Commit 6ab2603b authored by Geert Uytterhoeven's avatar Geert Uytterhoeven Committed by Linus Torvalds

[PATCH] M68k update (part 27)

Mac m68k Ethernet driver updates (from 2.4.x)
 - mace68k_probe() got renamed to mace_probe()
 - Add missing MODULE_LICENSE()
 - Add missing register definition for SONIC_DCR2
parent 24efb6f9
...@@ -99,7 +99,7 @@ extern int bagetlance_probe(struct net_device *); ...@@ -99,7 +99,7 @@ extern int bagetlance_probe(struct net_device *);
extern int mvme147lance_probe(struct net_device *dev); extern int mvme147lance_probe(struct net_device *dev);
extern int tc515_probe(struct net_device *dev); extern int tc515_probe(struct net_device *dev);
extern int lance_probe(struct net_device *dev); extern int lance_probe(struct net_device *dev);
extern int mace68k_probe(struct net_device *dev); extern int mace_probe(struct net_device *dev);
extern int macsonic_probe(struct net_device *dev); extern int macsonic_probe(struct net_device *dev);
extern int mac8390_probe(struct net_device *dev); extern int mac8390_probe(struct net_device *dev);
extern int mac89x0_probe(struct net_device *dev); extern int mac89x0_probe(struct net_device *dev);
...@@ -354,7 +354,7 @@ static struct devprobe m68k_probes[] __initdata = { ...@@ -354,7 +354,7 @@ static struct devprobe m68k_probes[] __initdata = {
{mvme147lance_probe, 0}, {mvme147lance_probe, 0},
#endif #endif
#ifdef CONFIG_MACMACE /* Mac 68k Quadra AV builtin Ethernet */ #ifdef CONFIG_MACMACE /* Mac 68k Quadra AV builtin Ethernet */
{mace68k_probe, 0}, {mace_probe, 0},
#endif #endif
#ifdef CONFIG_MACSONIC /* Mac SONIC-based Ethernet of all sorts */ #ifdef CONFIG_MACSONIC /* Mac SONIC-based Ethernet of all sorts */
{macsonic_probe, 0}, {macsonic_probe, 0},
......
...@@ -10,15 +10,17 @@ ...@@ -10,15 +10,17 @@
* *
* Copyright (C) 1996 Paul Mackerras. * Copyright (C) 1996 Paul Mackerras.
* Copyright (C) 1998 Alan Cox <alan@redhat.com> * Copyright (C) 1998 Alan Cox <alan@redhat.com>
*
* Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h> #include <linux/netdevice.h>
#include <linux/etherdevice.h> #include <linux/etherdevice.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/timer.h>
#include <linux/crc32.h> #include <linux/crc32.h>
#include <asm/io.h> #include <asm/io.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
...@@ -26,14 +28,13 @@ ...@@ -26,14 +28,13 @@
#include <asm/macintosh.h> #include <asm/macintosh.h>
#include <asm/macints.h> #include <asm/macints.h>
#include <asm/mac_psc.h> #include <asm/mac_psc.h>
#include <asm/page.h>
#include "mace.h" #include "mace.h"
#define N_TX_RING 1
#define N_RX_RING 8 #define N_RX_RING 8
#define N_TX_RING 2 #define N_RX_PAGES ((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE)
#define MAX_TX_ACTIVE 1 #define TX_TIMEOUT HZ
#define NCMDS_TX 1 /* dma commands per element in tx ring */
#define RX_BUFLEN (ETH_FRAME_LEN + 8)
#define TX_TIMEOUT HZ /* 1 second */
/* Bits in transmit DMA status */ /* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80 #define TX_DMA_ERR 0x80
...@@ -43,22 +44,19 @@ ...@@ -43,22 +44,19 @@
#define MACE_BASE (void *)(0x50F1C000) #define MACE_BASE (void *)(0x50F1C000)
#define MACE_PROM (void *)(0x50F08001) #define MACE_PROM (void *)(0x50F08001)
struct mace68k_data struct mace_data {
{
volatile struct mace *mace; volatile struct mace *mace;
volatile unsigned char *tx_ring; volatile unsigned char *tx_ring;
volatile unsigned char *tx_ring_phys;
volatile unsigned char *rx_ring; volatile unsigned char *rx_ring;
volatile unsigned char *rx_ring_phys;
int dma_intr; int dma_intr;
unsigned char maccc;
struct net_device_stats stats; struct net_device_stats stats;
struct timer_list tx_timeout; int rx_slot, rx_tail;
int timeout_active; int tx_slot, tx_sloti, tx_count;
int rx_slot, rx_done;
int tx_slot, tx_count;
}; };
struct mace_frame struct mace_frame {
{
u16 len; u16 len;
u16 status; u16 status;
u16 rntpc; u16 rntpc;
...@@ -69,271 +67,226 @@ struct mace_frame ...@@ -69,271 +67,226 @@ struct mace_frame
/* And frame continues.. */ /* And frame continues.. */
}; };
#define PRIV_BYTES sizeof(struct mace68k_data) #define PRIV_BYTES sizeof(struct mace_data)
extern void psc_debug_dump(void); extern void psc_debug_dump(void);
static int mace68k_open(struct net_device *dev); static int mace_open(struct net_device *dev);
static int mace68k_close(struct net_device *dev); static int mace_close(struct net_device *dev);
static int mace68k_xmit_start(struct sk_buff *skb, struct net_device *dev); static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *mace68k_stats(struct net_device *dev); static struct net_device_stats *mace_stats(struct net_device *dev);
static void mace68k_set_multicast(struct net_device *dev); static void mace_set_multicast(struct net_device *dev);
static void mace68k_reset(struct net_device *dev); static int mace_set_address(struct net_device *dev, void *addr);
static int mace68k_set_address(struct net_device *dev, void *addr); static void mace_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs); static void mace_tx_timeout(struct net_device *dev);
static void mace68k_set_timeout(struct net_device *dev);
static void mace68k_tx_timeout(unsigned long data);
/* /* Bit-reverse one byte of an ethernet hardware address. */
* PSC DMA engine control. As you'd expect on a macintosh its
* more like a lawnmower engine supplied without instructions static int bitrev(int b)
* {
* The basic theory of operation appears to be as follows. int d = 0, i;
*
* There are two sets of receive DMA registers and two sets for (i = 0; i < 8; ++i, b >>= 1) {
* of transmit DMA registers. Instead of the more traditional d = (d << 1) | (b & 1);
* "ring buffer" approach the Mac68K DMA engine expects you }
* to be loading one chain while the other runs, and then
* to flip register set. Each entry in the chain is a fixed return d;
* length. }
*/
/* /*
* Load a receive DMA channel with a base address and ring length * Load a receive DMA channel with a base address and ring length
*/ */
static void psc_load_rxdma_base(int set, void *base) static void mace_load_rxdma_base(struct net_device *dev, int set)
{ {
struct mace_data *mp = (struct mace_data *) dev->priv;
psc_write_word(PSC_ENETRD_CMD + set, 0x0100); psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
psc_write_long(PSC_ENETRD_ADDR + set, (u32)base); psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
psc_write_word(PSC_ENETRD_CMD + set, 0x9800); psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
mp->rx_tail = 0;
} }
/* /*
* Reset the receive DMA subsystem * Reset the receive DMA subsystem
*/ */
static void mace68k_rxdma_reset(struct net_device *dev) static void mace_rxdma_reset(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mace = mp->mace; volatile struct mace *mace = mp->mace;
u8 mcc = mace->maccc; u8 maccc = mace->maccc;
/* mace->maccc = maccc & ~ENRCV;
* Turn off receive
*/
mcc&=~ENRCV;
mace->maccc=mcc;
/*
* Program the DMA
*/
psc_write_word(PSC_ENETRD_CTL, 0x8800); psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_load_rxdma_base(0x0, (void *)virt_to_bus(mp->rx_ring)); mace_load_rxdma_base(dev, 0x00);
psc_write_word(PSC_ENETRD_CTL, 0x0400); psc_write_word(PSC_ENETRD_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x8800); psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_load_rxdma_base(0x10, (void *)virt_to_bus(mp->rx_ring)); mace_load_rxdma_base(dev, 0x10);
psc_write_word(PSC_ENETRD_CTL, 0x0400); psc_write_word(PSC_ENETRD_CTL, 0x0400);
mace->maccc=mcc|ENRCV; mace->maccc = maccc;
mp->rx_slot = 0;
#if 0
psc_write_word(PSC_ENETRD_CTL, 0x9800); psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
psc_write_word(PSC_ENETRD_CTL+0x10, 0x9800); psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
#endif
} }
/* /*
* Reset the transmit DMA subsystem * Reset the transmit DMA subsystem
*/ */
static void mace68k_txdma_reset(struct net_device *dev) static void mace_txdma_reset(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mace = mp->mace; volatile struct mace *mace = mp->mace;
u8 mcc = mace->maccc; u8 maccc;
psc_write_word(PSC_ENETWR_CTL,0x8800); psc_write_word(PSC_ENETWR_CTL, 0x8800);
mace->maccc = mcc&~ENXMT; maccc = mace->maccc;
psc_write_word(PSC_ENETWR_CTL,0x0400); mace->maccc = maccc & ~ENXMT;
mace->maccc = mcc;
mp->tx_slot = mp->tx_sloti = 0;
mp->tx_count = N_TX_RING;
psc_write_word(PSC_ENETWR_CTL, 0x0400);
mace->maccc = maccc;
} }
/* /*
* Disable DMA * Disable DMA
*/ */
static void mace68k_dma_off(struct net_device *dev) static void mace_dma_off(struct net_device *dev)
{ {
psc_write_word(PSC_ENETRD_CTL, 0x8800); psc_write_word(PSC_ENETRD_CTL, 0x8800);
psc_write_word(PSC_ENETRD_CTL, 0x1000); psc_write_word(PSC_ENETRD_CTL, 0x1000);
psc_write_word(PSC_ENETRD_CMD, 0x1100); psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETRD_CMD+0x10, 0x1100); psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
psc_write_word(PSC_ENETWR_CTL, 0x8800); psc_write_word(PSC_ENETWR_CTL, 0x8800);
psc_write_word(PSC_ENETWR_CTL, 0x1000); psc_write_word(PSC_ENETWR_CTL, 0x1000);
psc_write_word(PSC_ENETWR_CMD, 0x1100); psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
psc_write_word(PSC_ENETWR_CMD+0x10, 0x1100); psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
}
/* Bit-reverse one byte of an ethernet hardware address. */
static int bitrev(int b)
{
int d = 0, i;
for (i = 0; i < 8; ++i, b >>= 1)
d = (d << 1) | (b & 1);
return d;
} }
/* /*
* Not really much of a probe. The hardware table tells us if this * Not really much of a probe. The hardware table tells us if this
* model of Macintrash has a MACE (AV macintoshes) * model of Macintrash has a MACE (AV macintoshes)
*/ */
int mace68k_probe(struct net_device *unused) int mace_probe(struct net_device *unused)
{ {
int j; int j;
static int once; struct mace_data *mp;
struct mace68k_data *mp;
unsigned char *addr; unsigned char *addr;
struct net_device *dev; struct net_device *dev;
unsigned char checksum = 0; unsigned char checksum = 0;
static int found = 0;
/* if (found || macintosh_config->ether_type != MAC_ETHER_MACE) return -ENODEV;
* There can be only one...
*/
if (once) return -ENODEV;
once = 1;
if (macintosh_config->ether_type != MAC_ETHER_MACE) return -ENODEV; found = 1; /* prevent 'finding' one on every device probe */
printk("MACE ethernet should be present ");
dev = init_etherdev(0, PRIV_BYTES); dev = init_etherdev(0, PRIV_BYTES);
if(dev==NULL) if (!dev) return -ENOMEM;
{
printk("no free memory.\n"); mp = (struct mace_data *) dev->priv;
return -ENOMEM;
}
mp = (struct mace68k_data *) dev->priv;
dev->base_addr = (u32)MACE_BASE; dev->base_addr = (u32)MACE_BASE;
mp->mace = (volatile struct mace *) MACE_BASE; mp->mace = (volatile struct mace *) MACE_BASE;
printk("at 0x%p", mp->mace);
/*
* 16K RX ring and 4K TX ring should do nicely
*/
mp->rx_ring=(void *)__get_free_pages(GFP_KERNEL, 2);
mp->tx_ring=(void *)__get_free_page(GFP_KERNEL);
printk(".");
if(mp->tx_ring==NULL || mp->rx_ring==NULL)
{
if(mp->tx_ring)
free_page((u32)mp->tx_ring);
// if(mp->rx_ring)
// __free_pages(mp->rx_ring,2);
printk("\nNo memory for ring buffers.\n");
return -ENOMEM;
}
/* We want the receive data to be uncached. We dont care about the
byte reading order */
printk(".");
kernel_set_cachemode((void *)mp->rx_ring, 16384, IOMAP_NOCACHE_NONSER);
printk(".");
/* The transmit buffer needs to be write through */
kernel_set_cachemode((void *)mp->tx_ring, 4096, IOMAP_WRITETHROUGH);
printk(" Ok\n");
dev->irq = IRQ_MAC_MACE; dev->irq = IRQ_MAC_MACE;
printk(KERN_INFO "%s: MACE at", dev->name); mp->dma_intr = IRQ_MAC_MACE_DMA;
/* /*
* The PROM contains 8 bytes which total 0xFF when XOR'd * The PROM contains 8 bytes which total 0xFF when XOR'd
* together. Due to the usual peculiar apple brain damage * together. Due to the usual peculiar apple brain damage
* the bytes are spaced out in a strange boundary and the * the bytes are spaced out in a strange boundary and the
* bits are reversed. * bits are reversed.
*/ */
addr = (void *)MACE_PROM; addr = (void *)MACE_PROM;
for (j = 0; j < 6; ++j) for (j = 0; j < 6; ++j) {
{
u8 v=bitrev(addr[j<<4]); u8 v=bitrev(addr[j<<4]);
checksum^=v; checksum ^= v;
dev->dev_addr[j] = v; dev->dev_addr[j] = v;
printk("%c%.2x", (j ? ':' : ' '), dev->dev_addr[j]);
} }
for (; j < 8; ++j) for (; j < 8; ++j) {
{ checksum ^= bitrev(addr[j<<4]);
checksum^=bitrev(addr[j<<4]);
} }
if(checksum!=0xFF) if (checksum != 0xFF) return -ENODEV;
{
printk(" (invalid checksum)\n");
return -ENODEV;
}
printk("\n");
memset(&mp->stats, 0, sizeof(mp->stats)); memset(&mp->stats, 0, sizeof(mp->stats));
init_timer(&mp->tx_timeout);
mp->timeout_active = 0;
dev->open = mace68k_open; dev->open = mace_open;
dev->stop = mace68k_close; dev->stop = mace_close;
dev->hard_start_xmit = mace68k_xmit_start; dev->hard_start_xmit = mace_xmit_start;
dev->get_stats = mace68k_stats; dev->tx_timeout = mace_tx_timeout;
dev->set_multicast_list = mace68k_set_multicast; dev->watchdog_timeo = TX_TIMEOUT;
dev->set_mac_address = mace68k_set_address; dev->get_stats = mace_stats;
dev->set_multicast_list = mace_set_multicast;
dev->set_mac_address = mace_set_address;
ether_setup(dev); ether_setup(dev);
mp = (struct mace68k_data *) dev->priv; printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]);
mp->maccc = ENXMT | ENRCV; for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]);
mp->dma_intr = IRQ_MAC_MACE_DMA; printk("\n");
psc_write_word(PSC_ENETWR_CTL, 0x9000); return 0;
psc_write_word(PSC_ENETRD_CTL, 0x9000); }
psc_write_word(PSC_ENETWR_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x0400); /*
* Load the address on a mace controller.
/* apple's driver doesn't seem to do this */ */
/* except at driver shutdown time... */
#if 0 static int mace_set_address(struct net_device *dev, void *addr)
mace68k_dma_off(dev); {
#endif unsigned char *p = addr;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i;
unsigned long flags;
u8 maccc;
save_flags(flags);
cli();
maccc = mb->maccc;
/* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR;
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i) {
mb->padr = dev->dev_addr[i] = p[i];
}
mb->maccc = maccc;
restore_flags(flags);
return 0; return 0;
} }
/* /*
* Reset a MACE controller * Open the Macintosh MACE. Most of this is playing with the DMA
* engine. The ethernet chip is quite friendly.
*/ */
static void mace68k_reset(struct net_device *dev) static int mace_open(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
#if 0
int i; int i;
/* soft-reset the chip */
i = 200; i = 200;
while (--i) { while (--i) {
mb->biucc = SWRST; mb->biucc = SWRST;
...@@ -344,18 +297,59 @@ static void mace68k_reset(struct net_device *dev) ...@@ -344,18 +297,59 @@ static void mace68k_reset(struct net_device *dev)
break; break;
} }
if (!i) { if (!i) {
printk(KERN_ERR "mace: cannot reset chip!\n"); printk(KERN_ERR "%s: software reset failed!!\n", dev->name);
return; return -EAGAIN;
} }
#endif
mb->biucc = XMTSP_64; mb->biucc = XMTSP_64;
mb->imr = 0xff; /* disable all intrs for now */ mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST;
i = mb->ir; mb->xmtfc = AUTO_PAD_XMIT;
mb->maccc = 0; /* turn off tx, rx */ mb->plscc = PORTSEL_AUI;
mb->utr = RTRD; /* mb->utr = RTRD; */
mb->fifocc = RCVFW_64;
mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
return -EAGAIN;
}
if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
free_irq(dev->irq, dev);
return -EAGAIN;
}
/* Allocate the DMA ring buffers */
mp->rx_ring = (void *) __get_free_pages(GFP_DMA, N_RX_PAGES);
mp->tx_ring = (void *) __get_free_pages(GFP_DMA, 0);
if (mp->tx_ring==NULL || mp->rx_ring==NULL) {
if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES);
if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0);
free_irq(dev->irq, dev);
free_irq(mp->dma_intr, dev);
printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name);
return -ENOMEM;
}
mp->rx_ring_phys = (unsigned char *) virt_to_bus(mp->rx_ring);
mp->tx_ring_phys = (unsigned char *) virt_to_bus(mp->tx_ring);
/* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */
kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER);
kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH);
mace_dma_off(dev);
/* Not sure what these do */
psc_write_word(PSC_ENETWR_CTL, 0x9000);
psc_write_word(PSC_ENETRD_CTL, 0x9000);
psc_write_word(PSC_ENETWR_CTL, 0x0400);
psc_write_word(PSC_ENETRD_CTL, 0x0400);
#if 0
/* load up the hardware address */ /* load up the hardware address */
mb->iac = ADDRCHG | PHYADDR; mb->iac = ADDRCHG | PHYADDR;
...@@ -374,245 +368,157 @@ static void mace68k_reset(struct net_device *dev) ...@@ -374,245 +368,157 @@ static void mace68k_reset(struct net_device *dev)
mb->ladrf = 0; mb->ladrf = 0;
mb->plscc = PORTSEL_GPSI + ENPLSIO; mb->plscc = PORTSEL_GPSI + ENPLSIO;
}
/*
* Load the address on a mace controller.
*/
static int mace68k_set_address(struct net_device *dev, void *addr)
{
unsigned char *p = addr;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
volatile struct mace *mb = mp->mace;
int i;
unsigned long flags;
save_flags(flags); mb->maccc = ENXMT | ENRCV;
cli(); mb->imr = RCVINT;
#endif
/* load up the hardware address */ mace_rxdma_reset(dev);
mb->iac = ADDRCHG | PHYADDR; mace_txdma_reset(dev);
while ((mb->iac & ADDRCHG) != 0);
for (i = 0; i < 6; ++i)
mb->padr = dev->dev_addr[i] = p[i];
/* note: setting ADDRCHG clears ENRCV */
mb->maccc = mp->maccc;
restore_flags(flags);
return 0; return 0;
} }
/* /*
* Open the Macintosh MACE. Most of this is playing with the DMA * Shut down the mace and its interrupt channel
* engine. The ethernet chip is quite friendly.
*/ */
static int mace68k_open(struct net_device *dev) static int mace_close(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
/* reset the chip */ mb->maccc = 0; /* disable rx and tx */
mace68k_reset(dev); mb->imr = 0xFF; /* disable all irqs */
mace_dma_off(dev); /* disable rx and tx dma */
mp->rx_done = 0;
mace68k_rxdma_reset(dev);
/* free_irq(dev->irq, dev);
* The interrupt is fixed and comes off the PSC. free_irq(IRQ_MAC_MACE_DMA, dev);
*/
if (request_irq(dev->irq, mace68k_interrupt, 0, "68K MACE", dev))
{
printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
return -EAGAIN;
}
/*
* Ditto the DMA interrupt.
*/
if (request_irq(IRQ_MAC_MACE_DMA, mace68k_dma_intr, 0, "68K MACE DMA",
dev))
{
printk(KERN_ERR "MACE: can't get irq %d\n", IRQ_MAC_MACE_DMA);
return -EAGAIN;
}
/* Activate the Mac DMA engine */ free_pages((u32) mp->rx_ring, N_RX_PAGES);
free_pages((u32) mp->tx_ring, 0);
mp->tx_slot = 0; /* Using register set 0 */
mp->tx_count = 1; /* 1 Buffer ready for use */
mace68k_txdma_reset(dev);
/* turn it on! */
mb->maccc = mp->maccc;
/* enable all interrupts except receive interrupts */
mb->imr = RCVINT;
return 0; return 0;
} }
/* /*
* Shut down the mace and its interrupt channel * Transmit a frame
*/ */
static int mace68k_close(struct net_device *dev) static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
/* disable rx and tx */ /* Stop the queue if the buffer is full */
mb->maccc = 0;
mb->imr = 0xff; /* disable all intrs */
/* disable rx and tx dma */ if (!mp->tx_count) {
netif_stop_queue(dev);
return 1;
}
mp->tx_count--;
mp->stats.tx_packets++;
mp->stats.tx_bytes += skb->len;
mace68k_dma_off(dev); /* We need to copy into our xmit buffer to take care of alignment and caching issues */
free_irq(dev->irq, dev); memcpy((void *) mp->tx_ring, skb->data, skb->len);
free_irq(IRQ_MAC_MACE_DMA, dev);
return 0;
}
static inline void mace68k_set_timeout(struct net_device *dev) /* load the Tx DMA and fire it off */
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
unsigned long flags;
save_flags(flags); psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
cli(); psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
if (mp->timeout_active) psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
del_timer(&mp->tx_timeout);
mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
mp->tx_timeout.function = mace68k_tx_timeout;
mp->tx_timeout.data = (unsigned long) dev;
add_timer(&mp->tx_timeout);
mp->timeout_active = 1;
restore_flags(flags);
}
/* mp->tx_slot ^= 0x10;
* Transmit a frame
*/
static int mace68k_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
/*
* This may need atomic types ???
*/
printk("mace68k_xmit_start: mp->tx_count = %d, dev->tbusy = %d, mp->tx_ring = %p (%p)\n", dev_kfree_skb(skb);
mp->tx_count, dev->tbusy,
mp->tx_ring, virt_to_bus(mp->tx_ring));
psc_debug_dump();
if(mp->tx_count == 0)
{
dev->tbusy=1;
mace68k_dma_intr(IRQ_MAC_MACE_DMA, dev, NULL);
return 1;
}
mp->tx_count--;
/*
* FIXME:
* This is hackish. The memcpy probably isnt needed but
* the rules for alignment are not known. Ideally we'd like
* to just blast the skb directly to ethernet. We also don't
* use the ring properly - just a one frame buffer. That
* also requires cache pushes ;).
*/
memcpy((void *)mp->tx_ring, skb, skb->len);
psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, virt_to_bus(mp->tx_ring));
psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
mp->stats.tx_packets++;
mp->stats.tx_bytes+=skb->len;
dev_kfree_skb(skb);
return 0; return 0;
} }
static struct net_device_stats *mace68k_stats(struct net_device *dev) static struct net_device_stats *mace_stats(struct net_device *dev)
{ {
struct mace68k_data *p = (struct mace68k_data *) dev->priv; struct mace_data *p = (struct mace_data *) dev->priv;
return &p->stats; return &p->stats;
} }
static void mace68k_set_multicast(struct net_device *dev) static void mace_set_multicast(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
int i, j, k, b; int i, j;
u32 crc; u32 crc;
u8 maccc;
mp->maccc &= ~PROM; maccc = mb->maccc;
if (dev->flags & IFF_PROMISC) mb->maccc &= ~PROM;
{
mp->maccc |= PROM; if (dev->flags & IFF_PROMISC) {
} else mb->maccc |= PROM;
{ } else {
unsigned char multicast_filter[8]; unsigned char multicast_filter[8];
struct dev_mc_list *dmi = dev->mc_list; struct dev_mc_list *dmi = dev->mc_list;
if (dev->flags & IFF_ALLMULTI) if (dev->flags & IFF_ALLMULTI) {
{ for (i = 0; i < 8; i++) {
for (i = 0; i < 8; i++) multicast_filter[i] = 0xFF;
multicast_filter[i] = 0xff; }
} else } else {
{
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
multicast_filter[i] = 0; multicast_filter[i] = 0;
for (i = 0; i < dev->mc_count; i++) for (i = 0; i < dev->mc_count; i++) {
{
crc = ether_crc_le(6, dmi->dmi_addr); crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 26; /* bit number in multicast_filter */ j = crc >> 26; /* bit number in multicast_filter */
multicast_filter[j >> 3] |= 1 << (j & 7); multicast_filter[j >> 3] |= 1 << (j & 7);
dmi = dmi->next; dmi = dmi->next;
} }
} }
#if 0
printk("Multicast filter :");
for (i = 0; i < 8; i++)
printk("%02x ", multicast_filter[i]);
printk("\n");
#endif
mb->iac = ADDRCHG | LOGADDR; mb->iac = ADDRCHG | LOGADDR;
while ((mb->iac & ADDRCHG) != 0); while (mb->iac & ADDRCHG);
for (i = 0; i < 8; ++i) for (i = 0; i < 8; ++i) {
mb->ladrf = multicast_filter[i]; mb->ladrf = multicast_filter[i];
}
} }
/* reset maccc */
mb->maccc = mp->maccc; mb->maccc = maccc;
} }
/* /*
* Miscellaneous interrupts are handled here. We may end up * Miscellaneous interrupts are handled here. We may end up
* having to bash the chip on the head for bad errors * having to bash the chip on the head for bad errors
*/ */
static void mace68k_handle_misc_intrs(struct mace68k_data *mp, int intr) static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
{ {
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
static int mace68k_babbles, mace68k_jabbers; static int mace_babbles, mace_jabbers;
if (intr & MPCO) if (intr & MPCO) {
mp->stats.rx_missed_errors += 256; mp->stats.rx_missed_errors += 256;
}
mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */ mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */
if (intr & RNTPCO)
if (intr & RNTPCO) {
mp->stats.rx_length_errors += 256; mp->stats.rx_length_errors += 256;
}
mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */ mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */
if (intr & CERR)
if (intr & CERR) {
++mp->stats.tx_heartbeat_errors; ++mp->stats.tx_heartbeat_errors;
if (intr & BABBLE) }
if (mace68k_babbles++ < 4) if (intr & BABBLE) {
if (mace_babbles++ < 4) {
printk(KERN_DEBUG "mace: babbling transmitter\n"); printk(KERN_DEBUG "mace: babbling transmitter\n");
if (intr & JABBER) }
if (mace68k_jabbers++ < 4) }
if (intr & JABBER) {
if (mace_jabbers++ < 4) {
printk(KERN_DEBUG "mace: jabbering transceiver\n"); printk(KERN_DEBUG "mace: jabbering transceiver\n");
}
}
} }
/* /*
...@@ -620,191 +526,172 @@ static void mace68k_handle_misc_intrs(struct mace68k_data *mp, int intr) ...@@ -620,191 +526,172 @@ static void mace68k_handle_misc_intrs(struct mace68k_data *mp, int intr)
* the DMA completion) * the DMA completion)
*/ */
static void mace68k_xmit_error(struct net_device *dev) static void mace_xmit_error(struct net_device *dev)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
u8 xmtfs, xmtrc; u8 xmtfs, xmtrc;
xmtfs = mb->xmtfs; xmtfs = mb->xmtfs;
xmtrc = mb->xmtrc; xmtrc = mb->xmtrc;
if(xmtfs & XMTSV) if (xmtfs & XMTSV) {
{ if (xmtfs & UFLO) {
if(xmtfs & UFLO)
{
printk("%s: DMA underrun.\n", dev->name); printk("%s: DMA underrun.\n", dev->name);
mp->stats.tx_errors++; mp->stats.tx_errors++;
mp->stats.tx_fifo_errors++; mp->stats.tx_fifo_errors++;
mace68k_reset(dev); mace_txdma_reset(dev);
} }
if(xmtfs & RTRY) if (xmtfs & RTRY) {
mp->stats.collisions++; mp->stats.collisions++;
}
} }
mark_bh(NET_BH);
} }
/* /*
* A receive interrupt occurred. * A receive interrupt occurred.
*/ */
static void mace68k_recv_interrupt(struct net_device *dev) static void mace_recv_interrupt(struct net_device *dev)
{ {
// struct mace68k_data *mp = (struct mace68k_data *) dev->priv; /* struct mace_data *mp = (struct mace_data *) dev->priv; */
// volatile struct mace *mb = mp->mace; // volatile struct mace *mb = mp->mace;
} }
/* /*
* Process the chip interrupt * Process the chip interrupt
*/ */
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs) static void mace_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{ {
struct net_device *dev = (struct net_device *) dev_id; struct net_device *dev = (struct net_device *) dev_id;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace; volatile struct mace *mb = mp->mace;
u8 ir; u8 ir;
ir = mb->ir; ir = mb->ir;
mace68k_handle_misc_intrs(mp, ir); mace_handle_misc_intrs(mp, ir);
if(ir&XMTINT) if (ir & XMTINT) {
mace68k_xmit_error(dev); mace_xmit_error(dev);
if(ir&RCVINT) }
mace68k_recv_interrupt(dev); if (ir & RCVINT) {
mace_recv_interrupt(dev);
}
} }
static void mace68k_tx_timeout(unsigned long data) static void mace_tx_timeout(struct net_device *dev)
{ {
// struct net_device *dev = (struct net_device *) data; /* struct mace_data *mp = (struct mace_data *) dev->priv; */
// struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
// volatile struct mace *mb = mp->mace; // volatile struct mace *mb = mp->mace;
} }
/* /*
* Handle a newly arrived frame * Handle a newly arrived frame
*/ */
static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
{ {
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
struct sk_buff *skb; struct sk_buff *skb;
if(mf->status&RS_OFLO) if (mf->status & RS_OFLO) {
{
printk("%s: fifo overflow.\n", dev->name); printk("%s: fifo overflow.\n", dev->name);
mp->stats.rx_errors++; mp->stats.rx_errors++;
mp->stats.rx_fifo_errors++; mp->stats.rx_fifo_errors++;
} }
if(mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR)) if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR))
mp->stats.rx_errors++; mp->stats.rx_errors++;
if(mf->status&RS_CLSN) if (mf->status&RS_CLSN) {
mp->stats.collisions++; mp->stats.collisions++;
if(mf->status&RS_FRAMERR) }
if (mf->status&RS_FRAMERR) {
mp->stats.rx_frame_errors++; mp->stats.rx_frame_errors++;
if(mf->status&RS_FCSERR) }
if (mf->status&RS_FCSERR) {
mp->stats.rx_crc_errors++; mp->stats.rx_crc_errors++;
}
skb = dev_alloc_skb(mf->len+2); skb = dev_alloc_skb(mf->len+2);
if(skb==NULL) if (!skb) {
{
mp->stats.rx_dropped++; mp->stats.rx_dropped++;
return; return;
} }
skb_reserve(skb,2); skb_reserve(skb,2);
memcpy(skb_put(skb, mf->len), mf->data, mf->len); memcpy(skb_put(skb, mf->len), mf->data, mf->len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev); skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); netif_rx(skb);
dev->last_rx = jiffies; dev->last_rx = jiffies;
mp->stats.rx_packets++; mp->stats.rx_packets++;
mp->stats.rx_bytes+=mf->len; mp->stats.rx_bytes += mf->len;
} }
/* /*
* The PSC has passed us a DMA interrupt event. * The PSC has passed us a DMA interrupt event.
*/ */
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs) static void mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs)
{ {
struct net_device *dev = (struct net_device *) dev_id; struct net_device *dev = (struct net_device *) dev_id;
struct mace68k_data *mp = (struct mace68k_data *) dev->priv; struct mace_data *mp = (struct mace_data *) dev->priv;
int left, head;
u16 status;
u32 baka;
#if 0 /* Not sure what this does */
u32 psc_status;
while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
/* It seems this must be allowed to stabilise ?? */ if (!(baka & 0x60000000)) return;
while((psc_status=psc_read_long(0x0804))!=psc_read_long(0x0804));
/* /*
* Was this an ethernet event ? * Process the read queue
*/ */
if(psc_status&0x60000000)
{
#endif
/*
* Process the read queue
*/
u16 psc_status = psc_read_word(PSC_ENETRD_CTL); status = psc_read_word(PSC_ENETRD_CTL);
printk("mace68k_dma_intr: PSC_ENETRD_CTL = %04X\n", (uint) psc_status); if (status & 0x2000) {
mace_rxdma_reset(dev);
} else if (status & 0x0100) {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
if (psc_status & 0x2000) { left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
mace68k_rxdma_reset(dev); head = N_RX_RING - left;
mp->rx_done = 0;
} else if (psc_status & 0x100) { /* Loop through the ring buffer and process new packages */
int left;
while (mp->rx_tail < head) {
psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800)));
left=psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); mp->rx_tail++;
/* read packets */ }
while(mp->rx_done < left)
{
struct mace_frame *mf=((struct mace_frame *)
mp->rx_ring)+mp->rx_done++;
mace_dma_rx_frame(dev, mf);
}
if(left == 0) /* Out of DMA room */ /* If we're out of buffers in this ring then switch to */
{ /* the other set, otherwise just reactivate this one. */
psc_load_rxdma_base(mp->rx_slot,
(void *)virt_to_phys(mp->rx_ring)); if (!left) {
mp->rx_slot^=16; mace_load_rxdma_base(dev, mp->rx_slot);
mp->rx_done = 0; mp->rx_slot ^= 0x10;
} } else {
else psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
{
psc_write_word(PSC_ENETRD_CMD+mp->rx_slot,
0x9800);
}
} }
}
/* /*
* Process the write queue * Process the write queue
*/ */
psc_status = psc_read_word(PSC_ENETWR_CTL); status = psc_read_word(PSC_ENETWR_CTL);
printk("mace68k_dma_intr: PSC_ENETWR_CTL = %04X\n", (uint) psc_status);
if (status & 0x2000) {
/* apple's driver seems to loop over this until neither */ mace_txdma_reset(dev);
/* condition is true. - jmt */ } else if (status & 0x0100) {
psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
if (psc_status & 0x2000) { mp->tx_sloti ^= 0x10;
mace68k_txdma_reset(dev); mp->tx_count++;
} else if (psc_status & 0x0100) { netif_wake_queue(dev);
psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x0100);
mp->tx_slot ^=16;
mp->tx_count++;
dev->tbusy = 0;
mark_bh(NET_BH);
}
#if 0
} }
#endif
} }
MODULE_LICENSE("GPL");
...@@ -20,6 +20,9 @@ ...@@ -20,6 +20,9 @@
* and duplicating packets. Needs more testing. * and duplicating packets. Needs more testing.
* *
* 99/01/03 MSch: upgraded to version 0.92 of the core driver, fixed. * 99/01/03 MSch: upgraded to version 0.92 of the core driver, fixed.
*
* 00/10/31 sammy@oh.verio.com: Updated driver for 2.4 kernels, fixed problems
* on centris.
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
...@@ -46,6 +49,7 @@ ...@@ -46,6 +49,7 @@
#include <asm/macintosh.h> #include <asm/macintosh.h>
#include <asm/macints.h> #include <asm/macints.h>
#include <asm/mac_via.h> #include <asm/mac_via.h>
#include <asm/pgalloc.h>
#include <linux/errno.h> #include <linux/errno.h>
...@@ -58,9 +62,21 @@ ...@@ -58,9 +62,21 @@
#include "sonic.h" #include "sonic.h"
#define SONIC_READ(reg) \
nubus_readl(base_addr+(reg))
#define SONIC_WRITE(reg,val) \
nubus_writel((val), base_addr+(reg))
#define sonic_read(dev, reg) \
nubus_readl((dev)->base_addr+(reg))
#define sonic_write(dev, reg, val) \
nubus_writel((val), (dev)->base_addr+(reg))
static int sonic_debug; static int sonic_debug;
static int sonic_version_printed; static int sonic_version_printed;
static int reg_offset;
extern int macsonic_probe(struct net_device* dev); extern int macsonic_probe(struct net_device* dev);
extern int mac_onboard_sonic_probe(struct net_device* dev); extern int mac_onboard_sonic_probe(struct net_device* dev);
extern int mac_nubus_sonic_probe(struct net_device* dev); extern int mac_nubus_sonic_probe(struct net_device* dev);
...@@ -95,7 +111,7 @@ enum macsonic_type { ...@@ -95,7 +111,7 @@ enum macsonic_type {
resource directories */ resource directories */
#define DAYNA_SONIC_MAC_ADDR 0xffe004 #define DAYNA_SONIC_MAC_ADDR 0xffe004
#define SONIC_READ_PROM(addr) readb(prom_addr+addr) #define SONIC_READ_PROM(addr) nubus_readb(prom_addr+addr)
int __init macsonic_probe(struct net_device* dev) int __init macsonic_probe(struct net_device* dev)
{ {
...@@ -125,36 +141,42 @@ static inline void bit_reverse_addr(unsigned char addr[6]) ...@@ -125,36 +141,42 @@ static inline void bit_reverse_addr(unsigned char addr[6])
int __init macsonic_init(struct net_device* dev) int __init macsonic_init(struct net_device* dev)
{ {
struct sonic_local* lp = (struct sonic_local *)dev->priv; struct sonic_local* lp;
int i; int i;
/* Allocate the entire chunk of memory for the descriptors. /* Allocate the entire chunk of memory for the descriptors.
Note that this cannot cross a 64K boundary. */ Note that this cannot cross a 64K boundary. */
for (i = 0; i < 20; i++) { for (i = 0; i < 20; i++) {
unsigned long desc_base, desc_top; unsigned long desc_base, desc_top;
if ((lp->sonic_desc = if((lp = kmalloc(sizeof(struct sonic_local), GFP_KERNEL | GFP_DMA)) == NULL) {
kmalloc(SIZEOF_SONIC_DESC
* SONIC_BUS_SCALE(lp->dma_bitmode), GFP_KERNEL | GFP_DMA)) == NULL) {
printk(KERN_ERR "%s: couldn't allocate descriptor buffers\n", dev->name); printk(KERN_ERR "%s: couldn't allocate descriptor buffers\n", dev->name);
return -ENOMEM; return -ENOMEM;
} }
desc_base = (unsigned long) lp->sonic_desc;
desc_top = desc_base + SIZEOF_SONIC_DESC * SONIC_BUS_SCALE(lp->dma_bitmode); desc_base = (unsigned long) lp;
desc_top = desc_base + sizeof(struct sonic_local);
if ((desc_top & 0xffff) >= (desc_base & 0xffff)) if ((desc_top & 0xffff) >= (desc_base & 0xffff))
break; break;
/* Hmm. try again (FIXME: does this actually work?) */ /* Hmm. try again (FIXME: does this actually work?) */
kfree(lp->sonic_desc); kfree(lp);
printk(KERN_DEBUG printk(KERN_DEBUG
"%s: didn't get continguous chunk [%08lx - %08lx], trying again\n", "%s: didn't get continguous chunk [%08lx - %08lx], trying again\n",
dev->name, desc_base, desc_top); dev->name, desc_base, desc_top);
} }
if (lp->sonic_desc == NULL) { if (lp == NULL) {
printk(KERN_ERR "%s: tried 20 times to allocate descriptor buffers, giving up.\n", printk(KERN_ERR "%s: tried 20 times to allocate descriptor buffers, giving up.\n",
dev->name); dev->name);
return -ENOMEM; return -ENOMEM;
} }
dev->priv = lp;
#if 0
/* this code is only here as a curiousity... mainly, where the
fuck did SONIC_BUS_SCALE come from, and what was it supposed
to do? the normal allocation works great for 32 bit stuffs.. */
/* Now set up the pointers to point to the appropriate places */ /* Now set up the pointers to point to the appropriate places */
lp->cda = lp->sonic_desc; lp->cda = lp->sonic_desc;
lp->tda = lp->cda + (SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode)); lp->tda = lp->cda + (SIZEOF_SONIC_CDA * SONIC_BUS_SCALE(lp->dma_bitmode));
...@@ -163,24 +185,33 @@ int __init macsonic_init(struct net_device* dev) ...@@ -163,24 +185,33 @@ int __init macsonic_init(struct net_device* dev)
lp->rra = lp->rda + (SIZEOF_SONIC_RD * SONIC_NUM_RDS lp->rra = lp->rda + (SIZEOF_SONIC_RD * SONIC_NUM_RDS
* SONIC_BUS_SCALE(lp->dma_bitmode)); * SONIC_BUS_SCALE(lp->dma_bitmode));
#endif
memset(lp, 0, sizeof(struct sonic_local));
lp->cda_laddr = (unsigned int)&(lp->cda);
lp->tda_laddr = (unsigned int)lp->tda;
lp->rra_laddr = (unsigned int)lp->rra;
lp->rda_laddr = (unsigned int)lp->rda;
/* FIXME, maybe we should use skbs */ /* FIXME, maybe we should use skbs */
if ((lp->rba = (char *) if ((lp->rba = (char *)
kmalloc(SONIC_NUM_RRS * SONIC_RBSIZE, GFP_KERNEL | GFP_DMA)) == NULL) { kmalloc(SONIC_NUM_RRS * SONIC_RBSIZE, GFP_KERNEL | GFP_DMA)) == NULL) {
printk(KERN_ERR "%s: couldn't allocate receive buffers\n", dev->name); printk(KERN_ERR "%s: couldn't allocate receive buffers\n", dev->name);
kfree(lp->sonic_desc);
lp->sonic_desc = NULL;
return -ENOMEM; return -ENOMEM;
} }
lp->rba_laddr = (unsigned int)lp->rba;
{ {
int rs, ds; int rs, ds;
/* almost always 12*4096, but let's not take chances */ /* almost always 12*4096, but let's not take chances */
rs = ((SONIC_NUM_RRS * SONIC_RBSIZE + 4095) / 4096) * 4096; rs = ((SONIC_NUM_RRS * SONIC_RBSIZE + 4095) / 4096) * 4096;
/* almost always under a page, but let's not take chances */ /* almost always under a page, but let's not take chances */
ds = ((SIZEOF_SONIC_DESC + 4095) / 4096) * 4096; ds = ((sizeof(struct sonic_local) + 4095) / 4096) * 4096;
kernel_set_cachemode(lp->rba, rs, IOMAP_NOCACHE_SER); kernel_set_cachemode(lp->rba, rs, IOMAP_NOCACHE_SER);
kernel_set_cachemode(lp->sonic_desc, ds, IOMAP_NOCACHE_SER); kernel_set_cachemode(lp, ds, IOMAP_NOCACHE_SER);
} }
#if 0 #if 0
...@@ -275,8 +306,8 @@ int __init mac_onboard_sonic_probe(struct net_device* dev) ...@@ -275,8 +306,8 @@ int __init mac_onboard_sonic_probe(struct net_device* dev)
{ {
/* Bwahahaha */ /* Bwahahaha */
static int once_is_more_than_enough; static int once_is_more_than_enough;
struct sonic_local* lp;
int i; int i;
int dma_bitmode;
if (once_is_more_than_enough) if (once_is_more_than_enough)
return -ENODEV; return -ENODEV;
...@@ -333,8 +364,13 @@ int __init mac_onboard_sonic_probe(struct net_device* dev) ...@@ -333,8 +364,13 @@ int __init mac_onboard_sonic_probe(struct net_device* dev)
if (dev == NULL) if (dev == NULL)
return -ENOMEM; return -ENOMEM;
lp = (struct sonic_local*) dev->priv; if(dev->priv) {
memset(lp, 0, sizeof(struct sonic_local)); printk("%s: warning! sonic entering with priv already allocated!\n",
dev->name);
printk("%s: discarding, will attempt to reallocate\n", dev->name);
dev->priv = NULL;
}
/* Danger! My arms are flailing wildly! You *must* set this /* Danger! My arms are flailing wildly! You *must* set this
before using sonic_read() */ before using sonic_read() */
...@@ -356,8 +392,11 @@ int __init mac_onboard_sonic_probe(struct net_device* dev) ...@@ -356,8 +392,11 @@ int __init mac_onboard_sonic_probe(struct net_device* dev)
/* The PowerBook's SONIC is 16 bit always. */ /* The PowerBook's SONIC is 16 bit always. */
if (macintosh_config->ident == MAC_MODEL_PB520) { if (macintosh_config->ident == MAC_MODEL_PB520) {
lp->reg_offset = 0; reg_offset = 0;
lp->dma_bitmode = 0; dma_bitmode = 0;
} else if (macintosh_config->ident == MAC_MODEL_C610) {
reg_offset = 0;
dma_bitmode = 1;
} else { } else {
/* Some of the comm-slot cards are 16 bit. But some /* Some of the comm-slot cards are 16 bit. But some
of them are not. The 32-bit cards use offset 2 and of them are not. The 32-bit cards use offset 2 and
...@@ -368,27 +407,41 @@ int __init mac_onboard_sonic_probe(struct net_device* dev) ...@@ -368,27 +407,41 @@ int __init mac_onboard_sonic_probe(struct net_device* dev)
/* Technically this is not necessary since we zeroed /* Technically this is not necessary since we zeroed
it above */ it above */
lp->reg_offset = 0; reg_offset = 0;
lp->dma_bitmode = 0; dma_bitmode = 0;
sr = sonic_read(dev, SONIC_SR); sr = sonic_read(dev, SONIC_SR);
if (sr == 0 || sr == 0xffff) { if (sr == 0 || sr == 0xffff) {
lp->reg_offset = 2; reg_offset = 2;
/* 83932 is 0x0004, 83934 is 0x0100 or 0x0101 */ /* 83932 is 0x0004, 83934 is 0x0100 or 0x0101 */
sr = sonic_read(dev, SONIC_SR); sr = sonic_read(dev, SONIC_SR);
lp->dma_bitmode = 1; dma_bitmode = 1;
} }
printk(KERN_INFO printk(KERN_INFO
"%s: revision 0x%04x, using %d bit DMA and register offset %d\n", "%s: revision 0x%04x, using %d bit DMA and register offset %d\n",
dev->name, sr, lp->dma_bitmode?32:16, lp->reg_offset); dev->name, sr, dma_bitmode?32:16, reg_offset);
} }
/* this carries my sincere apologies -- by the time I got to updating
the driver, support for "reg_offsets" appeares nowhere in the sonic
code, going back for over a year. Fortunately, my Mac does't seem
to use whatever this was.
If you know how this is supposed to be implemented, either fix it,
or contact me (sammy@oh.verio.com) to explain what it is. --Sam */
if(reg_offset) {
printk("%s: register offset unsupported. please fix this if you know what it is.\n", dev->name);
return -ENODEV;
}
/* Software reset, then initialize control registers. */ /* Software reset, then initialize control registers. */
sonic_write(dev, SONIC_CMD, SONIC_CR_RST); sonic_write(dev, SONIC_CMD, SONIC_CR_RST);
sonic_write(dev, SONIC_DCR, SONIC_DCR_BMS | sonic_write(dev, SONIC_DCR, SONIC_DCR_BMS |
SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_EXBUS | SONIC_DCR_RFT1 | SONIC_DCR_TFT0 | SONIC_DCR_EXBUS |
(lp->dma_bitmode ? SONIC_DCR_DW : 0)); (dma_bitmode ? SONIC_DCR_DW : 0));
/* This *must* be written back to in order to restore the /* This *must* be written back to in order to restore the
extended programmable output bits */ extended programmable output bits */
sonic_write(dev, SONIC_DCR2, 0); sonic_write(dev, SONIC_DCR2, 0);
...@@ -452,7 +505,7 @@ int __init mac_nubus_sonic_probe(struct net_device* dev) ...@@ -452,7 +505,7 @@ int __init mac_nubus_sonic_probe(struct net_device* dev)
u16 sonic_dcr; u16 sonic_dcr;
int id; int id;
int i; int i;
int reg_offset, dma_bitmode; int dma_bitmode;
/* Find the first SONIC that hasn't been initialized already */ /* Find the first SONIC that hasn't been initialized already */
while ((ndev = nubus_find_type(NUBUS_CAT_NETWORK, while ((ndev = nubus_find_type(NUBUS_CAT_NETWORK,
...@@ -538,8 +591,6 @@ int __init mac_nubus_sonic_probe(struct net_device* dev) ...@@ -538,8 +591,6 @@ int __init mac_nubus_sonic_probe(struct net_device* dev)
memset(lp, 0, sizeof(struct sonic_local)); memset(lp, 0, sizeof(struct sonic_local));
/* Danger! My arms are flailing wildly! You *must* set this /* Danger! My arms are flailing wildly! You *must* set this
before using sonic_read() */ before using sonic_read() */
lp->reg_offset = reg_offset;
lp->dma_bitmode = dma_bitmode;
dev->base_addr = base_addr; dev->base_addr = base_addr;
dev->irq = SLOT2IRQ(ndev->board->slot); dev->irq = SLOT2IRQ(ndev->board->slot);
...@@ -552,6 +603,11 @@ int __init mac_nubus_sonic_probe(struct net_device* dev) ...@@ -552,6 +603,11 @@ int __init mac_nubus_sonic_probe(struct net_device* dev)
printk(KERN_INFO "%s: revision 0x%04x, using %d bit DMA and register offset %d\n", printk(KERN_INFO "%s: revision 0x%04x, using %d bit DMA and register offset %d\n",
dev->name, sonic_read(dev, SONIC_SR), dma_bitmode?32:16, reg_offset); dev->name, sonic_read(dev, SONIC_SR), dma_bitmode?32:16, reg_offset);
if(reg_offset) {
printk("%s: register offset unsupported. please fix this if you know what it is.\n", dev->name);
return -ENODEV;
}
/* Software reset, then initialize control registers. */ /* Software reset, then initialize control registers. */
sonic_write(dev, SONIC_CMD, SONIC_CR_RST); sonic_write(dev, SONIC_CMD, SONIC_CR_RST);
sonic_write(dev, SONIC_DCR, sonic_dcr sonic_write(dev, SONIC_DCR, sonic_dcr
...@@ -615,6 +671,9 @@ cleanup_module(void) ...@@ -615,6 +671,9 @@ cleanup_module(void)
#define sonic_chiptomem(bat) (bat) #define sonic_chiptomem(bat) (bat)
#define PHYSADDR(quux) (quux) #define PHYSADDR(quux) (quux)
#define sonic_request_irq request_irq
#define sonic_free_irq free_irq
#include "sonic.c" #include "sonic.c"
/* /*
......
...@@ -87,6 +87,7 @@ ...@@ -87,6 +87,7 @@
#define SONIC_FAET 0x2d #define SONIC_FAET 0x2d
#define SONIC_MPT 0x2e #define SONIC_MPT 0x2e
#define SONIC_DCR2 0x3f
/* /*
* SONIC command bits * SONIC command bits
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment