Commit 6430dce2 authored by Goto Masanori's avatar Goto Masanori Committed by Linus Torvalds

[PATCH] NinjaSCSI-32Bi/UDE PCI/Cardbus SCSI core driver

This patch supports new driver nsp32 - NinjaSCSI-32Bi/UDE PCI/Cardbus
SCSI adapter for 2.5.40. This driver supports at least (we tested) 7
different PCI/Cardbus SCSI cards which use Workbit NinjaSCSI-32 SCSI
processor.

This is the driver part, next one is for things like Config.help,
Makefile, and so on.
parent 9fd6aa65
/*
* NinjaSCSI-32Bi Cardbus, NinjaSCSI-32UDE PCI/CardBus SCSI driver
* Copyright (C) 2001, 2002
* YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>
* GOTO Masanori <gotom@debian.or.jp>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/major.h>
#include <linux/blk.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include "scsi.h"
#include "hosts.h"
#include <scsi/scsi_ioctl.h>
#include <scsi/scsi.h>
#include "nsp32.h"
static int trans_mode = 0; /* default: BIOS */
static int auto_param = 0; /* default: ON */
MODULE_PARM(trans_mode, "i");
MODULE_PARM(auto_param, "i");
MODULE_PARM_DESC(trans_mode, "transfer mode (0: BIOS 1: Async 2: Ultra20M");
MODULE_PARM_DESC(auto_param, "AutoParameter mode (0: ON 1: OFF)");
#define ASYNC_MODE 1
#define ULTRA20M_MODE 2
MODULE_AUTHOR("YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>, GOTO Masanori <gotom@debian.or.jp>");
MODULE_DESCRIPTION("Workbit NinjaSCSI-32Bi/UDE PCI/CardBus SCSI host bus adapter module");
MODULE_LICENSE("GPL");
static const char *nsp32_release_version = "1.0";
/*
* structure for DMA/Scatter Gather list
*/
#define AUTOPARAM_SIZE (sizeof(int)*0x15) /* 4x15H = 0x60 */
#define NSP_SG_SIZE SG_ALL
#define NSP32_SG_END_SGT 0x80000000 /* Last SGT marker */
#define NSP32_SG_CNT_MASK 0x1FFFF
struct nsp32_sgtable {
unsigned long addr; /* transfer address */
unsigned long len; /* transfer length.
Bit (24-32) is for SGT_END */
};
struct nsp32_sglun {
struct nsp32_sgtable sgt[NSP_SG_SIZE+1]; /* SG table */
};
/*
* host data structure
*/
/* message in/out buffer */
#define MSGOUTBUF_MAX 13 /* 13 is ok ? */
#define MSGINBUF_MAX 13
/* flag for trans_method */
#define NSP32_TRANSFER_BUSMASTER BIT(0)
#define NSP32_TRANSFER_MMIO BIT(1) /* Not supported yet */
#define NSP32_TRANSFER_PIO BIT(2) /* Not supported yet */
/*
* SCSI TARGET/LUN definition
*/
#define NSP32_HOST_SCSIID 7 /* SCSI initiator is everytime defined as 7 */
#define MAX_TARGET 8
#define MAX_LUN 8 /* XXX: In SPI3, max number of LUN is 64. */
/*
* structure for synchronous transfer negotiation data
*/
#define SYNC_NOT_YET 0
#define SYNC_OK 1
#define SYNC_NG 2
struct nsp32_sync_table {
unsigned char period_num; /* period number */
unsigned char ackwidth; /* ack width designated by period */
unsigned char start_period; /* search range - start period */
unsigned char end_period; /* search range - end period */
};
/*
* structure for target device static data
*/
/* flag for nsp32_target.sync_flag */
#define SDTR_INITIATOR BIT(0) /* sending SDTR from initiator */
#define SDTR_TARGET BIT(1) /* sending SDTR from target */
#define SDTR_DONE BIT(2) /* exchanging SDTR has been processed */
/* syncronous period value for nsp32_target.config_max */
#define FAST5M 0x32
#define FAST10M 0x19
#define ULTRA20M 0x0c
/* flag for nsp32_target.{sync_offset}, period */
#define ASYNC_OFFSET 0 /* asynchronous transfer */
#define SYNC_OFFSET 0xf /* synchronous transfer max offset */
/* syncreg:
07 06 05 04 03 02 01 00
---PERIOD-- ---OFFSET-- */
#define TO_SYNCREG(period, offset) (period << 4 | offset)
struct nsp32_target {
unsigned char syncreg; /* value for SYNCREG */
unsigned char ackwidth; /* value for ACKWIDTH */
unsigned char offset; /* sync offset (0-15) */
int sync_flag; /* SDTR_*, 0 */
int limit_entry; /* max speed limit entry designated
by EEPROM configuration */
};
typedef struct _nsp32_hw_data {
int IrqNumber;
int BaseAddress;
int NumAddress;
#define NSP32_MMIO_OFFSET 0x0800
unsigned long MmioAddress;
unsigned long length;
Scsi_Cmnd *CurrentSC;
struct pci_dev *Pci;
const struct pci_device_id *pci_devid;
struct Scsi_Host *Host;
spinlock_t Lock;
char info_str[100];
/* allocated memory region */
struct nsp32_lunt *lunt_list; /* kmalloc region for lunt */
struct nsp32_sglun *sg_list; /* sglist virtual address */
dma_addr_t sgaddr; /* physical address of hw_sg_table */
unsigned char *autoparam; /* auto parameter transfer region */
dma_addr_t apaddr; /* physical address of autoparam */
int cur_entry; /* current sgt entry */
/* target/LUN */
struct nsp32_lunt *curlunt; /* Current connected LUN table */
struct nsp32_lunt *lunt[MAX_TARGET][MAX_LUN]; /* All LUN table */
struct nsp32_target *curtarget; /* Current connected SCSI ID */
struct nsp32_target target[MAX_TARGET]; /* SCSI ID */
int pid; /* Current connected target ID */
int plun; /* Current connected target LUN */
/* behavior setting parameters */
int trans_method; /* transfer method flag */
int resettime; /* Reset time */
int clock; /* clock dividing flag */
struct nsp32_sync_table *synct; /* sync_table determined by clock */
int syncnum; /* the max number of synct element */
/* message buffer */
unsigned char msgoutbuf[MSGOUTBUF_MAX]; /* msgout buffer */
char msgoutlen; /* msgoutbuf length */
unsigned char msginbuf[MSGINBUF_MAX]; /* megin buffer */
char msginlen; /* msginbuf length */
} nsp32_hw_data;
static nsp32_hw_data nsp32_data_base; /* probe <-> detect glue */
/*
* TIME definition
*/
#define RESET_HOLD_TIME 10000 /* reset time in us (SCSI-2 says the
minimum is 25us) */
#define SEL_TIMEOUT_TIME 10000 /* 250ms defined in SCSI specification
(25.6us/1unit) */
#define ARBIT_TIMEOUT_TIME 100 /* 100us */
#define REQSACK_TIMEOUT_TIME 10000 /* max wait time for REQ/SACK assertion
or negation, 10000us == 10ms */
/*
* structure for connected LUN dynamic data
*
* Note: Currently tagged queuing is disabled, each nsp32_lunt holds
* one SCSI command and one state.
*/
#define DISCPRIV_OK BIT(0) /* DISCPRIV Enable mode */
#define MSGIN03 BIT(1) /* Auto Msg In 03 Flag */
struct nsp32_lunt {
Scsi_Cmnd *SCpnt; /* Current Handling Scsi_Cmnd */
unsigned long save_datp; /* Save Data Pointer - saved position from initial address */
int msgin03; /* auto msg in 03 flag */
unsigned int sg_num; /* Total number of SG entries */
int cur_entry; /* Current SG entry number */
struct nsp32_sglun *sglun; /* sg table per lun */
long sglun_paddr; /* sglun physical address */
};
/*
* Period/AckWidth speed conversion table
*
* Note: This period/ackwidth speed table must be in descending order.
*/
static struct nsp32_sync_table nsp32_sync_table_40M[] = {
/* {PNo, AW, SP, EP} Speed(MB/s) Period AckWidth */
{0x1, 0, 0x0c, 0x0c}, /* 20.0 : 50ns, 25ns */
{0x2, 0, 0x0d, 0x18}, /* 13.3 : 75ns, 25ns */
{0x3, 1, 0x19, 0x19}, /* 10.0 : 100ns, 50ns */
{0x4, 1, 0x1a, 0x1f}, /* 8.0 : 125ns, 50ns */
{0x5, 2, 0x20, 0x25}, /* 6.7 : 150ns, 75ns */
{0x6, 2, 0x26, 0x31}, /* 5.7 : 175ns, 75ns */
{0x7, 3, 0x32, 0x32}, /* 5.0 : 200ns, 100ns */
{0x8, 3, 0x33, 0x38}, /* 4.4 : 225ns, 100ns */
{0x9, 3, 0x39, 0x3e}, /* 4.0 : 250ns, 100ns */
};
static const int nsp32_table_40M_num =
sizeof(nsp32_sync_table_40M)/sizeof(struct nsp32_sync_table);
static struct nsp32_sync_table nsp32_sync_table_20M[] = {
{0x1, 0, 0x19, 0x19}, /* 10.0 : 100ns, 50ns */
{0x2, 0, 0x1a, 0x25}, /* 6.7 : 150ns, 50ns */
{0x3, 1, 0x26, 0x32}, /* 5.0 : 200ns, 100ns */
{0x4, 1, 0x33, 0x3e}, /* 4.0 : 250ns, 100ns */
{0x5, 2, 0x3f, 0x4b}, /* 3.3 : 300ns, 150ns */
{0x6, 2, 0x4c, 0x57}, /* 2.8 : 350ns, 150ns */
{0x7, 3, 0x58, 0x64}, /* 2.5 : 400ns, 200ns */
{0x8, 3, 0x65, 0x70}, /* 2.2 : 450ns, 200ns */
{0x9, 3, 0x71, 0x7d}, /* 2.0 : 500ns, 200ns */
};
static const int nsp32_table_20M_num =
sizeof(nsp32_sync_table_20M)/sizeof(struct nsp32_sync_table);
static struct nsp32_sync_table nsp32_sync_table_pci[] = {
{0x1, 0, 0x0c, 0x0f}, /* 16.6 : 60ns, 30ns */
{0x2, 0, 0x10, 0x16}, /* 11.1 : 90ns, 30ns */
{0x3, 1, 0x17, 0x1e}, /* 8.3 : 120ns, 60ns */
{0x4, 1, 0x1f, 0x25}, /* 6.7 : 150ns, 60ns */
{0x5, 2, 0x26, 0x2d}, /* 5.6 : 180ns, 90ns */
{0x6, 2, 0x2e, 0x34}, /* 4.8 : 210ns, 90ns */
{0x7, 3, 0x35, 0x3c}, /* 4.2 : 240ns, 120ns */
{0x8, 3, 0x3d, 0x43}, /* 3.7 : 270ns, 120ns */
{0x9, 3, 0x44, 0x4b}, /* 3.3 : 300ns, 120ns */
};
static const int nsp32_table_pci_num =
sizeof(nsp32_sync_table_pci)/sizeof(struct nsp32_sync_table);
/*
* function declaration
*/
static int nsp32_detect(Scsi_Host_Template *);
static int nsp32_queuecommand(Scsi_Cmnd *, void (*done)(Scsi_Cmnd *));
static const char *nsp32_info(struct Scsi_Host *);
static int nsp32_eh_abort(Scsi_Cmnd *);
static int nsp32_eh_bus_reset(Scsi_Cmnd *);
static int nsp32_eh_host_reset(Scsi_Cmnd *);
static int nsp32_reset(Scsi_Cmnd *, unsigned int);
static int nsp32_release(struct Scsi_Host *);
static int nsp32_proc_info(char *, char **, off_t, int, int, int);
static int __devinit nsp32_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit nsp32_remove(struct pci_dev *);
static int __init init_nsp32(void);
static void __exit exit_nsp32(void);
static void nsp32_message(char *, int, char *, char *, ...);
static void nsp32_dmessage(char *, int, int, char *, ...);
static void nsp32_build_identify(nsp32_hw_data *, Scsi_Cmnd *);
static void nsp32_build_sdtr(nsp32_hw_data *, unsigned char, unsigned char);
static void nsp32_build_nop(nsp32_hw_data *);
static void nsp32_build_reject(nsp32_hw_data *);
static int nsp32hw_start_selection(Scsi_Cmnd *, nsp32_hw_data *);
static int nsp32_selection_autoscsi(Scsi_Cmnd *, nsp32_hw_data *);
static int nsp32_reselection(nsp32_hw_data *, unsigned char);
static int nsp32hw_setup_sg_table(Scsi_Cmnd *, nsp32_hw_data *);
static int nsp32hw_init(struct Scsi_Host *);
static void nsp32_scsi_done(nsp32_hw_data *, Scsi_Cmnd *);
static int nsp32_busfree_occur(nsp32_hw_data *, unsigned short);
static void nsp32_adjust_busfree(nsp32_hw_data *, unsigned int);
static void nsp32_msgout_occur(nsp32_hw_data *);
static void nsp32_restart_autoscsi(nsp32_hw_data *, unsigned short);
static void nsp32_msgin_occur(nsp32_hw_data *, unsigned long, unsigned short);
static void nsp32_analyze_sdtr(nsp32_hw_data *);
static int nsp32_search_period_entry(nsp32_hw_data *,struct nsp32_target *, unsigned char);
static void nsp32_set_async(nsp32_hw_data *, struct nsp32_target *);
static void nsp32_set_max_sync(nsp32_hw_data *, struct nsp32_target *, unsigned char *, unsigned char *);
static void nsp32_set_sync_entry(nsp32_hw_data *, struct nsp32_target *, int, unsigned char);
static void nsp32_wait_req(nsp32_hw_data *, int);
static void nsp32_wait_sack(nsp32_hw_data *, int);
static void nsp32_sack_assert(nsp32_hw_data *);
static void nsp32_sack_negate(nsp32_hw_data *);
static void nsp32_do_bus_reset(nsp32_hw_data *);
static void do_nsp32_isr(int, void *, struct pt_regs *);
static int nsp32_getprom_param(nsp32_hw_data *);
static int nsp32_getprom_new(nsp32_hw_data *);
static int nsp32_getprom_standard(nsp32_hw_data *);
static int nsp32_prom_read(nsp32_hw_data *, int);
static void nsp32_prom_start(nsp32_hw_data *);
static void nsp32_prom_stop(nsp32_hw_data *);
static void nsp32_prom_write(nsp32_hw_data *, int);
static int nsp32_prom_fetch(nsp32_hw_data *);
static inline void nsp32_prom_set(nsp32_hw_data *, int, int);
static inline int nsp32_prom_get(nsp32_hw_data *, int);
/*
* max_sectors is currently limited up to 128.
*/
static Scsi_Host_Template driver_template = {
.proc_name = "nsp32",
.name = "Workbit NinjaSCSI-32Bi/UDE",
.proc_info = nsp32_proc_info,
.detect = nsp32_detect,
.info = nsp32_info,
.queuecommand = nsp32_queuecommand,
.can_queue = 1,
.sg_tablesize = NSP_SG_SIZE,
.max_sectors = 128,
.cmd_per_lun = 1,
.this_id = 7,
.use_clustering = DISABLE_CLUSTERING,
.eh_abort_handler = nsp32_eh_abort,
.eh_device_reset_handler = NULL,
.eh_bus_reset_handler = nsp32_eh_bus_reset,
.eh_host_reset_handler = nsp32_eh_host_reset,
.reset = nsp32_reset,
.release = nsp32_release,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,2))
.use_new_eh_code = 1,
#else
/* .highmem_io = 1, */
#endif
};
#include "nsp32_io.h"
/*
* debug, error print
*/
#define nsp32_msg(type, args...) \
nsp32_message(__FUNCTION__, __LINE__, (type), ## args)
#define nsp32_dbg(mask, args...) \
nsp32_dmessage(__FUNCTION__, __LINE__, (mask), ## args)
#ifndef NSP32_DEBUG
# define NSP32_DEBUG_MASK 0x000000
#else
# define NSP32_DEBUG_MASK 0xffffff
#endif
#define NSP32_DEBUG_QUEUECOMMAND 0x000001
#define NSP32_DEBUG_REGISTER 0x000002
#define NSP32_DEBUG_AUTOSCSI 0x000004
#define NSP32_DEBUG_INTR 0x000008
#define NSP32_DEBUG_SGLIST 0x000010
#define NSP32_DEBUG_BUSFREE 0x000020
#define NSP32_DEBUG_CDB_CONTENTS 0x000040
#define NSP32_DEBUG_RESELECTION 0x000080
#define NSP32_DEBUG_MSGINOCCUR 0x000100
#define NSP32_DEBUG_EEPROM 0x000200
#define NSP32_DEBUG_MSGOUTOCCUR 0x000400
#define NSP32_DEBUG_BUSRESET 0x000800
#define NSP32_DEBUG_RESTART 0x001000
#define NSP32_DEBUG_SYNC 0x002000
#define NSP32_DEBUG_WAIT 0x004000
#define NSP32_DEBUG_TARGETFLAG 0x008000
#define NSP32_DEBUG_PROC 0x010000
#define NSP32_DEBUG_INIT 0x020000
#define NSP32_SPECIAL_PRINT_REGISTER 0x100000
#define NSP32_DEBUG_BUF_LEN 100
static void nsp32_message(char *func, int line, char *type, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsprintf(buf, fmt, args);
va_end(args);
#ifndef NSP32_DEBUG
printk("%snsp32: %s\n", type, buf);
#else
printk("%snsp32: %s (%d): %s\n", type, func, line, buf);
#endif
}
static void nsp32_dmessage(char *func, int line, int mask, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsprintf(buf, fmt, args);
va_end(args);
if (mask & NSP32_DEBUG_MASK) {
printk("Ninja: %d %s (%d): %s\n", mask, func, line, buf);
}
}
#ifdef NSP32_DEBUG
# include "nsp32_debug.c"
#else
# define show_command(arg) /* */
# define show_busphase(arg) /* */
# define show_autophase(arg) /* */
#endif
#ifdef NSP32_DEBUG
static int pc_debug = NSP32_DEBUG;
MODULE_PARM(pc_debug, "i");
#define DEBUG(n, args...) if (pc_debug>(n)) printk(/*KERN_DEBUG*/ args)
#else
#define DEBUG(n, args...)
#endif
/*
* IDENTIFY Message
*/
static void nsp32_build_identify(nsp32_hw_data *data, Scsi_Cmnd *SCpnt)
{
int pos = data->msgoutlen;
data->msgoutbuf[pos++] =
0x80 | /* Identify */
#if 0
/* XXX: Auto DiscPriv detection is progressing... */
0x40 | /* DiscPriv */
#endif
SCpnt->lun; /* LUNTRN */
data->msgoutlen = pos;
}
/*
* SDTR Message Routine
*/
static void nsp32_build_sdtr(nsp32_hw_data *data,
unsigned char period, unsigned char offset)
{
int pos = data->msgoutlen;
data->msgoutbuf[pos++] = EXTENDED_MESSAGE;
data->msgoutbuf[pos++] = EXTENDED_SDTR_LEN;
data->msgoutbuf[pos++] = EXTENDED_SDTR;
data->msgoutbuf[pos++] = period;
data->msgoutbuf[pos++] = offset;
data->msgoutlen = pos;
}
/*
* No Operation Message
*/
static void nsp32_build_nop(nsp32_hw_data *data)
{
int pos = data->msgoutlen;
if (pos != 0) {
nsp32_msg(KERN_WARNING,
"Some messages are already contained!");
return;
}
data->msgoutbuf[pos++] = NOP;
data->msgoutlen = pos;
}
/*
* Reject Message
*/
static void nsp32_build_reject(nsp32_hw_data *data)
{
int pos = data->msgoutlen;
data->msgoutbuf[pos++] = MESSAGE_REJECT;
data->msgoutlen = pos;
}
/*
* timer
*/
#if 0
static void nsp32_start_timer(Scsi_Cmnd *SCpnt, int time)
{
unsigned int base = SCpnt->host->io_port;
DEBUG(0, __func__ " time=%d\n", time);
if (time & (~TIMER_CNT_MASK)) {
printk("timer set overflow\n");
}
nsp32_write2(base, TIMER_SET, time & TIMER_CNT_MASK);
}
#endif
/*
* set SCSI command and other parameter to asic, and start selection phase
*/
static int nsp32hw_start_selection(Scsi_Cmnd *SCpnt, nsp32_hw_data *data)
{
unsigned int host_id = SCpnt->host->this_id;
unsigned int base = SCpnt->host->io_port;
unsigned char target = SCpnt->target;
unsigned char *param = data->autoparam;
unsigned char phase, arbit;
int i, time;
unsigned int msgout;
unsigned long l;
unsigned short s;
/*
* check bus free
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if (phase != BUSMON_BUS_FREE) {
nsp32_msg(KERN_WARNING, "bus busy");
show_busphase(phase & BUSMON_PHASE_MASK);
SCpnt->result = DID_BUS_BUSY << 16;
return FALSE;
}
/*
* message out
*
* Note: If the range of msgoutlen is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgoutlen == 0) {
nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
return FALSE;
} else if (data->msgoutlen > 0 && data->msgoutlen <= 3) {
msgout = 0;
for (i=0; i<data->msgoutlen; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= (unsigned int)(data->msgoutbuf[i] << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgoutlen; /* len */
} else {
/* data->msgoutlen > 3 */
msgout = 0;
}
/*
* setup asic parameter
*/
memset(param, 0, AUTOPARAM_SIZE);
/* cdb */
for (i=0; i<SCpnt->cmd_len; i++) {
param[4*i] = SCpnt->cmnd[i];
}
/* message out */
param[4*0x10 +0] = (msgout & 0x000000ff) >> 0;
param[4*0x10 +1] = (msgout & 0x0000ff00) >> 8;
param[4*0x10 +2] = (msgout & 0x00ff0000) >> 16;
param[4*0x10 +3] = (msgout & 0xff000000) >> 24;
/* syncreg, ackwidth, target id, sampleing rate */
param[4*0x11 +0] = data->curtarget->syncreg;
param[4*0x11 +1] = data->curtarget->ackwidth;
param[4*0x11 +2] = BIT(host_id) | BIT(target);
param[4*0x11 +3] = 0;
/* command control */
s = (CLEAR_CDB_FIFO_POINTER | AUTOSCSI_START |
AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02 | AUTO_ATN);
param[4*0x12 +0] = (s & 0x00ff) >> 0;
param[4*0x12 +1] = (s & 0xff00) >> 8;
/* transfer control */
s = 0;
switch (data->trans_method) {
case NSP32_TRANSFER_BUSMASTER:
s |= BM_START;
break;
case NSP32_TRANSFER_MMIO:
s |= CB_MMIO_MODE;
break;
case NSP32_TRANSFER_PIO:
s |= CB_IO_MODE;
break;
default:
nsp32_msg(KERN_ERR, "unknown trans_method");
}
/*
* ORed BLIEND_MODE, FIFO intr is decreased, instead of PCI bus waits.
* For bus master transfer, it's taken off.
*/
s |= (TRANSFER_GO | ALL_COUNTER_CLR);
param[4*0x12 +2] = (s & 0x00ff) >> 0;
param[4*0x12 +3] = (s & 0xff00) >> 8;
/* sg table addr */
l = data->curlunt->sglun_paddr;
param[4*0x13 +0] = (l & 0x000000ff) >> 0;
param[4*0x13 +1] = (l & 0x0000ff00) >> 8;
param[4*0x13 +2] = (l & 0x00ff0000) >> 16;
param[4*0x13 +3] = (l & 0xff000000) >> 24;
/*
* transfer parameter to asic
*/
nsp32_write4(base, SGT_ADR, virt_to_bus(param));
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER |
AUTO_PARAMETER );
/*
* Arbitration Status Check
*
* Note: Arbitration counter is wait during ARBIT_GO is not lifting.
* Using udelay(1) consumes CPU time and system time, but
* arbitration delay time is defined minimal 2.4us in SCSI
* specification, thus udelay works as coarse grained wait timer.
*/
time = 0;
do {
arbit = nsp32_read1(base, ARBIT_STATUS);
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit=0x%x", arbit);
} while ((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 &&
(time++ <= 1000));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"arbit: 0x%x, delay time: %d", arbit, time);
if (arbit & ARBIT_WIN) {
SCpnt->result = DID_OK << 16;
/* PCI LED on! */
nsp32_index_write1(base, EXT_PORT, LED_ON);
} else if (arbit & ARBIT_FAIL) {
SCpnt->result = DID_BUS_BUSY << 16;
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
return FALSE;
} else {
/* unknown error or ARBIT_GO timeout */
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit fail");
SCpnt->result = DID_NO_CONNECT << 16;
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
return FALSE;
}
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
return TRUE;
}
/*
* Selection with AUTO SCSI (without AUTO PARAMETER)
*/
static int nsp32_selection_autoscsi(Scsi_Cmnd *SCpnt, nsp32_hw_data *data)
{
unsigned char phase;
unsigned char arbit;
int status;
int i;
unsigned short command = 0;
int time = 0;
unsigned int msgout = 0;
unsigned short execph;
unsigned int base = data->BaseAddress;
/*
* IRQ disable
*/
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
/*
* check bus line
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if(((phase & BUSMON_BSY) == 1) ||
(phase & BUSMON_SEL) == 1) {
nsp32_msg(KERN_WARNING, "bus busy");
SCpnt->result = DID_BUS_BUSY << 16;
status = 1;
goto out;
}
/*
* clear execph
*/
execph = nsp32_read2(base, SCSI_EXECUTE_PHASE);
/*
* clear FIFO counter to set CDBs
*/
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER);
/*
* set CDB0 - CDB15
*/
for (i=0; i<SCpnt->cmd_len; i++) {
nsp32_write1(base, COMMAND_DATA, SCpnt->cmnd[i]);
}
nsp32_dbg(NSP32_DEBUG_CDB_CONTENTS, "CDB[0]=[0x%x]", SCpnt->cmnd[i]);
/*
* set SCSIOUT LATCH(initiator)/TARGET(target) (ORed) ID
*/
nsp32_write1(base, SCSI_OUT_LATCH_TARGET_ID,
((1 << NSP32_HOST_SCSIID) | (1 << SCpnt->target)));
/*
* set SCSI MSGOUT REG
*
* Note: If the range of msgoutlen is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgoutlen == 0) {
nsp32_msg(KERN_ERR,
"SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
status = 1;
goto out;
} else if (data->msgoutlen > 0 && data->msgoutlen <= 3) {
msgout = 0;
for (i=0; i<data->msgoutlen; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= (unsigned int)(data->msgoutbuf[i] << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgoutlen; /* len */
nsp32_write4(base, SCSI_MSG_OUT, msgout);
} else {
/* data->msgoutlen > 3 */
nsp32_write4(base, SCSI_MSG_OUT, 0);
}
/*
* set selection timeout(= 250ms)
*/
nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* set smpl rate
*
* TODO: smpl_rate (BASE+0F) is 0 when internal clock = 40MHz.
* check other internal clock!
*/
nsp32_write1(base, SREQ_SMPL_RATE, 0);
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
/*
* set SYNCREG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->curtarget->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->curtarget->ackwidth);
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"syncreg=0x%x, ackwidth=0x%x, sgtpaddr=0x%x, id=0x%x",
nsp32_read1(base, SYNC_REG), nsp32_read1(base, ACK_WIDTH),
nsp32_read4(base, SGT_ADR), nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "msgoutlen=%d, msgout=0x%x",
data->msgoutlen, msgout);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->curlunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
command = 0;
command |= ( TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
command |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
command |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
command |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, command);
/*
* start AUTO SCSI, kick off arbitration
*/
command = 0;
command |= (CLEAR_CDB_FIFO_POINTER
| AUTOSCSI_START
| AUTO_MSGIN_00_OR_04
| AUTO_MSGIN_02
| AUTO_ATN);
nsp32_write2(base, COMMAND_CONTROL, command);
/*
* Arbitration Status Check
*
* Note: Arbitration counter is wait during ARBIT_GO is not lifting.
* Using udelay(1) consumes CPU time and system time, but
* arbitration delay time is defined minimal 2.4us in SCSI
* specification, thus udelay works as coarse grained wait timer.
*/
time = 0;
while(1) {
arbit = nsp32_read1(base, ARBIT_STATUS);
if(arbit & ARBIT_GO) {
udelay(1);
time++;
if ( time > ARBIT_TIMEOUT_TIME ) {
/* something lock up! guess no connection */
SCpnt->result = DID_NO_CONNECT << 16;
status = FALSE;
goto out;
}
} else {
break;
}
};
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit: 0x%x, delay time: %d", arbit, time);
/*
* check Arbitration Status Result
*/
if(arbit & ARBIT_WIN) {
/* Arbitration succeeded */
status = TRUE;
SCpnt->result = DID_OK << 16;
/* PCI LED on! */
nsp32_index_write1(base, EXT_PORT, LED_ON);
} else if(arbit & ARBIT_FAIL) {
/* Arbitration failed */
status = FALSE;
SCpnt->result = DID_BUS_BUSY << 16;
} else {
/* unknown error? */
status = FALSE;
SCpnt->result = DID_ERROR << 16;
SCpnt->result = DID_NO_CONNECT << 16;
}
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
out:
/*
* IRQ enable
*/
nsp32_write2(base, IRQ_CONTROL, 0);
return(status);
}
/*
* reselection
*
* Note: This reselection routine is called from msgin_occur,
* reselection target id&lun must be already set.
* SCSI-2 says IDENTIFY implies RESTORE_POINTER operation.
*/
static int nsp32_reselection(nsp32_hw_data *data, unsigned char newlun)
{
unsigned int base = data->BaseAddress;
unsigned char tmpid, newid;
nsp32_dbg(NSP32_DEBUG_RESELECTION, "enter");
/*
* calculate reselected SCSI ID
*/
tmpid = nsp32_read1(base, RESELECT_ID);
tmpid &= 0x7f;
newid = 0;
while (tmpid) {
if (tmpid & 1) {
break;
}
tmpid >>= 1;
newid++;
}
/*
* If reselected New ID:LUN is not existed
* or current nexus is not existed, unexpected
* reselection is occured. Send reject message.
*/
if (newid >= MAX_TARGET || newlun >= MAX_LUN) {
nsp32_msg(KERN_WARNING, "unknown id/lun");
return FALSE;
} else if(data->lunt[newid][newlun]->SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "no SCSI command is processing");
return FALSE;
}
data->pid = newid;
data->plun = newlun;
data->curtarget = &data->target[newid];
data->curlunt = data->lunt[newid][newlun];
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
return TRUE;
}
/*
* nsp32hw_setup_sg_table - build scatter gather list for transfer data
* with bus master.
*
* Note: NinjaSCSI-32Bi/UDE bus master can not transfer over 64KB at a time.
*/
static int nsp32hw_setup_sg_table(Scsi_Cmnd *SCpnt, nsp32_hw_data *data)
{
struct scatterlist *sgl;
struct nsp32_sgtable *sgt = data->curlunt->sglun->sgt;
int num, i;
if (SCpnt->request_bufflen == 0) {
return TRUE;
}
if (sgt == NULL) {
nsp32_dbg(NSP32_DEBUG_SGLIST, "SGT == null");
return FALSE;
}
if (SCpnt->use_sg) {
sgl = (struct scatterlist *)SCpnt->request_buffer;
num = pci_map_sg(data->Pci, sgl, SCpnt->use_sg,
scsi_to_pci_dma_dir(SCpnt->sc_data_direction));
for (i=0; i<num; i++) {
/*
* Build nsp32_sglist, substitute sg dma addresses.
*/
sgt[i].addr = cpu_to_le32(sg_dma_address(sgl));
sgt[i].len = cpu_to_le32(sg_dma_len(sgl));
sgl++;
if (sgt[i].len > 65536) {
nsp32_msg(KERN_ERR,
"can't transfer over 64KB at a time");
return FALSE;
}
nsp32_dbg(NSP32_DEBUG_SGLIST,
"num 0x%x : addr 0x%lx len 0x%x",
i, sgt[i].addr, sgt[i].len);
}
sgt[num-1].len |= NSP32_SG_END_SGT; /* set end mark */
} else {
SCpnt->SCp.have_data_in = pci_map_single(data->Pci,
SCpnt->request_buffer, SCpnt->request_bufflen,
scsi_to_pci_dma_dir(SCpnt->sc_data_direction));
sgt[0].addr = cpu_to_le32(SCpnt->SCp.have_data_in);
sgt[0].len = cpu_to_le32(SCpnt->request_bufflen);
sgt[0].len |= NSP32_SG_END_SGT; /* set end mark */
nsp32_dbg(NSP32_DEBUG_SGLIST, "single : addr 0x%lx len=0x%x",
sgt[0].addr, sgt[0].len);
}
return TRUE;
}
static int nsp32_queuecommand(Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *))
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->host->hostdata;
struct nsp32_target *target;
struct nsp32_lunt *curlunt;
int ret;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"enter. target: 0x%x LUN: 0x%x cmnd: 0x%x cmndlen: 0x%x "
"use_sg: 0x%x reqbuf: 0x%lx reqlen: 0x%x",
SCpnt->target, SCpnt->lun, SCpnt->cmnd[0], SCpnt->cmd_len,
SCpnt->use_sg, SCpnt->request_buffer, SCpnt->request_bufflen);
if (data->CurrentSC != NULL ) {
nsp32_msg(KERN_ERR, "Currentsc != NULL. Cancel this command request");
data->CurrentSC = NULL;
SCpnt->result = DID_NO_CONNECT << 16;
done(SCpnt);
return 1;
}
/* check target ID is not same as this initiator ID */
if (SCpnt->target == NSP32_HOST_SCSIID) {
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 1;
}
/* check target LUN is allowable value */
if (SCpnt->lun >= MAX_LUN) {
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 1;
}
show_command(SCpnt);
SCpnt->scsi_done = done;
data->CurrentSC = SCpnt;
SCpnt->SCp.Status = CHECK_CONDITION;
SCpnt->SCp.Message = 0;
SCpnt->resid = 0; //SCpnt->request_bufflen;
SCpnt->SCp.ptr = (char *) SCpnt->request_buffer;
SCpnt->SCp.this_residual = SCpnt->request_bufflen;
SCpnt->SCp.buffer = NULL;
SCpnt->SCp.buffers_residual = 0;
/* initialize data */
data->msgoutlen = 0;
data->msginlen = 0;
curlunt = data->lunt[SCpnt->target][SCpnt->lun];
curlunt->SCpnt = SCpnt;
curlunt->save_datp = 0;
curlunt->msgin03 = FALSE;
data->curlunt = curlunt;
data->pid = SCpnt->target;
data->plun = SCpnt->lun;
ret = nsp32hw_setup_sg_table(SCpnt, data);
if (ret == FALSE) {
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(data, SCpnt);
}
/* Build IDENTIFY */
nsp32_build_identify(data, SCpnt);
/*
* If target is the first time to transfer after the reset
* (target don't have SDTR_DONE and SDTR_INITIATOR), sync
* message SDTR is needed to do synchronous transfer.
*/
target = &data->target[SCpnt->target];
data->curtarget = target;
if (!(target->sync_flag & (SDTR_DONE | SDTR_INITIATOR | SDTR_TARGET))) {
unsigned char period, offset;
if (trans_mode != ASYNC_MODE) {
nsp32_set_max_sync(data, target, &period, &offset);
nsp32_build_sdtr(data, period, offset);
target->sync_flag |= SDTR_INITIATOR;
} else {
nsp32_set_async(data, target);
target->sync_flag |= SDTR_DONE;
}
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR: entry: %d start_period: 0x%x offset: 0x%x\n",
target->limit_entry, period, offset);
} else if (target->sync_flag & SDTR_INITIATOR) {
/*
* It was negotiating SDTR with target, sending from the
* initiator, but there are no chance to remove this flag.
* Set async because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR_INITIATOR: fall back to async");
} else if (target->sync_flag & SDTR_TARGET) {
/*
* It was negotiating SDTR with target, sending from target,
* but there are no chance to remove this flag. Set async
* because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_TARGET;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"Unknown SDTR from target is reached, fall back to async.");
}
nsp32_dbg(NSP32_DEBUG_TARGETFLAG,
"target: %d sync_flag: 0x%x syncreg: 0x%x ackwidth: 0x%x",
SCpnt->target, target->sync_flag, target->syncreg,
target->ackwidth);
/* Selection */
if (auto_param == 0) {
ret = nsp32hw_start_selection(SCpnt, data);
} else {
ret = nsp32_selection_autoscsi(SCpnt, data);
}
if (ret != TRUE) {
nsp32_scsi_done(data, SCpnt);
return 1;
}
return 0;
}
/* initialize asic */
static int nsp32hw_init(struct Scsi_Host *host)
{
unsigned int base = host->io_port;
unsigned short irq_stat;
unsigned long lc_reg;
unsigned char power;
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
lc_reg = nsp32_index_read4(base, CFG_LATE_CACHE);
if ((lc_reg & 0xff00) == 0) {
lc_reg |= (0x20 << 8);
nsp32_index_write2(base, CFG_LATE_CACHE, lc_reg & 0xffff);
}
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
do {
irq_stat = nsp32_read2(base, IRQ_STATUS);
} while (irq_stat & IRQSTATUS_ANY_IRQ);
nsp32_dbg(NSP32_DEBUG_INIT, "irq_stat 0x%x", irq_stat);
/*
* Fill FIFO_FULL_SHLD, FIFO_EMPTY_SHLD. Below parameter is
* designated by specification.
*/
if ((data->trans_method & NSP32_TRANSFER_PIO) ||
(data->trans_method & NSP32_TRANSFER_MMIO)) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x40);
} else if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x10);
}
nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x60);
nsp32_dbg(NSP32_DEBUG_INIT, "full 0x%x emp 0x%x",
nsp32_index_read1(base, FIFO_FULL_SHLD_COUNT),
nsp32_index_read1(base, FIFO_EMPTY_SHLD_COUNT));
nsp32_index_write1(base, CLOCK_DIV, data->clock);
nsp32_index_write1(base, BM_CYCLE, MEMRD_CMD1 | SGT_AUTO_PARA_MEMED_CMD);
nsp32_write1(base, PARITY_CONTROL, 0); /* parity check is disable */
/*
* initialize I_MISC_WRRD register
*
* Note: Designated parameters is obeyed as following:
* MISC_SCSI_DIRECTION_DETECTOR_SELECT: It must be set.
* MISC_MASTER_TERMINATION_SELECT: It must be set.
* MISC_BMREQ_NEGATE_TIMING_SEL: It should be set.
* MISC_AUTOSEL_TIMING_SEL: It should be set.
* MISC_BMSTOP_CHANGE2_NONDATA_PHASE: It should be set.
* MISC_DELAYED_BMSTART: It's selected for safety.
*
* Note: If MISC_BMSTOP_CHANGE2_NONDATA_PHASE is set, then
* we have to set TRANSFERCONTROL_BM_START as 0 and set
* appropriate value before restarting bus master transfer.
*/
nsp32_index_write2(base, MISC_WR,
(SCSI_DIRECTION_DETECTOR_SELECT |
DELAYED_BMSTART |
MASTER_TERMINATION_SELECT |
BMREQ_NEGATE_TIMING_SEL |
AUTOSEL_TIMING_SEL |
BMSTOP_CHANGE2_NONDATA_PHASE));
nsp32_index_write1(base, TERM_PWR_CONTROL, 0);
power = nsp32_index_read1(base, TERM_PWR_CONTROL);
if (!(power & SENSE)) {
nsp32_msg(KERN_INFO, "term power on");
nsp32_index_write1(base, TERM_PWR_CONTROL, BPWR);
}
nsp32_write2(base, TIMER_SET, TIMER_STOP);
nsp32_write2(base, TIMER_SET, TIMER_STOP);
nsp32_write1(base, SYNC_REG, 0);
nsp32_write1(base, ACK_WIDTH, 0);
nsp32_write2(base, SEL_TIME_OUT, 10000); /* 25us x10000 = 250ms defined in SCSI */
/*
* enable to select designated IRQ (except for
* IRQSELECT_SERR, IRQSELECT_PERR, IRQSELECT_BMCNTERR)
*/
nsp32_index_write2(base, IRQ_SELECT, IRQSELECT_TIMER_IRQ |
IRQSELECT_SCSIRESET_IRQ |
IRQSELECT_FIFO_SHLD_IRQ |
IRQSELECT_RESELECT_IRQ |
IRQSELECT_PHASE_CHANGE_IRQ |
IRQSELECT_AUTO_SCSI_SEQ_IRQ |
//IRQSELECT_BMCNTERR_IRQ |
IRQSELECT_TARGET_ABORT_IRQ |
IRQSELECT_MASTER_ABORT_IRQ );
nsp32_write2(base, IRQ_CONTROL, 0);
/* PCI LED off */
nsp32_index_write1(base, EXT_PORT_DDR, LED_OFF);
nsp32_index_write1(base, EXT_PORT, LED_OFF);
return TRUE;
}
/* interrupt routine */
static void do_nsp32_isr(int irq, void *dev_id, struct pt_regs *regs)
{
nsp32_hw_data *data = dev_id;
unsigned int base = data->BaseAddress;
Scsi_Cmnd *SCpnt = data->CurrentSC;
unsigned short auto_stat, irq_stat, trans_stat;
unsigned char busmon, busphase;
unsigned long flags;
int ret;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
struct Scsi_Host *host = data->Host;
spin_lock_irqsave(host->host_lock, flags);
#else
spin_lock_irqsave(&io_request_lock, flags);
#endif
/*
* IRQ check, then enable IRQ mask
*/
irq_stat = nsp32_read2(base, IRQ_STATUS);
nsp32_dbg(NSP32_DEBUG_INTR,
"enter IRQ: %d, IRQstatus: 0x%x", irq, irq_stat);
/* is this interrupt comes from Ninja asic? */
if ((irq_stat & IRQSTATUS_ANY_IRQ) == 0) {
nsp32_msg(KERN_INFO, "spurious interrupt: irq other 0x%x", irq_stat);
goto out2;
}
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
busmon = nsp32_read1(base, SCSI_BUS_MONITOR);
busphase = busmon & BUSMON_PHASE_MASK;
trans_stat = nsp32_read2(base, TRANSFER_STATUS);
if ((irq_stat == 0xffff) && (trans_stat == 0xffff)) {
nsp32_msg(KERN_INFO, "card disconnect");
if (data->CurrentSC != NULL) {
nsp32_msg(KERN_INFO, "clean up current SCSI command");
SCpnt->result = DID_BAD_TARGET << 16;
nsp32_scsi_done(data, SCpnt);
}
goto out;
}
/* Timer IRQ */
if (irq_stat & IRQSTATUS_TIMER_IRQ) {
DEBUG(0, "timer stop\n");
nsp32_write2(base, TIMER_SET, TIMER_STOP);
goto out;
}
/* SCSI reset */
if (irq_stat & IRQSTATUS_SCSIRESET_IRQ) {
nsp32_msg(KERN_INFO, "detected someone do bus reset");
nsp32_do_bus_reset(data);
if (SCpnt != NULL) {
SCpnt->result = DID_RESET << 16;
nsp32_scsi_done(data, SCpnt);
}
goto out;
}
if (SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "SCpnt==NULL this can't be happen\n");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n", irq_stat, trans_stat);
goto out;
}
/*
* AutoSCSI Interrupt.
* Note: This interrupt is occured when AutoSCSI is finished. Then
* check SCSIEXECUTEPHASE, and do appropriate action. Each phases are
* recorded when AutoSCSI sequencer has been processed.
*/
if(irq_stat & IRQSTATUS_AUTOSCSI_IRQ) {
/* getting SCSI executed phase */
auto_stat = nsp32_read2(base, SCSI_EXECUTE_PHASE);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
/* Selection Timeout, go busfree phase. */
if (auto_stat & SELECTION_TIMEOUT) {
nsp32_dbg(NSP32_DEBUG_INTR,
"selection timeout occured");
SCpnt->result = DID_TIME_OUT << 16;
nsp32_scsi_done(data, SCpnt);
goto out;
}
if (auto_stat & MSGOUT_PHASE) {
/*
* MsgOut phase was processed.
* If MSG_IN_OCCUER is not set, then MsgOut phase is
* completed. Thus, msgoutlen must reset. Otherwise,
* nothing to do here. If MSG_OUT_OCCUER is occured,
* then we will encounter the condition and check.
*/
if (!(auto_stat & MSG_IN_OCCUER) &&
(data->msgoutlen <= 3)) {
/*
* !MSG_IN_OCCUER && msgoutlen <=3
* ---> AutoSCSI with MSGOUTreg is processed.
*/
data->msgoutlen = 0;
};
nsp32_dbg(NSP32_DEBUG_INTR, "MsgOut phase processed");
}
if ((auto_stat & DATA_IN_PHASE) &&
(SCpnt->resid > 0) &&
((nsp32_read2(base, FIFO_REST_CNT) & FIFO_REST_MASK) != 0)) {
printk( "auto+fifo\n");
//nsp32_pio_read(SCpnt);
}
if (auto_stat & (DATA_IN_PHASE | DATA_OUT_PHASE)) {
/* DATA_IN_PHASE/DATA_OUT_PHASE was processed. */
nsp32_dbg(NSP32_DEBUG_INTR,
"Data in/out phase processed");
/* read BMCNT, SGT pointer addr */
nsp32_dbg(NSP32_DEBUG_INTR, "BMCNT=0x%lx",
nsp32_read4(base, BM_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "addr=0x%lx",
nsp32_read4(base, SGT_ADR));
nsp32_dbg(NSP32_DEBUG_INTR, "SACK=0x%lx",
nsp32_read4(base, SACK_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "SSACK=0x%lx",
nsp32_read4(base, SAVED_SACK_CNT));
}
/*
* MsgIn Occur
*/
if (auto_stat & MSG_IN_OCCUER) {
nsp32_msgin_occur(data, irq_stat, auto_stat);
}
/*
* MsgOut Occur
*/
if (auto_stat & MSG_OUT_OCCUER) {
nsp32_msgout_occur(data);
}
/*
* Bus Free Occur
*/
if (auto_stat & BUS_FREE_OCCUER) {
ret = nsp32_busfree_occur(data, auto_stat);
if (ret == TRUE) {
goto out;
}
}
if (auto_stat & STATUS_PHASE) {
/*
* Read CSB and substitute CSB for SCpnt->result
* to save status phase stutas byte.
* scsi error handler checks host_byte (DID_*:
* low level driver to indicate status), then checks
* status_byte (SCSI status byte).
*/
SCpnt->result = (int)nsp32_read1(base, SCSI_CSB_IN);
}
if (auto_stat & ILLEGAL_PHASE) {
/* Illegal phase is detected. SACK is not back. */
nsp32_msg(KERN_WARNING,
"AUTO SCSI ILLEGAL PHASE OCCUR!!!!");
/* TODO: currently we don't have any action... bus reset? */
/*
* To send back SACK, assert, wait, and negate.
*/
nsp32_sack_assert(data);
nsp32_wait_req(data, NEGATE);
nsp32_sack_negate(data);
}
if (auto_stat & COMMAND_PHASE) {
/* nothing to do */
nsp32_dbg(NSP32_DEBUG_INTR, "Command phase processed");
}
if (auto_stat & AUTOSCSI_BUSY) {
/* AutoSCSI is running */
}
show_autophase(auto_stat);
}
/* FIFO_SHLD_IRQ */
if (irq_stat & IRQSTATUS_FIFO_SHLD_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "FIFO IRQ");
switch(busphase) {
case BUSPHASE_DATA_OUT:
printk( "write\n");
//nsp32_pio_write(SCpnt);
break;
case BUSPHASE_DATA_IN:
printk( "read\n");
//nsp32_pio_read(SCpnt);
break;
case BUSPHASE_STATUS:
//DEBUG(0, "fifo/status\n");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
break;
default:
printk("fifo/other phase?\n");
printk("irq_stat=0x%x trans_stat=0x%x\n", irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* Phase Change IRQ */
if (irq_stat & IRQSTATUS_PHASE_CHANGE_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "phase change IRQ");
switch(busphase) {
case BUSPHASE_MESSAGE_IN:
nsp32_dbg(NSP32_DEBUG_INTR, "phase chg/msg in");
nsp32_msgin_occur(data, irq_stat, 0);
break;
default:
nsp32_msg(KERN_WARNING, "phase chg/other phase?");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n",
irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* PCI_IRQ */
if (irq_stat & IRQSTATUS_PCI_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "PCI IRQ occured");
/* Do nothing */
}
/* BMCNTERR_IRQ */
if (irq_stat & IRQSTATUS_BMCNTERR_IRQ) {
nsp32_msg(KERN_ERR, "Received unexpected BMCNTERR IRQ! ");
/*
* TODO: To be implemented improving bus master
* transfer reliablity when BMCNTERR is occured in
* AutoSCSI phase described in specification.
*/
}
#if 0
printk("irq_stat=0x%x trans_stat=0x%x\n", irq_stat, trans_stat);
show_busphase(busphase);
#endif
out:
/* disable IRQ mask */
nsp32_write2(base, IRQ_CONTROL, 0);
out2:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
spin_unlock_irqrestore(&io_request_lock, flags);
#else
spin_unlock_irqrestore(host->host_lock, flags);
#endif
nsp32_dbg(NSP32_DEBUG_INTR, "exit");
return;
}
#undef SPRINTF
#define SPRINTF(args...) \
do { if(pos < buffer + length) pos += sprintf(pos, ## args); } while(0)
static int nsp32_proc_info(char *buffer,
char **start,
off_t offset,
int length,
int hostno,
int inout)
{
char *pos = buffer;
int thislength;
unsigned long flags;
nsp32_hw_data *data;
struct Scsi_Host *host = NULL;
unsigned int base;
unsigned char mode_reg;
/* Write is not supported, just return. */
if (inout == TRUE) {
return -EINVAL;
}
/* search this HBA host */
for (host=scsi_hostlist; host; host=host->next) {
if (host->host_no == hostno) {
break;
}
}
if (host == NULL) {
return -ESRCH;
}
data = (nsp32_hw_data *)host->hostdata;
base = host->io_port;
SPRINTF("NinjaSCSI-32 status\n\n");
SPRINTF("Driver version: %s\n", nsp32_release_version);
SPRINTF("SCSI host No.: %d\n", hostno);
SPRINTF("IRQ: %d\n", host->irq);
SPRINTF("IO: 0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1);
SPRINTF("MMIO(virtual address): 0x%lx\n", host->base);
SPRINTF("sg_tablesize: %d\n", host->sg_tablesize);
SPRINTF("Chip revision: %d\n", (nsp32_read2(base, INDEX_REG) >> 8) - 0x4f);
mode_reg = nsp32_index_read1(base, CHIP_MODE);
#ifdef CONFIG_PM
//SPRINTF("Power Management: %s\n", (mode_reg & OPTF) ? "yes" : "no");
#endif
SPRINTF("OEM: %s\n", nsp32_model[mode_reg & (OEM0|OEM1)]);
spin_lock_irqsave(&(data->Lock), flags);
SPRINTF("CurrentSC: 0x%p\n\n", data->CurrentSC);
spin_unlock_irqrestore(&(data->Lock), flags);
thislength = pos - (buffer + offset);
if(thislength < 0) {
*start = 0;
return 0;
}
thislength = MIN(thislength, length);
*start = buffer + offset;
return thislength;
}
#undef SPRINTF
/*
* Note: n_io_port is defined as 0x7f because I/O register port is
* assigned as:
* 0x800-0x8ff: memory mapped I/O port
* 0x900-0xbff: (map same 0x800-0x8ff I/O port image repeatedly)
* 0xc00-0xfff: CardBus status registers
*/
static int nsp32_detect(Scsi_Host_Template *sht)
{
struct Scsi_Host *host; /* registered host structure */
int ret;
nsp32_hw_data *data;
int i, j;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
/*
* register this HBA as SCSI device
*/
host = scsi_register(sht, sizeof(nsp32_hw_data));
if (host == NULL) {
nsp32_msg (KERN_ERR, "failed to scsi register");
goto err;
}
/*
* set nsp32_hw_data
*/
data = (nsp32_hw_data *)host->hostdata;
memset(data, 0, sizeof(nsp32_hw_data));
data->IrqNumber = nsp32_data_base.IrqNumber;
data->BaseAddress = nsp32_data_base.BaseAddress;
data->NumAddress = nsp32_data_base.NumAddress;
data->MmioAddress = nsp32_data_base.MmioAddress;
data->Pci = nsp32_data_base.Pci;
data->pci_devid = nsp32_data_base.pci_devid;
host->irq = data->IrqNumber;
host->io_port = data->BaseAddress;
host->unique_id = data->BaseAddress;
host->n_io_port = data->NumAddress;
host->base = data->MmioAddress;
scsi_set_pci_device(host, data->Pci);
data->Host = host;
spin_lock_init(&(data->Lock));
data->curlunt = NULL;
data->curtarget = NULL;
/*
* Bus master transfer mode is supported currently.
*/
data->trans_method = NSP32_TRANSFER_BUSMASTER;
/*
* Set clock div, CLOCK_4 (HBA has external clock, and
* dividing * 100ns/4).
* Currently CLOCK_4 has only tested, not for CLOCK_2/PCICLK yet.
*/
data->clock = CLOCK_4;
/*
* Select appropriate nsp32_sync_table and set I_CLOCKDIV.
*/
switch (data->clock) {
case CLOCK_4:
/* If data->clock is CLOCK_4, then select 40M sync table. */
data->synct = nsp32_sync_table_40M;
data->syncnum = nsp32_table_40M_num;
break;
case CLOCK_2:
/* If data->clock is CLOCK_2, then select 20M sync table. */
data->synct = nsp32_sync_table_20M;
data->syncnum = nsp32_table_20M_num;
break;
case PCICLK:
/* If data->clock is PCICLK, then select pci sync table. */
data->synct = nsp32_sync_table_pci;
data->syncnum = nsp32_table_pci_num;
break;
default:
nsp32_msg(KERN_WARNING,
"Invalid clock div is selected, set CLOCK_4.");
/* Use default value CLOCK_4 */
data->clock = CLOCK_4;
data->synct = nsp32_sync_table_40M;
data->syncnum = nsp32_table_40M_num;
}
/*
* setup nsp32_lunt
*/
data->lunt_list = (struct nsp32_lunt *)
kmalloc(sizeof(struct nsp32_lunt) * MAX_TARGET * MAX_LUN,
GFP_KERNEL);
if (data->lunt_list == NULL) {
nsp32_msg(KERN_ERR, "cannot allocate LUN memory");
goto scsi_unregister;
}
nsp32_dbg(NSP32_DEBUG_REGISTER, "0x%x 0x%x",
data->lunt_list, sizeof(struct nsp32_lunt)*MAX_TARGET*MAX_LUN);
/*
* setup DMA
*/
if (pci_set_dma_mask(data->Pci, 0xffffffffUL)) {
nsp32_msg (KERN_ERR, "failed to set PCI DMA mask");
goto kfree_lunt;
}
/*
* allocate autoparam DMA resource.
*/
data->autoparam = pci_alloc_consistent(data->Pci, AUTOPARAM_SIZE, &data->apaddr);
if (data->autoparam == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto kfree_lunt;
}
/*
* allocate scatter-gather DMA resource.
*/
data->sg_list = pci_alloc_consistent(data->Pci,
(sizeof(struct nsp32_sgtable) * NSP_SG_SIZE * MAX_TARGET * MAX_LUN),
&data->sgaddr);
if (data->sg_list == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto free_autoparam;
}
for (i=0; i<MAX_TARGET; i++) {
for (j=0; j<MAX_LUN; j++) {
data->lunt[i][j] = data->lunt_list + (i * MAX_LUN + j);
}
}
for (i=0; i<MAX_TARGET; i++) {
for (j=0; j<MAX_LUN; j++) {
struct nsp32_lunt *lp = data->lunt[i][j];
lp->sglun = (struct nsp32_sglun *)
(data->sg_list + (i * MAX_LUN + j));
lp->sglun_paddr = data->sgaddr +
(long)((i * MAX_LUN + j)
* sizeof(struct nsp32_sglun));
lp->SCpnt = NULL;
lp->save_datp = 0;
lp->msgin03 = FALSE;
lp->sg_num = 0;
lp->cur_entry = 0;
}
}
/*
* setup target
*/
for (i=0; i<MAX_TARGET; i++) {
struct nsp32_target *target = &data->target[i];
target->limit_entry = 0;
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* EEPROM check
*/
ret = nsp32_getprom_param(data);
if (ret == FALSE) {
data->resettime = 3; /* default 3 */
}
/*
* setup HBA
*/
nsp32hw_init(host);
snprintf(data->info_str, sizeof(data->info_str),
"NinjaSCSI-32Bi/UDE: irq %d, io 0x%lx+0x%x",
host->irq, host->io_port, host->n_io_port);
sht->name = data->info_str;
/*
* SCSI bus reset
*
* Note: It's important to reset SCSI bus in initialization phase.
* NinjaSCSI-32Bi/UDE HBA EEPROM seems to exchange SDTR when system is
* coming up, so SCSI devices connected to HBA is set as
* un-asynchronous mode. It brings the merit that this HBA is
* ready to start synchronous transfer without any preparation,
* but we are difficult to control transfer speed. In addition,
* it prevents device transfer speed from effecting EEPROM start-up
* SDTR. NinjaSCSI-32Bi/UDE has the feature if EEPROM is set as Auto
* Mode, then FAST-10M is selected when SCSI devices are connected
* same or more than 4 devices. It should be avoided depending on
* this specification Thus, resetting the SCSI bus restores all
* connected SCSI devices to asynchronous mode, then this driver
* put SDTR safely later, and we can control all SCSI device
* transfer mode.
*/
nsp32_do_bus_reset(data);
ret = request_irq(host->irq, do_nsp32_isr, SA_SHIRQ, "nsp32", data);
if (ret < 0) {
nsp32_msg(KERN_ERR, "Unable to allocate IRQ for NSP32 "
"SCSI PCI controller. Interrupt: %d\n", host->irq);
goto free_sg_list;
}
/*
* PCI IO register
*/
if(!request_region(host->io_port, host->n_io_port, "nsp32")) {
nsp32_msg(KERN_ERR,
"I/O region 0x%lx+0x%lx is already used",
data->BaseAddress, data->length);
goto free_irq;
}
return 1;
free_irq:
free_irq(host->irq, data);
free_autoparam:
pci_free_consistent(data->Pci, AUTOPARAM_SIZE, data->autoparam, data->apaddr);
free_sg_list:
pci_free_consistent(data->Pci,
(sizeof(struct nsp32_sgtable) * NSP_SG_SIZE * MAX_TARGET * MAX_LUN),
data->sg_list, data->sgaddr);
kfree_lunt:
kfree(data->lunt_list);
scsi_unregister:
scsi_unregister(host);
err:
return 0;
}
static int nsp32_release(struct Scsi_Host *shpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata;
if (data->lunt_list) {
kfree(data->lunt_list);
}
if (data->autoparam) {
pci_free_consistent(data->Pci, AUTOPARAM_SIZE,
data->autoparam, data->apaddr);
}
if (data->sg_list) {
pci_free_consistent(data->Pci,
(sizeof(struct nsp32_sgtable) * NSP_SG_SIZE * MAX_TARGET * MAX_LUN),
data->sg_list, data->sgaddr);
}
DEBUG(0, "free irq\n");
if (shpnt->irq) {
free_irq(shpnt->irq, data);
}
DEBUG(0, "free io\n");
if (shpnt->io_port && shpnt->n_io_port) {
release_region(shpnt->io_port, shpnt->n_io_port);
}
if (data->MmioAddress != 0) {
iounmap((void *)(data->MmioAddress));
}
return 0;
}
static const char *nsp32_info(struct Scsi_Host *shpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata;
return data->info_str;
}
/*
* error handler
*/
static int nsp32_reset(Scsi_Cmnd *SCpnt, unsigned int reset_flags)
{
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%p why=%d\n", SCpnt, reset_flags);
nsp32_eh_bus_reset(SCpnt);
return SCSI_RESET_SUCCESS | SCSI_RESET_BUS_RESET;
}
static int nsp32_eh_abort(Scsi_Cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->host->hostdata;
unsigned int base = data->BaseAddress;
nsp32_msg(KERN_WARNING, "abort");
if (data->curlunt->SCpnt == NULL) {
return (FAILED);
}
if (data->curtarget->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) {
/* reset SDTR negotiation */
data->curtarget->sync_flag = 0;
}
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write2(base, BM_CNT, 0);
return (FAILED);
}
static int nsp32_eh_bus_reset(Scsi_Cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->host->hostdata;
unsigned int base = data->BaseAddress;
nsp32_msg(KERN_INFO, "Bus Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
return SUCCESS; /* SCSI bus reset is succeeded at any time. */
}
static void nsp32_do_bus_reset(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short intrdat;
int i;
/*
* stop all transfer
* clear TRANSFERCONTROL_BM_START
* clear counter
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* fall back to asynchronous transfer mode
* initialize SDTR negotiation flag
*/
for (i=0; i<MAX_TARGET; i++) {
struct nsp32_target *target = &data->target[i];
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* reset SCSI bus
*/
nsp32_write1(base, SCSI_BUS_CONTROL, BUSCTL_RST);
udelay(RESET_HOLD_TIME);
nsp32_write1(base, SCSI_BUS_CONTROL, 0);
for(i = 0; i < 5; i++) {
intrdat = nsp32_read2(base, IRQ_STATUS); /* dummy read */
nsp32_dbg(NSP32_DEBUG_BUSRESET, "irq:1: 0x%x", intrdat);
}
data->CurrentSC = NULL;
}
static int nsp32_eh_host_reset(Scsi_Cmnd *SCpnt)
{
struct Scsi_Host *host = SCpnt->host;
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
unsigned int base = data->BaseAddress;
nsp32_msg(KERN_INFO, "Host Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
nsp32hw_init(host);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
return SUCCESS; /* Host reset is succeeded at any time. */
}
/*
* PCI/Cardbus probe/remove routine
*/
static int __devinit nsp32_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int ret;
nsp32_hw_data *data = &nsp32_data_base;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
ret = pci_enable_device(pdev);
if (ret) {
nsp32_msg(KERN_ERR, "failed to enable pci device");
return ret;
}
data->Pci = pdev;
data->pci_devid = id;
data->IrqNumber = pdev->irq;
data->BaseAddress = pci_resource_start(pdev, 0);
data->NumAddress = pci_resource_len(pdev, 0);
data->MmioAddress = (unsigned long)ioremap_nocache(
pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
pci_set_master(pdev);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,2))
scsi_register_host(&driver_template);
#else
scsi_register_module(MODULE_SCSI_HA, &driver_template);
#endif
nsp32_msg(KERN_INFO, "nsp32 irq: %i mmio: 0x%lx slot: %s model: %s",
pdev->irq, data->MmioAddress, pdev->slot_name,
nsp32_model[id->driver_data]);
nsp32_dbg(NSP32_DEBUG_REGISTER, "exit");
return 0;
}
static void __devexit nsp32_remove(struct pci_dev *pdev)
{
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,2))
scsi_unregister_host(&driver_template);
#else
scsi_unregister_module(MODULE_SCSI_HA, &driver_template);
#endif
}
static struct pci_device_id nsp32_pci_table[] __devinitdata = {
{
vendor: PCI_VENDOR_ID_IODATA,
device: PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_IODATA,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_NINJASCSI_32BI_KME,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_KME,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_NINJASCSI_32BI_WBT,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_WORKBIT,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_WORKBIT_STANDARD,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_PCI_WORKBIT,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_EXT_ROM,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_PCI_LOGITEC,
},
{
vendor: PCI_VENDOR_ID_WORKBIT,
device: PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO,
subvendor: PCI_ANY_ID,
subdevice: PCI_ANY_ID,
driver_data: MODEL_PCI_MELCO,
},
{0,0,},
};
MODULE_DEVICE_TABLE(pci, nsp32_pci_table);
static struct pci_driver nsp32_driver = {
.name = "nsp32",
.id_table = nsp32_pci_table,
.probe = nsp32_probe,
.remove = nsp32_remove,
#ifdef CONFIG_PM
/* .suspend = nsp32_suspend,*/
/* .resume = nsp32_resume,*/
#endif
};
static int __init init_nsp32(void) {
return pci_module_init(&nsp32_driver);
}
static void __exit exit_nsp32(void) {
pci_unregister_driver(&nsp32_driver);
}
module_init(init_nsp32);
module_exit(exit_nsp32);
/*
* Reset parameters and call scsi_done for data->curlunt.
* Be careful setting SCpnt->result = DID_* before calling this function.
*/
static void nsp32_scsi_done(nsp32_hw_data *data, Scsi_Cmnd *SCpnt)
{
unsigned int base = data->BaseAddress;
/*
* unmap pci
*/
if (SCpnt->request_bufflen == 0) {
goto skip;
}
if (SCpnt->use_sg) {
pci_unmap_sg(data->Pci,
(struct scatterlist *)SCpnt->buffer,
SCpnt->use_sg,
scsi_to_pci_dma_dir(SCpnt->sc_data_direction));
} else {
pci_unmap_single(data->Pci,
(u32)SCpnt->SCp.have_data_in,
SCpnt->request_bufflen,
scsi_to_pci_dma_dir(SCpnt->sc_data_direction));
}
skip:
/*
* clear TRANSFERCONTROL_BM_START
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
/*
* call scsi_done
*/
(*SCpnt->scsi_done)(SCpnt);
/*
* reset parameters
*/
data->curlunt->SCpnt = NULL;
data->curlunt = NULL;
data->curtarget = NULL;
data->CurrentSC = NULL;
}
/*
* Bus Free Occur
*
* Current Phase is BUSFREE. AutoSCSI is automatically execute BUSFREE phase
* with ACK reply when below condition is matched:
* MsgIn 00: Command Complete.
* MsgIn 02: Save Data Pointer.
* MsgIn 04: Diconnect.
* In other case, unexpected BUSFREE is detected.
*/
static int nsp32_busfree_occur(nsp32_hw_data *data, unsigned short execph)
{
Scsi_Cmnd *SCpnt = data->curlunt->SCpnt;
unsigned int base = data->BaseAddress;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "enter");
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, TRANSFER_CONTROL, 0);
/*
* MsgIn 02: Save Data Pointer
*
* VALID:
* Save Data Pointer is received. Adjust pointer.
*
* NO-VALID:
* SCSI-3 says if Save Data Pointer is not received, then we restart
* processing and we can't adjust any SCSI data pointer in next data
* phase.
*/
if (execph & MSGIN_02_VALID) {
nsp32_dbg(NSP32_DEBUG_BUSFREE, "MsgIn02_Valid");
/*
* Check sack_cnt/saved_sack_cnt, then adjust sg table if
* needed.
*/
if (!(execph & MSGIN_00_VALID) &&
((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE))) {
unsigned int sacklen, s_sacklen;
/*
* Read SACK count and SAVEDSACK count, then compare.
*/
sacklen = nsp32_read4(base, SACK_CNT);
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
/*
* If SAVEDSACKCNT == 0, it means SavedDataPointer is
* come after data transfering.
*/
if (s_sacklen > 0) {
/*
* Comparing between sack and savedsack to
* check the condition of AutoMsgIn03.
*
* If they are same, set msgin03 == TRUE,
* COMMANDCONTROL_AUTO_MSGIN_03 is enabled at
* reselection. On the other hand, if they
* aren't same, set msgin03 == FALSE, and
* COMMANDCONTROL_AUTO_MSGIN_03 is disabled at
* reselection.
*/
if (sacklen != s_sacklen) {
data->curlunt->msgin03 = FALSE;
} else {
data->curlunt->msgin03 = TRUE;
}
nsp32_adjust_busfree(data, s_sacklen);
}
}
/* This value has not substitude with valid value yet... */
//data->curlunt->save_datp = data->cur_datp;
} else {
/*
* no processing.
*/
}
if (execph & MSGIN_03_VALID) {
/* MsgIn03 was valid to be processed. No need processing. */
}
/*
* target SDTR check
*/
if (data->curtarget->sync_flag & SDTR_INITIATOR) {
/*
* SDTR negotiation pulled by the initiator has not
* finished yet. Fall back to ASYNC mode.
*/
nsp32_set_async(data, data->curtarget);
data->curtarget->sync_flag &= ~SDTR_INITIATOR;
data->curtarget->sync_flag |= SDTR_DONE;
} else if (data->curtarget->sync_flag & SDTR_TARGET) {
/*
* SDTR negotiation pulled by the target has been
* negotiating.
*/
if (execph & (MSGIN_00_VALID | MSGIN_04_VALID)) {
/*
* If valid message is received, then
* negotiation is succeeded.
*/
} else {
/*
* On the contrary, if unexpected bus free is
* occured, then negotiation is failed. Fall
* back to ASYNC mode.
*/
nsp32_set_async(data, data->curtarget);
}
data->curtarget->sync_flag &= ~SDTR_TARGET;
data->curtarget->sync_flag |= SDTR_DONE;
}
/*
* It is always ensured by SCSI standard that initiator
* switches into Bus Free Phase after
* receiving message 00 (Command Complete), 04 (Disconnect).
* It's the reason that processing here is valid.
*/
if (execph & MSGIN_00_VALID) {
/* MsgIn 00: Command Complete */
nsp32_dbg(NSP32_DEBUG_BUSFREE, "command complete");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 0;
nsp32_dbg(NSP32_DEBUG_BUSFREE,
"normal end stat=0x%x resid=0x%x\n",
SCpnt->SCp.Status, SCpnt->resid);
SCpnt->result =
(DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0);
nsp32_scsi_done(data, SCpnt);
/* All operation is done */
return (TRUE);
} else if (execph & MSGIN_04_VALID) {
/* MsgIn 04: Disconnect */
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 4;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "disconnect");
return (TRUE);
} else {
/* Unexpected bus free */
nsp32_msg(KERN_WARNING, "unexpected bus free occured");
/* DID_ERROR? */
//SCpnt->result = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0);
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(data, SCpnt);
return (TRUE);
}
return (FALSE);
}
/*
* nsp32_adjust_busfree - adjusting SG table
*
* Note: This driver adjust the SG table using SCSI ACK
* counter instead of BMCNT counter!
*/
static void nsp32_adjust_busfree(nsp32_hw_data *data, unsigned int s_sacklen)
{
int old_entry = data->cur_entry;
int new_entry;
struct nsp32_sgtable *sgt = data->curlunt->sglun->sgt;
unsigned int restlen, sentlen;
int sg_num = data->curlunt->sg_num;
/* adjust saved SACK count with 4 byte start address boundary */
s_sacklen -= sgt[old_entry].addr & 3;
/*
* calculate new_entry from sack count and each sgt[].len
* calculate the byte which is intent to send
*/
sentlen = 0;
for (new_entry = old_entry; new_entry < sg_num; new_entry++) {
sentlen += (sgt[new_entry].len & ~NSP32_SG_END_SGT);
if (sentlen > s_sacklen) {
break;
}
}
/* all sgt is processed */
if (new_entry == sg_num) {
goto last;
}
if (sentlen == s_sacklen) {
/* XXX: confirm it's ok or not */
/* In this case, it's ok because we are at
the head element of the sg. restlen is correctly calculated. */
}
/* calculate the rest length for transfering */
restlen = sentlen - s_sacklen;
/* update adjusting current SG table entry */
sgt[new_entry].addr += (sgt[new_entry].len - restlen);
sgt[new_entry].len = restlen;
/* set cur_entry with new_entry */
data->cur_entry = new_entry;
return;
last:
/* update hostdata and lun */
return;
}
/*
* It's called MsgOut phase occur.
* NinjaSCSI-32Bi/UDE automatically processes up to 3 messages in
* message out phase. It, however, has more than 3 messages,
* HBA creates the interrupt and we have to process by hand.
*/
static void nsp32_msgout_occur(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short command;
long new_sgtp;
int i;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"enter: msgoutlen: 0x%x", data->msgoutlen);
/*
* If MsgOut phase is occured without having any
* message, then No_Operation is sent (SCSI-2).
*/
if (data->msgoutlen == 0) {
nsp32_build_nop(data);
}
/*
* Set SGTP ADDR current entry for restarting AUTOSCSI,
* because SGTP is incremented next point.
* There is few statement in the specification...
*/
new_sgtp = data->curlunt->sglun_paddr
+ data->curlunt->cur_entry * sizeof(struct nsp32_sgtable);
/*
* send messages
*/
for (i=0; i<data->msgoutlen; i++) {
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"%d : 0x%x", i, data->msgoutbuf[i]);
/*
* Check REQ is asserted.
*/
nsp32_wait_req(data, ASSERT);
if (i == (data->msgoutlen - 1)) {
/*
* If the last message, set the AutoSCSI restart
* before send back the ack message. AutoSCSI
* restart automatically negate ATN signal.
*/
//command = (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
//nsp32_restart_autoscsi(data, command);
nsp32_write2(base, COMMAND_CONTROL,
(CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 ));
}
/*
* Write data with SACK, then wait sack is
* automatically negated.
*/
nsp32_write1(base, SCSI_DATA_WITH_ACK, data->msgoutbuf[i]);
nsp32_wait_sack(data, NEGATE);
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "bus: 0x%x\n",
nsp32_read1(base, SCSI_BUS_MONITOR));
};
data->msgoutlen = 0;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "exit");
}
/*
* Restart AutoSCSI
*
* Note: Restarting AutoSCSI needs set:
* SYNC_REG, ACK_WIDTH, SGT_ADR, TRANSFER_CONTROL
*/
static void nsp32_restart_autoscsi(nsp32_hw_data *data, unsigned short command)
{
unsigned int base = data->BaseAddress;
unsigned short transfer = 0;
Scsi_Cmnd *SCpnt = data->curlunt->SCpnt;
nsp32_dbg(NSP32_DEBUG_RESTART, "enter");
if (data->curtarget == NULL || data->curlunt == NULL) {
nsp32_msg(KERN_ERR, "Target or Lun is invalid");
}
/*
* set SYNC_REG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->curtarget->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->curtarget->ackwidth);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->curlunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
transfer = 0;
transfer |= (TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
transfer |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
transfer |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
transfer |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, transfer);
/*
* restart AutoSCSI
*
* TODO: COMMANDCONTROL_AUTO_COMMAND_PHASE is needed ?
*/
command |= (CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART);
nsp32_write2(base, COMMAND_CONTROL, command);
nsp32_dbg(NSP32_DEBUG_RESTART, "exit");
}
/*
* cannot run automatically message in occur
*/
static void nsp32_msgin_occur(nsp32_hw_data *data, unsigned long irq_status,
unsigned short execph)
{
unsigned int base = data->BaseAddress;
unsigned char msg;
unsigned char msgtype;
unsigned char newlun;
unsigned short command = 0;
int msgclear = TRUE;
long new_sgtp;
int ret;
/*
* read first message
* Use SCSIDATA_W_ACK instead of SCSIDATAIN, because the procedure
* of Message-In have to be processed before sending back SCSI ACK.
*/
msg = nsp32_read1(base, SCSI_DATA_IN);
data->msginbuf[(unsigned char)data->msginlen] = msg;
msgtype = data->msginbuf[0];
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR,
"enter: msglen: 0x%x msgin: 0x%x msgtype: 0x%x",
data->msginlen, msg, msgtype);
/*
* TODO: We need checking whether bus phase is message in?
*/
/*
* assert SCSI ACK
*/
nsp32_sack_assert(data);
/*
* processing IDENTIFY
*/
if (msgtype & 0x80) {
if (!(irq_status & IRQSTATUS_RESELECT_OCCUER)) {
/* Invalid (non reselect) phase */
goto reject;
}
newlun = msgtype & 0x1f; /* TODO: SPI-3 compliant? */
ret = nsp32_reselection(data, newlun);
if (ret == TRUE) {
goto restart;
} else {
goto reject;
}
}
/*
* processing messages except for IDENTIFY
*
* TODO: Messages are all SCSI-2 terminology. SCSI-3 compliance is TODO.
*/
switch (msgtype) {
/*
* 1-byte message
*/
case COMMAND_COMPLETE:
case DISCONNECT:
/*
* These messages should not be occured.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg(KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: 0x%x", msg);
break;
case RESTORE_POINTERS:
/*
* AutoMsgIn03 is disabled, and HBA gets this message.
*/
if ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE)) {
unsigned int s_sacklen;
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
if ((execph & MSGIN_02_VALID) && (s_sacklen > 0)) {
nsp32_adjust_busfree(data, s_sacklen);
} else {
/* No need to rewrite SGT */
}
}
data->curlunt->msgin03 = FALSE;
/* Update with the new value */
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* set new sg pointer
*/
new_sgtp = data->curlunt->sglun_paddr +
data->curlunt->cur_entry * sizeof(struct nsp32_sgtable);
nsp32_write4(base, SGT_ADR, new_sgtp);
break;
case SAVE_POINTERS:
/*
* These messages should not be occured.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg (KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: SAVE_POINTERS");
break;
case MESSAGE_REJECT:
/* If previous message_out is sending SDTR, and get
message_reject from target, SDTR negotiation is failed */
if (data->curtarget->sync_flag &
(SDTR_INITIATOR | SDTR_TARGET)) {
/*
* Current target is negotiating SDTR, but it's
* failed. Fall back to async transfer mode, and set
* SDTR_DONE.
*/
nsp32_set_async(data, data->curtarget);
data->curtarget->sync_flag &= ~SDTR_INITIATOR;
data->curtarget->sync_flag |= SDTR_DONE;
}
break;
case LINKED_CMD_COMPLETE:
case LINKED_FLG_CMD_COMPLETE:
/* queue tag is not supported currently */
nsp32_msg (KERN_WARNING,
"unsupported message: 0x%x", msgtype);
break;
case INITIATE_RECOVERY:
/* staring ECA (Extended Contingent Allegiance) state. */
/* This message is declined in SPI2 or later. */
goto reject;
/*
* 2-byte message
*/
case SIMPLE_QUEUE_TAG:
case 0x23:
/*
* 0x23: Ignore_Wide_Residue is not declared in scsi.h.
* No support is needed.
*/
if (data->msginlen >= 1) {
goto reject;
}
/* current position is 1-byte of 2 byte */
msgclear = FALSE;
break;
/*
* extended message
*/
case EXTENDED_MESSAGE:
if (data->msginlen < 1) {
/*
* Current position does not reach 2-byte
* (2-byte is extended message length).
*/
msgclear = FALSE;
break;
}
if ((data->msginbuf[1] + 1) > data->msginlen) {
/*
* Current extended message has msginbuf[1] + 2
* (msginlen starts counting from 0, so buf[1] + 1).
* If current message position is not finished,
* continue receiving message.
*/
msgclear = FALSE;
break;
}
/*
* Reach here means regular length of each type of
* extended messages.
*/
switch (data->msginbuf[2]) {
case EXTENDED_MODIFY_DATA_POINTER:
/* TODO */
goto reject; /* not implemented yet */
break;
case EXTENDED_SDTR:
/*
* Exchange this message between initiator and target.
*/
if (data->msginlen != EXTENDED_SDTR_LEN + 1) {
/*
* received inappropriate message.
*/
goto reject;
break;
}
nsp32_analyze_sdtr(data);
break;
case EXTENDED_EXTENDED_IDENTIFY:
/* SCSI-I only, not supported. */
goto reject; /* not implemented yet */
break;
case EXTENDED_WDTR:
goto reject; /* not implemented yet */
break;
default:
goto reject;
}
break;
default:
goto reject;
}
restart:
if (msgclear == TRUE) {
data->msginlen = 0;
/*
* If restarting AutoSCSI, but there are some message to out
* (msgoutlen > 0), set AutoATN, and set SCSIMSGOUT as 0
* (MV_VALID = 0). When commandcontrol is written with
* AutoSCSI restart, at the same time MsgOutOccur should be
* happened (however, such situation is really possible...?).
*/
if (data->msgoutlen > 0) {
nsp32_write4(base, SCSI_MSG_OUT, 0);
command |= AUTO_ATN;
}
/*
* restart AutoSCSI
* If it's failed, COMMANDCONTROL_AUTO_COMMAND_PHASE is needed.
*/
command |= (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
/*
* If current msgin03 is TRUE, then flag on.
*/
if (data->curlunt->msgin03 == TRUE) {
command |= AUTO_MSGIN_03;
}
data->curlunt->msgin03 = FALSE;
} else {
data->msginlen++;
}
/*
* restart AutoSCSI
*/
nsp32_restart_autoscsi(data, command);
/*
* wait SCSI REQ negate for REQ-ACK handshake
*/
nsp32_wait_req(data, NEGATE);
/*
* negate SCSI ACK
*/
nsp32_sack_negate(data);
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
nsp32_msg(KERN_WARNING,
"invalid or unsupported MessageIn, rejected. "
"current msg: 0x%x (len: 0x%x), processing msg: 0x%x",
msg, data->msginlen, msgtype);
nsp32_build_reject(data);
data->msginlen = 0;
goto restart;
}
/*
*
*/
static void nsp32_analyze_sdtr(nsp32_hw_data *data)
{
struct nsp32_target *target = data->curtarget;
struct nsp32_sync_table *synct;
unsigned char get_period = data->msginbuf[3];
unsigned char get_offset = data->msginbuf[4];
int entry;
int syncnum;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter");
synct = data->synct;
syncnum = data->syncnum;
/*
* If this inititor sent the SDTR message, then target responds SDTR,
* initiator SYNCREG, ACKWIDTH from SDTR parameter.
* Messages are not appropriate, then send back reject message.
* If initiator did not send the SDTR, but target sends SDTR,
* initiator calculator the appropriate parameter and send back SDTR.
*/
if (target->sync_flag & SDTR_INITIATOR) {
/*
* Initiator sent SDTR, the target responds and
* send back negotiation SDTR.
*/
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target responds SDTR");
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
/*
* offset:
*/
if (get_offset > SYNC_OFFSET) {
/*
* Negotiation is failed, the target send back
* unexpected offset value.
*/
goto reject;
}
if (get_offset == ASYNC_OFFSET) {
/*
* Negotiation is succeeded, the target want
* to fall back into asynchronous transfer mode.
*/
goto async;
}
/*
* period:
* Check whether sync period is too short. If too short,
* fall back to async mode. If it's ok, then investigate
* the received sync period. If sync period is acceptable
* between sync table start_period and end_period, then
* set this I_T nexus as sent offset and period.
* If it's not acceptable, send back reject and fall back
* to async mode.
*/
if (get_period < data->synct[0].period_num) {
/*
* Negotiation is failed, the target send back
* unexpected period value.
*/
goto reject;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (entry < 0) {
/*
* Target want to use long period which is not
* acceptable NinjaSCSI-32Bi/UDE.
*/
goto reject;
}
/*
* Set new sync table and offset in this I_T nexus.
*/
nsp32_set_sync_entry(data, target, entry, get_offset);
} else {
/* Target send SDTR to initiator. */
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target send SDTR");
target->sync_flag |= SDTR_INITIATOR;
/* offset: */
if (get_offset > SYNC_OFFSET) {
/* send back as SYNC_OFFSET */
get_offset = SYNC_OFFSET;
}
/* period: */
if (get_period < data->synct[0].period_num) {
get_period = data->synct[0].period_num;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (get_offset == ASYNC_OFFSET || entry < 0) {
nsp32_set_async(data, target);
nsp32_build_sdtr(data, 0, ASYNC_OFFSET);
} else {
nsp32_set_sync_entry(data, target, entry, get_offset);
nsp32_build_sdtr(data, get_period, get_offset);
}
}
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
/*
* If the current message is unacceptable, send back to the target
* with reject message.
*/
nsp32_build_reject(data);
async:
nsp32_set_async(data, target); /* set as ASYNC transfer mode */
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit: set async");
return;
}
/*
* Search config entry number matched in sync_table from given
* target and speed period value. If failed to search, return negative value.
*/
static int nsp32_search_period_entry(nsp32_hw_data *data,
struct nsp32_target *target,
unsigned char period)
{
int i;
if (target->limit_entry >= data->syncnum) {
nsp32_msg(KERN_ERR, "limit_entry exceeds syncnum!");
target->limit_entry = 0;
}
for (i=target->limit_entry; i<data->syncnum; i++) {
if (period >= data->synct[i].start_period &&
period <= data->synct[i].end_period) {
break;
}
}
/*
* Check given period value is over the sync_table value.
* If so, return max value.
*/
if (i == data->syncnum) {
i = -1;
}
return i;
}
/*
* target <-> initiator use ASYNC transfer
*/
static void nsp32_set_async(nsp32_hw_data *data, struct nsp32_target *target)
{
unsigned char period = data->synct[target->limit_entry].period_num;
target->offset = ASYNC_OFFSET;
target->syncreg = TO_SYNCREG(period, ASYNC_OFFSET);
target->ackwidth = 0;
nsp32_dbg(NSP32_DEBUG_SYNC, "set async");
}
/*
* target <-> initiator use maximum SYNC transfer
*/
static void nsp32_set_max_sync(nsp32_hw_data *data,
struct nsp32_target *target,
unsigned char *period, unsigned char *offset)
{
unsigned char period_num, ackwidth;
period_num = data->synct[target->limit_entry].period_num;
*period = data->synct[target->limit_entry].start_period;
ackwidth = data->synct[target->limit_entry].ackwidth;
*offset = SYNC_OFFSET;
target->syncreg = TO_SYNCREG(period_num, *offset);
target->ackwidth = ackwidth;
target->offset = *offset;
}
/*
* target <-> initiator use entry number speed
*/
static void nsp32_set_sync_entry(nsp32_hw_data *data,
struct nsp32_target *target,
int entry, unsigned char offset)
{
unsigned char period, ackwidth;
period = data->synct[entry].period_num;
ackwidth = data->synct[entry].ackwidth;
offset = offset;
target->syncreg = TO_SYNCREG(period, offset);
target->ackwidth = ackwidth;
target->offset = offset;
nsp32_dbg(NSP32_DEBUG_SYNC, "set sync");
}
/*
* It waits until SCSI REQ becomes assertion or negation state.
*
* Note: If nsp32_msgin_occur is called, we asserts SCSI ACK. Then
* connected target responds SCSI REQ negation. We have to wait
* SCSI REQ becomes negation in order to negate SCSI ACK signal for
* REQ-ACK handshake.
*/
static void nsp32_wait_req(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
state <<= 5; /* REQ is BIT(5) */
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_REQ) == state) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait REQ timeout, state: %d", state);
}
/*
* It waits until SCSI SACK becomes assertion or negation state.
*/
static void nsp32_wait_sack(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
state <<= 4; /* ACK is BIT(4) */
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_ACK) == state) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait SACK timeout, state: %d", state);
}
/*
* assert SCSI ACK
*
* Note: SCSI ACK assertion needs with ACKENB=1, AUTODIRECTION=1.
*/
static void nsp32_sack_assert(nsp32_hw_data *data)
{
unsigned char busctrl;
unsigned int base = data->BaseAddress;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl |= (BUSCTL_ACK | AUTODIRECTION | ACKENB);
nsp32_write1(base, SCSI_BUS_CONTROL,busctrl);
}
/*
* negate SCSI ACK
*/
static void nsp32_sack_negate(nsp32_hw_data *data)
{
unsigned char busctrl;
unsigned int base = data->BaseAddress;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl &= ~BUSCTL_ACK;
nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}
/*
* getting EEPROM parameter
*/
static int nsp32_getprom_param(nsp32_hw_data *data)
{
int vendor = data->pci_devid->vendor;
int device = data->pci_devid->device;
int ret, val, i;
/*
* EEPROM checking.
*/
ret = nsp32_prom_read(data, 0x7e);
if (ret != 0x55) {
nsp32_msg(KERN_INFO, "No EEPROM detected: 0x%x", ret);
return (FALSE);
}
ret = nsp32_prom_read(data, 0x7f);
if (ret != 0xaa) {
nsp32_msg(KERN_INFO, "Invalid number: 0x%x", ret);
return (FALSE);
}
/*
* check EEPROM type
*/
if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_WORKBIT_STANDARD) {
ret = nsp32_getprom_standard(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC) {
ret = nsp32_getprom_new(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO ) {
ret = nsp32_getprom_new(data);
} else {
nsp32_msg(KERN_WARNING, "Unknown EEPROM");
ret = FALSE;
}
/* for debug : SPROM data full checking */
for (i=0; i<=0x1f; i++) {
val = nsp32_prom_read(data, i);
nsp32_dbg(NSP32_DEBUG_EEPROM,
"rom address 0x%x : 0x%x", i, val);
}
return (ret);
}
/*
* AT24C01A (Logitec: LHA-600S), AT24C02 (Melco Buffalo: IFC-USLP) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: ASYNC, 0x0c: Ultra-20M, 0x19: Fast-10M
* 0x07 : HBA Synchronous Transfer Period
* Value 0: AutoSync, 1: Manual Setting
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Bus Termination
* Value 0: Auto[ON], 1: ON, 2: OFF
* 0x11 : Not Used? (0)
* 0x12 : Bus Reset Delay Time (0x03)
* 0x13 : Bootable CD Support
* Value 0: Disable, 1: Enable
* 0x14 : Device Scan
* Bit 7 6 5 4 3 2 1 0
* | <----------------->
* | SCSI ID: Value 0: Skip, 1: YES
* |-> Value 0: ALL scan, Value 1: Manual
* 0x15 - 0x1b : Not Used? (0)
* 0x1c : Constant? (0x01) (clock div?)
* 0x1d - 0x7c : Not Used (0xff)
* 0x7d : Not Used? (0xff)
* 0x7e : Constant (0x55), HBA chip revision
* 0x7f : Constant (0xaa), HBA value
*/
static int nsp32_getprom_new(nsp32_hw_data *data)
{
int ret, i;
int auto_sync;
struct nsp32_target *target;
int entry;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x12);
/*
* HBA Synchronous Transfer Period
*
* Note: auto_sync = 0: auto, 1: manual. Ninja SCSI HBA spec says
* that if auto_sync is 0 (auto), and connected SCSI devices are
* same or lower than 3, then transfer speed is set as ULTRA-20M.
* On the contrary if connected SCSI devices are same or higher
* than 4, then transfer speed is set as FAST-10M.
*
* I break this rule. The number of connected SCSI devices are
* only ignored. If auto_sync is 0 (auto), then transfer speed is
* forced as ULTRA-20M.
*/
ret = nsp32_prom_read(data, 0x07);
switch (ret) {
case 0:
auto_sync = TRUE;
break;
case 1:
auto_sync = FALSE;
break;
default:
nsp32_msg(KERN_WARNING,
"Unsupported Auto Sync mode."
"Fall back to manual mode.");
auto_sync = TRUE;
}
if (trans_mode == ULTRA20M_MODE) {
auto_sync = TRUE;
}
/*
* each device Synchronous Transfer Period
*/
for (i=0; i<NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
if (auto_sync == TRUE) {
target->limit_entry = 0; /* set as ULTRA20M */
} else {
ret = nsp32_prom_read(data, i);
entry = nsp32_search_period_entry(data, target, ret);
if (entry < 0) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
}
return (TRUE);
}
/*
* ? (I-O Data: SC-NBD) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: 20MB/S, 0x1: 10MB/S, 0x2: 5MB/S, 0x3: ASYNC
* 0x07 : 0 (HBA Synchronous Transfer Period: Auto Sync)
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Transfer Mode
* Value 0: PIO, 1: Busmater
* 0x11 : Bus Reset Delay Time (0x00-0x20)
* 0x12 : Bus Termination
* Value 0: Disable, 1: Enable
* 0x13 - 0x19 : Disconnection
* Value 0: Disable, 1: Enable
* 0x1a - 0x7c : Not Used? (0)
* 0x7d : Not Used? (0xf8)
* 0x7e : Constant (0x55), HBA chip revision
* 0x7f : Constant (0xaa), HBA value
*/
static int nsp32_getprom_standard(nsp32_hw_data *data)
{
int ret, i;
struct nsp32_target *target;
int entry, val;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x11);
/*
* each device Synchronous Transfer Period
*/
for (i=0; i<NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
ret = nsp32_prom_read(data, i);
switch (ret) {
case 0: /* 20MB/s */
val = 0x0c;
break;
case 1: /* 10MB/s */
val = 0x19;
break;
case 2: /* 5MB/s */
val = 0x32;
break;
case 3: /* ASYNC */
val = 0x0;
break;
default: /* default 20MB/s */
val = 0x0c;
}
entry = nsp32_search_period_entry(data, target, val);
if (entry < 0 || trans_mode == ULTRA20M_MODE) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
return (TRUE);
}
/*
* Atmel AT24C01A (drived in 5V) serial EEPROM routines
*/
static int nsp32_prom_read(nsp32_hw_data *data, int romaddr)
{
int i, val;
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write(data, 1); /* 1 */
nsp32_prom_write(data, 0); /* 0 */
nsp32_prom_write(data, 1); /* 1 */
nsp32_prom_write(data, 0); /* 0 */
nsp32_prom_write(data, 0); /* A2: 0 (GND) */
nsp32_prom_write(data, 0); /* A1: 0 (GND) */
nsp32_prom_write(data, 0); /* A0: 0 (GND) */
/* R/W: W for dummy write */
nsp32_prom_write(data, 0);
/* ack */
nsp32_prom_write(data, 0);
/* word address */
for (i=7; i>=0; i--) {
nsp32_prom_write(data, ((romaddr >> i) & 1));
}
/* ack */
nsp32_prom_write(data, 0);
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write(data, 1); /* 1 */
nsp32_prom_write(data, 0); /* 0 */
nsp32_prom_write(data, 1); /* 1 */
nsp32_prom_write(data, 0); /* 0 */
nsp32_prom_write(data, 0); /* A2: 0 (GND) */
nsp32_prom_write(data, 0); /* A1: 0 (GND) */
nsp32_prom_write(data, 0); /* A0: 0 (GND) */
/* R/W: R */
nsp32_prom_write(data, 1);
/* ack */
nsp32_prom_write(data, 0);
/* data... */
val = 0;
for (i=7; i>=0; i--) {
val += (nsp32_prom_fetch(data) << i);
}
/* no ack */
nsp32_prom_write(data, 1);
/* stop condition */
nsp32_prom_stop(data);
return (val);
}
static void nsp32_prom_start (nsp32_hw_data *data)
{
/* start condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 0); /* keeping SCL=1 and transiting
* SDA 1->0 is start condition */
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_stop (nsp32_hw_data *data)
{
/* stop condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_write (nsp32_hw_data *data, int val)
{
/* write */
nsp32_prom_set(data, SDA, val);
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SCL, 0);
}
static int nsp32_prom_fetch (nsp32_hw_data *data)
{
int val;
/* read */
nsp32_prom_set(data, ENA, 0); /* input mode */
nsp32_prom_set(data, SCL, 1);
val = nsp32_prom_get(data, SDA);
nsp32_prom_set(data, SCL, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
return (val);
}
static inline void nsp32_prom_set(nsp32_hw_data *data, int bit, int val)
{
int cur;
int base = data->BaseAddress;
switch(val) {
case 0:
cur = nsp32_index_read1(base, SERIAL_ROM_CTL);
nsp32_index_write1(base, SERIAL_ROM_CTL, cur & ~bit);
break;
case 1:
cur = nsp32_index_read1(base, SERIAL_ROM_CTL);
nsp32_index_write1(base, SERIAL_ROM_CTL, cur | bit);
break;
default:
nsp32_msg(KERN_ERR, "val must be 0 or 1");
return;
}
udelay(10);
}
static inline int nsp32_prom_get(nsp32_hw_data *data, int bit)
{
int ret;
int base = data->BaseAddress;
ret = nsp32_index_read1(base, SERIAL_ROM_CTL) & bit;
switch (ret) {
case 0:
ret = 0;
break;
case SDA:
ret = 1;
break;
default:
nsp32_msg(KERN_ERR, "return value is not appropriate");
}
udelay(10);
return (ret);
}
/* end */
/*
* Workbit NinjaSCSI-32Bi/UDE PCI/Cardbus SCSI Host Bus Adapter driver
* Basic data header
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _NSP32_H
#define _NSP32_H
//#define NSP32_DEBUG 9
/*
* VENDOR/DEVICE ID
*/
#define PCI_VENDOR_ID_IODATA 0x10fc
#define PCI_VENDOR_ID_WORKBIT 0x1145
#define PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II 0x0005
#define PCI_DEVICE_ID_NINJASCSI_32BI_KME 0xf007
#define PCI_DEVICE_ID_NINJASCSI_32BI_WBT 0x8007
#define PCI_DEVICE_ID_WORKBIT_STANDARD 0xf010
#define PCI_DEVICE_ID_WORKBIT_DUALEDGE 0xf011
#define PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC 0xf012
#define PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC 0xf013
#define PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO 0xf015
/*
* MODEL
*/
enum {
MODEL_IODATA = 0,
MODEL_KME = 1,
MODEL_WORKBIT = 2,
MODEL_EXT_ROM = 3,
MODEL_PCI_WORKBIT = 4,
MODEL_PCI_LOGITEC = 5,
MODEL_PCI_MELCO = 6,
};
static char * nsp32_model[] = {
"I-O DATA CBSC-II",
"KME SCSI card",
"Workbit duo SCSI card",
"External ROM",
"Workbit Standard/IO Data PCI card",
"Logitec PCI card",
"Melco PCI card",
};
/*
* SCSI Generic Definitions
*/
#define EXTENDED_SDTR_LEN 0x03
/*
* MACRO
*/
#define BIT(x) (1UL << (x))
#ifndef MIN
# define MIN(a,b) ((a) > (b) ? (b) : (a))
#endif
/*
* BASIC Definitions
*/
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif
#define ASSERT 1
#define NEGATE 0
/*******************/
/* normal register */
/*******************/
/*
* Don't access below register with Double Word:
* +00, +04, +08, +0c, +64, +80, +84, +88, +90, +c4, +c8, +cc, +d0.
*/
#define IRQ_CONTROL 0x00 /* BASE+00, W, W */
#define IRQ_STATUS 0x00 /* BASE+00, W, R */
# define IRQSTATUS_LATCHED_MSG BIT(0)
# define IRQSTATUS_LATCHED_IO BIT(1)
# define IRQSTATUS_LATCHED_CD BIT(2)
# define IRQSTATUS_LATCHED_BUS_FREE BIT(3)
# define IRQSTATUS_RESELECT_OCCUER BIT(4)
# define IRQSTATUS_PHASE_CHANGE_IRQ BIT(5)
# define IRQSTATUS_SCSIRESET_IRQ BIT(6)
# define IRQSTATUS_TIMER_IRQ BIT(7)
# define IRQSTATUS_FIFO_SHLD_IRQ BIT(8)
# define IRQSTATUS_PCI_IRQ BIT(9)
# define IRQSTATUS_BMCNTERR_IRQ BIT(10)
# define IRQSTATUS_AUTOSCSI_IRQ BIT(11)
# define PCI_IRQ_MASK BIT(12)
# define TIMER_IRQ_MASK BIT(13)
# define FIFO_IRQ_MASK BIT(14)
# define SCSI_IRQ_MASK BIT(15)
# define IRQ_CONTROL_ALL_IRQ_MASK 0xf000
# define IRQSTATUS_ANY_IRQ (IRQSTATUS_RESELECT_OCCUER | \
IRQSTATUS_PHASE_CHANGE_IRQ | \
IRQSTATUS_SCSIRESET_IRQ | \
IRQSTATUS_TIMER_IRQ | \
IRQSTATUS_FIFO_SHLD_IRQ | \
IRQSTATUS_PCI_IRQ | \
IRQSTATUS_BMCNTERR_IRQ | \
IRQSTATUS_AUTOSCSI_IRQ )
#define TRANSFER_CONTROL 0x02 /* BASE+02, W, W */
#define TRANSFER_STATUS 0x02 /* BASE+02, W, R */
# define CB_MMIO_MODE BIT(0)
# define CB_IO_MODE BIT(1)
# define BM_TEST BIT(2)
# define BM_TEST_DIR BIT(3)
# define DUAL_EDGE_ENABLE BIT(4)
# define NO_TRANSFER_TO_HOST BIT(5)
# define TRANSFER_GO BIT(7)
# define BLIEND_MODE BIT(8)
# define BM_START BIT(9)
# define ADVANCED_BM_WRITE BIT(10)
# define BM_SINGLE_MODE BIT(11)
# define FIFO_TRUE_FULL BIT(12)
# define FIFO_TRUE_EMPTY BIT(13)
# define ALL_COUNTER_CLR BIT(14)
# define FIFOTEST BIT(15)
#define INDEX_REG 0x04 /* BASE+04, Byte(R/W), Word(R) */
#define TIMER_SET 0x06 /* BASE+06, W, R/W */
# define TIMER_CNT_MASK 0xff
# define TIMER_STOP BIT(8)
#define DATA_REG_LOW 0x08 /* BASE+08, LowW, R/W */
#define DATA_REG_HI 0x0a /* BASE+0a, Hi-W, R/W */
#define FIFO_REST_CNT 0x0c /* BASE+0c, W, R/W */
# define FIFO_REST_MASK 0x1ff
# define FIFO_EMPTY_SHLD_FLAG BIT(14)
# define FIFO_FULL_SHLD_FLAG BIT(15)
#define SREQ_SMPL_RATE 0x0f /* BASE+0f, B, R/W */
# define SREQSMPLRATE_RATE0 BIT(0)
# define SREQSMPLRATE_RATE1 BIT(1)
# define SAMPLING_ENABLE BIT(2)
#define SCSI_BUS_CONTROL 0x10 /* BASE+10, B, R/W */
# define BUSCTL_SEL BIT(0)
# define BUSCTL_RST BIT(1)
# define BUSCTL_DATAOUT_ENB BIT(2)
# define BUSCTL_ATN BIT(3)
# define BUSCTL_ACK BIT(4)
# define BUSCTL_BSY BIT(5)
# define AUTODIRECTION BIT(6)
# define ACKENB BIT(7)
#define CLR_COUNTER 0x12 /* BASE+12, B, W */
# define ACK_COUNTER_CLR BIT(0)
# define SREQ_COUNTER_CLR BIT(1)
# define FIFO_HOST_POINTER_CLR BIT(2)
# define FIFO_REST_COUNT_CLR BIT(3)
# define BM_COUNTER_CLR BIT(4)
# define SAVED_ACK_CLR BIT(5)
# define CLRCOUNTER_ALLMASK (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5))
#define SCSI_BUS_MONITOR 0x12 /* BASE+12, B, R */
# define BUSMON_MSG BIT(0)
# define BUSMON_IO BIT(1)
# define BUSMON_CD BIT(2)
# define BUSMON_BSY BIT(3)
# define BUSMON_ACK BIT(4)
# define BUSMON_REQ BIT(5)
# define BUSMON_SEL BIT(6)
# define BUSMON_ATN BIT(7)
#define COMMAND_DATA 0x14 /* BASE+14, B, R/W */
#define PARITY_CONTROL 0x16 /* BASE+16, B, R/W */
# define PARITY_CHECK_ENABLE BIT(0)
# define PARITY_ERROR_CLEAR BIT(1)
#define PARITY_STATUS 0x16
//# define PARITY_CHECK_ENABLE BIT(0)
# define PARITY_ERROR_NORMAL BIT(1)
# define PARITY_ERROR_LSB BIT(1)
# define PARITY_ERROR_MSB BIT(2)
#define RESELECT_ID 0x18 /* BASE+18, B, R */
#define COMMAND_CONTROL 0x18 /* BASE+18, W, W */
# define CLEAR_CDB_FIFO_POINTER BIT(0)
# define AUTO_COMMAND_PHASE BIT(1)
# define AUTOSCSI_START BIT(2)
# define AUTOSCSI_RESTART BIT(3)
# define AUTO_PARAMETER BIT(4)
# define AUTO_ATN BIT(5)
# define AUTO_MSGIN_00_OR_04 BIT(6)
# define AUTO_MSGIN_02 BIT(7)
# define AUTO_MSGIN_03 BIT(8)
#define SET_ARBIT 0x1a /* BASE+1a, B, W */
# define ARBIT_GO BIT(0)
# define ARBIT_CLEAR BIT(1)
#define ARBIT_STATUS 0x1a /* BASE+1a, B, R */
//# define ARBIT_GO BIT(0)
# define ARBIT_WIN BIT(1)
# define ARBIT_FAIL BIT(2)
# define AUTO_PARAMETER_VALID BIT(3)
# define SGT_VALID BIT(4)
#define SYNC_REG 0x1c /* BASE+1c, B, R/W */
#define ACK_WIDTH 0x1d /* BASE+1d, B, R/W */
#define SCSI_DATA_WITH_ACK 0x20 /* BASE+20, B, R/W */
#define SCSI_OUT_LATCH_TARGET_ID 0x22 /* BASE+22, B, W */
#define SCSI_DATA_IN 0x22 /* BASE+22, B, R */
#define SCAM_CONTROL 0x24 /* BASE+24, B, W */
#define SCAM_STATUS 0x24 /* BASE+24, B, R */
# define SCAM_MSG BIT(0)
# define SCAM_IO BIT(1)
# define SCAM_CD BIT(2)
# define SCAM_BSY BIT(3)
# define SCAM_SEL BIT(4)
# define SCAM_XFEROK BIT(5)
#define SCAM_DATA 0x26 /* BASE+26, B, R/W */
# define SD0 BIT(0)
# define SD1 BIT(1)
# define SD2 BIT(2)
# define SD3 BIT(3)
# define SD4 BIT(4)
# define SD5 BIT(5)
# define SD6 BIT(6)
# define SD7 BIT(7)
#define SACK_CNT 0x28 /* BASE+28, DW, R/W */
#define SREQ_CNT 0x2c /* BASE+2c, DW, R/W */
#define FIFO_DATA_LOW 0x30 /* BASE+30, B/W/DW, R/W */
#define FIFO_DATA_HIGH 0x32 /* BASE+32, B/W, R/W */
#define BM_START_ADR 0x34 /* BASE+34, DW, R/W */
#define BM_CNT 0x38 /* BASE+38, DW, R/W */
# define BM_COUNT_MASK 0x0001ffff
# define SGTEND BIT(31)
#define SGT_ADR 0x3c /* BASE+3c, DW, R/W */
#define WAIT_REG 0x40 /* Bi only */
#define SCSI_EXECUTE_PHASE 0x40 /* BASE+40, W, R */
# define COMMAND_PHASE BIT(0)
# define DATA_IN_PHASE BIT(1)
# define DATA_OUT_PHASE BIT(2)
# define MSGOUT_PHASE BIT(3)
# define STATUS_PHASE BIT(4)
# define ILLEGAL_PHASE BIT(5)
# define BUS_FREE_OCCUER BIT(6)
# define MSG_IN_OCCUER BIT(7)
# define MSG_OUT_OCCUER BIT(8)
# define SELECTION_TIMEOUT BIT(9)
# define MSGIN_00_VALID BIT(10)
# define MSGIN_02_VALID BIT(11)
# define MSGIN_03_VALID BIT(12)
# define MSGIN_04_VALID BIT(13)
# define AUTOSCSI_BUSY BIT(15)
#define SCSI_CSB_IN 0x42 /* BASE+42, B, R */
#define SCSI_MSG_OUT 0x44 /* BASE+44, DW, R/W */
# define MSGOUT_COUNT_MASK (BIT(0)|BIT(1))
# define MV_VALID BIT(7)
#define SEL_TIME_OUT 0x48 /* BASE+48, W, R/W */
#define SAVED_SACK_CNT 0x4c /* BASE+4c, DW, R */
#define HTOSDATADELAY 0x50 /* BASE+50, B, R/W */
#define STOHDATADELAY 0x54 /* BASE+54, B, R/W */
#define ACKSUMCHECKRD 0x58 /* BASE+58, W, R */
#define REQSUMCHECKRD 0x5c /* BASE+5c, W, R */
/********************/
/* indexed register */
/********************/
#define CLOCK_DIV 0x00 /* BASE+08, IDX+00, B, R/W */
# define CLOCK_2 BIT(0) /* MCLK/2 */
# define CLOCK_4 BIT(1) /* MCLK/4 */
# define PCICLK BIT(7) /* PCICLK (33MHz) */
#define TERM_PWR_CONTROL 0x01 /* BASE+08, IDX+01, B, R/W */
# define BPWR BIT(0)
# define SENSE BIT(1) /* Read Only */
#define EXT_PORT_DDR 0x02 /* BASE+08, IDX+02, B, R/W */
#define EXT_PORT 0x03 /* BASE+08, IDX+03, B, R/W */
# define LED_ON 0
# define LED_OFF 1
#define IRQ_SELECT 0x04 /* BASE+08, IDX+04, W, R/W */
# define IRQSELECT_RESELECT_IRQ BIT(0)
# define IRQSELECT_PHASE_CHANGE_IRQ BIT(1)
# define IRQSELECT_SCSIRESET_IRQ BIT(2)
# define IRQSELECT_TIMER_IRQ BIT(3)
# define IRQSELECT_FIFO_SHLD_IRQ BIT(4)
# define IRQSELECT_TARGET_ABORT_IRQ BIT(5)
# define IRQSELECT_MASTER_ABORT_IRQ BIT(6)
# define IRQSELECT_SERR_IRQ BIT(7)
# define IRQSELECT_PERR_IRQ BIT(8)
# define IRQSELECT_BMCNTERR_IRQ BIT(9)
# define IRQSELECT_AUTO_SCSI_SEQ_IRQ BIT(10)
#define OLD_SCSI_PHASE 0x05 /* BASE+08, IDX+05, B, R */
# define OLD_MSG BIT(0)
# define OLD_IO BIT(1)
# define OLD_CD BIT(2)
# define OLD_BUSY BIT(3)
#define FIFO_FULL_SHLD_COUNT 0x06 /* BASE+08, IDX+06, B, R/W */
#define FIFO_EMPTY_SHLD_COUNT 0x07 /* BASE+08, IDX+07, B, R/W */
#define EXP_ROM_CONTROL 0x08 /* BASE+08, IDX+08, B, R/W */
#define EXP_ROM_ADRL 0x09 /* BASE+08, IDX+09, W, R/W */
#define EXP_ROM_DATA 0x0a /* BASE+08, IDX+0a, B, R/W */
#define CHIP_MODE 0x0b /* Bi only */
# define OEM0 BIT(1)
# define OEM1 BIT(2)
# define OPTB BIT(3)
# define OPTC BIT(4)
# define OPTD BIT(5)
# define OPTE BIT(6)
# define OPTF BIT(7)
#define MISC_WR 0x0c /* BASE+08, IDX+0c, W, R/W */
#define MISC_RD 0x0c
# define SCSI_DIRECTION_DETECTOR_SELECT BIT(0)
# define SCSI2_HOST_DIRECTION_VALID BIT(1) /* Read only */
# define HOST2_SCSI_DIRECTION_VALID BIT(2) /* Read only */
# define DELAYED_BMSTART BIT(3)
# define MASTER_TERMINATION_SELECT BIT(4)
# define BMREQ_NEGATE_TIMING_SEL BIT(5)
# define AUTOSEL_TIMING_SEL BIT(6)
# define MISC_MABORT_MASK BIT(7)
# define BMSTOP_CHANGE2_NONDATA_PHASE BIT(8)
#define BM_CYCLE 0x0d /* BASE+08, IDX+0d, B, R/W */
# define BM_CYCLE0 BIT(0)
# define BM_CYCLE1 BIT(1)
# define BM_FRAME_ASSERT_TIMING BIT(2)
# define BM_IRDY_ASSERT_TIMING BIT(3)
# define BM_SINGLE_BUS_MASTER BIT(4)
# define MEMRD_CMD0 BIT(5)
# define SGT_AUTO_PARA_MEMED_CMD BIT(6)
# define MEMRD_CMD1 BIT(7)
#define SREQ_EDGH 0x0e /* BASE+08, IDX+0e, B, W */
# define SREQ_EDGH_SELECT BIT(0)
#define UP_CNT 0x0f /* BASE+08, IDX+0f, B, W */
#define CFG_CMD_STR 0x10 /* BASE+08, IDX+10, W, R */
#define CFG_LATE_CACHE 0x11 /* BASE+08, IDX+11, W, R/W */
#define CFG_BASE_ADR_1 0x12 /* BASE+08, IDX+12, W, R */
#define CFG_BASE_ADR_2 0x13 /* BASE+08, IDX+13, W, R */
#define CFG_INLINE 0x14 /* BASE+08, IDX+14, W, R */
#define SERIAL_ROM_CTL 0x15 /* BASE+08, IDX+15, B, R */
# define SCL BIT(0)
# define ENA BIT(1)
# define SDA BIT(2)
#define FIFO_HST_POINTER 0x16 /* BASE+08, IDX+16, B, R/W */
#define SREQ_DELAY 0x17 /* BASE+08, IDX+17, B, R/W */
#define SACK_DELAY 0x18 /* BASE+08, IDX+18, B, R/W */
#define SREQ_NOISE_CANCEL 0x19 /* BASE+08, IDX+19, B, R/W */
#define SDP_NOISE_CANCEL 0x1a /* BASE+08, IDX+1a, B, R/W */
#define DELAY_TEST 0x1b /* BASE+08, IDX+1b, B, R/W */
#define SD0_NOISE_CANCEL 0x20 /* BASE+08, IDX+20, B, R/W */
#define SD1_NOISE_CANCEL 0x21 /* BASE+08, IDX+21, B, R/W */
#define SD2_NOISE_CANCEL 0x22 /* BASE+08, IDX+22, B, R/W */
#define SD3_NOISE_CANCEL 0x23 /* BASE+08, IDX+23, B, R/W */
#define SD4_NOISE_CANCEL 0x24 /* BASE+08, IDX+24, B, R/W */
#define SD5_NOISE_CANCEL 0x25 /* BASE+08, IDX+25, B, R/W */
#define SD6_NOISE_CANCEL 0x26 /* BASE+08, IDX+26, B, R/W */
#define SD7_NOISE_CANCEL 0x27 /* BASE+08, IDX+27, B, R/W */
/*
* Useful Bus Monitor status combinations.
*/
#define BUSMON_BUS_FREE 0
#define BUSMON_COMMAND ( BUSMON_BSY | BUSMON_CD | BUSMON_REQ )
#define BUSMON_MESSAGE_IN ( BUSMON_BSY | BUSMON_MSG | BUSMON_IO | BUSMON_CD | BUSMON_REQ )
#define BUSMON_MESSAGE_OUT ( BUSMON_BSY | BUSMON_MSG | BUSMON_CD | BUSMON_REQ )
#define BUSMON_DATA_IN ( BUSMON_BSY | BUSMON_IO | BUSMON_REQ )
#define BUSMON_DATA_OUT ( BUSMON_BSY | BUSMON_REQ )
#define BUSMON_STATUS ( BUSMON_BSY | BUSMON_IO | BUSMON_CD | BUSMON_REQ )
#define BUSMON_RESELECT ( BUSMON_IO | BUSMON_SEL)
#define BUSMON_PHASE_MASK ( BUSMON_MSG | BUSMON_IO | BUSMON_CD | BUSMON_SEL)
#define BUSPHASE_COMMAND ( BUSMON_COMMAND & BUSMON_PHASE_MASK )
#define BUSPHASE_MESSAGE_IN ( BUSMON_MESSAGE_IN & BUSMON_PHASE_MASK )
#define BUSPHASE_MESSAGE_OUT ( BUSMON_MESSAGE_OUT & BUSMON_PHASE_MASK )
#define BUSPHASE_DATA_IN ( BUSMON_DATA_IN & BUSMON_PHASE_MASK )
#define BUSPHASE_DATA_OUT ( BUSMON_DATA_OUT & BUSMON_PHASE_MASK )
#define BUSPHASE_STATUS ( BUSMON_STATUS & BUSMON_PHASE_MASK )
#define BUSPHASE_SELECT ( BUSMON_SEL | BUSMON_IO )
#endif _NSP32_H
/* end */
/*
* Workbit NinjaSCSI-32Bi/UDE PCI/Cardbus SCSI Host Bus Adapter driver
* Debug routine
*
* This software may be used and distributed according to the terms of
* the GNU General Public License.
*/
/*
* Show the command data of a command
*/
static const char unknown[] = "UNKNOWN";
static const char * group_0_commands[] = {
/* 00-03 */ "Test Unit Ready", "Rezero Unit", unknown, "Request Sense",
/* 04-07 */ "Format Unit", "Read Block Limits", unknown, "Reasssign Blocks",
/* 08-0d */ "Read (6)", unknown, "Write (6)", "Seek (6)", unknown, unknown,
/* 0e-12 */ unknown, "Read Reverse", "Write Filemarks", "Space", "Inquiry",
/* 13-16 */ unknown, "Recover Buffered Data", "Mode Select", "Reserve",
/* 17-1b */ "Release", "Copy", "Erase", "Mode Sense", "Start/Stop Unit",
/* 1c-1d */ "Receive Diagnostic", "Send Diagnostic",
/* 1e-1f */ "Prevent/Allow Medium Removal", unknown,
};
static const char *group_1_commands[] = {
/* 20-22 */ unknown, unknown, unknown,
/* 23-28 */ unknown, unknown, "Read Capacity", unknown, unknown, "Read (10)",
/* 29-2d */ unknown, "Write (10)", "Seek (10)", unknown, unknown,
/* 2e-31 */ "Write Verify","Verify", "Search High", "Search Equal",
/* 32-34 */ "Search Low", "Set Limits", "Prefetch or Read Position",
/* 35-37 */ "Synchronize Cache","Lock/Unlock Cache", "Read Defect Data",
/* 38-3c */ "Medium Scan", "Compare","Copy Verify", "Write Buffer", "Read Buffer",
/* 3d-3f */ "Update Block", "Read Long", "Write Long",
};
static const char *group_2_commands[] = {
/* 40-41 */ "Change Definition", "Write Same",
/* 42-48 */ "Read Sub-Ch(cd)", "Read TOC", "Read Header(cd)", "Play Audio(cd)", unknown, "Play Audio MSF(cd)", "Play Audio Track/Index(cd)",
/* 49-4f */ "Play Track Relative(10)(cd)", unknown, "Pause/Resume(cd)", "Log Select", "Log Sense", unknown, unknown,
/* 50-55 */ unknown, unknown, unknown, unknown, unknown, "Mode Select (10)",
/* 56-5b */ unknown, unknown, unknown, unknown, "Mode Sense (10)", unknown,
/* 5c-5f */ unknown, unknown, unknown,
};
#define group(opcode) (((opcode) >> 5) & 7)
#define RESERVED_GROUP 0
#define VENDOR_GROUP 1
#define NOTEXT_GROUP 2
static const char **commands[] = {
group_0_commands, group_1_commands, group_2_commands,
(const char **) RESERVED_GROUP, (const char **) RESERVED_GROUP,
(const char **) NOTEXT_GROUP, (const char **) VENDOR_GROUP,
(const char **) VENDOR_GROUP
};
static const char reserved[] = "RESERVED";
static const char vendor[] = "VENDOR SPECIFIC";
static void print_opcodek(unsigned char opcode)
{
const char **table = commands[ group(opcode) ];
switch ((unsigned long) table) {
case RESERVED_GROUP:
printk("%s[%02x] ", reserved, opcode);
break;
case NOTEXT_GROUP:
printk("%s(notext)[%02x] ", unknown, opcode);
break;
case VENDOR_GROUP:
printk("%s[%02x] ", vendor, opcode);
break;
default:
if (table[opcode & 0x1f] != unknown)
printk("%s[%02x] ", table[opcode & 0x1f], opcode);
else
printk("%s[%02x] ", unknown, opcode);
break;
}
}
static void print_commandk (unsigned char *command)
{
int i,s;
// printk(KERN_DEBUG);
print_opcodek(command[0]);
/*printk(KERN_DEBUG __func__ " ");*/
if ((command[0] >> 5) == 6 ||
(command[0] >> 5) == 7 ) {
s = 12; /* vender specific */
} else {
s = COMMAND_SIZE(command[0]);
}
for ( i = 1; i < s; ++i) {
printk("%02x ", command[i]);
}
switch (s) {
case 6:
printk("LBA=%d len=%d",
(((unsigned int)command[1] & 0x0f) << 16) |
( (unsigned int)command[2] << 8) |
( (unsigned int)command[3] ),
(unsigned int)command[4]
);
break;
case 10:
printk("LBA=%d len=%d",
((unsigned int)command[2] << 24) |
((unsigned int)command[3] << 16) |
((unsigned int)command[4] << 8) |
((unsigned int)command[5] ),
((unsigned int)command[7] << 8) |
((unsigned int)command[8] )
);
break;
case 12:
printk("LBA=%d len=%d",
((unsigned int)command[2] << 24) |
((unsigned int)command[3] << 16) |
((unsigned int)command[4] << 8) |
((unsigned int)command[5] ),
((unsigned int)command[6] << 24) |
((unsigned int)command[7] << 16) |
((unsigned int)command[8] << 8) |
((unsigned int)command[9] )
);
break;
default:
break;
}
printk("\n");
}
static void show_command(Scsi_Cmnd *ptr)
{
print_commandk(ptr->cmnd);
}
static void show_busphase(unsigned char stat)
{
switch(stat) {
case BUSPHASE_COMMAND:
printk( "BUSPHASE_COMMAND\n");
break;
case BUSPHASE_MESSAGE_IN:
printk( "BUSPHASE_MESSAGE_IN\n");
break;
case BUSPHASE_MESSAGE_OUT:
printk( "BUSPHASE_MESSAGE_OUT\n");
break;
case BUSPHASE_DATA_IN:
printk( "BUSPHASE_DATA_IN\n");
break;
case BUSPHASE_DATA_OUT:
printk( "BUSPHASE_DATA_OUT\n");
break;
case BUSPHASE_STATUS:
printk( "BUSPHASE_STATUS\n");
break;
case BUSPHASE_SELECT:
printk( "BUSPHASE_SELECT\n");
break;
default:
printk( "BUSPHASE_other: 0x%x\n", stat);
break;
}
}
static void show_autophase(unsigned short i)
{
printk("auto: 0x%x,", i);
if(i & COMMAND_PHASE) {
printk(" cmd");
}
if(i & DATA_IN_PHASE) {
printk(" din");
}
if(i & DATA_OUT_PHASE) {
printk(" dout");
}
if(i & MSGOUT_PHASE) {
printk(" mout");
}
if(i & STATUS_PHASE) {
printk(" stat");
}
if(i & ILLEGAL_PHASE) {
printk(" ill");
}
if(i & BUS_FREE_OCCUER) {
printk(" bfree-o");
}
if(i & MSG_IN_OCCUER) {
printk(" min-o");
}
if(i & MSG_OUT_OCCUER) {
printk(" mout-o");
}
if(i & SELECTION_TIMEOUT) {
printk(" sel");
}
if(i & MSGIN_00_VALID) {
printk(" m0");
}
if(i & MSGIN_02_VALID) {
printk(" m2");
}
if(i & MSGIN_03_VALID) {
printk(" m3");
}
if(i & MSGIN_04_VALID) {
printk(" m4");
}
if(i & AUTOSCSI_BUSY) {
printk(" busy");
}
printk("\n");
}
static void nsp32_print_register(int base)
{
if (!(NSP32_DEBUG_MASK & NSP32_SPECIAL_PRINT_REGISTER))
return;
printk("Phase=0x%x, ", nsp32_read1(base, SCSI_BUS_MONITOR));
printk("OldPhase=0x%x, ", nsp32_index_read1(base, OLD_SCSI_PHASE));
printk("syncreg=0x%x, ", nsp32_read1(base, SYNC_REG));
printk("ackwidth=0x%x, ", nsp32_read1(base, ACK_WIDTH));
printk("sgtpaddr=0x%lx, ", nsp32_read4(base, SGT_ADR));
printk("scsioutlatch=0x%x, ", nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID));
printk("msgout=0x%lx, ", nsp32_read4(base, SCSI_MSG_OUT));
printk("miscrd=0x%x, ", nsp32_index_read2(base, MISC_WR));
printk("seltimeout=0x%x, ", nsp32_read2(base, SEL_TIME_OUT));
printk("sreqrate=0x%x, ", nsp32_read1(base, SREQ_SMPL_RATE));
printk("transStatus=0x%x, ", nsp32_read2(base, TRANSFER_STATUS));
printk("reselectid=0x%x, ", nsp32_read2(base, COMMAND_CONTROL));
printk("arbit=0x%x, ", nsp32_read1(base, ARBIT_STATUS));
printk("BmStart=0x%lx, ", nsp32_read4(base, BM_START_ADR));
printk("BmCount=0x%lx, ", nsp32_read4(base, BM_CNT));
printk("SackCnt=0x%lx, ", nsp32_read4(base, SACK_CNT));
printk("SReqCnt=0x%lx, ", nsp32_read4(base, SREQ_CNT));
printk("SavedSackCnt=0x%lx, ", nsp32_read4(base, SAVED_SACK_CNT));
printk("ScsiBusControl=0x%x, ", nsp32_read1(base, SCSI_BUS_CONTROL));
printk("FifoRestCnt=0x%x, ", nsp32_read2(base, FIFO_REST_CNT));
printk("CdbIn=0x%x, ", nsp32_read1(base, SCSI_CSB_IN));
printk("\n");
if (0) {
printk("execph=0x%x, ", nsp32_read2(base, SCSI_EXECUTE_PHASE));
printk("IrqStatus=0x%x, ", nsp32_read2(base, IRQ_STATUS));
printk("\n");
}
}
/*
* Workbit NinjaSCSI-32Bi/UDE PCI/Cardbus SCSI Host Bus Adapter driver
* I/O routine
*
* This software may be used and distributed according to the terms of
* the GNU General Public License.
*/
#ifndef _NSP32_IO_H
#define _NSP32_IO_H
static inline void nsp32_write1(unsigned int base,
unsigned int index,
unsigned char val)
{
outb(val, (base + index));
}
static inline unsigned char nsp32_read1(unsigned int base,
unsigned int index)
{
return inb(base + index);
}
static inline void nsp32_write2(unsigned int base,
unsigned int index,
unsigned short val)
{
outw(cpu_to_le16(val), (base + index));
}
static inline unsigned short nsp32_read2(unsigned int base,
unsigned int index)
{
return le16_to_cpu(inw(base + index));
}
static inline void nsp32_write4(unsigned int base,
unsigned int index,
unsigned long val)
{
outl(cpu_to_le32(val), (base + index));
}
static inline unsigned long nsp32_read4(unsigned int base,
unsigned int index)
{
return le32_to_cpu(inl(base + index));
}
/*==============================================*/
static inline void nsp32_mmio_write1(unsigned long base,
unsigned int index,
unsigned char val)
{
volatile unsigned char *ptr;
ptr = (unsigned char *)(base + NSP32_MMIO_OFFSET + index);
*ptr = val;
}
static inline unsigned char nsp32_mmio_read1(unsigned long base,
unsigned int index)
{
volatile unsigned char *ptr;
ptr = (unsigned char *)(base + NSP32_MMIO_OFFSET + index);
return *ptr;
}
static inline void nsp32_mmio_write2(unsigned long base,
unsigned int index,
unsigned short val)
{
volatile unsigned short *ptr;
ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + index);
*ptr = cpu_to_le16(val);
}
static inline unsigned short nsp32_mmio_read2(unsigned long base,
unsigned int index)
{
volatile unsigned short *ptr;
//printk(__FUNCTION__ "\n");
ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + index);
return le16_to_cpu(*ptr);
}
static inline void nsp32_mmio_write4(unsigned long base,
unsigned int index,
unsigned long val)
{
volatile unsigned long *ptr;
ptr = (unsigned long *)(base + NSP32_MMIO_OFFSET + index);
*ptr = cpu_to_le32(val);
}
static inline unsigned long nsp32_mmio_read4(unsigned long base,
unsigned int index)
{
volatile unsigned long *ptr;
//printk(__FUNCTION__ "\n");
ptr = (unsigned long *)(base + NSP32_MMIO_OFFSET + index);
return le32_to_cpu(*ptr);
}
/*=============================================*/
static inline unsigned char nsp32_index_read1(unsigned int base,
unsigned int reg)
{
outb(reg, base + INDEX_REG);
return inb(base + DATA_REG_LOW);
}
static inline void nsp32_index_write1(unsigned int base,
unsigned int reg,
unsigned char val)
{
outb(reg, base + INDEX_REG);
outb(val, base + DATA_REG_LOW);
}
static inline unsigned short nsp32_index_read2(unsigned int base,
unsigned int reg)
{
outb(reg, base + INDEX_REG);
return le16_to_cpu(inw(base + DATA_REG_LOW));
}
static inline void nsp32_index_write2(unsigned int base,
unsigned int reg,
unsigned short val)
{
outb(reg, base + INDEX_REG);
outw(cpu_to_le16(val), base + DATA_REG_LOW);
}
static inline unsigned long nsp32_index_read4(unsigned int base,
unsigned int reg)
{
unsigned long h,l;
outb(reg, base + INDEX_REG);
l = le16_to_cpu(inw(base + DATA_REG_LOW));
h = le16_to_cpu(inw(base + DATA_REG_HI ));
return ((h << 16) | l);
}
static inline void nsp32_index_write4(unsigned int base,
unsigned int reg,
unsigned long val)
{
unsigned long h,l;
h = (val & 0xffff0000) >> 16;
l = (val & 0x0000ffff) >> 0;
outb(reg, base + INDEX_REG);
outw(cpu_to_le16(l), base + DATA_REG_LOW);
outw(cpu_to_le16(h), base + DATA_REG_HI);
}
/* ===================================*/
static inline unsigned char nsp32_mmio_index_read1(unsigned int base,
unsigned int reg)
{
volatile unsigned short *index_ptr, *data_ptr;
index_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + INDEX_REG);
data_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + DATA_REG_LOW);
*index_ptr = reg;
return ((*data_ptr) & 0xff);
}
static inline void nsp32_mmio_index_write1(unsigned int base,
unsigned int reg,
unsigned char val)
{
volatile unsigned short *index_ptr, *data_ptr;
index_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + INDEX_REG);
data_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + DATA_REG_LOW);
*index_ptr = reg;
*data_ptr = (unsigned short)val;
}
static inline unsigned short nsp32_mmio_index_read2(unsigned int base,
unsigned int reg)
{
volatile unsigned short *index_ptr, *data_ptr;
index_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + INDEX_REG);
data_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + DATA_REG_LOW);
*index_ptr = reg;
return le16_to_cpu(*data_ptr);
}
static inline void nsp32_mmio_index_write2(unsigned int base,
unsigned int reg,
unsigned short val)
{
volatile unsigned short *index_ptr, *data_ptr;
index_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + INDEX_REG);
data_ptr = (unsigned short *)(base + NSP32_MMIO_OFFSET + DATA_REG_LOW);
*index_ptr = reg;
*data_ptr = val;
}
/*-------------------------------------------------------------------*/
static inline void nsp32_multi_read4(unsigned int BaseAddr,
unsigned int Register,
void *buf,
unsigned long count)
{
insl(BaseAddr + Register, buf, count);
}
static inline void nsp32_fifo_read(unsigned int base,
void *buf,
unsigned long count)
{
//DEBUG(0, __FUNCTION__ "() buf=0x%p, count=0x%lx*4\n", buf, count);
nsp32_multi_read4(base, FIFO_DATA_LOW, buf, count);
}
static inline void nsp32_multi_write4(unsigned int BaseAddr,
unsigned int Register,
void *buf,
unsigned long count)
{
outsl(BaseAddr + Register, buf, count);
}
static inline void nsp32_fifo_write(unsigned int base,
void *buf,
unsigned long count)
{
nsp32_multi_write4(base, FIFO_DATA_LOW, buf, count);
}
#endif _NSP32_IO_H
/* end */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment