry_safe(t_alg, n, &cipher_handle->alg_list,
entry) {
crypto_unregister_skcipher(&t_alg->skcipher_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
kfree(cipher_handle);
drvdata->cipher_handle = NULL;
}
return 0;
}
int cc_cipher_alloc(struct cc_drvdata *drvdata)
{
struct cc_cipher_handle *cipher_handle;
struct cc_crypto_alg *t_alg;
struct device *dev = drvdata_to_dev(drvdata);
int rc = -ENOMEM;
int alg;
cipher_handle = kmalloc(sizeof(*cipher_handle), GFP_KERNEL);
if (!cipher_handle)
return -ENOMEM;
INIT_LIST_HEAD(&cipher_handle->alg_list);
drvdata->cipher_handle = cipher_handle;
/* Linux crypto */
dev_dbg(dev, "Number of algorithms = %zu\n",
ARRAY_SIZE(skcipher_algs));
for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
t_alg = cc_create_alg(&skcipher_algs[alg], dev);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
skcipher_algs[alg].driver_name);
goto fail0;
}
t_alg->drvdata = drvdata;
dev_dbg(dev, "registering %s\n",
skcipher_algs[alg].driver_name);
rc = crypto_register_skcipher(&t_alg->skcipher_alg);
dev_dbg(dev, "%s alg registration rc = %x\n",
t_alg->skcipher_alg.base.cra_driver_name, rc);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
t_alg->skcipher_alg.base.cra_driver_name);
kfree(t_alg);
goto fail0;
} else {
list_add_tail(&t_alg->entry,
&cipher_handle->alg_list);
dev_dbg(dev, "Registered %s\n",
t_alg->skcipher_alg.base.cra_driver_name);
}
}
return 0;
fail0:
cc_cipher_free(drvdata);
return rc;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
/* \file cc_cipher.h
* ARM CryptoCell Cipher Crypto API
*/
#ifndef __CC_CIPHER_H__
#define __CC_CIPHER_H__
#include <linux/kernel.h>
#include <crypto/algapi.h>
#include "cc_driver.h"
#include "cc_buffer_mgr.h"
/* Crypto cipher flags */
#define CC_CRYPTO_CIPHER_KEY_KFDE0 BIT(0)
#define CC_CRYPTO_CIPHER_KEY_KFDE1 BIT(1)
#define CC_CRYPTO_CIPHER_KEY_KFDE2 BIT(2)
#define CC_CRYPTO_CIPHER_KEY_KFDE3 BIT(3)
#define CC_CRYPTO_CIPHER_DU_SIZE_512B BIT(4)
#define CC_CRYPTO_CIPHER_KEY_KFDE_MASK (CC_CRYPTO_CIPHER_KEY_KFDE0 | \
CC_CRYPTO_CIPHER_KEY_KFDE1 | \
CC_CRYPTO_CIPHER_KEY_KFDE2 | \
CC_CRYPTO_CIPHER_KEY_KFDE3)
struct cipher_req_ctx {
struct async_gen_req_ctx gen_ctx;
enum cc_req_dma_buf_type dma_buf_type;
u32 in_nents;
u32 in_mlli_nents;
u32 out_nents;
u32 out_mlli_nents;
u8 *backup_info; /*store iv for generated IV flow*/
u8 *iv;
bool is_giv;
struct mlli_params mlli_params;
};
int cc_cipher_alloc(struct cc_drvdata *drvdata);
int cc_cipher_free(struct cc_drvdata *drvdata);
struct arm_hw_key_info {
int hw_key1;
int hw_key2;
};
/*
* This is a stub function that will replaced when we
* implement secure keys
*/
static inline bool cc_is_hw_key(struct crypto_tfm *tfm)
{
return false;
}
#endif /*__CC_CIPHER_H__*/
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "cc_request_mgr.h" #include "cc_request_mgr.h"
#include "cc_buffer_mgr.h" #include "cc_buffer_mgr.h"
#include "cc_debugfs.h" #include "cc_debugfs.h"
#include "cc_cipher.h"
#include "cc_ivgen.h" #include "cc_ivgen.h"
#include "cc_sram_mgr.h" #include "cc_sram_mgr.h"
#include "cc_pm.h" #include "cc_pm.h"
...@@ -278,8 +279,17 @@ static int init_cc_resources(struct platform_device *plat_dev) ...@@ -278,8 +279,17 @@ static int init_cc_resources(struct platform_device *plat_dev)
goto post_power_mgr_err; goto post_power_mgr_err;
} }
/* Allocate crypto algs */
rc = cc_cipher_alloc(new_drvdata);
if (rc) {
dev_err(dev, "cc_cipher_alloc failed\n");
goto post_ivgen_err;
}
return 0; return 0;
post_ivgen_err:
cc_ivgen_fini(new_drvdata);
post_power_mgr_err: post_power_mgr_err:
cc_pm_fini(new_drvdata); cc_pm_fini(new_drvdata);
post_buf_mgr_err: post_buf_mgr_err:
...@@ -308,6 +318,7 @@ static void cleanup_cc_resources(struct platform_device *plat_dev) ...@@ -308,6 +318,7 @@ static void cleanup_cc_resources(struct platform_device *plat_dev)
struct cc_drvdata *drvdata = struct cc_drvdata *drvdata =
(struct cc_drvdata *)platform_get_drvdata(plat_dev); (struct cc_drvdata *)platform_get_drvdata(plat_dev);
cc_cipher_free(drvdata);
cc_ivgen_fini(drvdata); cc_ivgen_fini(drvdata);
cc_pm_fini(drvdata); cc_pm_fini(drvdata);
cc_buffer_mgr_fini(drvdata); cc_buffer_mgr_fini(drvdata);
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#endif #endif
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <crypto/algapi.h> #include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <crypto/aes.h> #include <crypto/aes.h>
#include <crypto/sha.h> #include <crypto/sha.h>
#include <crypto/aead.h> #include <crypto/aead.h>
...@@ -111,6 +112,7 @@ struct cc_drvdata { ...@@ -111,6 +112,7 @@ struct cc_drvdata {
struct platform_device *plat_dev; struct platform_device *plat_dev;
cc_sram_addr_t mlli_sram_addr; cc_sram_addr_t mlli_sram_addr;
void *buff_mgr_handle; void *buff_mgr_handle;
void *cipher_handle;
void *request_mgr_handle; void *request_mgr_handle;
void *ivgen_handle; void *ivgen_handle;
void *sram_mgr_handle; void *sram_mgr_handle;
...@@ -124,8 +126,9 @@ struct cc_crypto_alg { ...@@ -124,8 +126,9 @@ struct cc_crypto_alg {
int cipher_mode; int cipher_mode;
int flow_mode; /* Note: currently, refers to the cipher mode only. */ int flow_mode; /* Note: currently, refers to the cipher mode only. */
int auth_mode; int auth_mode;
unsigned int data_unit;
struct cc_drvdata *drvdata; struct cc_drvdata *drvdata;
struct crypto_alg crypto_alg; struct skcipher_alg skcipher_alg;
}; };
struct cc_alg_template { struct cc_alg_template {
...@@ -140,6 +143,7 @@ struct cc_alg_template { ...@@ -140,6 +143,7 @@ struct cc_alg_template {
int cipher_mode; int cipher_mode;
int flow_mode; /* Note: currently, refers to the cipher mode only. */ int flow_mode; /* Note: currently, refers to the cipher mode only. */
int auth_mode; int auth_mode;
unsigned int data_unit;
struct cc_drvdata *drvdata; struct cc_drvdata *drvdata;
}; };
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment