Commit 6d9f937b authored by Akinobu Mita's avatar Akinobu Mita Committed by Linus Torvalds

[PATCH] bitops: m32r: use generic bitops

- remove __{,test_and_}{set,clear,change}_bit() and test_bit()
- remove ffz()
- remove find_{next,first}{,_zero}_bit()
- remove __ffs()
- remove generic_fls()
- remove generic_fls64()
- remove sched_find_first_bit()
- remove generic_ffs()
- remove generic_hweight{32,16,8}()
- remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit()
- remove ext2_{set,clear}_bit_atomic()
- remove minix_{test,set,test_and_clear,test,find_first_zero}_bit()
Signed-off-by: default avatarAkinobu Mita <mita@miraclelinux.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 2875aef8
......@@ -214,6 +214,14 @@ config RWSEM_XCHGADD_ALGORITHM
bool
default n
config GENERIC_FIND_NEXT_BIT
bool
default y
config GENERIC_HWEIGHT
bool
default y
config GENERIC_CALIBRATE_DELAY
bool
default y
......
......@@ -62,25 +62,6 @@ static __inline__ void set_bit(int nr, volatile void * addr)
local_irq_restore(flags);
}
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
{
__u32 mask;
volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
*a |= mask;
}
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
......@@ -118,38 +99,9 @@ static __inline__ void clear_bit(int nr, volatile void * addr)
local_irq_restore(flags);
}
static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
{
unsigned long mask;
volatile unsigned long *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
*a &= ~mask;
}
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
{
__u32 mask;
volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
*a ^= mask;
}
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to clear
......@@ -220,28 +172,6 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
return (oldbit != 0);
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
__u32 mask, oldbit;
volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
oldbit = (*a & mask);
*a |= mask;
return (oldbit != 0);
}
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
......@@ -279,42 +209,6 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
return (oldbit != 0);
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
__u32 mask, oldbit;
volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
oldbit = (*a & mask);
*a &= ~mask;
return (oldbit != 0);
}
/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
__u32 mask, oldbit;
volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
oldbit = (*a & mask);
*a ^= mask;
return (oldbit != 0);
}
/**
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to set
......@@ -350,353 +244,26 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
return (oldbit != 0);
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static __inline__ int test_bit(int nr, const volatile void * addr)
{
__u32 mask;
const volatile __u32 *a = addr;
a += (nr >> 5);
mask = (1 << (nr & 0x1F));
return ((*a & mask) != 0);
}
/**
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long ffz(unsigned long word)
{
int k;
word = ~word;
k = 0;
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
if (!(word & 0x00000001)) { k += 1; }
return k;
}
/**
* find_first_zero_bit - find the first zero bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
/**
* find_next_zero_bit - find the first zero bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static __inline__ int find_next_zero_bit(const unsigned long *addr,
int size, int offset)
{
const unsigned long *p = addr + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
found_middle:
return result + ffz(tmp);
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static __inline__ unsigned long __ffs(unsigned long word)
{
int k = 0;
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
if (!(word & 0x00000001)) { k += 1;}
return k;
}
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
#define fls64(x) generic_fls64(x)
#include <asm-generic/bitops/non-atomic.h>
#include <asm-generic/bitops/ffz.h>
#include <asm-generic/bitops/__ffs.h>
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/fls64.h>
#ifdef __KERNEL__
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (b[3])
return __ffs(b[3]) + 96;
return __ffs(b[4]) + 128;
}
/**
* find_next_bit - find the first set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static inline unsigned long find_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
unsigned int result = offset & ~31UL;
unsigned int tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *p++;
tmp &= ~0UL << offset;
if (size < 32)
goto found_first;
if (tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size >= 32) {
if ((tmp = *p++) != 0)
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= ~0UL >> (32 - size);
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
/**
* find_first_bit - find the first set bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first set bit, not the number of the byte
* containing a bit.
*/
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
/**
* ffs - find first bit set
* @x: the word to search
*
* This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/**
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/find.h>
#include <asm-generic/bitops/ffs.h>
#include <asm-generic/bitops/hweight.h>
#endif /* __KERNEL__ */
#ifdef __KERNEL__
/*
* ext2_XXXX function
* orig: include/asm-sh/bitops.h
*/
#ifdef __LITTLE_ENDIAN__
#define ext2_set_bit __test_and_set_bit
#define ext2_clear_bit __test_and_clear_bit
#define ext2_test_bit test_bit
#define ext2_find_first_zero_bit find_first_zero_bit
#define ext2_find_next_zero_bit find_next_zero_bit
#else
static inline int ext2_set_bit(int nr, volatile void * addr)
{
__u8 mask, oldbit;
volatile __u8 *a = addr;
a += (nr >> 3);
mask = (1 << (nr & 0x07));
oldbit = (*a & mask);
*a |= mask;
return (oldbit != 0);
}
static inline int ext2_clear_bit(int nr, volatile void * addr)
{
__u8 mask, oldbit;
volatile __u8 *a = addr;
a += (nr >> 3);
mask = (1 << (nr & 0x07));
oldbit = (*a & mask);
*a &= ~mask;
return (oldbit != 0);
}
static inline int ext2_test_bit(int nr, const volatile void * addr)
{
__u32 mask;
const volatile __u8 *a = addr;
a += (nr >> 3);
mask = (1 << (nr & 0x07));
return ((mask & *a) != 0);
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
static inline unsigned long ext2_find_next_zero_bit(void *addr,
unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease preformance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
#endif
#define ext2_set_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_set_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
#define ext2_clear_bit_atomic(lock, nr, addr) \
({ \
int ret; \
spin_lock(lock); \
ret = ext2_clear_bit((nr), (addr)); \
spin_unlock(lock); \
ret; \
})
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#include <asm-generic/bitops/ext2-non-atomic.h>
#include <asm-generic/bitops/ext2-atomic.h>
#include <asm-generic/bitops/minix.h>
#endif /* __KERNEL__ */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment