Commit 6e58e2d8 authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab

docs: mtd: convert to ReST

Rename the mtd documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.

It should be noticed that Sphinx doesn't handle very well
URLs with dots in the middle. Thankfully, internally, the '.'
char is translated to %2E, so we can jus use %2E instead of
dots, and this will work fine on both text and processed files.

At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab+samsung@kernel.org>
parent 7ed44d59
:orphan:
==============================
Memory Technology Device (MTD)
==============================
.. toctree::
:maxdepth: 1
intel-spi
nand_ecc
spi-nor
==============================
Upgrading BIOS using intel-spi Upgrading BIOS using intel-spi
------------------------------ ==============================
Many Intel CPUs like Baytrail and Braswell include SPI serial flash host Many Intel CPUs like Baytrail and Braswell include SPI serial flash host
controller which is used to hold BIOS and other platform specific data. controller which is used to hold BIOS and other platform specific data.
...@@ -36,45 +37,45 @@ Linux. ...@@ -36,45 +37,45 @@ Linux.
module parameter to modprobe). module parameter to modprobe).
4) Once the board is up and running again, find the right MTD partition 4) Once the board is up and running again, find the right MTD partition
(it is named as "BIOS"): (it is named as "BIOS")::
# cat /proc/mtd # cat /proc/mtd
dev: size erasesize name dev: size erasesize name
mtd0: 00800000 00001000 "BIOS" mtd0: 00800000 00001000 "BIOS"
So here it will be /dev/mtd0 but it may vary. So here it will be /dev/mtd0 but it may vary.
5) Make backup of the existing image first: 5) Make backup of the existing image first::
# dd if=/dev/mtd0ro of=bios.bak # dd if=/dev/mtd0ro of=bios.bak
16384+0 records in 16384+0 records in
16384+0 records out 16384+0 records out
8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s 8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
6) Verify the backup 6) Verify the backup:
# sha1sum /dev/mtd0ro bios.bak # sha1sum /dev/mtd0ro bios.bak
fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
fdbb011920572ca6c991377c4b418a0502668b73 bios.bak fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
The SHA1 sums must match. Otherwise do not continue any further! The SHA1 sums must match. Otherwise do not continue any further!
7) Erase the SPI serial flash. After this step, do not reboot the 7) Erase the SPI serial flash. After this step, do not reboot the
board! Otherwise it will not start anymore. board! Otherwise it will not start anymore::
# flash_erase /dev/mtd0 0 0 # flash_erase /dev/mtd0 0 0
Erasing 4 Kibyte @ 7ff000 -- 100 % complete Erasing 4 Kibyte @ 7ff000 -- 100 % complete
8) Once completed without errors you can write the new BIOS image: 8) Once completed without errors you can write the new BIOS image:
# dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0 # dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0
9) Verify that the new content of the SPI serial flash matches the new 9) Verify that the new content of the SPI serial flash matches the new
BIOS image: BIOS image::
# sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin # sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro 9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin 9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
The SHA1 sums should match. The SHA1 sums should match.
...@@ -84,5 +85,6 @@ Linux. ...@@ -84,5 +85,6 @@ Linux.
References References
---------- ----------
[1] https://firmware.intel.com/sites/default/files/MinnowBoard.MAX_.X64.92.R01.zip [1] https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_%2EX64%2E92%2ER01%2Ezip
[2] http://www.linux-mtd.infradead.org/ [2] http://www.linux-mtd.infradead.org/
==========================
NAND Error-correction Code
==========================
Introduction Introduction
============ ============
...@@ -37,63 +41,79 @@ sometimes also referred to as xor. In C the operator for xor is ^ ...@@ -37,63 +41,79 @@ sometimes also referred to as xor. In C the operator for xor is ^
Back to ecc. Back to ecc.
Let's give a small figure: Let's give a small figure:
========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14 byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14 byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14 byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14 byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14 byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
.... ...
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15 byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15 byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4 cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
This figure represents a sector of 256 bytes. This figure represents a sector of 256 bytes.
cp is my abbreviation for column parity, rp for row parity. cp is my abbreviation for column parity, rp for row parity.
Let's start to explain column parity. Let's start to explain column parity.
cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even. - cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7. Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
cp2 is the parity over bit0, bit1, bit4 and bit5
cp3 is the parity over bit2, bit3, bit6 and bit7. - cp2 is the parity over bit0, bit1, bit4 and bit5
cp4 is the parity over bit0, bit1, bit2 and bit3. - cp3 is the parity over bit2, bit3, bit6 and bit7.
cp5 is the parity over bit4, bit5, bit6 and bit7. - cp4 is the parity over bit0, bit1, bit2 and bit3.
- cp5 is the parity over bit4, bit5, bit6 and bit7.
Note that each of cp0 .. cp5 is exactly one bit. Note that each of cp0 .. cp5 is exactly one bit.
Row parity actually works almost the same. Row parity actually works almost the same.
rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255) - rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ... - rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
(so handle two bytes, then skip 2 bytes). - rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...) (so handle two bytes, then skip 2 bytes).
for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc. - rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...) - for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
- and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
The story now becomes quite boring. I guess you get the idea. The story now becomes quite boring. I guess you get the idea.
rp6 covers 8 bytes then skips 8 etc
rp7 skips 8 bytes then covers 8 etc - rp6 covers 8 bytes then skips 8 etc
rp8 covers 16 bytes then skips 16 etc - rp7 skips 8 bytes then covers 8 etc
rp9 skips 16 bytes then covers 16 etc - rp8 covers 16 bytes then skips 16 etc
rp10 covers 32 bytes then skips 32 etc - rp9 skips 16 bytes then covers 16 etc
rp11 skips 32 bytes then covers 32 etc - rp10 covers 32 bytes then skips 32 etc
rp12 covers 64 bytes then skips 64 etc - rp11 skips 32 bytes then covers 32 etc
rp13 skips 64 bytes then covers 64 etc - rp12 covers 64 bytes then skips 64 etc
rp14 covers 128 bytes then skips 128 - rp13 skips 64 bytes then covers 64 etc
rp15 skips 128 bytes then covers 128 - rp14 covers 128 bytes then skips 128
- rp15 skips 128 bytes then covers 128
In the end the parity bits are grouped together in three bytes as In the end the parity bits are grouped together in three bytes as
follows: follows:
===== ===== ===== ===== ===== ===== ===== ===== =====
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
===== ===== ===== ===== ===== ===== ===== ===== =====
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00 ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08 ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1 ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
===== ===== ===== ===== ===== ===== ===== ===== =====
I detected after writing this that ST application note AN1823 I detected after writing this that ST application note AN1823
(http://www.st.com/stonline/) gives a much (http://www.st.com/stonline/) gives a much
nicer picture.(but they use line parity as term where I use row parity) nicer picture.(but they use line parity as term where I use row parity)
Oh well, I'm graphically challenged, so suffer with me for a moment :-) Oh well, I'm graphically challenged, so suffer with me for a moment :-)
And I could not reuse the ST picture anyway for copyright reasons. And I could not reuse the ST picture anyway for copyright reasons.
...@@ -101,9 +121,10 @@ Attempt 0 ...@@ -101,9 +121,10 @@ Attempt 0
========= =========
Implementing the parity calculation is pretty simple. Implementing the parity calculation is pretty simple.
In C pseudocode: In C pseudocode::
for (i = 0; i < 256; i++)
{ for (i = 0; i < 256; i++)
{
if (i & 0x01) if (i & 0x01)
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1; rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
else else
...@@ -142,7 +163,7 @@ for (i = 0; i < 256; i++) ...@@ -142,7 +163,7 @@ for (i = 0; i < 256; i++)
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3 cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4 cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5 cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
} }
Analysis 0 Analysis 0
...@@ -167,82 +188,84 @@ This leads to: ...@@ -167,82 +188,84 @@ This leads to:
Attempt 1 Attempt 1
========= =========
const char parity[256] = { ::
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, const char parity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
}; 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
void ecc1(const unsigned char *buf, unsigned char *code) };
{
int i; void ecc1(const unsigned char *buf, unsigned char *code)
const unsigned char *bp = buf; {
unsigned char cur; int i;
unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; const unsigned char *bp = buf;
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15; unsigned char cur;
unsigned char par; unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
par = 0; unsigned char par;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0; par = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0; rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0; rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
for (i = 0; i < 256; i++) rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
{
cur = *bp++; for (i = 0; i < 256; i++)
par ^= cur; {
if (i & 0x01) rp1 ^= cur; else rp0 ^= cur; cur = *bp++;
if (i & 0x02) rp3 ^= cur; else rp2 ^= cur; par ^= cur;
if (i & 0x04) rp5 ^= cur; else rp4 ^= cur; if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
if (i & 0x08) rp7 ^= cur; else rp6 ^= cur; if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
if (i & 0x10) rp9 ^= cur; else rp8 ^= cur; if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x20) rp11 ^= cur; else rp10 ^= cur; if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x40) rp13 ^= cur; else rp12 ^= cur; if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x80) rp15 ^= cur; else rp14 ^= cur; if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
} if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
code[0] = if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
(parity[rp7] << 7) | }
(parity[rp6] << 6) | code[0] =
(parity[rp5] << 5) | (parity[rp7] << 7) |
(parity[rp4] << 4) | (parity[rp6] << 6) |
(parity[rp3] << 3) | (parity[rp5] << 5) |
(parity[rp2] << 2) | (parity[rp4] << 4) |
(parity[rp1] << 1) | (parity[rp3] << 3) |
(parity[rp0]); (parity[rp2] << 2) |
code[1] = (parity[rp1] << 1) |
(parity[rp15] << 7) | (parity[rp0]);
(parity[rp14] << 6) | code[1] =
(parity[rp13] << 5) | (parity[rp15] << 7) |
(parity[rp12] << 4) | (parity[rp14] << 6) |
(parity[rp11] << 3) | (parity[rp13] << 5) |
(parity[rp10] << 2) | (parity[rp12] << 4) |
(parity[rp9] << 1) | (parity[rp11] << 3) |
(parity[rp8]); (parity[rp10] << 2) |
code[2] = (parity[rp9] << 1) |
(parity[par & 0xf0] << 7) | (parity[rp8]);
(parity[par & 0x0f] << 6) | code[2] =
(parity[par & 0xcc] << 5) | (parity[par & 0xf0] << 7) |
(parity[par & 0x33] << 4) | (parity[par & 0x0f] << 6) |
(parity[par & 0xaa] << 3) | (parity[par & 0xcc] << 5) |
(parity[par & 0x55] << 2); (parity[par & 0x33] << 4) |
code[0] = ~code[0]; (parity[par & 0xaa] << 3) |
code[1] = ~code[1]; (parity[par & 0x55] << 2);
code[2] = ~code[2]; code[0] = ~code[0];
} code[1] = ~code[1];
code[2] = ~code[2];
}
Still pretty straightforward. The last three invert statements are there to Still pretty straightforward. The last three invert statements are there to
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
...@@ -293,88 +316,90 @@ Let's give it a try... ...@@ -293,88 +316,90 @@ Let's give it a try...
Attempt 2 Attempt 2
========= =========
extern const char parity[256]; ::
void ecc2(const unsigned char *buf, unsigned char *code) extern const char parity[256];
{
int i; void ecc2(const unsigned char *buf, unsigned char *code)
const unsigned long *bp = (unsigned long *)buf; {
unsigned long cur; int i;
unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; const unsigned long *bp = (unsigned long *)buf;
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15; unsigned long cur;
unsigned long par; unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
par = 0; unsigned long par;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0; par = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0; rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0; rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
for (i = 0; i < 64; i++) rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
{
cur = *bp++; for (i = 0; i < 64; i++)
par ^= cur; {
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur; cur = *bp++;
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur; par ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur; if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur; if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur; if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur; if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
} if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
/* if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
we need to adapt the code generation for the fact that rp vars are now }
long; also the column parity calculation needs to be changed. /*
we'll bring rp4 to 15 back to single byte entities by shifting and we need to adapt the code generation for the fact that rp vars are now
xoring long; also the column parity calculation needs to be changed.
*/ we'll bring rp4 to 15 back to single byte entities by shifting and
rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff; xoring
rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff; */
rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff; rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff; rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff; rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff; rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff; rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff; rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff; rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff; rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff; rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff; rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff; rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff; rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
par ^= (par >> 16); rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
rp1 = (par >> 8); rp1 &= 0xff; rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
rp0 = (par & 0xff); par ^= (par >> 16);
par ^= (par >> 8); par &= 0xff; rp1 = (par >> 8); rp1 &= 0xff;
rp0 = (par & 0xff);
code[0] = par ^= (par >> 8); par &= 0xff;
(parity[rp7] << 7) |
(parity[rp6] << 6) | code[0] =
(parity[rp5] << 5) | (parity[rp7] << 7) |
(parity[rp4] << 4) | (parity[rp6] << 6) |
(parity[rp3] << 3) | (parity[rp5] << 5) |
(parity[rp2] << 2) | (parity[rp4] << 4) |
(parity[rp1] << 1) | (parity[rp3] << 3) |
(parity[rp0]); (parity[rp2] << 2) |
code[1] = (parity[rp1] << 1) |
(parity[rp15] << 7) | (parity[rp0]);
(parity[rp14] << 6) | code[1] =
(parity[rp13] << 5) | (parity[rp15] << 7) |
(parity[rp12] << 4) | (parity[rp14] << 6) |
(parity[rp11] << 3) | (parity[rp13] << 5) |
(parity[rp10] << 2) | (parity[rp12] << 4) |
(parity[rp9] << 1) | (parity[rp11] << 3) |
(parity[rp8]); (parity[rp10] << 2) |
code[2] = (parity[rp9] << 1) |
(parity[par & 0xf0] << 7) | (parity[rp8]);
(parity[par & 0x0f] << 6) | code[2] =
(parity[par & 0xcc] << 5) | (parity[par & 0xf0] << 7) |
(parity[par & 0x33] << 4) | (parity[par & 0x0f] << 6) |
(parity[par & 0xaa] << 3) | (parity[par & 0xcc] << 5) |
(parity[par & 0x55] << 2); (parity[par & 0x33] << 4) |
code[0] = ~code[0]; (parity[par & 0xaa] << 3) |
code[1] = ~code[1]; (parity[par & 0x55] << 2);
code[2] = ~code[2]; code[0] = ~code[0];
} code[1] = ~code[1];
code[2] = ~code[2];
}
The parity array is not shown any more. Note also that for these The parity array is not shown any more. Note also that for these
examples I kinda deviated from my regular programming style by allowing examples I kinda deviated from my regular programming style by allowing
...@@ -403,28 +428,32 @@ lookups ...@@ -403,28 +428,32 @@ lookups
Attempt 3 Attempt 3
========= =========
Odd replaced: Odd replaced::
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur; if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur; if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur; if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur; if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur; if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
with if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
if (i & 0x01) rp5 ^= cur;
if (i & 0x02) rp7 ^= cur; with::
if (i & 0x04) rp9 ^= cur;
if (i & 0x08) rp11 ^= cur; if (i & 0x01) rp5 ^= cur;
if (i & 0x10) rp13 ^= cur; if (i & 0x02) rp7 ^= cur;
if (i & 0x20) rp15 ^= cur; if (i & 0x04) rp9 ^= cur;
if (i & 0x08) rp11 ^= cur;
and outside the loop added: if (i & 0x10) rp13 ^= cur;
rp4 = par ^ rp5; if (i & 0x20) rp15 ^= cur;
rp6 = par ^ rp7;
rp8 = par ^ rp9; and outside the loop added::
rp10 = par ^ rp11;
rp12 = par ^ rp13; rp4 = par ^ rp5;
rp14 = par ^ rp15; rp6 = par ^ rp7;
rp8 = par ^ rp9;
rp10 = par ^ rp11;
rp12 = par ^ rp13;
rp14 = par ^ rp15;
And after that the code takes about 30% more time, although the number of And after that the code takes about 30% more time, although the number of
statements is reduced. This is also reflected in the assembly code. statements is reduced. This is also reflected in the assembly code.
...@@ -448,7 +477,7 @@ Attempt 4 ...@@ -448,7 +477,7 @@ Attempt 4
========= =========
Unrolled the loop 1, 2, 3 and 4 times. Unrolled the loop 1, 2, 3 and 4 times.
For 4 the code starts with: For 4 the code starts with::
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
{ {
...@@ -471,8 +500,11 @@ Analysis 4 ...@@ -471,8 +500,11 @@ Analysis 4
========== ==========
Unrolling once gains about 15% Unrolling once gains about 15%
Unrolling twice keeps the gain at about 15% Unrolling twice keeps the gain at about 15%
Unrolling three times gives a gain of 30% compared to attempt 2. Unrolling three times gives a gain of 30% compared to attempt 2.
Unrolling four times gives a marginal improvement compared to unrolling Unrolling four times gives a marginal improvement compared to unrolling
three times. three times.
...@@ -492,8 +524,10 @@ Attempt 5 ...@@ -492,8 +524,10 @@ Attempt 5
Effectively so all odd digit rp assignments in the loop were removed. Effectively so all odd digit rp assignments in the loop were removed.
This included the else clause of the if statements. This included the else clause of the if statements.
Of course after the loop we need to correct things by adding code like: Of course after the loop we need to correct things by adding code like::
rp5 = par ^ rp4; rp5 = par ^ rp4;
Also the initial assignments (rp5 = 0; etc) could be removed. Also the initial assignments (rp5 = 0; etc) could be removed.
Along the line I also removed the initialisation of rp0/1/2/3. Along the line I also removed the initialisation of rp0/1/2/3.
...@@ -513,7 +547,7 @@ statement. Time for yet another version! ...@@ -513,7 +547,7 @@ statement. Time for yet another version!
Attempt 6 Attempt 6
========= =========
THe code within the for loop was changed to: THe code within the for loop was changed to::
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
{ {
...@@ -564,13 +598,17 @@ million iterations in order not to lose too much accuracy. This one ...@@ -564,13 +598,17 @@ million iterations in order not to lose too much accuracy. This one
definitely seemed to be the jackpot! definitely seemed to be the jackpot!
There is a little bit more room for improvement though. There are three There is a little bit more room for improvement though. There are three
places with statements: places with statements::
rp4 ^= cur; rp6 ^= cur;
rp4 ^= cur; rp6 ^= cur;
It seems more efficient to also maintain a variable rp4_6 in the while It seems more efficient to also maintain a variable rp4_6 in the while
loop; This eliminates 3 statements per loop. Of course after the loop we loop; This eliminates 3 statements per loop. Of course after the loop we
need to correct by adding: need to correct by adding::
rp4 ^= rp4_6;
rp6 ^= rp4_6 rp4 ^= rp4_6;
rp6 ^= rp4_6
Furthermore there are 4 sequential assignments to rp8. This can be Furthermore there are 4 sequential assignments to rp8. This can be
encoded slightly more efficiently by saving tmppar before those 4 lines encoded slightly more efficiently by saving tmppar before those 4 lines
and later do rp8 = rp8 ^ tmppar ^ notrp8; and later do rp8 = rp8 ^ tmppar ^ notrp8;
...@@ -582,7 +620,7 @@ Time for a new test! ...@@ -582,7 +620,7 @@ Time for a new test!
Attempt 7 Attempt 7
========= =========
The new code now looks like: The new code now looks like::
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
{ {
...@@ -644,9 +682,12 @@ Although it seems that the code within the loop cannot be optimised ...@@ -644,9 +682,12 @@ Although it seems that the code within the loop cannot be optimised
further there is still room to optimize the generation of the ecc codes. further there is still room to optimize the generation of the ecc codes.
We can simply calculate the total parity. If this is 0 then rp4 = rp5 We can simply calculate the total parity. If this is 0 then rp4 = rp5
etc. If the parity is 1, then rp4 = !rp5; etc. If the parity is 1, then rp4 = !rp5;
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
in the result byte and then do something like in the result byte and then do something like::
code[0] |= (code[0] << 1); code[0] |= (code[0] << 1);
Lets test this. Lets test this.
...@@ -657,11 +698,13 @@ Changed the code but again this slightly degrades performance. Tried all ...@@ -657,11 +698,13 @@ Changed the code but again this slightly degrades performance. Tried all
kind of other things, like having dedicated parity arrays to avoid the kind of other things, like having dedicated parity arrays to avoid the
shift after parity[rp7] << 7; No gain. shift after parity[rp7] << 7; No gain.
Change the lookup using the parity array by using shift operators (e.g. Change the lookup using the parity array by using shift operators (e.g.
replace parity[rp7] << 7 with: replace parity[rp7] << 7 with::
rp7 ^= (rp7 << 4);
rp7 ^= (rp7 << 2); rp7 ^= (rp7 << 4);
rp7 ^= (rp7 << 1); rp7 ^= (rp7 << 2);
rp7 &= 0x80; rp7 ^= (rp7 << 1);
rp7 &= 0x80;
No gain. No gain.
The only marginal change was inverting the parity bits, so we can remove The only marginal change was inverting the parity bits, so we can remove
...@@ -683,13 +726,16 @@ Correcting errors ...@@ -683,13 +726,16 @@ Correcting errors
For correcting errors I again used the ST application note as a starter, For correcting errors I again used the ST application note as a starter,
but I also peeked at the existing code. but I also peeked at the existing code.
The algorithm itself is pretty straightforward. Just xor the given and The algorithm itself is pretty straightforward. Just xor the given and
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
are 1 we have one correctable bit error. If there is 1 bit 1, we have an are 1 we have one correctable bit error. If there is 1 bit 1, we have an
error in the given ecc code. error in the given ecc code.
It proved to be fastest to do some table lookups. Performance gain It proved to be fastest to do some table lookups. Performance gain
introduced by this is about a factor 2 on my system when a repair had to introduced by this is about a factor 2 on my system when a repair had to
be done, and 1% or so if no repair had to be done. be done, and 1% or so if no repair had to be done.
Code size increased from 330 bytes to 686 bytes for this function. Code size increased from 330 bytes to 686 bytes for this function.
(gcc 4.2, -O3) (gcc 4.2, -O3)
...@@ -700,8 +746,10 @@ Conclusion ...@@ -700,8 +746,10 @@ Conclusion
The gain when calculating the ecc is tremendous. Om my development hardware The gain when calculating the ecc is tremendous. Om my development hardware
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
embedded system with a MIPS core a factor 7 was obtained. embedded system with a MIPS core a factor 7 was obtained.
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
5 (big endian mode, gcc 4.1.2, -O3) 5 (big endian mode, gcc 4.1.2, -O3)
For correction not much gain could be obtained (as bitflips are rare). Then For correction not much gain could be obtained (as bitflips are rare). Then
again there are also much less cycles spent there. again there are also much less cycles spent there.
...@@ -711,4 +759,5 @@ out of it with an assembler program, but due to pipeline behaviour etc ...@@ -711,4 +759,5 @@ out of it with an assembler program, but due to pipeline behaviour etc
this is very tricky (at least for intel hw). this is very tricky (at least for intel hw).
Author: Frans Meulenbroeks Author: Frans Meulenbroeks
Copyright (C) 2008 Koninklijke Philips Electronics NV. Copyright (C) 2008 Koninklijke Philips Electronics NV.
SPI NOR framework =================
============================================ SPI NOR framework
=================
Part I - Why do we need this framework? Part I - Why do we need this framework?
--------------------------------------- ---------------------------------------
...@@ -23,7 +24,7 @@ This framework just adds a new layer between the MTD and the SPI bus driver. ...@@ -23,7 +24,7 @@ This framework just adds a new layer between the MTD and the SPI bus driver.
With this new layer, the SPI NOR controller driver does not depend on the With this new layer, the SPI NOR controller driver does not depend on the
m25p80 code anymore. m25p80 code anymore.
Before this framework, the layer is like: Before this framework, the layer is like::
MTD MTD
------------------------ ------------------------
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
* Thomas Gleixner (tglx@linutronix.de) * Thomas Gleixner (tglx@linutronix.de)
* *
* Information on how this algorithm works and how it was developed * Information on how this algorithm works and how it was developed
* can be found in Documentation/mtd/nand_ecc.txt * can be found in Documentation/mtd/nand_ecc.rst
*/ */
#include <linux/types.h> #include <linux/types.h>
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment