Commit 6c128e79 authored by Rafael J. Wysocki's avatar Rafael J. Wysocki

Merge branches 'acpi-cppc', 'acpi-misc', 'acpi-battery' and 'acpi-ac'

* acpi-cppc:
  mailbox: PCC: erroneous error message when parsing ACPI PCCT
  ACPI / CPPC: Fix invalid PCC channel status errors
  ACPI / CPPC: Document CPPC sysfs interface
  cpufreq / CPPC: Support for CPPC v3
  ACPI / CPPC: Check for valid PCC subspace only if PCC is used
  ACPI / CPPC: Add support for CPPC v3

* acpi-misc:
  ACPI: Add missing prototype_for arch_post_acpi_subsys_init()
  ACPI: add missing newline to printk

* acpi-battery:
  ACPI / battery: Add quirk to avoid checking for PMIC with native driver
  ACPI / battery: Ignore AC state in handle_discharging on systems where it is broken
  ACPI / battery: Add handling for devices which wrongly report discharging state
  ACPI / battery: Remove initializer for unused ident dmi_system_id
  ACPI / AC: Remove initializer for unused ident dmi_system_id

* acpi-ac:
  ACPI / AC: Add quirk to avoid checking for PMIC with native driver
Collaborative Processor Performance Control (CPPC)
CPPC defined in the ACPI spec describes a mechanism for the OS to manage the
performance of a logical processor on a contigious and abstract performance
scale. CPPC exposes a set of registers to describe abstract performance scale,
to request performance levels and to measure per-cpu delivered performance.
For more details on CPPC please refer to the ACPI specification at:
http://uefi.org/specifications
Some of the CPPC registers are exposed via sysfs under:
/sys/devices/system/cpu/cpuX/acpi_cppc/
for each cpu X
--------------------------------------------------------------------------------
$ ls -lR /sys/devices/system/cpu/cpu0/acpi_cppc/
/sys/devices/system/cpu/cpu0/acpi_cppc/:
total 0
-r--r--r-- 1 root root 65536 Mar 5 19:38 feedback_ctrs
-r--r--r-- 1 root root 65536 Mar 5 19:38 highest_perf
-r--r--r-- 1 root root 65536 Mar 5 19:38 lowest_freq
-r--r--r-- 1 root root 65536 Mar 5 19:38 lowest_nonlinear_perf
-r--r--r-- 1 root root 65536 Mar 5 19:38 lowest_perf
-r--r--r-- 1 root root 65536 Mar 5 19:38 nominal_freq
-r--r--r-- 1 root root 65536 Mar 5 19:38 nominal_perf
-r--r--r-- 1 root root 65536 Mar 5 19:38 reference_perf
-r--r--r-- 1 root root 65536 Mar 5 19:38 wraparound_time
--------------------------------------------------------------------------------
* highest_perf : Highest performance of this processor (abstract scale).
* nominal_perf : Highest sustained performance of this processor (abstract scale).
* lowest_nonlinear_perf : Lowest performance of this processor with nonlinear
power savings (abstract scale).
* lowest_perf : Lowest performance of this processor (abstract scale).
* lowest_freq : CPU frequency corresponding to lowest_perf (in MHz).
* nominal_freq : CPU frequency corresponding to nominal_perf (in MHz).
The above frequencies should only be used to report processor performance in
freqency instead of abstract scale. These values should not be used for any
functional decisions.
* feedback_ctrs : Includes both Reference and delivered performance counter.
Reference counter ticks up proportional to processor's reference performance.
Delivered counter ticks up proportional to processor's delivered performance.
* wraparound_time: Minimum time for the feedback counters to wraparound (seconds).
* reference_perf : Performance level at which reference performance counter
accumulates (abstract scale).
--------------------------------------------------------------------------------
Computing Average Delivered Performance
Below describes the steps to compute the average performance delivered by taking
two different snapshots of feedback counters at time T1 and T2.
T1: Read feedback_ctrs as fbc_t1
Wait or run some workload
T2: Read feedback_ctrs as fbc_t2
delivered_counter_delta = fbc_t2[del] - fbc_t1[del]
reference_counter_delta = fbc_t2[ref] - fbc_t1[ref]
delivered_perf = (refernce_perf x delivered_counter_delta) / reference_counter_delta
...@@ -87,6 +87,7 @@ static int acpi_ac_open_fs(struct inode *inode, struct file *file); ...@@ -87,6 +87,7 @@ static int acpi_ac_open_fs(struct inode *inode, struct file *file);
static int ac_sleep_before_get_state_ms; static int ac_sleep_before_get_state_ms;
static int ac_check_pmic = 1;
static struct acpi_driver acpi_ac_driver = { static struct acpi_driver acpi_ac_driver = {
.name = "ac", .name = "ac",
...@@ -310,21 +311,43 @@ static int acpi_ac_battery_notify(struct notifier_block *nb, ...@@ -310,21 +311,43 @@ static int acpi_ac_battery_notify(struct notifier_block *nb,
return NOTIFY_OK; return NOTIFY_OK;
} }
static int thinkpad_e530_quirk(const struct dmi_system_id *d) static int __init thinkpad_e530_quirk(const struct dmi_system_id *d)
{ {
ac_sleep_before_get_state_ms = 1000; ac_sleep_before_get_state_ms = 1000;
return 0; return 0;
} }
static const struct dmi_system_id ac_dmi_table[] = { static int __init ac_do_not_check_pmic_quirk(const struct dmi_system_id *d)
{
ac_check_pmic = 0;
return 0;
}
static const struct dmi_system_id ac_dmi_table[] __initconst = {
{ {
/* Thinkpad e530 */
.callback = thinkpad_e530_quirk, .callback = thinkpad_e530_quirk,
.ident = "thinkpad e530",
.matches = { .matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "32597CG"), DMI_MATCH(DMI_PRODUCT_NAME, "32597CG"),
}, },
}, },
{
/* ECS EF20EA */
.callback = ac_do_not_check_pmic_quirk,
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "EF20EA"),
},
},
{
/* Lenovo Ideapad Miix 320 */
.callback = ac_do_not_check_pmic_quirk,
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "80XF"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"),
},
},
{}, {},
}; };
...@@ -384,7 +407,6 @@ static int acpi_ac_add(struct acpi_device *device) ...@@ -384,7 +407,6 @@ static int acpi_ac_add(struct acpi_device *device)
kfree(ac); kfree(ac);
} }
dmi_check_system(ac_dmi_table);
return result; return result;
} }
...@@ -442,13 +464,17 @@ static int __init acpi_ac_init(void) ...@@ -442,13 +464,17 @@ static int __init acpi_ac_init(void)
if (acpi_disabled) if (acpi_disabled)
return -ENODEV; return -ENODEV;
for (i = 0; i < ARRAY_SIZE(acpi_ac_blacklist); i++) dmi_check_system(ac_dmi_table);
if (acpi_dev_present(acpi_ac_blacklist[i].hid, "1",
acpi_ac_blacklist[i].hrv)) { if (ac_check_pmic) {
pr_info(PREFIX "AC: found native %s PMIC, not loading\n", for (i = 0; i < ARRAY_SIZE(acpi_ac_blacklist); i++)
acpi_ac_blacklist[i].hid); if (acpi_dev_present(acpi_ac_blacklist[i].hid, "1",
return -ENODEV; acpi_ac_blacklist[i].hrv)) {
} pr_info(PREFIX "AC: found native %s PMIC, not loading\n",
acpi_ac_blacklist[i].hid);
return -ENODEV;
}
}
#ifdef CONFIG_ACPI_PROCFS_POWER #ifdef CONFIG_ACPI_PROCFS_POWER
acpi_ac_dir = acpi_lock_ac_dir(); acpi_ac_dir = acpi_lock_ac_dir();
......
...@@ -74,6 +74,8 @@ static async_cookie_t async_cookie; ...@@ -74,6 +74,8 @@ static async_cookie_t async_cookie;
static bool battery_driver_registered; static bool battery_driver_registered;
static int battery_bix_broken_package; static int battery_bix_broken_package;
static int battery_notification_delay_ms; static int battery_notification_delay_ms;
static int battery_ac_is_broken;
static int battery_check_pmic = 1;
static unsigned int cache_time = 1000; static unsigned int cache_time = 1000;
module_param(cache_time, uint, 0644); module_param(cache_time, uint, 0644);
MODULE_PARM_DESC(cache_time, "cache time in milliseconds"); MODULE_PARM_DESC(cache_time, "cache time in milliseconds");
...@@ -215,6 +217,20 @@ static bool acpi_battery_is_degraded(struct acpi_battery *battery) ...@@ -215,6 +217,20 @@ static bool acpi_battery_is_degraded(struct acpi_battery *battery)
battery->full_charge_capacity < battery->design_capacity; battery->full_charge_capacity < battery->design_capacity;
} }
static int acpi_battery_handle_discharging(struct acpi_battery *battery)
{
/*
* Some devices wrongly report discharging if the battery's charge level
* was above the device's start charging threshold atm the AC adapter
* was plugged in and the device thus did not start a new charge cycle.
*/
if ((battery_ac_is_broken || power_supply_is_system_supplied()) &&
battery->rate_now == 0)
return POWER_SUPPLY_STATUS_NOT_CHARGING;
return POWER_SUPPLY_STATUS_DISCHARGING;
}
static int acpi_battery_get_property(struct power_supply *psy, static int acpi_battery_get_property(struct power_supply *psy,
enum power_supply_property psp, enum power_supply_property psp,
union power_supply_propval *val) union power_supply_propval *val)
...@@ -230,7 +246,7 @@ static int acpi_battery_get_property(struct power_supply *psy, ...@@ -230,7 +246,7 @@ static int acpi_battery_get_property(struct power_supply *psy,
switch (psp) { switch (psp) {
case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_STATUS:
if (battery->state & ACPI_BATTERY_STATE_DISCHARGING) if (battery->state & ACPI_BATTERY_STATE_DISCHARGING)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING; val->intval = acpi_battery_handle_discharging(battery);
else if (battery->state & ACPI_BATTERY_STATE_CHARGING) else if (battery->state & ACPI_BATTERY_STATE_CHARGING)
val->intval = POWER_SUPPLY_STATUS_CHARGING; val->intval = POWER_SUPPLY_STATUS_CHARGING;
else if (acpi_battery_is_charged(battery)) else if (acpi_battery_is_charged(battery))
...@@ -1332,23 +1348,64 @@ battery_notification_delay_quirk(const struct dmi_system_id *d) ...@@ -1332,23 +1348,64 @@ battery_notification_delay_quirk(const struct dmi_system_id *d)
return 0; return 0;
} }
static int __init
battery_ac_is_broken_quirk(const struct dmi_system_id *d)
{
battery_ac_is_broken = 1;
return 0;
}
static int __init
battery_do_not_check_pmic_quirk(const struct dmi_system_id *d)
{
battery_check_pmic = 0;
return 0;
}
static const struct dmi_system_id bat_dmi_table[] __initconst = { static const struct dmi_system_id bat_dmi_table[] __initconst = {
{ {
/* NEC LZ750/LS */
.callback = battery_bix_broken_package_quirk, .callback = battery_bix_broken_package_quirk,
.ident = "NEC LZ750/LS",
.matches = { .matches = {
DMI_MATCH(DMI_SYS_VENDOR, "NEC"), DMI_MATCH(DMI_SYS_VENDOR, "NEC"),
DMI_MATCH(DMI_PRODUCT_NAME, "PC-LZ750LS"), DMI_MATCH(DMI_PRODUCT_NAME, "PC-LZ750LS"),
}, },
}, },
{ {
/* Acer Aspire V5-573G */
.callback = battery_notification_delay_quirk, .callback = battery_notification_delay_quirk,
.ident = "Acer Aspire V5-573G",
.matches = { .matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aspire V5-573G"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire V5-573G"),
}, },
}, },
{
/* Point of View mobii wintab p800w */
.callback = battery_ac_is_broken_quirk,
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "AMI Corporation"),
DMI_MATCH(DMI_BOARD_NAME, "Aptio CRB"),
DMI_MATCH(DMI_BIOS_VERSION, "3BAIR1013"),
/* Above matches are too generic, add bios-date match */
DMI_MATCH(DMI_BIOS_DATE, "08/22/2014"),
},
},
{
/* ECS EF20EA */
.callback = battery_do_not_check_pmic_quirk,
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "EF20EA"),
},
},
{
/* Lenovo Ideapad Miix 320 */
.callback = battery_do_not_check_pmic_quirk,
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "80XF"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"),
},
},
{}, {},
}; };
...@@ -1488,16 +1545,18 @@ static void __init acpi_battery_init_async(void *unused, async_cookie_t cookie) ...@@ -1488,16 +1545,18 @@ static void __init acpi_battery_init_async(void *unused, async_cookie_t cookie)
unsigned int i; unsigned int i;
int result; int result;
for (i = 0; i < ARRAY_SIZE(acpi_battery_blacklist); i++)
if (acpi_dev_present(acpi_battery_blacklist[i], "1", -1)) {
pr_info(PREFIX ACPI_BATTERY_DEVICE_NAME
": found native %s PMIC, not loading\n",
acpi_battery_blacklist[i]);
return;
}
dmi_check_system(bat_dmi_table); dmi_check_system(bat_dmi_table);
if (battery_check_pmic) {
for (i = 0; i < ARRAY_SIZE(acpi_battery_blacklist); i++)
if (acpi_dev_present(acpi_battery_blacklist[i], "1", -1)) {
pr_info(PREFIX ACPI_BATTERY_DEVICE_NAME
": found native %s PMIC, not loading\n",
acpi_battery_blacklist[i]);
return;
}
}
#ifdef CONFIG_ACPI_PROCFS_POWER #ifdef CONFIG_ACPI_PROCFS_POWER
acpi_battery_dir = acpi_lock_battery_dir(); acpi_battery_dir = acpi_lock_battery_dir();
if (!acpi_battery_dir) if (!acpi_battery_dir)
......
...@@ -39,6 +39,7 @@ ...@@ -39,6 +39,7 @@
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/ktime.h> #include <linux/ktime.h>
#include <linux/rwsem.h> #include <linux/rwsem.h>
#include <linux/wait.h> #include <linux/wait.h>
...@@ -49,7 +50,7 @@ struct cppc_pcc_data { ...@@ -49,7 +50,7 @@ struct cppc_pcc_data {
struct mbox_chan *pcc_channel; struct mbox_chan *pcc_channel;
void __iomem *pcc_comm_addr; void __iomem *pcc_comm_addr;
bool pcc_channel_acquired; bool pcc_channel_acquired;
ktime_t deadline; unsigned int deadline_us;
unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
...@@ -156,6 +157,9 @@ show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); ...@@ -156,6 +157,9 @@ show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
...@@ -183,6 +187,8 @@ static struct attribute *cppc_attrs[] = { ...@@ -183,6 +187,8 @@ static struct attribute *cppc_attrs[] = {
&lowest_perf.attr, &lowest_perf.attr,
&lowest_nonlinear_perf.attr, &lowest_nonlinear_perf.attr,
&nominal_perf.attr, &nominal_perf.attr,
&nominal_freq.attr,
&lowest_freq.attr,
NULL NULL
}; };
...@@ -193,42 +199,31 @@ static struct kobj_type cppc_ktype = { ...@@ -193,42 +199,31 @@ static struct kobj_type cppc_ktype = {
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
{ {
int ret = -EIO, status = 0; int ret, status;
struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
struct acpi_pcct_shared_memory __iomem *generic_comm_base = struct acpi_pcct_shared_memory __iomem *generic_comm_base =
pcc_ss_data->pcc_comm_addr; pcc_ss_data->pcc_comm_addr;
ktime_t next_deadline = ktime_add(ktime_get(),
pcc_ss_data->deadline);
if (!pcc_ss_data->platform_owns_pcc) if (!pcc_ss_data->platform_owns_pcc)
return 0; return 0;
/* Retry in case the remote processor was too slow to catch up. */ /*
while (!ktime_after(ktime_get(), next_deadline)) { * Poll PCC status register every 3us(delay_us) for maximum of
/* * deadline_us(timeout_us) until PCC command complete bit is set(cond)
* Per spec, prior to boot the PCC space wil be initialized by */
* platform and should have set the command completion bit when ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
* PCC can be used by OSPM status & PCC_CMD_COMPLETE_MASK, 3,
*/ pcc_ss_data->deadline_us);
status = readw_relaxed(&generic_comm_base->status);
if (status & PCC_CMD_COMPLETE_MASK) {
ret = 0;
if (chk_err_bit && (status & PCC_ERROR_MASK))
ret = -EIO;
break;
}
/*
* Reducing the bus traffic in case this loop takes longer than
* a few retries.
*/
udelay(3);
}
if (likely(!ret)) if (likely(!ret)) {
pcc_ss_data->platform_owns_pcc = false; pcc_ss_data->platform_owns_pcc = false;
else if (chk_err_bit && (status & PCC_ERROR_MASK))
pr_err("PCC check channel failed for ss: %d. Status=%x\n", ret = -EIO;
pcc_ss_id, status); }
if (unlikely(ret))
pr_err("PCC check channel failed for ss: %d. ret=%d\n",
pcc_ss_id, ret);
return ret; return ret;
} }
...@@ -580,7 +575,7 @@ static int register_pcc_channel(int pcc_ss_idx) ...@@ -580,7 +575,7 @@ static int register_pcc_channel(int pcc_ss_idx)
* So add an arbitrary amount of wait on top of Nominal. * So add an arbitrary amount of wait on top of Nominal.
*/ */
usecs_lat = NUM_RETRIES * cppc_ss->latency; usecs_lat = NUM_RETRIES * cppc_ss->latency;
pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC); pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time; pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate; pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency; pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
...@@ -613,7 +608,6 @@ bool __weak cpc_ffh_supported(void) ...@@ -613,7 +608,6 @@ bool __weak cpc_ffh_supported(void)
return false; return false;
} }
/** /**
* pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
* *
...@@ -641,6 +635,34 @@ int pcc_data_alloc(int pcc_ss_id) ...@@ -641,6 +635,34 @@ int pcc_data_alloc(int pcc_ss_id)
return 0; return 0;
} }
/* Check if CPPC revision + num_ent combination is supported */
static bool is_cppc_supported(int revision, int num_ent)
{
int expected_num_ent;
switch (revision) {
case CPPC_V2_REV:
expected_num_ent = CPPC_V2_NUM_ENT;
break;
case CPPC_V3_REV:
expected_num_ent = CPPC_V3_NUM_ENT;
break;
default:
pr_debug("Firmware exports unsupported CPPC revision: %d\n",
revision);
return false;
}
if (expected_num_ent != num_ent) {
pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
num_ent, expected_num_ent, revision);
return false;
}
return true;
}
/* /*
* An example CPC table looks like the following. * An example CPC table looks like the following.
* *
...@@ -731,14 +753,6 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -731,14 +753,6 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
cpc_obj->type); cpc_obj->type);
goto out_free; goto out_free;
} }
/* Only support CPPCv2. Bail otherwise. */
if (num_ent != CPPC_NUM_ENT) {
pr_debug("Firmware exports %d entries. Expected: %d\n",
num_ent, CPPC_NUM_ENT);
goto out_free;
}
cpc_ptr->num_entries = num_ent; cpc_ptr->num_entries = num_ent;
/* Second entry should be revision. */ /* Second entry should be revision. */
...@@ -750,12 +764,10 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -750,12 +764,10 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
cpc_obj->type); cpc_obj->type);
goto out_free; goto out_free;
} }
cpc_ptr->version = cpc_rev;
if (cpc_rev != CPPC_REV) { if (!is_cppc_supported(cpc_rev, num_ent))
pr_debug("Firmware exports revision:%d. Expected:%d\n",
cpc_rev, CPPC_REV);
goto out_free; goto out_free;
}
/* Iterate through remaining entries in _CPC */ /* Iterate through remaining entries in _CPC */
for (i = 2; i < num_ent; i++) { for (i = 2; i < num_ent; i++) {
...@@ -808,6 +820,18 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -808,6 +820,18 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
} }
} }
per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
/*
* Initialize the remaining cpc_regs as unsupported.
* Example: In case FW exposes CPPC v2, the below loop will initialize
* LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
*/
for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
}
/* Store CPU Logical ID */ /* Store CPU Logical ID */
cpc_ptr->cpu_id = pr->id; cpc_ptr->cpu_id = pr->id;
...@@ -1037,26 +1061,34 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) ...@@ -1037,26 +1061,34 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{ {
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *highest_reg, *lowest_reg, struct cpc_register_resource *highest_reg, *lowest_reg,
*lowest_non_linear_reg, *nominal_reg; *lowest_non_linear_reg, *nominal_reg,
u64 high, low, nom, min_nonlinear; *low_freq_reg = NULL, *nom_freq_reg = NULL;
u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data; struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0, regs_in_pcc = 0; int ret = 0, regs_in_pcc = 0;
if (!cpc_desc || pcc_ss_id < 0) { if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum); pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV; return -ENODEV;
} }
pcc_ss_data = pcc_data[pcc_ss_id];
highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
/* Are any of the regs PCC ?*/ /* Are any of the regs PCC ?*/
if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) { CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
regs_in_pcc = 1; regs_in_pcc = 1;
down_write(&pcc_ss_data->pcc_lock); down_write(&pcc_ss_data->pcc_lock);
/* Ring doorbell once to update PCC subspace */ /* Ring doorbell once to update PCC subspace */
...@@ -1081,6 +1113,17 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) ...@@ -1081,6 +1113,17 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
if (!high || !low || !nom || !min_nonlinear) if (!high || !low || !nom || !min_nonlinear)
ret = -EFAULT; ret = -EFAULT;
/* Read optional lowest and nominal frequencies if present */
if (CPC_SUPPORTED(low_freq_reg))
cpc_read(cpunum, low_freq_reg, &low_f);
if (CPC_SUPPORTED(nom_freq_reg))
cpc_read(cpunum, nom_freq_reg, &nom_f);
perf_caps->lowest_freq = low_f;
perf_caps->nominal_freq = nom_f;
out_err: out_err:
if (regs_in_pcc) if (regs_in_pcc)
up_write(&pcc_ss_data->pcc_lock); up_write(&pcc_ss_data->pcc_lock);
...@@ -1101,16 +1144,15 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) ...@@ -1101,16 +1144,15 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
struct cpc_register_resource *delivered_reg, *reference_reg, struct cpc_register_resource *delivered_reg, *reference_reg,
*ref_perf_reg, *ctr_wrap_reg; *ref_perf_reg, *ctr_wrap_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data; struct cppc_pcc_data *pcc_ss_data = NULL;
u64 delivered, reference, ref_perf, ctr_wrap_time; u64 delivered, reference, ref_perf, ctr_wrap_time;
int ret = 0, regs_in_pcc = 0; int ret = 0, regs_in_pcc = 0;
if (!cpc_desc || pcc_ss_id < 0) { if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum); pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV; return -ENODEV;
} }
pcc_ss_data = pcc_data[pcc_ss_id];
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
...@@ -1126,6 +1168,11 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) ...@@ -1126,6 +1168,11 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
/* Are any of the regs PCC ?*/ /* Are any of the regs PCC ?*/
if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock); down_write(&pcc_ss_data->pcc_lock);
regs_in_pcc = 1; regs_in_pcc = 1;
/* Ring doorbell once to update PCC subspace */ /* Ring doorbell once to update PCC subspace */
...@@ -1176,15 +1223,14 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) ...@@ -1176,15 +1223,14 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cpc_register_resource *desired_reg; struct cpc_register_resource *desired_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cppc_pcc_data *pcc_ss_data; struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0; int ret = 0;
if (!cpc_desc || pcc_ss_id < 0) { if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu); pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV; return -ENODEV;
} }
pcc_ss_data = pcc_data[pcc_ss_id];
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
/* /*
...@@ -1195,6 +1241,11 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) ...@@ -1195,6 +1241,11 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
* achieve that goal here * achieve that goal here
*/ */
if (CPC_IN_PCC(desired_reg)) { if (CPC_IN_PCC(desired_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
if (pcc_ss_data->platform_owns_pcc) { if (pcc_ss_data->platform_owns_pcc) {
ret = check_pcc_chan(pcc_ss_id, false); ret = check_pcc_chan(pcc_ss_id, false);
......
...@@ -8,8 +8,8 @@ void acpi_reboot(void) ...@@ -8,8 +8,8 @@ void acpi_reboot(void)
{ {
struct acpi_generic_address *rr; struct acpi_generic_address *rr;
struct pci_bus *bus0; struct pci_bus *bus0;
u8 reset_value;
unsigned int devfn; unsigned int devfn;
u8 reset_value;
if (acpi_disabled) if (acpi_disabled)
return; return;
...@@ -40,7 +40,7 @@ void acpi_reboot(void) ...@@ -40,7 +40,7 @@ void acpi_reboot(void)
/* Form PCI device/function pair. */ /* Form PCI device/function pair. */
devfn = PCI_DEVFN((rr->address >> 32) & 0xffff, devfn = PCI_DEVFN((rr->address >> 32) & 0xffff,
(rr->address >> 16) & 0xffff); (rr->address >> 16) & 0xffff);
printk(KERN_DEBUG "Resetting with ACPI PCI RESET_REG."); printk(KERN_DEBUG "Resetting with ACPI PCI RESET_REG.\n");
/* Write the value that resets us. */ /* Write the value that resets us. */
pci_bus_write_config_byte(bus0, devfn, pci_bus_write_config_byte(bus0, devfn,
(rr->address & 0xffff), reset_value); (rr->address & 0xffff), reset_value);
......
...@@ -42,9 +42,6 @@ ...@@ -42,9 +42,6 @@
*/ */
static struct cppc_cpudata **all_cpu_data; static struct cppc_cpudata **all_cpu_data;
/* Capture the max KHz from DMI */
static u64 cppc_dmi_max_khz;
/* Callback function used to retrieve the max frequency from DMI */ /* Callback function used to retrieve the max frequency from DMI */
static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
{ {
...@@ -75,6 +72,64 @@ static u64 cppc_get_dmi_max_khz(void) ...@@ -75,6 +72,64 @@ static u64 cppc_get_dmi_max_khz(void)
return (1000 * mhz); return (1000 * mhz);
} }
/*
* If CPPC lowest_freq and nominal_freq registers are exposed then we can
* use them to convert perf to freq and vice versa
*
* If the perf/freq point lies between Nominal and Lowest, we can treat
* (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
* and extrapolate the rest
* For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
*/
static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
unsigned int perf)
{
static u64 max_khz;
struct cppc_perf_caps *caps = &cpu->perf_caps;
u64 mul, div;
if (caps->lowest_freq && caps->nominal_freq) {
if (perf >= caps->nominal_perf) {
mul = caps->nominal_freq;
div = caps->nominal_perf;
} else {
mul = caps->nominal_freq - caps->lowest_freq;
div = caps->nominal_perf - caps->lowest_perf;
}
} else {
if (!max_khz)
max_khz = cppc_get_dmi_max_khz();
mul = max_khz;
div = cpu->perf_caps.highest_perf;
}
return (u64)perf * mul / div;
}
static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
unsigned int freq)
{
static u64 max_khz;
struct cppc_perf_caps *caps = &cpu->perf_caps;
u64 mul, div;
if (caps->lowest_freq && caps->nominal_freq) {
if (freq >= caps->nominal_freq) {
mul = caps->nominal_perf;
div = caps->nominal_freq;
} else {
mul = caps->lowest_perf;
div = caps->lowest_freq;
}
} else {
if (!max_khz)
max_khz = cppc_get_dmi_max_khz();
mul = cpu->perf_caps.highest_perf;
div = max_khz;
}
return (u64)freq * mul / div;
}
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int target_freq,
unsigned int relation) unsigned int relation)
...@@ -86,7 +141,7 @@ static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, ...@@ -86,7 +141,7 @@ static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
cpu = all_cpu_data[policy->cpu]; cpu = all_cpu_data[policy->cpu];
desired_perf = (u64)target_freq * cpu->perf_caps.highest_perf / cppc_dmi_max_khz; desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
/* Return if it is exactly the same perf */ /* Return if it is exactly the same perf */
if (desired_perf == cpu->perf_ctrls.desired_perf) if (desired_perf == cpu->perf_ctrls.desired_perf)
return ret; return ret;
...@@ -186,24 +241,24 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) ...@@ -186,24 +241,24 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
return ret; return ret;
} }
cppc_dmi_max_khz = cppc_get_dmi_max_khz(); /* Convert the lowest and nominal freq from MHz to KHz */
cpu->perf_caps.lowest_freq *= 1000;
cpu->perf_caps.nominal_freq *= 1000;
/* /*
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
* Section 8.4.7.1.1.5 of ACPI 6.1 spec) * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
*/ */
policy->min = cpu->perf_caps.lowest_nonlinear_perf * cppc_dmi_max_khz / policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
cpu->perf_caps.highest_perf; policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
policy->max = cppc_dmi_max_khz;
/* /*
* Set cpuinfo.min_freq to Lowest to make the full range of performance * Set cpuinfo.min_freq to Lowest to make the full range of performance
* available if userspace wants to use any perf between lowest & lowest * available if userspace wants to use any perf between lowest & lowest
* nonlinear perf * nonlinear perf
*/ */
policy->cpuinfo.min_freq = cpu->perf_caps.lowest_perf * cppc_dmi_max_khz / policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
cpu->perf_caps.highest_perf; policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
policy->cpuinfo.max_freq = cppc_dmi_max_khz;
policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num); policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
policy->shared_type = cpu->shared_type; policy->shared_type = cpu->shared_type;
...@@ -229,7 +284,8 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) ...@@ -229,7 +284,8 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
cpu->cur_policy = policy; cpu->cur_policy = policy;
/* Set policy->cur to max now. The governors will adjust later. */ /* Set policy->cur to max now. The governors will adjust later. */
policy->cur = cppc_dmi_max_khz; policy->cur = cppc_cpufreq_perf_to_khz(cpu,
cpu->perf_caps.highest_perf);
cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf; cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls); ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
......
...@@ -373,33 +373,24 @@ static const struct mbox_chan_ops pcc_chan_ops = { ...@@ -373,33 +373,24 @@ static const struct mbox_chan_ops pcc_chan_ops = {
}; };
/** /**
* parse_pcc_subspace - Parse the PCC table and verify PCC subspace * parse_pcc_subspaces -- Count PCC subspaces defined
* entries. There should be one entry per PCC client.
* @header: Pointer to the ACPI subtable header under the PCCT. * @header: Pointer to the ACPI subtable header under the PCCT.
* @end: End of subtable entry. * @end: End of subtable entry.
* *
* Return: 0 for Success, else errno. * Return: If we find a PCC subspace entry of a valid type, return 0.
* Otherwise, return -EINVAL.
* *
* This gets called for each entry in the PCC table. * This gets called for each entry in the PCC table.
*/ */
static int parse_pcc_subspace(struct acpi_subtable_header *header, static int parse_pcc_subspace(struct acpi_subtable_header *header,
const unsigned long end) const unsigned long end)
{ {
struct acpi_pcct_hw_reduced *pcct_ss; struct acpi_pcct_subspace *ss = (struct acpi_pcct_subspace *) header;
if (pcc_mbox_ctrl.num_chans <= MAX_PCC_SUBSPACES) {
pcct_ss = (struct acpi_pcct_hw_reduced *) header;
if ((pcct_ss->header.type != if (ss->header.type < ACPI_PCCT_TYPE_RESERVED)
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE) return 0;
&& (pcct_ss->header.type !=
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2)) {
pr_err("Incorrect PCC Subspace type detected\n");
return -EINVAL;
}
}
return 0; return -EINVAL;
} }
/** /**
...@@ -449,8 +440,8 @@ static int __init acpi_pcc_probe(void) ...@@ -449,8 +440,8 @@ static int __init acpi_pcc_probe(void)
struct acpi_table_header *pcct_tbl; struct acpi_table_header *pcct_tbl;
struct acpi_subtable_header *pcct_entry; struct acpi_subtable_header *pcct_entry;
struct acpi_table_pcct *acpi_pcct_tbl; struct acpi_table_pcct *acpi_pcct_tbl;
struct acpi_subtable_proc proc[ACPI_PCCT_TYPE_RESERVED];
int count, i, rc; int count, i, rc;
int sum = 0;
acpi_status status = AE_OK; acpi_status status = AE_OK;
/* Search for PCCT */ /* Search for PCCT */
...@@ -459,43 +450,41 @@ static int __init acpi_pcc_probe(void) ...@@ -459,43 +450,41 @@ static int __init acpi_pcc_probe(void)
if (ACPI_FAILURE(status) || !pcct_tbl) if (ACPI_FAILURE(status) || !pcct_tbl)
return -ENODEV; return -ENODEV;
count = acpi_table_parse_entries(ACPI_SIG_PCCT, /* Set up the subtable handlers */
sizeof(struct acpi_table_pcct), for (i = ACPI_PCCT_TYPE_GENERIC_SUBSPACE;
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE, i < ACPI_PCCT_TYPE_RESERVED; i++) {
parse_pcc_subspace, MAX_PCC_SUBSPACES); proc[i].id = i;
sum += (count > 0) ? count : 0; proc[i].count = 0;
proc[i].handler = parse_pcc_subspace;
count = acpi_table_parse_entries(ACPI_SIG_PCCT, }
sizeof(struct acpi_table_pcct),
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2,
parse_pcc_subspace, MAX_PCC_SUBSPACES);
sum += (count > 0) ? count : 0;
if (sum == 0 || sum >= MAX_PCC_SUBSPACES) { count = acpi_table_parse_entries_array(ACPI_SIG_PCCT,
pr_err("Error parsing PCC subspaces from PCCT\n"); sizeof(struct acpi_table_pcct), proc,
ACPI_PCCT_TYPE_RESERVED, MAX_PCC_SUBSPACES);
if (count == 0 || count > MAX_PCC_SUBSPACES) {
pr_warn("Invalid PCCT: %d PCC subspaces\n", count);
return -EINVAL; return -EINVAL;
} }
pcc_mbox_channels = kzalloc(sizeof(struct mbox_chan) * pcc_mbox_channels = kzalloc(sizeof(struct mbox_chan) * count, GFP_KERNEL);
sum, GFP_KERNEL);
if (!pcc_mbox_channels) { if (!pcc_mbox_channels) {
pr_err("Could not allocate space for PCC mbox channels\n"); pr_err("Could not allocate space for PCC mbox channels\n");
return -ENOMEM; return -ENOMEM;
} }
pcc_doorbell_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL); pcc_doorbell_vaddr = kcalloc(count, sizeof(void *), GFP_KERNEL);
if (!pcc_doorbell_vaddr) { if (!pcc_doorbell_vaddr) {
rc = -ENOMEM; rc = -ENOMEM;
goto err_free_mbox; goto err_free_mbox;
} }
pcc_doorbell_ack_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL); pcc_doorbell_ack_vaddr = kcalloc(count, sizeof(void *), GFP_KERNEL);
if (!pcc_doorbell_ack_vaddr) { if (!pcc_doorbell_ack_vaddr) {
rc = -ENOMEM; rc = -ENOMEM;
goto err_free_db_vaddr; goto err_free_db_vaddr;
} }
pcc_doorbell_irq = kcalloc(sum, sizeof(int), GFP_KERNEL); pcc_doorbell_irq = kcalloc(count, sizeof(int), GFP_KERNEL);
if (!pcc_doorbell_irq) { if (!pcc_doorbell_irq) {
rc = -ENOMEM; rc = -ENOMEM;
goto err_free_db_ack_vaddr; goto err_free_db_ack_vaddr;
...@@ -509,18 +498,24 @@ static int __init acpi_pcc_probe(void) ...@@ -509,18 +498,24 @@ static int __init acpi_pcc_probe(void)
if (acpi_pcct_tbl->flags & ACPI_PCCT_DOORBELL) if (acpi_pcct_tbl->flags & ACPI_PCCT_DOORBELL)
pcc_mbox_ctrl.txdone_irq = true; pcc_mbox_ctrl.txdone_irq = true;
for (i = 0; i < sum; i++) { for (i = 0; i < count; i++) {
struct acpi_generic_address *db_reg; struct acpi_generic_address *db_reg;
struct acpi_pcct_hw_reduced *pcct_ss; struct acpi_pcct_subspace *pcct_ss;
pcc_mbox_channels[i].con_priv = pcct_entry; pcc_mbox_channels[i].con_priv = pcct_entry;
pcct_ss = (struct acpi_pcct_hw_reduced *) pcct_entry; if (pcct_entry->type == ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE ||
pcct_entry->type == ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2) {
struct acpi_pcct_hw_reduced *pcct_hrss;
pcct_hrss = (struct acpi_pcct_hw_reduced *) pcct_entry;
if (pcc_mbox_ctrl.txdone_irq) { if (pcc_mbox_ctrl.txdone_irq) {
rc = pcc_parse_subspace_irq(i, pcct_ss); rc = pcc_parse_subspace_irq(i, pcct_hrss);
if (rc < 0) if (rc < 0)
goto err; goto err;
}
} }
pcct_ss = (struct acpi_pcct_subspace *) pcct_entry;
/* If doorbell is in system memory cache the virt address */ /* If doorbell is in system memory cache the virt address */
db_reg = &pcct_ss->doorbell_register; db_reg = &pcct_ss->doorbell_register;
...@@ -531,7 +526,7 @@ static int __init acpi_pcc_probe(void) ...@@ -531,7 +526,7 @@ static int __init acpi_pcc_probe(void)
((unsigned long) pcct_entry + pcct_entry->length); ((unsigned long) pcct_entry + pcct_entry->length);
} }
pcc_mbox_ctrl.num_chans = sum; pcc_mbox_ctrl.num_chans = count;
pr_info("Detected %d PCC Subspaces\n", pcc_mbox_ctrl.num_chans); pr_info("Detected %d PCC Subspaces\n", pcc_mbox_ctrl.num_chans);
......
...@@ -20,14 +20,16 @@ ...@@ -20,14 +20,16 @@
#include <acpi/pcc.h> #include <acpi/pcc.h>
#include <acpi/processor.h> #include <acpi/processor.h>
/* Only support CPPCv2 for now. */ /* Support CPPCv2 and CPPCv3 */
#define CPPC_NUM_ENT 21 #define CPPC_V2_REV 2
#define CPPC_REV 2 #define CPPC_V3_REV 3
#define CPPC_V2_NUM_ENT 21
#define CPPC_V3_NUM_ENT 23
#define PCC_CMD_COMPLETE_MASK (1 << 0) #define PCC_CMD_COMPLETE_MASK (1 << 0)
#define PCC_ERROR_MASK (1 << 2) #define PCC_ERROR_MASK (1 << 2)
#define MAX_CPC_REG_ENT 19 #define MAX_CPC_REG_ENT 21
/* CPPC specific PCC commands. */ /* CPPC specific PCC commands. */
#define CMD_READ 0 #define CMD_READ 0
...@@ -91,6 +93,8 @@ enum cppc_regs { ...@@ -91,6 +93,8 @@ enum cppc_regs {
AUTO_ACT_WINDOW, AUTO_ACT_WINDOW,
ENERGY_PERF, ENERGY_PERF,
REFERENCE_PERF, REFERENCE_PERF,
LOWEST_FREQ,
NOMINAL_FREQ,
}; };
/* /*
...@@ -104,6 +108,8 @@ struct cppc_perf_caps { ...@@ -104,6 +108,8 @@ struct cppc_perf_caps {
u32 nominal_perf; u32 nominal_perf;
u32 lowest_perf; u32 lowest_perf;
u32 lowest_nonlinear_perf; u32 lowest_nonlinear_perf;
u32 lowest_freq;
u32 nominal_freq;
}; };
struct cppc_perf_ctrls { struct cppc_perf_ctrls {
......
...@@ -578,6 +578,7 @@ int acpi_match_platform_list(const struct acpi_platform_list *plat); ...@@ -578,6 +578,7 @@ int acpi_match_platform_list(const struct acpi_platform_list *plat);
extern void acpi_early_init(void); extern void acpi_early_init(void);
extern void acpi_subsystem_init(void); extern void acpi_subsystem_init(void);
extern void arch_post_acpi_subsys_init(void);
extern int acpi_nvs_register(__u64 start, __u64 size); extern int acpi_nvs_register(__u64 start, __u64 size);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment