Commit 712fbdd3 authored by Linus Torvalds's avatar Linus Torvalds

Merge refs/heads/release from master.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6

parents b25dd284 986632fd
......@@ -383,6 +383,12 @@ source "drivers/acpi/Kconfig"
endif
if PM
source "arch/ia64/kernel/cpufreq/Kconfig"
endif
endmenu
if !IA64_HP_SIM
......
......@@ -237,17 +237,6 @@ sal_emulator (long index, unsigned long in1, unsigned long in2,
return ((struct sal_ret_values) {status, r9, r10, r11});
}
/*
* This is here to work around a bug in egcs-1.1.1b that causes the
* compiler to crash (seems like a bug in the new alias analysis code.
*/
void *
id (long addr)
{
return (void *) addr;
}
struct ia64_boot_param *
sys_fw_init (const char *args, int arglen)
{
......
......@@ -29,7 +29,6 @@
#include <asm/uaccess.h>
#include <asm/rse.h>
#include <asm/sigcontext.h>
#include <asm/segment.h>
#include "ia32priv.h"
......
......@@ -20,6 +20,7 @@ obj-$(CONFIG_SMP) += smp.o smpboot.o domain.o
obj-$(CONFIG_NUMA) += numa.o
obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o
obj-$(CONFIG_IA64_CYCLONE) += cyclone.o
obj-$(CONFIG_CPU_FREQ) += cpufreq/
obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o
obj-$(CONFIG_KPROBES) += kprobes.o jprobes.o
obj-$(CONFIG_IA64_UNCACHED_ALLOCATOR) += uncached.o
......
#
# CPU Frequency scaling
#
menu "CPU Frequency scaling"
source "drivers/cpufreq/Kconfig"
if CPU_FREQ
comment "CPUFreq processor drivers"
config IA64_ACPI_CPUFREQ
tristate "ACPI Processor P-States driver"
select CPU_FREQ_TABLE
depends on ACPI_PROCESSOR
help
This driver adds a CPUFreq driver which utilizes the ACPI
Processor Performance States.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say N.
endif # CPU_FREQ
endmenu
obj-$(CONFIG_IA64_ACPI_CPUFREQ) += acpi-cpufreq.o
/*
* arch/ia64/kernel/cpufreq/acpi-cpufreq.c
* This file provides the ACPI based P-state support. This
* module works with generic cpufreq infrastructure. Most of
* the code is based on i386 version
* (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
*
* Copyright (C) 2005 Intel Corp
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pal.h>
#include <linux/acpi.h>
#include <acpi/processor.h>
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
MODULE_AUTHOR("Venkatesh Pallipadi");
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
MODULE_LICENSE("GPL");
struct cpufreq_acpi_io {
struct acpi_processor_performance acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
};
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
static struct cpufreq_driver acpi_cpufreq_driver;
static int
processor_set_pstate (
u32 value)
{
s64 retval;
dprintk("processor_set_pstate\n");
retval = ia64_pal_set_pstate((u64)value);
if (retval) {
dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
value, retval);
return -ENODEV;
}
return (int)retval;
}
static int
processor_get_pstate (
u32 *value)
{
u64 pstate_index = 0;
s64 retval;
dprintk("processor_get_pstate\n");
retval = ia64_pal_get_pstate(&pstate_index);
*value = (u32) pstate_index;
if (retval)
dprintk("Failed to get current freq with "
"error 0x%x, idx 0x%x\n", retval, *value);
return (int)retval;
}
/* To be used only after data->acpi_data is initialized */
static unsigned
extract_clock (
struct cpufreq_acpi_io *data,
unsigned value,
unsigned int cpu)
{
unsigned long i;
dprintk("extract_clock\n");
for (i = 0; i < data->acpi_data.state_count; i++) {
if (value >= data->acpi_data.states[i].control)
return data->acpi_data.states[i].core_frequency;
}
return data->acpi_data.states[i-1].core_frequency;
}
static unsigned int
processor_get_freq (
struct cpufreq_acpi_io *data,
unsigned int cpu)
{
int ret = 0;
u32 value = 0;
cpumask_t saved_mask;
unsigned long clock_freq;
dprintk("processor_get_freq\n");
saved_mask = current->cpus_allowed;
set_cpus_allowed(current, cpumask_of_cpu(cpu));
if (smp_processor_id() != cpu) {
ret = -EAGAIN;
goto migrate_end;
}
/*
* processor_get_pstate gets the average frequency since the
* last get. So, do two PAL_get_freq()...
*/
ret = processor_get_pstate(&value);
ret = processor_get_pstate(&value);
if (ret) {
set_cpus_allowed(current, saved_mask);
printk(KERN_WARNING "get performance failed with error %d\n",
ret);
ret = -EAGAIN;
goto migrate_end;
}
clock_freq = extract_clock(data, value, cpu);
ret = (clock_freq*1000);
migrate_end:
set_cpus_allowed(current, saved_mask);
return ret;
}
static int
processor_set_freq (
struct cpufreq_acpi_io *data,
unsigned int cpu,
int state)
{
int ret = 0;
u32 value = 0;
struct cpufreq_freqs cpufreq_freqs;
cpumask_t saved_mask;
int retval;
dprintk("processor_set_freq\n");
saved_mask = current->cpus_allowed;
set_cpus_allowed(current, cpumask_of_cpu(cpu));
if (smp_processor_id() != cpu) {
retval = -EAGAIN;
goto migrate_end;
}
if (state == data->acpi_data.state) {
if (unlikely(data->resume)) {
dprintk("Called after resume, resetting to P%d\n", state);
data->resume = 0;
} else {
dprintk("Already at target state (P%d)\n", state);
retval = 0;
goto migrate_end;
}
}
dprintk("Transitioning from P%d to P%d\n",
data->acpi_data.state, state);
/* cpufreq frequency struct */
cpufreq_freqs.cpu = cpu;
cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
cpufreq_freqs.new = data->freq_table[state].frequency;
/* notify cpufreq */
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
/*
* First we write the target state's 'control' value to the
* control_register.
*/
value = (u32) data->acpi_data.states[state].control;
dprintk("Transitioning to state: 0x%08x\n", value);
ret = processor_set_pstate(value);
if (ret) {
unsigned int tmp = cpufreq_freqs.new;
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
cpufreq_freqs.new = cpufreq_freqs.old;
cpufreq_freqs.old = tmp;
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
printk(KERN_WARNING "Transition failed with error %d\n", ret);
retval = -ENODEV;
goto migrate_end;
}
cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
data->acpi_data.state = state;
retval = 0;
migrate_end:
set_cpus_allowed(current, saved_mask);
return (retval);
}
static unsigned int
acpi_cpufreq_get (
unsigned int cpu)
{
struct cpufreq_acpi_io *data = acpi_io_data[cpu];
dprintk("acpi_cpufreq_get\n");
return processor_get_freq(data, cpu);
}
static int
acpi_cpufreq_target (
struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
unsigned int next_state = 0;
unsigned int result = 0;
dprintk("acpi_cpufreq_setpolicy\n");
result = cpufreq_frequency_table_target(policy,
data->freq_table, target_freq, relation, &next_state);
if (result)
return (result);
result = processor_set_freq(data, policy->cpu, next_state);
return (result);
}
static int
acpi_cpufreq_verify (
struct cpufreq_policy *policy)
{
unsigned int result = 0;
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_verify\n");
result = cpufreq_frequency_table_verify(policy,
data->freq_table);
return (result);
}
/*
* processor_init_pdc - let BIOS know about the SMP capabilities
* of this driver
* @perf: processor-specific acpi_io_data struct
* @cpu: CPU being initialized
*
* To avoid issues with legacy OSes, some BIOSes require to be informed of
* the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
* accordingly. Actual call to _PDC is done in driver/acpi/processor.c
*/
static void
processor_init_pdc (
struct acpi_processor_performance *perf,
unsigned int cpu,
struct acpi_object_list *obj_list
)
{
union acpi_object *obj;
u32 *buf;
dprintk("processor_init_pdc\n");
perf->pdc = NULL;
/* Initialize pdc. It will be used later. */
if (!obj_list)
return;
if (!(obj_list->count && obj_list->pointer))
return;
obj = obj_list->pointer;
if ((obj->buffer.length == 12) && obj->buffer.pointer) {
buf = (u32 *)obj->buffer.pointer;
buf[0] = ACPI_PDC_REVISION_ID;
buf[1] = 1;
buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
perf->pdc = obj_list;
}
return;
}
static int
acpi_cpufreq_cpu_init (
struct cpufreq_policy *policy)
{
unsigned int i;
unsigned int cpu = policy->cpu;
struct cpufreq_acpi_io *data;
unsigned int result = 0;
union acpi_object arg0 = {ACPI_TYPE_BUFFER};
u32 arg0_buf[3];
struct acpi_object_list arg_list = {1, &arg0};
dprintk("acpi_cpufreq_cpu_init\n");
/* setup arg_list for _PDC settings */
arg0.buffer.length = 12;
arg0.buffer.pointer = (u8 *) arg0_buf;
data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
if (!data)
return (-ENOMEM);
memset(data, 0, sizeof(struct cpufreq_acpi_io));
acpi_io_data[cpu] = data;
processor_init_pdc(&data->acpi_data, cpu, &arg_list);
result = acpi_processor_register_performance(&data->acpi_data, cpu);
data->acpi_data.pdc = NULL;
if (result)
goto err_free;
/* capability check */
if (data->acpi_data.state_count <= 1) {
dprintk("No P-States\n");
result = -ENODEV;
goto err_unreg;
}
if ((data->acpi_data.control_register.space_id !=
ACPI_ADR_SPACE_FIXED_HARDWARE) ||
(data->acpi_data.status_register.space_id !=
ACPI_ADR_SPACE_FIXED_HARDWARE)) {
dprintk("Unsupported address space [%d, %d]\n",
(u32) (data->acpi_data.control_register.space_id),
(u32) (data->acpi_data.status_register.space_id));
result = -ENODEV;
goto err_unreg;
}
/* alloc freq_table */
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
(data->acpi_data.state_count + 1),
GFP_KERNEL);
if (!data->freq_table) {
result = -ENOMEM;
goto err_unreg;
}
/* detect transition latency */
policy->cpuinfo.transition_latency = 0;
for (i=0; i<data->acpi_data.state_count; i++) {
if ((data->acpi_data.states[i].transition_latency * 1000) >
policy->cpuinfo.transition_latency) {
policy->cpuinfo.transition_latency =
data->acpi_data.states[i].transition_latency * 1000;
}
}
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
policy->cur = processor_get_freq(data, policy->cpu);
/* table init */
for (i = 0; i <= data->acpi_data.state_count; i++)
{
data->freq_table[i].index = i;
if (i < data->acpi_data.state_count) {
data->freq_table[i].frequency =
data->acpi_data.states[i].core_frequency * 1000;
} else {
data->freq_table[i].frequency = CPUFREQ_TABLE_END;
}
}
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
if (result) {
goto err_freqfree;
}
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
"activated.\n", cpu);
for (i = 0; i < data->acpi_data.state_count; i++)
dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
(i == data->acpi_data.state?'*':' '), i,
(u32) data->acpi_data.states[i].core_frequency,
(u32) data->acpi_data.states[i].power,
(u32) data->acpi_data.states[i].transition_latency,
(u32) data->acpi_data.states[i].bus_master_latency,
(u32) data->acpi_data.states[i].status,
(u32) data->acpi_data.states[i].control);
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
/* the first call to ->target() should result in us actually
* writing something to the appropriate registers. */
data->resume = 1;
return (result);
err_freqfree:
kfree(data->freq_table);
err_unreg:
acpi_processor_unregister_performance(&data->acpi_data, cpu);
err_free:
kfree(data);
acpi_io_data[cpu] = NULL;
return (result);
}
static int
acpi_cpufreq_cpu_exit (
struct cpufreq_policy *policy)
{
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
dprintk("acpi_cpufreq_cpu_exit\n");
if (data) {
cpufreq_frequency_table_put_attr(policy->cpu);
acpi_io_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(&data->acpi_data,
policy->cpu);
kfree(data);
}
return (0);
}
static struct freq_attr* acpi_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target,
.get = acpi_cpufreq_get,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.name = "acpi-cpufreq",
.owner = THIS_MODULE,
.attr = acpi_cpufreq_attr,
};
static int __init
acpi_cpufreq_init (void)
{
dprintk("acpi_cpufreq_init\n");
return cpufreq_register_driver(&acpi_cpufreq_driver);
}
static void __exit
acpi_cpufreq_exit (void)
{
dprintk("acpi_cpufreq_exit\n");
cpufreq_unregister_driver(&acpi_cpufreq_driver);
return;
}
late_initcall(acpi_cpufreq_init);
module_exit(acpi_cpufreq_exit);
......@@ -35,7 +35,7 @@ arch_get_unmapped_area (struct file *filp, unsigned long addr, unsigned long len
return -ENOMEM;
#ifdef CONFIG_HUGETLB_PAGE
if (REGION_NUMBER(addr) == REGION_HPAGE)
if (REGION_NUMBER(addr) == RGN_HPAGE)
addr = 0;
#endif
if (!addr)
......
......@@ -184,7 +184,7 @@ uncached_free_page(unsigned long maddr)
{
int node;
node = nasid_to_cnodeid(NASID_GET(maddr));
node = paddr_to_nid(maddr - __IA64_UNCACHED_OFFSET);
dprintk(KERN_DEBUG "uncached_free_page(%lx) on node %i\n", maddr, node);
......@@ -217,7 +217,7 @@ uncached_build_memmap(unsigned long start, unsigned long end, void *arg)
memset((char *)vstart, 0, length);
node = nasid_to_cnodeid(NASID_GET(start));
node = paddr_to_nid(start);
for (; vstart < vend ; vstart += PAGE_SIZE) {
dprintk(KERN_INFO "sticking %lx into the pool!\n", vstart);
......
......@@ -6,7 +6,7 @@ obj-y := io.o
lib-y := __divsi3.o __udivsi3.o __modsi3.o __umodsi3.o \
__divdi3.o __udivdi3.o __moddi3.o __umoddi3.o \
bitop.o checksum.o clear_page.o csum_partial_copy.o copy_page.o \
bitop.o checksum.o clear_page.o csum_partial_copy.o \
clear_user.o strncpy_from_user.o strlen_user.o strnlen_user.o \
flush.o ip_fast_csum.o do_csum.o \
memset.o strlen.o swiotlb.o
......
......@@ -93,8 +93,7 @@ static int __init
setup_io_tlb_npages(char *str)
{
if (isdigit(*str)) {
io_tlb_nslabs = simple_strtoul(str, &str, 0) <<
(PAGE_SHIFT - IO_TLB_SHIFT);
io_tlb_nslabs = simple_strtoul(str, &str, 0);
/* avoid tail segment of size < IO_TLB_SEGSIZE */
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
......@@ -117,7 +116,7 @@ swiotlb_init_with_default_size (size_t default_size)
unsigned long i;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> PAGE_SHIFT);
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
......
......@@ -76,7 +76,7 @@ int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
return -EINVAL;
if (addr & ~HPAGE_MASK)
return -EINVAL;
if (REGION_NUMBER(addr) != REGION_HPAGE)
if (REGION_NUMBER(addr) != RGN_HPAGE)
return -EINVAL;
return 0;
......@@ -87,7 +87,7 @@ struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int writ
struct page *page;
pte_t *ptep;
if (REGION_NUMBER(addr) != REGION_HPAGE)
if (REGION_NUMBER(addr) != RGN_HPAGE)
return ERR_PTR(-EINVAL);
ptep = huge_pte_offset(mm, addr);
......@@ -142,8 +142,8 @@ unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, u
return -ENOMEM;
if (len & ~HPAGE_MASK)
return -EINVAL;
/* This code assumes that REGION_HPAGE != 0. */
if ((REGION_NUMBER(addr) != REGION_HPAGE) || (addr & (HPAGE_SIZE - 1)))
/* This code assumes that RGN_HPAGE != 0. */
if ((REGION_NUMBER(addr) != RGN_HPAGE) || (addr & (HPAGE_SIZE - 1)))
addr = HPAGE_REGION_BASE;
else
addr = ALIGN(addr, HPAGE_SIZE);
......
......@@ -24,7 +24,6 @@
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/sal.h>
......
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_TIO_H
......@@ -26,6 +26,10 @@
#define TIO_ITTE_VALID_MASK 0x1
#define TIO_ITTE_VALID_SHIFT 16
#define TIO_ITTE_WIDGET(itte) \
(((itte) >> TIO_ITTE_WIDGET_SHIFT) & TIO_ITTE_WIDGET_MASK)
#define TIO_ITTE_VALID(itte) \
(((itte) >> TIO_ITTE_VALID_SHIFT) & TIO_ITTE_VALID_MASK)
#define TIO_ITTE_PUT(nasid, bigwin, widget, addr, valid) \
REMOTE_HUB_S((nasid), TIO_ITTE(bigwin), \
......
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_XTALK_HUBDEV_H
#define _ASM_IA64_SN_XTALK_HUBDEV_H
......@@ -16,6 +16,9 @@
#define IIO_ITTE_WIDGET_MASK ((1<<IIO_ITTE_WIDGET_BITS)-1)
#define IIO_ITTE_WIDGET_SHIFT 8
#define IIO_ITTE_WIDGET(itte) \
(((itte) >> IIO_ITTE_WIDGET_SHIFT) & IIO_ITTE_WIDGET_MASK)
/*
* Use the top big window as a surrogate for the first small window
*/
......@@ -34,7 +37,8 @@ struct sn_flush_device_list {
unsigned long sfdl_force_int_addr;
unsigned long sfdl_flush_value;
volatile unsigned long *sfdl_flush_addr;
uint64_t sfdl_persistent_busnum;
uint32_t sfdl_persistent_busnum;
uint32_t sfdl_persistent_segment;
struct pcibus_info *sfdl_pcibus_info;
spinlock_t sfdl_flush_lock;
};
......@@ -58,7 +62,8 @@ struct hubdev_info {
void *hdi_nodepda;
void *hdi_node_vertex;
void *hdi_xtalk_vertex;
uint32_t max_segment_number;
uint32_t max_pcibus_number;
};
extern void hubdev_init_node(nodepda_t *, cnodeid_t);
......
......@@ -29,16 +29,30 @@
/* two interfaces on two btes */
#define MAX_INTERFACES_TO_TRY 4
#define MAX_NODES_TO_TRY 2
static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
{
nodepda_t *tmp_nodepda;
if (nasid_to_cnodeid(nasid) == -1)
return (struct bteinfo_s *)NULL;;
tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
return &tmp_nodepda->bte_if[interface];
}
static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
{
if (is_shub2()) {
BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
} else {
BTE_LNSTAT_STORE(bte, len);
BTE_CTRL_STORE(bte, mode);
}
}
/************************************************************************
* Block Transfer Engine copy related functions.
*
......@@ -67,13 +81,15 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
{
u64 transfer_size;
u64 transfer_stat;
u64 notif_phys_addr;
struct bteinfo_s *bte;
bte_result_t bte_status;
unsigned long irq_flags;
unsigned long itc_end = 0;
struct bteinfo_s *btes_to_try[MAX_INTERFACES_TO_TRY];
int bte_if_index;
int bte_pri, bte_sec;
int nasid_to_try[MAX_NODES_TO_TRY];
int my_nasid = get_nasid();
int bte_if_index, nasid_index;
int bte_first, btes_per_node = BTES_PER_NODE;
BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
src, dest, len, mode, notification));
......@@ -86,36 +102,26 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
(src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
/* CPU 0 (per node) tries bte0 first, CPU 1 try bte1 first */
if (cpuid_to_subnode(smp_processor_id()) == 0) {
bte_pri = 0;
bte_sec = 1;
} else {
bte_pri = 1;
bte_sec = 0;
}
/*
* Start with interface corresponding to cpu number
*/
bte_first = raw_smp_processor_id() % btes_per_node;
if (mode & BTE_USE_DEST) {
/* try remote then local */
btes_to_try[0] = bte_if_on_node(NASID_GET(dest), bte_pri);
btes_to_try[1] = bte_if_on_node(NASID_GET(dest), bte_sec);
nasid_to_try[0] = NASID_GET(dest);
if (mode & BTE_USE_ANY) {
btes_to_try[2] = bte_if_on_node(get_nasid(), bte_pri);
btes_to_try[3] = bte_if_on_node(get_nasid(), bte_sec);
nasid_to_try[1] = my_nasid;
} else {
btes_to_try[2] = NULL;
btes_to_try[3] = NULL;
nasid_to_try[1] = (int)NULL;
}
} else {
/* try local then remote */
btes_to_try[0] = bte_if_on_node(get_nasid(), bte_pri);
btes_to_try[1] = bte_if_on_node(get_nasid(), bte_sec);
nasid_to_try[0] = my_nasid;
if (mode & BTE_USE_ANY) {
btes_to_try[2] = bte_if_on_node(NASID_GET(dest), bte_pri);
btes_to_try[3] = bte_if_on_node(NASID_GET(dest), bte_sec);
nasid_to_try[1] = NASID_GET(dest);
} else {
btes_to_try[2] = NULL;
btes_to_try[3] = NULL;
nasid_to_try[1] = (int)NULL;
}
}
......@@ -123,11 +129,12 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
do {
local_irq_save(irq_flags);
bte_if_index = 0;
bte_if_index = bte_first;
nasid_index = 0;
/* Attempt to lock one of the BTE interfaces. */
while (bte_if_index < MAX_INTERFACES_TO_TRY) {
bte = btes_to_try[bte_if_index++];
while (nasid_index < MAX_NODES_TO_TRY) {
bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
if (bte == NULL) {
continue;
......@@ -143,6 +150,15 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
break;
}
}
bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
if (bte_if_index == bte_first) {
/*
* We've tried all interfaces on this node
*/
nasid_index++;
}
bte = NULL;
}
......@@ -169,7 +185,13 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
/* Initialize the notification to a known value. */
*bte->most_rcnt_na = BTE_WORD_BUSY;
notif_phys_addr = TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na));
if (is_shub2()) {
src = SH2_TIO_PHYS_TO_DMA(src);
dest = SH2_TIO_PHYS_TO_DMA(dest);
notif_phys_addr = SH2_TIO_PHYS_TO_DMA(notif_phys_addr);
}
/* Set the source and destination registers */
BTE_PRINTKV(("IBSA = 0x%lx)\n", (TO_PHYS(src))));
BTE_SRC_STORE(bte, TO_PHYS(src));
......@@ -177,14 +199,12 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
BTE_DEST_STORE(bte, TO_PHYS(dest));
/* Set the notification register */
BTE_PRINTKV(("IBNA = 0x%lx)\n",
TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na))));
BTE_NOTIF_STORE(bte,
TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na)));
BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
BTE_NOTIF_STORE(bte, notif_phys_addr);
/* Initiate the transfer */
BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
BTE_START_TRANSFER(bte, transfer_size, BTE_VALID_MODE(mode));
bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
......@@ -195,6 +215,7 @@ bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
}
while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
cpu_relax();
if (ia64_get_itc() > itc_end) {
BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
NASID_GET(bte->bte_base_addr), bte->bte_num,
......
......@@ -76,7 +76,7 @@ void hubiio_crb_free(struct hubdev_info *hubdev_info, int crbnum)
*/
REMOTE_HUB_S(hubdev_info->hdi_nasid, IIO_ICDR, (IIO_ICDR_PND | crbnum));
while (REMOTE_HUB_L(hubdev_info->hdi_nasid, IIO_ICDR) & IIO_ICDR_PND)
udelay(1);
cpu_relax();
}
......
......@@ -18,6 +18,7 @@
#include <asm/sn/simulator.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/tioca_provider.h>
#include <asm/sn/tioce_provider.h>
#include "xtalk/hubdev.h"
#include "xtalk/xwidgetdev.h"
......@@ -44,6 +45,9 @@ int sn_ioif_inited = 0; /* SN I/O infrastructure initialized? */
struct sn_pcibus_provider *sn_pci_provider[PCIIO_ASIC_MAX_TYPES]; /* indexed by asic type */
static int max_segment_number = 0; /* Default highest segment number */
static int max_pcibus_number = 255; /* Default highest pci bus number */
/*
* Hooks and struct for unsupported pci providers
*/
......@@ -157,13 +161,28 @@ static void sn_fixup_ionodes(void)
uint64_t nasid;
int i, widget;
/*
* Get SGI Specific HUB chipset information.
* Inform Prom that this kernel can support domain bus numbering.
*/
for (i = 0; i < numionodes; i++) {
hubdev = (struct hubdev_info *)(NODEPDA(i)->pdinfo);
nasid = cnodeid_to_nasid(i);
hubdev->max_segment_number = 0xffffffff;
hubdev->max_pcibus_number = 0xff;
status = sal_get_hubdev_info(nasid, (uint64_t) __pa(hubdev));
if (status)
continue;
/* Save the largest Domain and pcibus numbers found. */
if (hubdev->max_segment_number) {
/*
* Dealing with a Prom that supports segments.
*/
max_segment_number = hubdev->max_segment_number;
max_pcibus_number = hubdev->max_pcibus_number;
}
/* Attach the error interrupt handlers */
if (nasid & 1)
ice_error_init(hubdev);
......@@ -230,7 +249,7 @@ void sn_pci_unfixup_slot(struct pci_dev *dev)
void sn_pci_fixup_slot(struct pci_dev *dev)
{
int idx;
int segment = 0;
int segment = pci_domain_nr(dev->bus);
int status = 0;
struct pcibus_bussoft *bs;
struct pci_bus *host_pci_bus;
......@@ -283,9 +302,9 @@ void sn_pci_fixup_slot(struct pci_dev *dev)
* PCI host_pci_dev struct and set up host bus linkages
*/
bus_no = SN_PCIDEV_INFO(dev)->pdi_slot_host_handle >> 32;
bus_no = (SN_PCIDEV_INFO(dev)->pdi_slot_host_handle >> 32) & 0xff;
devfn = SN_PCIDEV_INFO(dev)->pdi_slot_host_handle & 0xffffffff;
host_pci_bus = pci_find_bus(pci_domain_nr(dev->bus), bus_no);
host_pci_bus = pci_find_bus(segment, bus_no);
host_pci_dev = pci_get_slot(host_pci_bus, devfn);
SN_PCIDEV_INFO(dev)->host_pci_dev = host_pci_dev;
......@@ -333,6 +352,7 @@ void sn_pci_controller_fixup(int segment, int busnum, struct pci_bus *bus)
prom_bussoft_ptr = __va(prom_bussoft_ptr);
controller = kcalloc(1,sizeof(struct pci_controller), GFP_KERNEL);
controller->segment = segment;
if (!controller)
BUG();
......@@ -390,7 +410,7 @@ void sn_pci_controller_fixup(int segment, int busnum, struct pci_bus *bus)
if (controller->node >= num_online_nodes()) {
struct pcibus_bussoft *b = SN_PCIBUS_BUSSOFT(bus);
printk(KERN_WARNING "Device ASIC=%u XID=%u PBUSNUM=%lu"
printk(KERN_WARNING "Device ASIC=%u XID=%u PBUSNUM=%u"
"L_IO=%lx L_MEM=%lx BASE=%lx\n",
b->bs_asic_type, b->bs_xid, b->bs_persist_busnum,
b->bs_legacy_io, b->bs_legacy_mem, b->bs_base);
......@@ -445,6 +465,7 @@ void sn_bus_free_sysdata(void)
static int __init sn_pci_init(void)
{
int i = 0;
int j = 0;
struct pci_dev *pci_dev = NULL;
extern void sn_init_cpei_timer(void);
#ifdef CONFIG_PROC_FS
......@@ -464,6 +485,7 @@ static int __init sn_pci_init(void)
pcibr_init_provider();
tioca_init_provider();
tioce_init_provider();
/*
* This is needed to avoid bounce limit checks in the blk layer
......@@ -479,8 +501,9 @@ static int __init sn_pci_init(void)
#endif
/* busses are not known yet ... */
for (i = 0; i < PCI_BUSES_TO_SCAN; i++)
sn_pci_controller_fixup(0, i, NULL);
for (i = 0; i <= max_segment_number; i++)
for (j = 0; j <= max_pcibus_number; j++)
sn_pci_controller_fixup(i, j, NULL);
/*
* Generic Linux PCI Layer has created the pci_bus and pci_dev
......
......@@ -5,7 +5,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/irq.h>
......@@ -76,16 +76,14 @@ static void sn_enable_irq(unsigned int irq)
static void sn_ack_irq(unsigned int irq)
{
uint64_t event_occurred, mask = 0;
int nasid;
u64 event_occurred, mask = 0;
irq = irq & 0xff;
nasid = get_nasid();
event_occurred =
HUB_L((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED));
HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
mask = event_occurred & SH_ALL_INT_MASK;
HUB_S((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED_ALIAS),
mask);
HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
mask);
__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
move_irq(irq);
......@@ -93,15 +91,12 @@ static void sn_ack_irq(unsigned int irq)
static void sn_end_irq(unsigned int irq)
{
int nasid;
int ivec;
uint64_t event_occurred;
u64 event_occurred;
ivec = irq & 0xff;
if (ivec == SGI_UART_VECTOR) {
nasid = get_nasid();
event_occurred = HUB_L((uint64_t *) GLOBAL_MMR_ADDR
(nasid, SH_EVENT_OCCURRED));
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
/* If the UART bit is set here, we may have received an
* interrupt from the UART that the driver missed. To
* make sure, we IPI ourselves to force us to look again.
......@@ -132,6 +127,7 @@ static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
int local_widget, status;
nasid_t local_nasid;
struct sn_irq_info *new_irq_info;
struct sn_pcibus_provider *pci_provider;
new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
if (new_irq_info == NULL)
......@@ -171,8 +167,9 @@ static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
new_irq_info->irq_cpuid = cpuid;
register_intr_pda(new_irq_info);
if (IS_PCI_BRIDGE_ASIC(new_irq_info->irq_bridge_type))
pcibr_change_devices_irq(new_irq_info);
pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
if (pci_provider && pci_provider->target_interrupt)
(pci_provider->target_interrupt)(new_irq_info);
spin_lock(&sn_irq_info_lock);
list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
......@@ -317,6 +314,16 @@ void sn_irq_unfixup(struct pci_dev *pci_dev)
pci_dev_put(pci_dev);
}
static inline void
sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
{
struct sn_pcibus_provider *pci_provider;
pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
if (pci_provider && pci_provider->force_interrupt)
(*pci_provider->force_interrupt)(sn_irq_info);
}
static void force_interrupt(int irq)
{
struct sn_irq_info *sn_irq_info;
......@@ -325,11 +332,9 @@ static void force_interrupt(int irq)
return;
rcu_read_lock();
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list) {
if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
(sn_irq_info->irq_bridge != NULL))
pcibr_force_interrupt(sn_irq_info);
}
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
sn_call_force_intr_provider(sn_irq_info);
rcu_read_unlock();
}
......@@ -351,6 +356,14 @@ static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
/*
* Bridge types attached to TIO (anything but PIC) do not need this WAR
* since they do not target Shub II interrupt registers. If that
* ever changes, this check needs to accomodate.
*/
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
......@@ -377,16 +390,12 @@ static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
break;
}
if (!test_bit(irr_bit, &irr_reg)) {
if (!test_bit(irq, pda->sn_soft_irr)) {
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
regval &= 0xff;
if (sn_irq_info->irq_int_bit & regval &
sn_irq_info->irq_last_intr) {
regval &=
~(sn_irq_info->
irq_int_bit & regval);
pcibr_force_interrupt(sn_irq_info);
}
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
regval &= 0xff;
if (sn_irq_info->irq_int_bit & regval &
sn_irq_info->irq_last_intr) {
regval &= ~(sn_irq_info->irq_int_bit & regval);
sn_call_force_intr_provider(sn_irq_info);
}
}
}
......@@ -404,13 +413,7 @@ void sn_lb_int_war_check(void)
rcu_read_lock();
for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
/*
* Only call for PCI bridges that are fully
* initialized.
*/
if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
(sn_irq_info->irq_bridge != NULL))
sn_check_intr(i, sn_irq_info);
sn_check_intr(i, sn_irq_info);
}
}
rcu_read_unlock();
......
......@@ -80,8 +80,6 @@ EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
partid_t sn_partid = -1;
EXPORT_SYMBOL(sn_partid);
char sn_system_serial_number_string[128];
EXPORT_SYMBOL(sn_system_serial_number_string);
u64 sn_partition_serial_number;
......@@ -403,6 +401,7 @@ static void __init sn_init_pdas(char **cmdline_p)
memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
memset(nodepdaindr[cnode]->phys_cpuid, -1,
sizeof(nodepdaindr[cnode]->phys_cpuid));
spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
}
/*
......@@ -532,8 +531,8 @@ void __init sn_cpu_init(void)
*/
{
u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_1,
SH2_PIO_WRITE_STATUS_2, SH2_PIO_WRITE_STATUS_3};
u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
u64 *pio;
pio = is_shub1() ? pio1 : pio2;
pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
......
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <asm/types.h>
......@@ -11,7 +11,7 @@
#define DEADLOCKBIT SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_SHFT
#define WRITECOUNTMASK SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK
#define ALIAS_OFFSET (SH1_PIO_WRITE_STATUS_0_ALIAS-SH1_PIO_WRITE_STATUS_0)
#define ALIAS_OFFSET 8
.global sn2_ptc_deadlock_recovery_core
......@@ -36,13 +36,15 @@ sn2_ptc_deadlock_recovery_core:
extr.u piowcphy=piowc,0,61;; // Convert piowc to uncached physical address
dep piowcphy=-1,piowcphy,63,1
movl mask=WRITECOUNTMASK
mov r8=r0
1:
add scr2=ALIAS_OFFSET,piowc // Address of WRITE_STATUS alias register
mov scr1=7;; // Clear DEADLOCK, WRITE_ERROR, MULTI_WRITE_ERROR
st8.rel [scr2]=scr1;;
;;
ld8.acq scr1=[scr2];;
5: ld8.acq scr1=[piowc];; // Wait for PIOs to complete.
hint @pause
and scr2=scr1,mask;; // mask of writecount bits
cmp.ne p6,p0=zeroval,scr2
(p6) br.cond.sptk 5b
......@@ -57,6 +59,7 @@ sn2_ptc_deadlock_recovery_core:
st8.rel [ptc0]=data0 // Write PTC0 & wait for completion.
5: ld8.acq scr1=[piowcphy];; // Wait for PIOs to complete.
hint @pause
and scr2=scr1,mask;; // mask of writecount bits
cmp.ne p6,p0=zeroval,scr2
(p6) br.cond.sptk 5b;;
......@@ -67,6 +70,7 @@ sn2_ptc_deadlock_recovery_core:
(p7) st8.rel [ptc1]=data1;; // Now write PTC1.
5: ld8.acq scr1=[piowcphy];; // Wait for PIOs to complete.
hint @pause
and scr2=scr1,mask;; // mask of writecount bits
cmp.ne p6,p0=zeroval,scr2
(p6) br.cond.sptk 5b
......@@ -77,6 +81,7 @@ sn2_ptc_deadlock_recovery_core:
srlz.i;;
////////////// END PHYSICAL MODE ////////////////////
(p8) add r8=1,r8
(p8) br.cond.spnt 1b;; // Repeat if DEADLOCK occurred.
br.ret.sptk rp
......
......@@ -5,7 +5,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/init.h>
......@@ -20,6 +20,8 @@
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/nodemask.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/processor.h>
#include <asm/irq.h>
......@@ -39,12 +41,120 @@
#include <asm/sn/nodepda.h>
#include <asm/sn/rw_mmr.h>
void sn2_ptc_deadlock_recovery(volatile unsigned long *, unsigned long data0,
volatile unsigned long *, unsigned long data1);
DEFINE_PER_CPU(struct ptc_stats, ptcstats);
DECLARE_PER_CPU(struct ptc_stats, ptcstats);
static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
static unsigned long sn2_ptc_deadlock_count;
void sn2_ptc_deadlock_recovery(short *, short, int, volatile unsigned long *, unsigned long data0,
volatile unsigned long *, unsigned long data1);
#ifdef DEBUG_PTC
/*
* ptctest:
*
* xyz - 3 digit hex number:
* x - Force PTC purges to use shub:
* 0 - no force
* 1 - force
* y - interupt enable
* 0 - disable interrupts
* 1 - leave interuupts enabled
* z - type of lock:
* 0 - global lock
* 1 - node local lock
* 2 - no lock
*
* Note: on shub1, only ptctest == 0 is supported. Don't try other values!
*/
static unsigned int sn2_ptctest = 0;
static int __init ptc_test(char *str)
{
get_option(&str, &sn2_ptctest);
return 1;
}
__setup("ptctest=", ptc_test);
static inline int ptc_lock(unsigned long *flagp)
{
unsigned long opt = sn2_ptctest & 255;
switch (opt) {
case 0x00:
spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
break;
case 0x01:
spin_lock_irqsave(&sn_nodepda->ptc_lock, *flagp);
break;
case 0x02:
local_irq_save(*flagp);
break;
case 0x10:
spin_lock(&sn2_global_ptc_lock);
break;
case 0x11:
spin_lock(&sn_nodepda->ptc_lock);
break;
case 0x12:
break;
default:
BUG();
}
return opt;
}
static inline void ptc_unlock(unsigned long flags, int opt)
{
switch (opt) {
case 0x00:
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
break;
case 0x01:
spin_unlock_irqrestore(&sn_nodepda->ptc_lock, flags);
break;
case 0x02:
local_irq_restore(flags);
break;
case 0x10:
spin_unlock(&sn2_global_ptc_lock);
break;
case 0x11:
spin_unlock(&sn_nodepda->ptc_lock);
break;
case 0x12:
break;
default:
BUG();
}
}
#else
#define sn2_ptctest 0
static inline int ptc_lock(unsigned long *flagp)
{
spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
return 0;
}
static inline void ptc_unlock(unsigned long flags, int opt)
{
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
}
#endif
struct ptc_stats {
unsigned long ptc_l;
unsigned long change_rid;
unsigned long shub_ptc_flushes;
unsigned long nodes_flushed;
unsigned long deadlocks;
unsigned long lock_itc_clocks;
unsigned long shub_itc_clocks;
unsigned long shub_itc_clocks_max;
};
static inline unsigned long wait_piowc(void)
{
......@@ -89,9 +199,9 @@ void
sn2_global_tlb_purge(unsigned long start, unsigned long end,
unsigned long nbits)
{
int i, shub1, cnode, mynasid, cpu, lcpu = 0, nasid, flushed = 0;
int i, opt, shub1, cnode, mynasid, cpu, lcpu = 0, nasid, flushed = 0;
volatile unsigned long *ptc0, *ptc1;
unsigned long flags = 0, data0 = 0, data1 = 0;
unsigned long itc, itc2, flags, data0 = 0, data1 = 0;
struct mm_struct *mm = current->active_mm;
short nasids[MAX_NUMNODES], nix;
nodemask_t nodes_flushed;
......@@ -114,16 +224,19 @@ sn2_global_tlb_purge(unsigned long start, unsigned long end,
start += (1UL << nbits);
} while (start < end);
ia64_srlz_i();
__get_cpu_var(ptcstats).ptc_l++;
preempt_enable();
return;
}
if (atomic_read(&mm->mm_users) == 1) {
flush_tlb_mm(mm);
__get_cpu_var(ptcstats).change_rid++;
preempt_enable();
return;
}
itc = ia64_get_itc();
nix = 0;
for_each_node_mask(cnode, nodes_flushed)
nasids[nix++] = cnodeid_to_nasid(cnode);
......@@ -148,7 +261,12 @@ sn2_global_tlb_purge(unsigned long start, unsigned long end,
mynasid = get_nasid();
spin_lock_irqsave(&sn2_global_ptc_lock, flags);
itc = ia64_get_itc();
opt = ptc_lock(&flags);
itc2 = ia64_get_itc();
__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
__get_cpu_var(ptcstats).shub_ptc_flushes++;
__get_cpu_var(ptcstats).nodes_flushed += nix;
do {
if (shub1)
......@@ -157,7 +275,7 @@ sn2_global_tlb_purge(unsigned long start, unsigned long end,
data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
for (i = 0; i < nix; i++) {
nasid = nasids[i];
if (unlikely(nasid == mynasid)) {
if ((!(sn2_ptctest & 3)) && unlikely(nasid == mynasid)) {
ia64_ptcga(start, nbits << 2);
ia64_srlz_i();
} else {
......@@ -169,18 +287,22 @@ sn2_global_tlb_purge(unsigned long start, unsigned long end,
flushed = 1;
}
}
if (flushed
&& (wait_piowc() &
SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK)) {
sn2_ptc_deadlock_recovery(ptc0, data0, ptc1, data1);
(SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK))) {
sn2_ptc_deadlock_recovery(nasids, nix, mynasid, ptc0, data0, ptc1, data1);
}
start += (1UL << nbits);
} while (start < end);
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
itc2 = ia64_get_itc() - itc2;
__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
ptc_unlock(flags, opt);
preempt_enable();
}
......@@ -192,31 +314,29 @@ sn2_global_tlb_purge(unsigned long start, unsigned long end,
* TLB flush transaction. The recovery sequence is somewhat tricky & is
* coded in assembly language.
*/
void sn2_ptc_deadlock_recovery(volatile unsigned long *ptc0, unsigned long data0,
void sn2_ptc_deadlock_recovery(short *nasids, short nix, int mynasid, volatile unsigned long *ptc0, unsigned long data0,
volatile unsigned long *ptc1, unsigned long data1)
{
extern void sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long);
int cnode, mycnode, nasid;
volatile unsigned long *piows;
volatile unsigned long zeroval;
short nasid, i;
unsigned long *piows, zeroval;
sn2_ptc_deadlock_count++;
__get_cpu_var(ptcstats).deadlocks++;
piows = pda->pio_write_status_addr;
piows = (unsigned long *) pda->pio_write_status_addr;
zeroval = pda->pio_write_status_val;
mycnode = numa_node_id();
for_each_online_node(cnode) {
if (is_headless_node(cnode) || cnode == mycnode)
for (i=0; i < nix; i++) {
nasid = nasids[i];
if (!(sn2_ptctest & 3) && nasid == mynasid)
continue;
nasid = cnodeid_to_nasid(cnode);
ptc0 = CHANGE_NASID(nasid, ptc0);
if (ptc1)
ptc1 = CHANGE_NASID(nasid, ptc1);
sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
}
}
/**
......@@ -293,3 +413,93 @@ void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
}
#ifdef CONFIG_PROC_FS
#define PTC_BASENAME "sgi_sn/ptc_statistics"
static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
{
if (*offset < NR_CPUS)
return offset;
return NULL;
}
static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
{
(*offset)++;
if (*offset < NR_CPUS)
return offset;
return NULL;
}
static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
{
}
static int sn2_ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
int cpu;
cpu = *(loff_t *) data;
if (!cpu) {
seq_printf(file, "# ptc_l change_rid shub_ptc_flushes shub_nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max\n");
seq_printf(file, "# ptctest %d\n", sn2_ptctest);
}
if (cpu < NR_CPUS && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu);
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
stat->deadlocks,
1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec);
}
return 0;
}
static struct seq_operations sn2_ptc_seq_ops = {
.start = sn2_ptc_seq_start,
.next = sn2_ptc_seq_next,
.stop = sn2_ptc_seq_stop,
.show = sn2_ptc_seq_show
};
int sn2_ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &sn2_ptc_seq_ops);
}
static struct file_operations proc_sn2_ptc_operations = {
.open = sn2_ptc_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static struct proc_dir_entry *proc_sn2_ptc;
static int __init sn2_ptc_init(void)
{
if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
return -EINVAL;
}
proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
spin_lock_init(&sn2_global_ptc_lock);
return 0;
}
static void __exit sn2_ptc_exit(void)
{
remove_proc_entry(PTC_BASENAME, NULL);
}
module_init(sn2_ptc_init);
module_exit(sn2_ptc_exit);
#endif /* CONFIG_PROC_FS */
......@@ -36,7 +36,6 @@
#include <asm/topology.h>
#include <asm/smp.h>
#include <asm/semaphore.h>
#include <asm/segment.h>
#include <asm/uaccess.h>
#include <asm/sal.h>
#include <asm/sn/io.h>
......@@ -59,7 +58,7 @@ static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
struct sn_hwperf_object_info *objbuf = NULL;
if ((e = sn_hwperf_init()) < 0) {
printk("sn_hwperf_init failed: err %d\n", e);
printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
goto out;
}
......@@ -111,7 +110,7 @@ static int sn_hwperf_geoid_to_cnode(char *location)
if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
return -1;
for (cnode = 0; cnode < numionodes; cnode++) {
for_each_node(cnode) {
geoid = cnodeid_get_geoid(cnode);
module_id = geo_module(geoid);
this_rack = MODULE_GET_RACK(module_id);
......@@ -124,11 +123,13 @@ static int sn_hwperf_geoid_to_cnode(char *location)
}
}
return cnode < numionodes ? cnode : -1;
return node_possible(cnode) ? cnode : -1;
}
static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
{
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
BUG();
if (!obj->sn_hwp_this_part)
return -1;
return sn_hwperf_geoid_to_cnode(obj->location);
......@@ -174,31 +175,199 @@ static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
return slabname;
}
static void print_pci_topology(struct seq_file *s,
struct sn_hwperf_object_info *obj, int *ordinal,
u64 rack, u64 bay, u64 slot, u64 slab)
static void print_pci_topology(struct seq_file *s)
{
char *p;
size_t sz;
int e;
for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
if (!(p = (char *)kmalloc(sz, GFP_KERNEL)))
break;
e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
if (e == SALRET_OK)
seq_puts(s, p);
kfree(p);
if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
break;
}
}
static inline int sn_hwperf_has_cpus(cnodeid_t node)
{
return node_online(node) && nr_cpus_node(node);
}
static inline int sn_hwperf_has_mem(cnodeid_t node)
{
return node_online(node) && NODE_DATA(node)->node_present_pages;
}
static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
int nobj, int id)
{
char *p1;
char *p2;
char *pg;
if (!(pg = (char *)get_zeroed_page(GFP_KERNEL)))
return; /* ignore */
if (ia64_sn_ioif_get_pci_topology(rack, bay, slot, slab,
__pa(pg), PAGE_SIZE) == SN_HWPERF_OP_OK) {
for (p1=pg; *p1 && p1 < pg + PAGE_SIZE;) {
if (!(p2 = strchr(p1, '\n')))
int i;
struct sn_hwperf_object_info *p = objbuf;
for (i=0; i < nobj; i++, p++) {
if (p->id == id)
return p;
}
return NULL;
}
static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
struct sn_hwperf_object_info *nodeobj = NULL;
struct sn_hwperf_object_info *op;
struct sn_hwperf_object_info *dest;
struct sn_hwperf_object_info *router;
struct sn_hwperf_port_info ptdata[16];
int sz, i, j;
cnodeid_t c;
int found_mem = 0;
int found_cpu = 0;
if (!node_possible(node))
return -EINVAL;
if (sn_hwperf_has_cpus(node)) {
if (near_cpu_node)
*near_cpu_node = node;
found_cpu++;
}
if (sn_hwperf_has_mem(node)) {
if (near_mem_node)
*near_mem_node = node;
found_mem++;
}
if (found_cpu && found_mem)
return 0; /* trivially successful */
/* find the argument node object */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
continue;
if (node == sn_hwperf_obj_to_cnode(op)) {
nodeobj = op;
break;
}
}
if (!nodeobj) {
e = -ENOENT;
goto err;
}
/* get it's interconnect topology */
sz = op->ports * sizeof(struct sn_hwperf_port_info);
if (sz > sizeof(ptdata))
BUG();
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
/* find nearest node with cpus and nearest memory */
for (router=NULL, j=0; j < op->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
if (!dest || SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (SN_HWPERF_IS_ROUTER(dest))
router = dest;
}
if (router && (!found_cpu || !found_mem)) {
/* search for a node connected to the same router */
sz = router->ports * sizeof(struct sn_hwperf_port_info);
if (sz > sizeof(ptdata))
BUG();
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, router->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
for (j=0; j < router->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj,
ptdata[j].conn_id);
if (!dest || dest->id == node ||
SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) ||
SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
}
}
if (!found_cpu || !found_mem) {
/* resort to _any_ node with CPUs and memory */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (SN_HWPERF_FOREIGN(op) ||
SN_HWPERF_IS_IONODE(op) ||
!SN_HWPERF_IS_NODE(op)) {
continue;
}
c = sn_hwperf_obj_to_cnode(op);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
*p2 = '\0';
seq_printf(s, "pcibus %d %s-%s\n",
*ordinal, obj->location, p1);
(*ordinal)++;
p1 = p2 + 1;
}
}
free_page((unsigned long)pg);
if (!found_cpu || !found_mem)
e = -ENODATA;
err:
return e;
}
static int sn_topology_show(struct seq_file *s, void *d)
{
int sz;
......@@ -215,7 +384,6 @@ static int sn_topology_show(struct seq_file *s, void *d)
struct sn_hwperf_object_info *p;
struct sn_hwperf_object_info *obj = d; /* this object */
struct sn_hwperf_object_info *objs = s->private; /* all objects */
int rack, bay, slot, slab;
u8 shubtype;
u8 system_size;
u8 sharing_size;
......@@ -225,7 +393,6 @@ static int sn_topology_show(struct seq_file *s, void *d)
u8 region_size;
u16 nasid_mask;
int nasid_msb;
int pci_bus_ordinal = 0;
if (obj == objs) {
seq_printf(s, "# sn_topology version 2\n");
......@@ -253,6 +420,8 @@ static int sn_topology_show(struct seq_file *s, void *d)
shubtype ? "shub2" : "shub1",
(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
system_size, sharing_size, coher, region_size);
print_pci_topology(s);
}
if (SN_HWPERF_FOREIGN(obj)) {
......@@ -272,11 +441,24 @@ static int sn_topology_show(struct seq_file *s, void *d)
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
seq_putc(s, '\n');
else {
cnodeid_t near_mem = -1;
cnodeid_t near_cpu = -1;
seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
for (i=0; i < numionodes; i++) {
seq_printf(s, i ? ":%d" : ", dist %d",
node_distance(ordinal, i));
if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
ordinal, &near_mem, &near_cpu) == 0) {
seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
near_mem, near_cpu);
}
if (!SN_HWPERF_IS_IONODE(obj)) {
for_each_online_node(i) {
seq_printf(s, i ? ":%d" : ", dist %d",
node_distance(ordinal, i));
}
}
seq_putc(s, '\n');
/*
......@@ -300,17 +482,6 @@ static int sn_topology_show(struct seq_file *s, void *d)
seq_putc(s, '\n');
}
}
/*
* PCI busses attached to this node, if any
*/
if (sn_hwperf_location_to_bpos(obj->location,
&rack, &bay, &slot, &slab)) {
/* export pci bus info */
print_pci_topology(s, obj, &pci_bus_ordinal,
rack, bay, slot, slab);
}
}
if (obj->ports) {
......@@ -572,6 +743,8 @@ sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
memset(p, 0, a.sz);
for (i = 0; i < nobj; i++) {
if (!SN_HWPERF_IS_NODE(objs + i))
continue;
node = sn_hwperf_obj_to_cnode(objs + i);
for_each_online_cpu(j) {
if (node != cpu_to_node(j))
......@@ -598,7 +771,7 @@ sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
case SN_HWPERF_GET_NODE_NASID:
if (a.sz != sizeof(u64) ||
(node = a.arg) < 0 || node >= numionodes) {
(node = a.arg) < 0 || !node_possible(node)) {
r = -EINVAL;
goto error;
}
......@@ -627,6 +800,14 @@ sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
vfree(objs);
goto error;
}
if (!SN_HWPERF_IS_NODE(objs + i) &&
!SN_HWPERF_IS_IONODE(objs + i)) {
r = -ENOENT;
vfree(objs);
goto error;
}
*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
vfree(objs);
}
......@@ -692,6 +873,7 @@ static int sn_hwperf_init(void)
/* single threaded, once-only initialization */
down(&sn_hwperf_init_mutex);
if (sn_hwperf_salheap) {
up(&sn_hwperf_init_mutex);
return e;
......@@ -742,19 +924,6 @@ static int sn_hwperf_init(void)
sn_hwperf_salheap = NULL;
sn_hwperf_obj_cnt = 0;
}
if (!e) {
/*
* Register a dynamic misc device for ioctl. Platforms
* supporting hotplug will create /dev/sn_hwperf, else
* user can to look up the minor number in /proc/misc.
*/
if ((e = misc_register(&sn_hwperf_dev)) != 0) {
printk(KERN_ERR "sn_hwperf_init: misc register "
"for \"sn_hwperf\" failed, err %d\n", e);
}
}
up(&sn_hwperf_init_mutex);
return e;
}
......@@ -782,3 +951,41 @@ int sn_topology_release(struct inode *inode, struct file *file)
vfree(seq->private);
return seq_release(inode, file);
}
int sn_hwperf_get_nearest_node(cnodeid_t node,
cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
int nobj;
struct sn_hwperf_object_info *objbuf;
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
node, near_mem_node, near_cpu_node);
vfree(objbuf);
}
return e;
}
static int __devinit sn_hwperf_misc_register_init(void)
{
int e;
sn_hwperf_init();
/*
* Register a dynamic misc device for hwperf ioctls. Platforms
* supporting hotplug will create /dev/sn_hwperf, else user
* can to look up the minor number in /proc/misc.
*/
if ((e = misc_register(&sn_hwperf_dev)) != 0) {
printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
"register misc device for \"%s\"\n", sn_hwperf_dev.name);
}
return e;
}
device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/config.h>
#include <asm/uaccess.h>
......@@ -15,7 +15,7 @@
static int partition_id_show(struct seq_file *s, void *p)
{
seq_printf(s, "%d\n", sn_local_partid());
seq_printf(s, "%d\n", sn_partition_id);
return 0;
}
......
/*
*
*
* Copyright (c) 2003 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) 2005 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
......@@ -50,14 +50,16 @@ void sn_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
LED_CPU_HEARTBEAT, LED_CPU_HEARTBEAT);
}
if (enable_shub_wars_1_1()) {
/* Bugfix code for SHUB 1.1 */
if (pda->pio_shub_war_cam_addr)
*pda->pio_shub_war_cam_addr = 0x8000000000000010UL;
if (is_shub1()) {
if (enable_shub_wars_1_1()) {
/* Bugfix code for SHUB 1.1 */
if (pda->pio_shub_war_cam_addr)
*pda->pio_shub_war_cam_addr = 0x8000000000000010UL;
}
if (pda->sn_lb_int_war_ticks == 0)
sn_lb_int_war_check();
pda->sn_lb_int_war_ticks++;
if (pda->sn_lb_int_war_ticks >= SN_LB_INT_WAR_INTERVAL)
pda->sn_lb_int_war_ticks = 0;
}
if (pda->sn_lb_int_war_ticks == 0)
sn_lb_int_war_check();
pda->sn_lb_int_war_ticks++;
if (pda->sn_lb_int_war_ticks >= SN_LB_INT_WAR_INTERVAL)
pda->sn_lb_int_war_ticks = 0;
}
......@@ -7,4 +7,4 @@
#
# Makefile for the sn pci general routines.
obj-y := pci_dma.o tioca_provider.o pcibr/
obj-y := pci_dma.o tioca_provider.o tioce_provider.o pcibr/
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
......@@ -215,8 +215,8 @@ void sn_dma_flush(uint64_t addr)
int is_tio;
int wid_num;
int i, j;
int bwin;
uint64_t flags;
uint64_t itte;
struct hubdev_info *hubinfo;
volatile struct sn_flush_device_list *p;
struct sn_flush_nasid_entry *flush_nasid_list;
......@@ -233,31 +233,36 @@ void sn_dma_flush(uint64_t addr)
if (!hubinfo) {
BUG();
}
is_tio = (nasid & 1);
if (is_tio) {
wid_num = TIO_SWIN_WIDGETNUM(addr);
bwin = TIO_BWIN_WINDOWNUM(addr);
} else {
wid_num = SWIN_WIDGETNUM(addr);
bwin = BWIN_WINDOWNUM(addr);
}
flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
if (flush_nasid_list->widget_p == NULL)
return;
if (bwin > 0) {
uint64_t itte = flush_nasid_list->iio_itte[bwin];
if (is_tio) {
wid_num = (itte >> TIO_ITTE_WIDGET_SHIFT) &
TIO_ITTE_WIDGET_MASK;
} else {
wid_num = (itte >> IIO_ITTE_WIDGET_SHIFT) &
IIO_ITTE_WIDGET_MASK;
}
is_tio = (nasid & 1);
if (is_tio) {
int itte_index;
if (TIO_HWIN(addr))
itte_index = 0;
else if (TIO_BWIN_WINDOWNUM(addr))
itte_index = TIO_BWIN_WINDOWNUM(addr);
else
itte_index = -1;
if (itte_index >= 0) {
itte = flush_nasid_list->iio_itte[itte_index];
if (! TIO_ITTE_VALID(itte))
return;
wid_num = TIO_ITTE_WIDGET(itte);
} else
wid_num = TIO_SWIN_WIDGETNUM(addr);
} else {
if (BWIN_WINDOWNUM(addr)) {
itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
wid_num = IIO_ITTE_WIDGET(itte);
} else
wid_num = SWIN_WIDGETNUM(addr);
}
if (flush_nasid_list->widget_p == NULL)
return;
if (flush_nasid_list->widget_p[wid_num] == NULL)
return;
p = &flush_nasid_list->widget_p[wid_num][0];
......@@ -283,10 +288,16 @@ void sn_dma_flush(uint64_t addr)
/*
* For TIOCP use the Device(x) Write Request Buffer Flush Bridge
* register since it ensures the data has entered the coherence
* domain, unlike PIC
* domain, unlike PIC.
*/
if (is_tio) {
uint32_t tio_id = REMOTE_HUB_L(nasid, TIO_NODE_ID);
/*
* Note: devices behind TIOCE should never be matched in the
* above code, and so the following code is PIC/CP centric.
* If CE ever needs the sn_dma_flush mechanism, we will have
* to account for that here and in tioce_bus_fixup().
*/
uint32_t tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID));
uint32_t revnum = XWIDGET_PART_REV_NUM(tio_id);
/* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
......@@ -306,7 +317,8 @@ void sn_dma_flush(uint64_t addr)
*(volatile uint32_t *)(p->sfdl_force_int_addr) = 1;
/* wait for the interrupt to come back. */
while (*(p->sfdl_flush_addr) != 0x10f) ;
while (*(p->sfdl_flush_addr) != 0x10f)
cpu_relax();
/* okay, everything is synched up. */
spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, flags);
......
......@@ -15,6 +15,7 @@
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/sn2/sn_hwperf.h>
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
......@@ -60,7 +61,7 @@ static int sal_pcibr_error_interrupt(struct pcibus_info *soft)
ret_stuff.status = 0;
ret_stuff.v0 = 0;
segment = 0;
segment = soft->pbi_buscommon.bs_persist_segment;
busnum = soft->pbi_buscommon.bs_persist_busnum;
SAL_CALL_NOLOCK(ret_stuff,
(u64) SN_SAL_IOIF_ERROR_INTERRUPT,
......@@ -88,6 +89,7 @@ void *
pcibr_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
{
int nasid, cnode, j;
cnodeid_t near_cnode;
struct hubdev_info *hubdev_info;
struct pcibus_info *soft;
struct sn_flush_device_list *sn_flush_device_list;
......@@ -115,7 +117,7 @@ pcibr_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *cont
/*
* register the bridge's error interrupt handler
*/
if (request_irq(SGI_PCIBR_ERROR, (void *)pcibr_error_intr_handler,
if (request_irq(SGI_PCIASIC_ERROR, (void *)pcibr_error_intr_handler,
SA_SHIRQ, "PCIBR error", (void *)(soft))) {
printk(KERN_WARNING
"pcibr cannot allocate interrupt for error handler\n");
......@@ -142,9 +144,12 @@ pcibr_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *cont
j++, sn_flush_device_list++) {
if (sn_flush_device_list->sfdl_slot == -1)
continue;
if (sn_flush_device_list->
sfdl_persistent_busnum ==
soft->pbi_buscommon.bs_persist_busnum)
if ((sn_flush_device_list->
sfdl_persistent_segment ==
soft->pbi_buscommon.bs_persist_segment) &&
(sn_flush_device_list->
sfdl_persistent_busnum ==
soft->pbi_buscommon.bs_persist_busnum))
sn_flush_device_list->sfdl_pcibus_info =
soft;
}
......@@ -158,12 +163,18 @@ pcibr_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *cont
memset(soft->pbi_int_ate_resource.ate, 0,
(soft->pbi_int_ate_size * sizeof(uint64_t)));
if (prom_bussoft->bs_asic_type == PCIIO_ASIC_TYPE_TIOCP)
/*
* TIO PCI Bridge with no closest node information.
* FIXME: Find another way to determine the closest node
*/
controller->node = -1;
if (prom_bussoft->bs_asic_type == PCIIO_ASIC_TYPE_TIOCP) {
/* TIO PCI Bridge: find nearest node with CPUs */
int e = sn_hwperf_get_nearest_node(cnode, NULL, &near_cnode);
if (e < 0) {
near_cnode = (cnodeid_t)-1; /* use any node */
printk(KERN_WARNING "pcibr_bus_fixup: failed to find "
"near node with CPUs to TIO node %d, err=%d\n",
cnode, e);
}
controller->node = near_cnode;
}
else
controller->node = cnode;
return soft;
......@@ -175,6 +186,9 @@ void pcibr_force_interrupt(struct sn_irq_info *sn_irq_info)
struct pcibus_info *pcibus_info;
int bit = sn_irq_info->irq_int_bit;
if (! sn_irq_info->irq_bridge)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (pcidev_info) {
pcibus_info =
......@@ -184,7 +198,7 @@ void pcibr_force_interrupt(struct sn_irq_info *sn_irq_info)
}
}
void pcibr_change_devices_irq(struct sn_irq_info *sn_irq_info)
void pcibr_target_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
......@@ -219,6 +233,8 @@ struct sn_pcibus_provider pcibr_provider = {
.dma_map_consistent = pcibr_dma_map_consistent,
.dma_unmap = pcibr_dma_unmap,
.bus_fixup = pcibr_bus_fixup,
.force_interrupt = pcibr_force_interrupt,
.target_interrupt = pcibr_target_interrupt
};
int
......
......@@ -559,7 +559,7 @@ tioca_error_intr_handler(int irq, void *arg, struct pt_regs *pt)
ret_stuff.status = 0;
ret_stuff.v0 = 0;
segment = 0;
segment = soft->ca_common.bs_persist_segment;
busnum = soft->ca_common.bs_persist_busnum;
SAL_CALL_NOLOCK(ret_stuff,
......@@ -622,7 +622,8 @@ tioca_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *cont
nasid_to_cnodeid(tioca_common->ca_closest_nasid);
tioca_common->ca_kernel_private = (uint64_t) tioca_kern;
bus = pci_find_bus(0, tioca_common->ca_common.bs_persist_busnum);
bus = pci_find_bus(tioca_common->ca_common.bs_persist_segment,
tioca_common->ca_common.bs_persist_busnum);
BUG_ON(!bus);
tioca_kern->ca_devices = &bus->devices;
......@@ -656,6 +657,8 @@ static struct sn_pcibus_provider tioca_pci_interfaces = {
.dma_map_consistent = tioca_dma_map,
.dma_unmap = tioca_dma_unmap,
.bus_fixup = tioca_bus_fixup,
.force_interrupt = NULL,
.target_interrupt = NULL
};
/**
......
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003-2005 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/tioce_provider.h>
/**
* Bus address ranges for the 5 flavors of TIOCE DMA
*/
#define TIOCE_D64_MIN 0x8000000000000000UL
#define TIOCE_D64_MAX 0xffffffffffffffffUL
#define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
#define TIOCE_D32_MIN 0x0000000080000000UL
#define TIOCE_D32_MAX 0x00000000ffffffffUL
#define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
#define TIOCE_M32_MIN 0x0000000000000000UL
#define TIOCE_M32_MAX 0x000000007fffffffUL
#define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
#define TIOCE_M40_MIN 0x0000004000000000UL
#define TIOCE_M40_MAX 0x0000007fffffffffUL
#define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
#define TIOCE_M40S_MIN 0x0000008000000000UL
#define TIOCE_M40S_MAX 0x000000ffffffffffUL
#define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
/*
* ATE manipulation macros.
*/
#define ATE_PAGESHIFT(ps) (__ffs(ps))
#define ATE_PAGEMASK(ps) ((ps)-1)
#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
#define ATE_NPAGES(start, len, pagesize) \
(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
#define ATE_VALID(ate) ((ate) & (1UL << 63))
#define ATE_MAKE(addr, ps) (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63))
/*
* Flavors of ate-based mapping supported by tioce_alloc_map()
*/
#define TIOCE_ATE_M32 1
#define TIOCE_ATE_M40 2
#define TIOCE_ATE_M40S 3
#define KB(x) ((x) << 10)
#define MB(x) ((x) << 20)
#define GB(x) ((x) << 30)
/**
* tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
* @ct_addr: system coretalk address
*
* Map @ct_addr into 64-bit CE bus space. No device context is necessary
* and no CE mapping are consumed.
*
* Bits 53:0 come from the coretalk address. The remaining bits are set as
* follows:
*
* 63 - must be 1 to indicate d64 mode to CE hardware
* 62 - barrier bit ... controlled with tioce_dma_barrier()
* 61 - 0 since this is not an MSI transaction
* 60:54 - reserved, MBZ
*/
static uint64_t
tioce_dma_d64(unsigned long ct_addr)
{
uint64_t bus_addr;
bus_addr = ct_addr | (1UL << 63);
return bus_addr;
}
/**
* pcidev_to_tioce - return misc ce related pointers given a pci_dev
* @pci_dev: pci device context
* @base: ptr to store struct tioce_mmr * for the CE holding this device
* @kernel: ptr to store struct tioce_kernel * for the CE holding this device
* @port: ptr to store the CE port number that this device is on
*
* Return pointers to various CE-related structures for the CE upstream of
* @pci_dev.
*/
static inline void
pcidev_to_tioce(struct pci_dev *pdev, struct tioce **base,
struct tioce_kernel **kernel, int *port)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce_kernel *ce_kernel;
pcidev_info = SN_PCIDEV_INFO(pdev);
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
if (base)
*base = (struct tioce *)ce_common->ce_pcibus.bs_base;
if (kernel)
*kernel = ce_kernel;
/*
* we use port as a zero-based value internally, even though the
* documentation is 1-based.
*/
if (port)
*port =
(pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
}
/**
* tioce_alloc_map - Given a coretalk address, map it to pcie bus address
* space using one of the various ATE-based address modes.
* @ce_kern: tioce context
* @type: map mode to use
* @port: 0-based port that the requesting device is downstream of
* @ct_addr: the coretalk address to map
* @len: number of bytes to map
*
* Given the addressing type, set up various paramaters that define the
* ATE pool to use. Search for a contiguous block of entries to cover the
* length, and if enough resources exist, fill in the ATE's and construct a
* tioce_dmamap struct to track the mapping.
*/
static uint64_t
tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
uint64_t ct_addr, int len)
{
int i;
int j;
int first;
int last;
int entries;
int nates;
int pagesize;
uint64_t *ate_shadow;
uint64_t *ate_reg;
uint64_t addr;
struct tioce *ce_mmr;
uint64_t bus_base;
struct tioce_dmamap *map;
ce_mmr = (struct tioce *)ce_kern->ce_common->ce_pcibus.bs_base;
switch (type) {
case TIOCE_ATE_M32:
/*
* The first 64 entries of the ate3240 pool are dedicated to
* super-page (TIOCE_ATE_M40S) mode.
*/
first = 64;
entries = TIOCE_NUM_M3240_ATES - 64;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = ce_kern->ce_ate3240_pagesize;
bus_base = TIOCE_M32_MIN;
break;
case TIOCE_ATE_M40:
first = 0;
entries = TIOCE_NUM_M40_ATES;
ate_shadow = ce_kern->ce_ate40_shadow;
ate_reg = ce_mmr->ce_ure_ate40;
pagesize = MB(64);
bus_base = TIOCE_M40_MIN;
break;
case TIOCE_ATE_M40S:
/*
* ate3240 entries 0-31 are dedicated to port1 super-page
* mappings. ate3240 entries 32-63 are dedicated to port2.
*/
first = port * 32;
entries = 32;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = GB(16);
bus_base = TIOCE_M40S_MIN;
break;
default:
return 0;
}
nates = ATE_NPAGES(ct_addr, len, pagesize);
if (nates > entries)
return 0;
last = first + entries - nates;
for (i = first; i <= last; i++) {
if (ATE_VALID(ate_shadow[i]))
continue;
for (j = i; j < i + nates; j++)
if (ATE_VALID(ate_shadow[j]))
break;
if (j >= i + nates)
break;
}
if (i > last)
return 0;
map = kcalloc(1, sizeof(struct tioce_dmamap), GFP_ATOMIC);
if (!map)
return 0;
addr = ct_addr;
for (j = 0; j < nates; j++) {
uint64_t ate;
ate = ATE_MAKE(addr, pagesize);
ate_shadow[i + j] = ate;
ate_reg[i + j] = ate;
addr += pagesize;
}
map->refcnt = 1;
map->nbytes = nates * pagesize;
map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
map->pci_start = bus_base + (i * pagesize);
map->ate_hw = &ate_reg[i];
map->ate_shadow = &ate_shadow[i];
map->ate_count = nates;
list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
return (map->pci_start + (ct_addr - map->ct_start));
}
/**
* tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
* @pdev: linux pci_dev representing the function
* @paddr: system physical address
*
* Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
*/
static uint64_t
tioce_dma_d32(struct pci_dev *pdev, uint64_t ct_addr)
{
int dma_ok;
int port;
struct tioce *ce_mmr;
struct tioce_kernel *ce_kern;
uint64_t ct_upper;
uint64_t ct_lower;
dma_addr_t bus_addr;
ct_upper = ct_addr & ~0x3fffffffUL;
ct_lower = ct_addr & 0x3fffffffUL;
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
volatile uint64_t tmp;
ce_kern->ce_port[port].dirmap_shadow = ct_upper;
ce_mmr->ce_ure_dir_map[port] = ct_upper;
tmp = ce_mmr->ce_ure_dir_map[port];
dma_ok = 1;
} else
dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
if (dma_ok) {
ce_kern->ce_port[port].dirmap_refcnt++;
bus_addr = TIOCE_D32_MIN + ct_lower;
} else
bus_addr = 0;
return bus_addr;
}
/**
* tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
* the barrier bit.
* @bus_addr: bus address to swizzle
*
* Given a TIOCE bus address, set the appropriate bit to indicate barrier
* attributes.
*/
static uint64_t
tioce_dma_barrier(uint64_t bus_addr, int on)
{
uint64_t barrier_bit;
/* barrier not supported in M40/M40S mode */
if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
return bus_addr;
if (TIOCE_D64_ADDR(bus_addr))
barrier_bit = (1UL << 62);
else /* must be m32 or d32 */
barrier_bit = (1UL << 30);
return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
}
/**
* tioce_dma_unmap - release CE mapping resources
* @pdev: linux pci_dev representing the function
* @bus_addr: bus address returned by an earlier tioce_dma_map
* @dir: mapping direction (unused)
*
* Locate mapping resources associated with @bus_addr and release them.
* For mappings created using the direct modes there are no resources
* to release.
*/
void
tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
{
int i;
int port;
struct tioce_kernel *ce_kern;
struct tioce *ce_mmr;
unsigned long flags;
bus_addr = tioce_dma_barrier(bus_addr, 0);
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
/* nothing to do for D64 */
if (TIOCE_D64_ADDR(bus_addr))
return;
spin_lock_irqsave(&ce_kern->ce_lock, flags);
if (TIOCE_D32_ADDR(bus_addr)) {
if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
ce_kern->ce_port[port].dirmap_shadow = 0;
ce_mmr->ce_ure_dir_map[port] = 0;
}
} else {
struct tioce_dmamap *map;
list_for_each_entry(map, &ce_kern->ce_dmamap_list,
ce_dmamap_list) {
uint64_t last;
last = map->pci_start + map->nbytes - 1;
if (bus_addr >= map->pci_start && bus_addr <= last)
break;
}
if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
printk(KERN_WARNING
"%s: %s - no map found for bus_addr 0x%lx\n",
__FUNCTION__, pci_name(pdev), bus_addr);
} else if (--map->refcnt == 0) {
for (i = 0; i < map->ate_count; i++) {
map->ate_shadow[i] = 0;
map->ate_hw[i] = 0;
}
list_del(&map->ce_dmamap_list);
kfree(map);
}
}
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
}
/**
* tioce_do_dma_map - map pages for PCI DMA
* @pdev: linux pci_dev representing the function
* @paddr: host physical address to map
* @byte_count: bytes to map
*
* This is the main wrapper for mapping host physical pages to CE PCI space.
* The mapping mode used is based on the device's dma_mask.
*/
static uint64_t
tioce_do_dma_map(struct pci_dev *pdev, uint64_t paddr, size_t byte_count,
int barrier)
{
unsigned long flags;
uint64_t ct_addr;
uint64_t mapaddr = 0;
struct tioce_kernel *ce_kern;
struct tioce_dmamap *map;
int port;
uint64_t dma_mask;
dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
/* cards must be able to address at least 31 bits */
if (dma_mask < 0x7fffffffUL)
return 0;
ct_addr = PHYS_TO_TIODMA(paddr);
/*
* If the device can generate 64 bit addresses, create a D64 map.
* Since this should never fail, bypass the rest of the checks.
*/
if (dma_mask == ~0UL) {
mapaddr = tioce_dma_d64(ct_addr);
goto dma_map_done;
}
pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
spin_lock_irqsave(&ce_kern->ce_lock, flags);
/*
* D64 didn't work ... See if we have an existing map that covers
* this address range. Must account for devices dma_mask here since
* an existing map might have been done in a mode using more pci
* address bits than this device can support.
*/
list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
uint64_t last;
last = map->ct_start + map->nbytes - 1;
if (ct_addr >= map->ct_start &&
ct_addr + byte_count - 1 <= last &&
map->pci_start <= dma_mask) {
map->refcnt++;
mapaddr = map->pci_start + (ct_addr - map->ct_start);
break;
}
}
/*
* If we don't have a map yet, and the card can generate 40
* bit addresses, try the M40/M40S modes. Note these modes do not
* support a barrier bit, so if we need a consistent map these
* won't work.
*/
if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
/*
* We have two options for 40-bit mappings: 16GB "super" ATE's
* and 64MB "regular" ATE's. We'll try both if needed for a
* given mapping but which one we try first depends on the
* size. For requests >64MB, prefer to use a super page with
* regular as the fallback. Otherwise, try in the reverse order.
*/
if (byte_count > MB(64)) {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count);
} else {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count);
}
}
/*
* 32-bit direct is the next mode to try
*/
if (!mapaddr && dma_mask >= 0xffffffffUL)
mapaddr = tioce_dma_d32(pdev, ct_addr);
/*
* Last resort, try 32-bit ATE-based map.
*/
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
byte_count);
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
dma_map_done:
if (mapaddr & barrier)
mapaddr = tioce_dma_barrier(mapaddr, 1);
return mapaddr;
}
/**
* tioce_dma - standard pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit clear
* in the address.
*/
static uint64_t
tioce_dma(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 0);
}
/**
* tioce_dma_consistent - consistent pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit set
* in the address.
*/ static uint64_t
tioce_dma_consistent(struct pci_dev *pdev, uint64_t paddr, size_t byte_count)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 1);
}
/**
* tioce_error_intr_handler - SGI TIO CE error interrupt handler
* @irq: unused
* @arg: pointer to tioce_common struct for the given CE
* @pt: unused
*
* Handle a CE error interrupt. Simply a wrapper around a SAL call which
* defers processing to the SGI prom.
*/ static irqreturn_t
tioce_error_intr_handler(int irq, void *arg, struct pt_regs *pt)
{
struct tioce_common *soft = arg;
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
soft->ce_pcibus.bs_persist_segment,
soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
return IRQ_HANDLED;
}
/**
* tioce_kern_init - init kernel structures related to a given TIOCE
* @tioce_common: ptr to a cached tioce_common struct that originated in prom
*/ static struct tioce_kernel *
tioce_kern_init(struct tioce_common *tioce_common)
{
int i;
uint32_t tmp;
struct tioce *tioce_mmr;
struct tioce_kernel *tioce_kern;
tioce_kern = kcalloc(1, sizeof(struct tioce_kernel), GFP_KERNEL);
if (!tioce_kern) {
return NULL;
}
tioce_kern->ce_common = tioce_common;
spin_lock_init(&tioce_kern->ce_lock);
INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
tioce_common->ce_kernel_private = (uint64_t) tioce_kern;
/*
* Determine the secondary bus number of the port2 logical PPB.
* This is used to decide whether a given pci device resides on
* port1 or port2. Note: We don't have enough plumbing set up
* here to use pci_read_config_xxx() so use the raw_pci_ops vector.
*/
raw_pci_ops->read(tioce_common->ce_pcibus.bs_persist_segment,
tioce_common->ce_pcibus.bs_persist_busnum,
PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1, &tmp);
tioce_kern->ce_port1_secondary = (uint8_t) tmp;
/*
* Set PMU pagesize to the largest size available, and zero out
* the ate's.
*/
tioce_mmr = (struct tioce *)tioce_common->ce_pcibus.bs_base;
tioce_mmr->ce_ure_page_map &= ~CE_URE_PAGESIZE_MASK;
tioce_mmr->ce_ure_page_map |= CE_URE_256K_PAGESIZE;
tioce_kern->ce_ate3240_pagesize = KB(256);
for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
tioce_kern->ce_ate40_shadow[i] = 0;
tioce_mmr->ce_ure_ate40[i] = 0;
}
for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
tioce_kern->ce_ate3240_shadow[i] = 0;
tioce_mmr->ce_ure_ate3240[i] = 0;
}
return tioce_kern;
}
/**
* tioce_force_interrupt - implement altix force_interrupt() backend for CE
* @sn_irq_info: sn asic irq that we need an interrupt generated for
*
* Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
* force a secondary interrupt to be generated. This is to work around an
* asic issue where there is a small window of opportunity for a legacy device
* interrupt to be lost.
*/
static void
tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce *ce_mmr;
uint64_t force_int_val;
if (!sn_irq_info->irq_bridge)
return;
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
/*
* irq_int_bit is originally set up by prom, and holds the interrupt
* bit shift (not mask) as defined by the bit definitions in the
* ce_adm_int mmr. These shifts are not the same for the
* ce_adm_force_int register, so do an explicit mapping here to make
* things clearer.
*/
switch (sn_irq_info->irq_int_bit) {
case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
break;
default:
return;
}
ce_mmr->ce_adm_force_int = force_int_val;
}
/**
* tioce_target_interrupt - implement set_irq_affinity for tioce resident
* functions. Note: only applies to line interrupts, not MSI's.
*
* @sn_irq_info: SN IRQ context
*
* Given an sn_irq_info, set the associated CE device's interrupt destination
* register. Since the interrupt destination registers are on a per-ce-slot
* basis, this will retarget line interrupts for all functions downstream of
* the slot.
*/
static void
tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce *ce_mmr;
int bit;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce *)ce_common->ce_pcibus.bs_base;
bit = sn_irq_info->irq_int_bit;
ce_mmr->ce_adm_int_mask |= (1UL << bit);
ce_mmr->ce_adm_int_dest[bit] =
((uint64_t)sn_irq_info->irq_irq << INTR_VECTOR_SHFT) |
sn_irq_info->irq_xtalkaddr;
ce_mmr->ce_adm_int_mask &= ~(1UL << bit);
tioce_force_interrupt(sn_irq_info);
}
/**
* tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
* @prom_bussoft: Common prom/kernel struct representing the bus
*
* Replicates the tioce_common pointed to by @prom_bussoft in kernel
* space. Allocates and initializes a kernel-only area for a given CE,
* and sets up an irq for handling CE error interrupts.
*
* On successful setup, returns the kernel version of tioce_common back to
* the caller.
*/
static void *
tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
{
struct tioce_common *tioce_common;
/*
* Allocate kernel bus soft and copy from prom.
*/
tioce_common = kcalloc(1, sizeof(struct tioce_common), GFP_KERNEL);
if (!tioce_common)
return NULL;
memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
tioce_common->ce_pcibus.bs_base |= __IA64_UNCACHED_OFFSET;
if (tioce_kern_init(tioce_common) == NULL) {
kfree(tioce_common);
return NULL;
}
if (request_irq(SGI_PCIASIC_ERROR,
tioce_error_intr_handler,
SA_SHIRQ, "TIOCE error", (void *)tioce_common))
printk(KERN_WARNING
"%s: Unable to get irq %d. "
"Error interrupts won't be routed for "
"TIOCE bus %04x:%02x\n",
__FUNCTION__, SGI_PCIASIC_ERROR,
tioce_common->ce_pcibus.bs_persist_segment,
tioce_common->ce_pcibus.bs_persist_busnum);
return tioce_common;
}
static struct sn_pcibus_provider tioce_pci_interfaces = {
.dma_map = tioce_dma,
.dma_map_consistent = tioce_dma_consistent,
.dma_unmap = tioce_dma_unmap,
.bus_fixup = tioce_bus_fixup,
.force_interrupt = tioce_force_interrupt,
.target_interrupt = tioce_target_interrupt
};
/**
* tioce_init_provider - init SN PCI provider ops for TIO CE
*/
int
tioce_init_provider(void)
{
sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
return 0;
}
......@@ -19,6 +19,7 @@
#include <linux/sched.h>
#include <linux/byteorder/generic.h>
#include <asm/sn/sn_sal.h>
#include <asm/unaligned.h>
#include "snsc.h"
static struct subch_data_s *event_sd;
......@@ -62,13 +63,16 @@ static int
scdrv_parse_event(char *event, int *src, int *code, int *esp_code, char *desc)
{
char *desc_end;
__be32 from_buf;
/* record event source address */
*src = be32_to_cpup((__be32 *)event);
from_buf = get_unaligned((__be32 *)event);
*src = be32_to_cpup(&from_buf);
event += 4; /* move on to event code */
/* record the system controller's event code */
*code = be32_to_cpup((__be32 *)event);
from_buf = get_unaligned((__be32 *)event);
*code = be32_to_cpup(&from_buf);
event += 4; /* move on to event arguments */
/* how many arguments are in the packet? */
......@@ -82,7 +86,8 @@ scdrv_parse_event(char *event, int *src, int *code, int *esp_code, char *desc)
/* not an integer argument, so give up */
return -1;
}
*esp_code = be32_to_cpup((__be32 *)event);
from_buf = get_unaligned((__be32 *)event);
*esp_code = be32_to_cpup(&from_buf);
event += 4;
/* parse out the event description */
......
......@@ -116,6 +116,11 @@ extern int __initdata nid_to_pxm_map[MAX_NUMNODES];
extern u16 ia64_acpiid_to_sapicid[];
/*
* Refer Intel ACPI _PDC support document for bit definitions
*/
#define ACPI_PDC_EST_CAPABILITY_SMP 0x8
#endif /*__KERNEL__*/
#endif /*_ASM_ACPI_H*/
......@@ -81,6 +81,7 @@ struct flock {
#define F_LINUX_SPECIFIC_BASE 1024
#define force_o_largefile() ( ! (current->personality & PER_LINUX32) )
#define force_o_largefile() \
(personality(current->personality) != PER_LINUX32)
#endif /* _ASM_IA64_FCNTL_H */
......@@ -23,7 +23,7 @@
#define __SLOW_DOWN_IO do { } while (0)
#define SLOW_DOWN_IO do { } while (0)
#define __IA64_UNCACHED_OFFSET 0xc000000000000000UL /* region 6 */
#define __IA64_UNCACHED_OFFSET RGN_BASE(RGN_UNCACHED)
/*
* The legacy I/O space defined by the ia64 architecture supports only 65536 ports, but
......@@ -41,7 +41,7 @@
#define IO_SPACE_BASE(space) ((space) << IO_SPACE_BITS)
#define IO_SPACE_PORT(port) ((port) & (IO_SPACE_SIZE - 1))
#define IO_SPACE_SPARSE_ENCODING(p) ((((p) >> 2) << 12) | (p & 0xfff))
#define IO_SPACE_SPARSE_ENCODING(p) ((((p) >> 2) << 12) | ((p) & 0xfff))
struct io_space {
unsigned long mmio_base; /* base in MMIO space */
......
......@@ -2,10 +2,12 @@
#define __MMU_H
/*
* Type for a context number. We declare it volatile to ensure proper ordering when it's
* accessed outside of spinlock'd critical sections (e.g., as done in activate_mm() and
* init_new_context()).
* Type for a context number. We declare it volatile to ensure proper
* ordering when it's accessed outside of spinlock'd critical sections
* (e.g., as done in activate_mm() and init_new_context()).
*/
typedef volatile unsigned long mm_context_t;
typedef unsigned long nv_mm_context_t;
#endif
......@@ -19,6 +19,7 @@
#define ia64_rid(ctx,addr) (((ctx) << 3) | (addr >> 61))
# include <asm/page.h>
# ifndef __ASSEMBLY__
#include <linux/compiler.h>
......@@ -55,34 +56,46 @@ static inline void
delayed_tlb_flush (void)
{
extern void local_flush_tlb_all (void);
unsigned long flags;
if (unlikely(__ia64_per_cpu_var(ia64_need_tlb_flush))) {
local_flush_tlb_all();
__ia64_per_cpu_var(ia64_need_tlb_flush) = 0;
spin_lock_irqsave(&ia64_ctx.lock, flags);
{
if (__ia64_per_cpu_var(ia64_need_tlb_flush)) {
local_flush_tlb_all();
__ia64_per_cpu_var(ia64_need_tlb_flush) = 0;
}
}
spin_unlock_irqrestore(&ia64_ctx.lock, flags);
}
}
static inline mm_context_t
static inline nv_mm_context_t
get_mmu_context (struct mm_struct *mm)
{
unsigned long flags;
mm_context_t context = mm->context;
if (context)
return context;
spin_lock_irqsave(&ia64_ctx.lock, flags);
{
/* re-check, now that we've got the lock: */
context = mm->context;
if (context == 0) {
cpus_clear(mm->cpu_vm_mask);
if (ia64_ctx.next >= ia64_ctx.limit)
wrap_mmu_context(mm);
mm->context = context = ia64_ctx.next++;
nv_mm_context_t context = mm->context;
if (unlikely(!context)) {
spin_lock_irqsave(&ia64_ctx.lock, flags);
{
/* re-check, now that we've got the lock: */
context = mm->context;
if (context == 0) {
cpus_clear(mm->cpu_vm_mask);
if (ia64_ctx.next >= ia64_ctx.limit)
wrap_mmu_context(mm);
mm->context = context = ia64_ctx.next++;
}
}
spin_unlock_irqrestore(&ia64_ctx.lock, flags);
}
spin_unlock_irqrestore(&ia64_ctx.lock, flags);
/*
* Ensure we're not starting to use "context" before any old
* uses of it are gone from our TLB.
*/
delayed_tlb_flush();
return context;
}
......@@ -104,13 +117,13 @@ destroy_context (struct mm_struct *mm)
}
static inline void
reload_context (mm_context_t context)
reload_context (nv_mm_context_t context)
{
unsigned long rid;
unsigned long rid_incr = 0;
unsigned long rr0, rr1, rr2, rr3, rr4, old_rr4;
old_rr4 = ia64_get_rr(0x8000000000000000UL);
old_rr4 = ia64_get_rr(RGN_BASE(RGN_HPAGE));
rid = context << 3; /* make space for encoding the region number */
rid_incr = 1 << 8;
......@@ -122,6 +135,10 @@ reload_context (mm_context_t context)
rr4 = rr0 + 4*rid_incr;
#ifdef CONFIG_HUGETLB_PAGE
rr4 = (rr4 & (~(0xfcUL))) | (old_rr4 & 0xfc);
# if RGN_HPAGE != 4
# error "reload_context assumes RGN_HPAGE is 4"
# endif
#endif
ia64_set_rr(0x0000000000000000UL, rr0);
......@@ -138,7 +155,7 @@ reload_context (mm_context_t context)
static inline void
activate_context (struct mm_struct *mm)
{
mm_context_t context;
nv_mm_context_t context;
do {
context = get_mmu_context(mm);
......@@ -157,8 +174,6 @@ activate_context (struct mm_struct *mm)
static inline void
activate_mm (struct mm_struct *prev, struct mm_struct *next)
{
delayed_tlb_flush();
/*
* We may get interrupts here, but that's OK because interrupt handlers cannot
* touch user-space.
......
......@@ -12,6 +12,19 @@
#include <asm/intrinsics.h>
#include <asm/types.h>
/*
* The top three bits of an IA64 address are its Region Number.
* Different regions are assigned to different purposes.
*/
#define RGN_SHIFT (61)
#define RGN_BASE(r) (__IA64_UL_CONST(r)<<RGN_SHIFT)
#define RGN_BITS (RGN_BASE(-1))
#define RGN_KERNEL 7 /* Identity mapped region */
#define RGN_UNCACHED 6 /* Identity mapped I/O region */
#define RGN_GATE 5 /* Gate page, Kernel text, etc */
#define RGN_HPAGE 4 /* For Huge TLB pages */
/*
* PAGE_SHIFT determines the actual kernel page size.
*/
......@@ -36,10 +49,9 @@
#define RGN_MAP_LIMIT ((1UL << (4*PAGE_SHIFT - 12)) - PAGE_SIZE) /* per region addr limit */
#ifdef CONFIG_HUGETLB_PAGE
# define REGION_HPAGE (4UL) /* note: this is hardcoded in reload_context()!*/
# define REGION_SHIFT 61
# define HPAGE_REGION_BASE (REGION_HPAGE << REGION_SHIFT)
# define HPAGE_REGION_BASE RGN_BASE(RGN_HPAGE)
# define HPAGE_SHIFT hpage_shift
# define HPAGE_SHIFT_DEFAULT 28 /* check ia64 SDM for architecture supported size */
# define HPAGE_SIZE (__IA64_UL_CONST(1) << HPAGE_SHIFT)
......@@ -130,16 +142,13 @@ typedef union ia64_va {
#define REGION_NUMBER(x) ({ia64_va _v; _v.l = (long) (x); _v.f.reg;})
#define REGION_OFFSET(x) ({ia64_va _v; _v.l = (long) (x); _v.f.off;})
#define REGION_SIZE REGION_NUMBER(1)
#define REGION_KERNEL 7
#ifdef CONFIG_HUGETLB_PAGE
# define htlbpage_to_page(x) (((unsigned long) REGION_NUMBER(x) << 61) \
| (REGION_OFFSET(x) >> (HPAGE_SHIFT-PAGE_SHIFT)))
# define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
# define is_hugepage_only_range(mm, addr, len) \
(REGION_NUMBER(addr) == REGION_HPAGE && \
REGION_NUMBER((addr)+(len)-1) == REGION_HPAGE)
(REGION_NUMBER(addr) == RGN_HPAGE && \
REGION_NUMBER((addr)+(len)-1) == RGN_HPAGE)
extern unsigned int hpage_shift;
#endif
......@@ -197,7 +206,7 @@ get_order (unsigned long size)
# define __pgprot(x) (x)
#endif /* !STRICT_MM_TYPECHECKS */
#define PAGE_OFFSET __IA64_UL_CONST(0xe000000000000000)
#define PAGE_OFFSET RGN_BASE(RGN_KERNEL)
#define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC | \
......
......@@ -75,6 +75,8 @@
#define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */
#define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */
#define PAL_VM_TR_READ 261 /* read contents of translation register */
#define PAL_GET_PSTATE 262 /* get the current P-state */
#define PAL_SET_PSTATE 263 /* set the P-state */
#ifndef __ASSEMBLY__
......@@ -1111,6 +1113,25 @@ ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf)
return iprv.status;
}
/* Get the current P-state information */
static inline s64
ia64_pal_get_pstate (u64 *pstate_index)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_GET_PSTATE, 0, 0, 0);
*pstate_index = iprv.v0;
return iprv.status;
}
/* Set the P-state */
static inline s64
ia64_pal_set_pstate (u64 pstate_index)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0);
return iprv.status;
}
/* Cause the processor to enter LIGHT HALT state, where prefetching and execution are
* suspended, but cache and TLB coherency is maintained.
*/
......
......@@ -204,21 +204,18 @@ ia64_phys_addr_valid (unsigned long addr)
#define set_pte(ptep, pteval) (*(ptep) = (pteval))
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
#define RGN_SIZE (1UL << 61)
#define RGN_KERNEL 7
#define VMALLOC_START 0xa000000200000000UL
#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
#ifdef CONFIG_VIRTUAL_MEM_MAP
# define VMALLOC_END_INIT (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END vmalloc_end
extern unsigned long vmalloc_end;
#else
# define VMALLOC_END (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
#endif
/* fs/proc/kcore.c */
#define kc_vaddr_to_offset(v) ((v) - 0xa000000000000000UL)
#define kc_offset_to_vaddr(o) ((o) + 0xa000000000000000UL)
#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
/*
* Conversion functions: convert page frame number (pfn) and a protection value to a page
......
......@@ -3,6 +3,7 @@
*
* Copyright (C) 2003 Ken Chen <kenneth.w.chen@intel.com>
* Copyright (C) 2003 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 2005 Christoph Lameter <clameter@sgi.com>
*
* Based on asm-i386/rwsem.h and other architecture implementation.
*
......@@ -11,9 +12,9 @@
*
* The lock count is initialized to 0 (no active and no waiting lockers).
*
* When a writer subtracts WRITE_BIAS, it'll get 0xffff0001 for the case
* of an uncontended lock. Readers increment by 1 and see a positive value
* when uncontended, negative if there are writers (and maybe) readers
* When a writer subtracts WRITE_BIAS, it'll get 0xffffffff00000001 for
* the case of an uncontended lock. Readers increment by 1 and see a positive
* value when uncontended, negative if there are writers (and maybe) readers
* waiting (in which case it goes to sleep).
*/
......@@ -29,7 +30,7 @@
* the semaphore definition
*/
struct rw_semaphore {
signed int count;
signed long count;
spinlock_t wait_lock;
struct list_head wait_list;
#if RWSEM_DEBUG
......@@ -37,10 +38,10 @@ struct rw_semaphore {
#endif
};
#define RWSEM_UNLOCKED_VALUE 0x00000000
#define RWSEM_ACTIVE_BIAS 0x00000001
#define RWSEM_ACTIVE_MASK 0x0000ffff
#define RWSEM_WAITING_BIAS (-0x00010000)
#define RWSEM_UNLOCKED_VALUE __IA64_UL_CONST(0x0000000000000000)
#define RWSEM_ACTIVE_BIAS __IA64_UL_CONST(0x0000000000000001)
#define RWSEM_ACTIVE_MASK __IA64_UL_CONST(0x00000000ffffffff)
#define RWSEM_WAITING_BIAS -__IA64_UL_CONST(0x0000000100000000)
#define RWSEM_ACTIVE_READ_BIAS RWSEM_ACTIVE_BIAS
#define RWSEM_ACTIVE_WRITE_BIAS (RWSEM_WAITING_BIAS + RWSEM_ACTIVE_BIAS)
......@@ -83,7 +84,7 @@ init_rwsem (struct rw_semaphore *sem)
static inline void
__down_read (struct rw_semaphore *sem)
{
int result = ia64_fetchadd4_acq((unsigned int *)&sem->count, 1);
long result = ia64_fetchadd8_acq((unsigned long *)&sem->count, 1);
if (result < 0)
rwsem_down_read_failed(sem);
......@@ -95,7 +96,7 @@ __down_read (struct rw_semaphore *sem)
static inline void
__down_write (struct rw_semaphore *sem)
{
int old, new;
long old, new;
do {
old = sem->count;
......@@ -112,7 +113,7 @@ __down_write (struct rw_semaphore *sem)
static inline void
__up_read (struct rw_semaphore *sem)
{
int result = ia64_fetchadd4_rel((unsigned int *)&sem->count, -1);
long result = ia64_fetchadd8_rel((unsigned long *)&sem->count, -1);
if (result < 0 && (--result & RWSEM_ACTIVE_MASK) == 0)
rwsem_wake(sem);
......@@ -124,7 +125,7 @@ __up_read (struct rw_semaphore *sem)
static inline void
__up_write (struct rw_semaphore *sem)
{
int old, new;
long old, new;
do {
old = sem->count;
......@@ -141,7 +142,7 @@ __up_write (struct rw_semaphore *sem)
static inline int
__down_read_trylock (struct rw_semaphore *sem)
{
int tmp;
long tmp;
while ((tmp = sem->count) >= 0) {
if (tmp == cmpxchg_acq(&sem->count, tmp, tmp+1)) {
return 1;
......@@ -156,7 +157,7 @@ __down_read_trylock (struct rw_semaphore *sem)
static inline int
__down_write_trylock (struct rw_semaphore *sem)
{
int tmp = cmpxchg_acq(&sem->count, RWSEM_UNLOCKED_VALUE,
long tmp = cmpxchg_acq(&sem->count, RWSEM_UNLOCKED_VALUE,
RWSEM_ACTIVE_WRITE_BIAS);
return tmp == RWSEM_UNLOCKED_VALUE;
}
......@@ -167,7 +168,7 @@ __down_write_trylock (struct rw_semaphore *sem)
static inline void
__downgrade_write (struct rw_semaphore *sem)
{
int old, new;
long old, new;
do {
old = sem->count;
......@@ -182,7 +183,7 @@ __downgrade_write (struct rw_semaphore *sem)
* Implement atomic add functionality. These used to be "inline" functions, but GCC v3.1
* doesn't quite optimize this stuff right and ends up with bad calls to fetchandadd.
*/
#define rwsem_atomic_add(delta, sem) atomic_add(delta, (atomic_t *)(&(sem)->count))
#define rwsem_atomic_update(delta, sem) atomic_add_return(delta, (atomic_t *)(&(sem)->count))
#define rwsem_atomic_add(delta, sem) atomic64_add(delta, (atomic64_t *)(&(sem)->count))
#define rwsem_atomic_update(delta, sem) atomic64_add_return(delta, (atomic64_t *)(&(sem)->count))
#endif /* _ASM_IA64_RWSEM_H */
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) 1992-1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_ADDRS_H
......@@ -65,7 +65,6 @@
#define NASID_MASK ((u64)NASID_BITMASK << NASID_SHIFT)
#define AS_MASK ((u64)AS_BITMASK << AS_SHIFT)
#define REGION_BITS 0xe000000000000000UL
/*
......@@ -79,38 +78,30 @@
#define AS_CAC_SPACE (AS_CAC_VAL << AS_SHIFT)
/*
* Base addresses for various address ranges.
*/
#define CACHED 0xe000000000000000UL
#define UNCACHED 0xc000000000000000UL
#define UNCACHED_PHYS 0x8000000000000000UL
/*
* Virtual Mode Local & Global MMR space.
*/
#define SH1_LOCAL_MMR_OFFSET 0x8000000000UL
#define SH2_LOCAL_MMR_OFFSET 0x0200000000UL
#define LOCAL_MMR_OFFSET (is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET)
#define LOCAL_MMR_SPACE (UNCACHED | LOCAL_MMR_OFFSET)
#define LOCAL_PHYS_MMR_SPACE (UNCACHED_PHYS | LOCAL_MMR_OFFSET)
#define LOCAL_MMR_SPACE (__IA64_UNCACHED_OFFSET | LOCAL_MMR_OFFSET)
#define LOCAL_PHYS_MMR_SPACE (RGN_BASE(RGN_HPAGE) | LOCAL_MMR_OFFSET)
#define SH1_GLOBAL_MMR_OFFSET 0x0800000000UL
#define SH2_GLOBAL_MMR_OFFSET 0x0300000000UL
#define GLOBAL_MMR_OFFSET (is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET)
#define GLOBAL_MMR_SPACE (UNCACHED | GLOBAL_MMR_OFFSET)
#define GLOBAL_MMR_SPACE (__IA64_UNCACHED_OFFSET | GLOBAL_MMR_OFFSET)
/*
* Physical mode addresses
*/
#define GLOBAL_PHYS_MMR_SPACE (UNCACHED_PHYS | GLOBAL_MMR_OFFSET)
#define GLOBAL_PHYS_MMR_SPACE (RGN_BASE(RGN_HPAGE) | GLOBAL_MMR_OFFSET)
/*
* Clear region & AS bits.
*/
#define TO_PHYS_MASK (~(REGION_BITS | AS_MASK))
#define TO_PHYS_MASK (~(RGN_BITS | AS_MASK))
/*
......@@ -126,6 +117,7 @@
#define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a))
#define GLOBAL_CAC_ADDR(n,a) (CAC_BASE | REMOTE_ADDR(n,a))
#define CHANGE_NASID(n,x) ((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n)))
#define IS_TIO_NASID(n) ((n) & 1)
/* non-II mmr's start at top of big window space (4G) */
......@@ -134,10 +126,10 @@
/*
* general address defines
*/
#define CAC_BASE (CACHED | AS_CAC_SPACE)
#define AMO_BASE (UNCACHED | AS_AMO_SPACE)
#define AMO_PHYS_BASE (UNCACHED_PHYS | AS_AMO_SPACE)
#define GET_BASE (CACHED | AS_GET_SPACE)
#define CAC_BASE (PAGE_OFFSET | AS_CAC_SPACE)
#define AMO_BASE (__IA64_UNCACHED_OFFSET | AS_AMO_SPACE)
#define AMO_PHYS_BASE (RGN_BASE(RGN_HPAGE) | AS_AMO_SPACE)
#define GET_BASE (PAGE_OFFSET | AS_GET_SPACE)
/*
* Convert Memory addresses between various addressing modes.
......@@ -155,17 +147,35 @@
* the chiplet id is zero. If we implement TIO-TIO dma, we might need
* to insert a chiplet id into this macro. However, it is our belief
* right now that this chiplet id will be ICE, which is also zero.
* Nasid starts on bit 40.
*/
#define PHYS_TO_TIODMA(x) ( (((u64)(NASID_GET(x))) << 40) | NODE_OFFSET(x))
#define PHYS_TO_DMA(x) ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x))
#define SH1_TIO_PHYS_TO_DMA(x) \
((((u64)(NASID_GET(x))) << 40) | NODE_OFFSET(x))
#define SH2_NETWORK_BANK_OFFSET(x) \
((u64)(x) & ((1UL << (sn_hub_info->nasid_shift - 4)) -1))
#define SH2_NETWORK_BANK_SELECT(x) \
((((u64)(x) & (0x3UL << (sn_hub_info->nasid_shift - 4))) \
>> (sn_hub_info->nasid_shift - 4)) << 36)
#define SH2_NETWORK_ADDRESS(x) \
(SH2_NETWORK_BANK_OFFSET(x) | SH2_NETWORK_BANK_SELECT(x))
#define SH2_TIO_PHYS_TO_DMA(x) \
(((u64)(NASID_GET(x)) << 40) | SH2_NETWORK_ADDRESS(x))
#define PHYS_TO_TIODMA(x) \
(is_shub1() ? SH1_TIO_PHYS_TO_DMA(x) : SH2_TIO_PHYS_TO_DMA(x))
#define PHYS_TO_DMA(x) \
((((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x))
/*
* Macros to test for address type.
*/
#define IS_AMO_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_BASE)
#define IS_AMO_PHYS_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_PHYS_BASE)
#define IS_AMO_ADDRESS(x) (((u64)(x) & (RGN_BITS | AS_MASK)) == AMO_BASE)
#define IS_AMO_PHYS_ADDRESS(x) (((u64)(x) & (RGN_BITS | AS_MASK)) == AMO_PHYS_BASE)
/*
......@@ -180,18 +190,20 @@
#define TIO_SWIN_BASE(n, w) (TIO_IO_BASE(n) + \
((u64) (w) << TIO_SWIN_SIZE_BITS))
#define NODE_IO_BASE(n) (GLOBAL_MMR_SPACE | NASID_SPACE(n))
#define TIO_IO_BASE(n) (UNCACHED | NASID_SPACE(n))
#define TIO_IO_BASE(n) (__IA64_UNCACHED_OFFSET | NASID_SPACE(n))
#define BWIN_SIZE (1UL << BWIN_SIZE_BITS)
#define NODE_BWIN_BASE0(n) (NODE_IO_BASE(n) + BWIN_SIZE)
#define NODE_BWIN_BASE(n, w) (NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS))
#define RAW_NODE_SWIN_BASE(n, w) (NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS))
#define BWIN_WIDGET_MASK 0x7
#define BWIN_WINDOWNUM(x) (((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK)
#define SH1_IS_BIG_WINDOW_ADDR(x) ((x) & BWIN_TOP)
#define TIO_BWIN_WINDOW_SELECT_MASK 0x7
#define TIO_BWIN_WINDOWNUM(x) (((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK)
#define TIO_HWIN_SHIFT_BITS 33
#define TIO_HWIN(x) (NODE_OFFSET(x) >> TIO_HWIN_SHIFT_BITS)
/*
* The following definitions pertain to the IO special address
......@@ -216,10 +228,6 @@
#define TIO_SWIN_WIDGETNUM(x) (((x) >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK)
#define TIO_IOSPACE_ADDR(n,x) \
/* Move in the Chiplet ID for TIO Local Block MMR */ \
(REMOTE_ADDR(n,x) | 1UL << (NASID_SHIFT - 2))
/*
* The following macros produce the correct base virtual address for
* the hub registers. The REMOTE_HUB_* macro produce
......@@ -234,18 +242,40 @@
* Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S().
* They're always safe.
*/
/* Shub1 TIO & MMR addressing macros */
#define SH1_TIO_IOSPACE_ADDR(n,x) \
GLOBAL_MMR_ADDR(n,x)
#define SH1_REMOTE_BWIN_MMR(n,x) \
GLOBAL_MMR_ADDR(n,x)
#define SH1_REMOTE_SWIN_MMR(n,x) \
(NODE_SWIN_BASE(n,1) + 0x800000UL + (x))
#define SH1_REMOTE_MMR(n,x) \
(SH1_IS_BIG_WINDOW_ADDR(x) ? SH1_REMOTE_BWIN_MMR(n,x) : \
SH1_REMOTE_SWIN_MMR(n,x))
/* Shub1 TIO & MMR addressing macros */
#define SH2_TIO_IOSPACE_ADDR(n,x) \
((__IA64_UNCACHED_OFFSET | REMOTE_ADDR(n,x) | 1UL << (NASID_SHIFT - 2)))
#define SH2_REMOTE_MMR(n,x) \
GLOBAL_MMR_ADDR(n,x)
/* TIO & MMR addressing macros that work on both shub1 & shub2 */
#define TIO_IOSPACE_ADDR(n,x) \
((u64 *)(is_shub1() ? SH1_TIO_IOSPACE_ADDR(n,x) : \
SH2_TIO_IOSPACE_ADDR(n,x)))
#define SH_REMOTE_MMR(n,x) \
(is_shub1() ? SH1_REMOTE_MMR(n,x) : SH2_REMOTE_MMR(n,x))
#define REMOTE_HUB_ADDR(n,x) \
((n & 1) ? \
/* TIO: */ \
(is_shub2() ? \
/* TIO on Shub2 */ \
(volatile u64 *)(TIO_IOSPACE_ADDR(n,x)) \
: /* TIO on shub1 */ \
(volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \
\
: /* SHUB1 and SHUB2 MMRs: */ \
(((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \
: ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x)))))
(IS_TIO_NASID(n) ? ((volatile u64*)TIO_IOSPACE_ADDR(n,x)) : \
((volatile u64*)SH_REMOTE_MMR(n,x)))
#define HUB_L(x) (*((volatile typeof(*x) *)x))
#define HUB_S(x,d) (*((volatile typeof(*x) *)x) = (d))
......
......@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_GEO_H
......@@ -108,7 +108,6 @@ typedef union geoid_u {
#define INVALID_SLAB (slabid_t)-1
#define INVALID_SLOT (slotid_t)-1
#define INVALID_MODULE ((moduleid_t)-1)
#define INVALID_PARTID ((partid_t)-1)
static inline slabid_t geo_slab(geoid_t g)
{
......
......@@ -12,13 +12,12 @@
#include <linux/rcupdate.h>
#define SGI_UART_VECTOR (0xe9)
#define SGI_PCIBR_ERROR (0x33)
/* Reserved IRQs : Note, not to exceed IA64_SN2_FIRST_DEVICE_VECTOR */
#define SGI_XPC_ACTIVATE (0x30)
#define SGI_II_ERROR (0x31)
#define SGI_XBOW_ERROR (0x32)
#define SGI_PCIBR_ERROR (0x33)
#define SGI_PCIASIC_ERROR (0x33)
#define SGI_ACPI_SCI_INT (0x34)
#define SGI_TIOCA_ERROR (0x35)
#define SGI_TIO_ERROR (0x36)
......
......@@ -37,7 +37,6 @@ struct phys_cpuid {
struct nodepda_s {
void *pdinfo; /* Platform-dependent per-node info */
spinlock_t bist_lock;
/*
* The BTEs on this node are shared by the local cpus
......@@ -55,6 +54,8 @@ struct nodepda_s {
* Array of physical cpu identifiers. Indexed by cpuid.
*/
struct phys_cpuid phys_cpuid[NR_CPUS];
spinlock_t ptc_lock ____cacheline_aligned_in_smp;
spinlock_t bist_lock;
};
typedef struct nodepda_s nodepda_t;
......
......@@ -18,8 +18,9 @@
#define PCIIO_ASIC_TYPE_PIC 2
#define PCIIO_ASIC_TYPE_TIOCP 3
#define PCIIO_ASIC_TYPE_TIOCA 4
#define PCIIO_ASIC_TYPE_TIOCE 5
#define PCIIO_ASIC_MAX_TYPES 5
#define PCIIO_ASIC_MAX_TYPES 6
/*
* Common pciio bus provider data. There should be one of these as the
......@@ -30,7 +31,8 @@
struct pcibus_bussoft {
uint32_t bs_asic_type; /* chipset type */
uint32_t bs_xid; /* xwidget id */
uint64_t bs_persist_busnum; /* Persistent Bus Number */
uint32_t bs_persist_busnum; /* Persistent Bus Number */
uint32_t bs_persist_segment; /* Segment Number */
uint64_t bs_legacy_io; /* legacy io pio addr */
uint64_t bs_legacy_mem; /* legacy mem pio addr */
uint64_t bs_base; /* widget base */
......@@ -47,6 +49,8 @@ struct sn_pcibus_provider {
dma_addr_t (*dma_map_consistent)(struct pci_dev *, unsigned long, size_t);
void (*dma_unmap)(struct pci_dev *, dma_addr_t, int);
void * (*bus_fixup)(struct pcibus_bussoft *, struct pci_controller *);
void (*force_interrupt)(struct sn_irq_info *);
void (*target_interrupt)(struct sn_irq_info *);
};
extern struct sn_pcibus_provider *sn_pci_provider[];
......
......@@ -39,7 +39,6 @@ typedef struct pda_s {
unsigned long pio_write_status_val;
volatile unsigned long *pio_shub_war_cam_addr;
unsigned long sn_soft_irr[4];
unsigned long sn_in_service_ivecs[4];
int sn_lb_int_war_ticks;
int sn_last_irq;
......
......@@ -43,6 +43,7 @@ struct sn_hwperf_object_info {
/* macros for object classification */
#define SN_HWPERF_IS_NODE(x) ((x) && strstr((x)->name, "SHub"))
#define SN_HWPERF_IS_NODE_SHUB2(x) ((x) && strstr((x)->name, "SHub 2."))
#define SN_HWPERF_IS_IONODE(x) ((x) && strstr((x)->name, "TIO"))
#define SN_HWPERF_IS_ROUTER(x) ((x) && strstr((x)->name, "Router"))
#define SN_HWPERF_IS_NL3ROUTER(x) ((x) && strstr((x)->name, "NL3Router"))
......@@ -214,6 +215,15 @@ struct sn_hwperf_ioctl_args {
*/
#define SN_HWPERF_GET_NODE_NASID (102|SN_HWPERF_OP_MEM_COPYOUT)
/*
* Given a node id, determine the id of the nearest node with CPUs
* and the id of the nearest node that has memory. The argument
* node would normally be a "headless" node, e.g. an "IO node".
* Return 0 on success.
*/
extern int sn_hwperf_get_nearest_node(cnodeid_t node,
cnodeid_t *near_mem, cnodeid_t *near_cpu);
/* return codes */
#define SN_HWPERF_OP_OK 0
#define SN_HWPERF_OP_NOMEM 1
......
......@@ -55,7 +55,6 @@
#define SN_SAL_BUS_CONFIG 0x02000037
#define SN_SAL_SYS_SERIAL_GET 0x02000038
#define SN_SAL_PARTITION_SERIAL_GET 0x02000039
#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
#define SN_SAL_COHERENCE 0x0200003d
......@@ -78,7 +77,8 @@
#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
#define SN_SAL_BTE_RECOVER 0x02000061
#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000062
#define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
/*
* Service-specific constants
......@@ -585,35 +585,6 @@ sn_partition_serial_number_val(void) {
return sn_partition_serial_number;
}
/*
* Returns the partition id of the nasid passed in as an argument,
* or INVALID_PARTID if the partition id cannot be retrieved.
*/
static inline partid_t
ia64_sn_sysctl_partition_get(nasid_t nasid)
{
struct ia64_sal_retval ret_stuff;
ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
0, 0, 0, 0, 0, 0);
if (ret_stuff.status != 0)
return INVALID_PARTID;
return ((partid_t)ret_stuff.v0);
}
/*
* Returns the partition id of the current processor.
*/
extern partid_t sn_partid;
static inline partid_t
sn_local_partid(void) {
if (unlikely(sn_partid < 0)) {
sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()));
}
return sn_partid;
}
/*
* Returns the physical address of the partition's reserved page through
* an iterative number of calls.
......@@ -749,7 +720,8 @@ ia64_sn_power_down(void)
{
struct ia64_sal_retval ret_stuff;
SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
while(1);
while(1)
cpu_relax();
/* never returns */
}
......@@ -1018,24 +990,6 @@ ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
/***** BEGIN HACK - temp til old proms no longer supported ********/
if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
int nasid = get_sapicid() & 0xfff;;
#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
if (shubtype) *shubtype = 0;
if (nasid_bitmask) *nasid_bitmask = 0x7ff;
if (nasid_shift) *nasid_shift = 38;
if (systemsize) *systemsize = 11;
if (sharing_domain_size) *sharing_domain_size = 9;
if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
if (coher) *coher = nasid >> 9;
if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
SH_SHUB_ID_NODES_PER_BIT_SHFT;
return 0;
}
/***** END HACK *******/
if (ret_stuff.status < 0)
return ret_stuff.status;
......@@ -1068,12 +1022,10 @@ ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
}
static inline int
ia64_sn_ioif_get_pci_topology(u64 rack, u64 bay, u64 slot, u64 slab,
u64 buf, u64 len)
ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY,
rack, bay, slot, slab, buf, len, 0);
SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
return (int) rv.status;
}
......
/**************************************************************************
* *
* Unpublished copyright (c) 2005, Silicon Graphics, Inc. *
* THIS IS UNPUBLISHED CONFIDENTIAL AND PROPRIETARY SOURCE CODE OF SGI. *
* *
* The copyright notice above does not evidence any actual or intended *
* publication or disclosure of this source code, which includes *
* information that is confidential and/or proprietary, and is a trade *
* secret, of Silicon Graphics, Inc. ANY REPRODUCTION, MODIFICATION, *
* DISTRIBUTION, PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH *
* USE OF THIS SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF *
* SILICON GRAPHICS, INC. IS STRICTLY PROHIBITED, AND IN VIOLATION OF *
* APPLICABLE LAWS AND INTERNATIONAL TREATIES. THE RECEIPT OR *
* POSSESSION OF THIS SOURCE CODE AND/OR RELATED INFORMATION DOES NOT *
* CONVEY OR IMPLY ANY RIGHTS TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS *
* CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING THAT IT MAY *
* DESCRIBE, IN WHOLE OR IN PART. *
* *
**************************************************************************/
#ifndef __ASM_IA64_SN_TIOCE_H__
#define __ASM_IA64_SN_TIOCE_H__
/* CE ASIC part & mfgr information */
#define TIOCE_PART_NUM 0xCE00
#define TIOCE_MFGR_NUM 0x36
#define TIOCE_REV_A 0x1
/* CE Virtual PPB Vendor/Device IDs */
#define CE_VIRT_PPB_VENDOR_ID 0x10a9
#define CE_VIRT_PPB_DEVICE_ID 0x4002
/* CE Host Bridge Vendor/Device IDs */
#define CE_HOST_BRIDGE_VENDOR_ID 0x10a9
#define CE_HOST_BRIDGE_DEVICE_ID 0x4003
#define TIOCE_NUM_M40_ATES 4096
#define TIOCE_NUM_M3240_ATES 2048
#define TIOCE_NUM_PORTS 2
/*
* Register layout for TIOCE. MMR offsets are shown at the far right of the
* structure definition.
*/
typedef volatile struct tioce {
/*
* ADMIN : Administration Registers
*/
uint64_t ce_adm_id; /* 0x000000 */
uint64_t ce_pad_000008; /* 0x000008 */
uint64_t ce_adm_dyn_credit_status; /* 0x000010 */
uint64_t ce_adm_last_credit_status; /* 0x000018 */
uint64_t ce_adm_credit_limit; /* 0x000020 */
uint64_t ce_adm_force_credit; /* 0x000028 */
uint64_t ce_adm_control; /* 0x000030 */
uint64_t ce_adm_mmr_chn_timeout; /* 0x000038 */
uint64_t ce_adm_ssp_ure_timeout; /* 0x000040 */
uint64_t ce_adm_ssp_dre_timeout; /* 0x000048 */
uint64_t ce_adm_ssp_debug_sel; /* 0x000050 */
uint64_t ce_adm_int_status; /* 0x000058 */
uint64_t ce_adm_int_status_alias; /* 0x000060 */
uint64_t ce_adm_int_mask; /* 0x000068 */
uint64_t ce_adm_int_pending; /* 0x000070 */
uint64_t ce_adm_force_int; /* 0x000078 */
uint64_t ce_adm_ure_ups_buf_barrier_flush; /* 0x000080 */
uint64_t ce_adm_int_dest[15]; /* 0x000088 -- 0x0000F8 */
uint64_t ce_adm_error_summary; /* 0x000100 */
uint64_t ce_adm_error_summary_alias; /* 0x000108 */
uint64_t ce_adm_error_mask; /* 0x000110 */
uint64_t ce_adm_first_error; /* 0x000118 */
uint64_t ce_adm_error_overflow; /* 0x000120 */
uint64_t ce_adm_error_overflow_alias; /* 0x000128 */
uint64_t ce_pad_000130[2]; /* 0x000130 -- 0x000138 */
uint64_t ce_adm_tnum_error; /* 0x000140 */
uint64_t ce_adm_mmr_err_detail; /* 0x000148 */
uint64_t ce_adm_msg_sram_perr_detail; /* 0x000150 */
uint64_t ce_adm_bap_sram_perr_detail; /* 0x000158 */
uint64_t ce_adm_ce_sram_perr_detail; /* 0x000160 */
uint64_t ce_adm_ce_credit_oflow_detail; /* 0x000168 */
uint64_t ce_adm_tx_link_idle_max_timer; /* 0x000170 */
uint64_t ce_adm_pcie_debug_sel; /* 0x000178 */
uint64_t ce_pad_000180[16]; /* 0x000180 -- 0x0001F8 */
uint64_t ce_adm_pcie_debug_sel_top; /* 0x000200 */
uint64_t ce_adm_pcie_debug_lat_sel_lo_top; /* 0x000208 */
uint64_t ce_adm_pcie_debug_lat_sel_hi_top; /* 0x000210 */
uint64_t ce_adm_pcie_debug_trig_sel_top; /* 0x000218 */
uint64_t ce_adm_pcie_debug_trig_lat_sel_lo_top; /* 0x000220 */
uint64_t ce_adm_pcie_debug_trig_lat_sel_hi_top; /* 0x000228 */
uint64_t ce_adm_pcie_trig_compare_top; /* 0x000230 */
uint64_t ce_adm_pcie_trig_compare_en_top; /* 0x000238 */
uint64_t ce_adm_ssp_debug_sel_top; /* 0x000240 */
uint64_t ce_adm_ssp_debug_lat_sel_lo_top; /* 0x000248 */
uint64_t ce_adm_ssp_debug_lat_sel_hi_top; /* 0x000250 */
uint64_t ce_adm_ssp_debug_trig_sel_top; /* 0x000258 */
uint64_t ce_adm_ssp_debug_trig_lat_sel_lo_top; /* 0x000260 */
uint64_t ce_adm_ssp_debug_trig_lat_sel_hi_top; /* 0x000268 */
uint64_t ce_adm_ssp_trig_compare_top; /* 0x000270 */
uint64_t ce_adm_ssp_trig_compare_en_top; /* 0x000278 */
uint64_t ce_pad_000280[48]; /* 0x000280 -- 0x0003F8 */
uint64_t ce_adm_bap_ctrl; /* 0x000400 */
uint64_t ce_pad_000408[127]; /* 0x000408 -- 0x0007F8 */
uint64_t ce_msg_buf_data63_0[35]; /* 0x000800 -- 0x000918 */
uint64_t ce_pad_000920[29]; /* 0x000920 -- 0x0009F8 */
uint64_t ce_msg_buf_data127_64[35]; /* 0x000A00 -- 0x000B18 */
uint64_t ce_pad_000B20[29]; /* 0x000B20 -- 0x000BF8 */
uint64_t ce_msg_buf_parity[35]; /* 0x000C00 -- 0x000D18 */
uint64_t ce_pad_000D20[29]; /* 0x000D20 -- 0x000DF8 */
uint64_t ce_pad_000E00[576]; /* 0x000E00 -- 0x001FF8 */
/*
* LSI : LSI's PCI Express Link Registers (Link#1 and Link#2)
* Link#1 MMRs at start at 0x002000, Link#2 MMRs at 0x003000
* NOTE: the comment offsets at far right: let 'z' = {2 or 3}
*/
#define ce_lsi(link_num) ce_lsi[link_num-1]
struct ce_lsi_reg {
uint64_t ce_lsi_lpu_id; /* 0x00z000 */
uint64_t ce_lsi_rst; /* 0x00z008 */
uint64_t ce_lsi_dbg_stat; /* 0x00z010 */
uint64_t ce_lsi_dbg_cfg; /* 0x00z018 */
uint64_t ce_lsi_ltssm_ctrl; /* 0x00z020 */
uint64_t ce_lsi_lk_stat; /* 0x00z028 */
uint64_t ce_pad_00z030[2]; /* 0x00z030 -- 0x00z038 */
uint64_t ce_lsi_int_and_stat; /* 0x00z040 */
uint64_t ce_lsi_int_mask; /* 0x00z048 */
uint64_t ce_pad_00z050[22]; /* 0x00z050 -- 0x00z0F8 */
uint64_t ce_lsi_lk_perf_cnt_sel; /* 0x00z100 */
uint64_t ce_pad_00z108; /* 0x00z108 */
uint64_t ce_lsi_lk_perf_cnt_ctrl; /* 0x00z110 */
uint64_t ce_pad_00z118; /* 0x00z118 */
uint64_t ce_lsi_lk_perf_cnt1; /* 0x00z120 */
uint64_t ce_lsi_lk_perf_cnt1_test; /* 0x00z128 */
uint64_t ce_lsi_lk_perf_cnt2; /* 0x00z130 */
uint64_t ce_lsi_lk_perf_cnt2_test; /* 0x00z138 */
uint64_t ce_pad_00z140[24]; /* 0x00z140 -- 0x00z1F8 */
uint64_t ce_lsi_lk_lyr_cfg; /* 0x00z200 */
uint64_t ce_lsi_lk_lyr_status; /* 0x00z208 */
uint64_t ce_lsi_lk_lyr_int_stat; /* 0x00z210 */
uint64_t ce_lsi_lk_ly_int_stat_test; /* 0x00z218 */
uint64_t ce_lsi_lk_ly_int_stat_mask; /* 0x00z220 */
uint64_t ce_pad_00z228[3]; /* 0x00z228 -- 0x00z238 */
uint64_t ce_lsi_fc_upd_ctl; /* 0x00z240 */
uint64_t ce_pad_00z248[3]; /* 0x00z248 -- 0x00z258 */
uint64_t ce_lsi_flw_ctl_upd_to_timer; /* 0x00z260 */
uint64_t ce_lsi_flw_ctl_upd_timer0; /* 0x00z268 */
uint64_t ce_lsi_flw_ctl_upd_timer1; /* 0x00z270 */
uint64_t ce_pad_00z278[49]; /* 0x00z278 -- 0x00z3F8 */
uint64_t ce_lsi_freq_nak_lat_thrsh; /* 0x00z400 */
uint64_t ce_lsi_ack_nak_lat_tmr; /* 0x00z408 */
uint64_t ce_lsi_rply_tmr_thr; /* 0x00z410 */
uint64_t ce_lsi_rply_tmr; /* 0x00z418 */
uint64_t ce_lsi_rply_num_stat; /* 0x00z420 */
uint64_t ce_lsi_rty_buf_max_addr; /* 0x00z428 */
uint64_t ce_lsi_rty_fifo_ptr; /* 0x00z430 */
uint64_t ce_lsi_rty_fifo_rd_wr_ptr; /* 0x00z438 */
uint64_t ce_lsi_rty_fifo_cred; /* 0x00z440 */
uint64_t ce_lsi_seq_cnt; /* 0x00z448 */
uint64_t ce_lsi_ack_sent_seq_num; /* 0x00z450 */
uint64_t ce_lsi_seq_cnt_fifo_max_addr; /* 0x00z458 */
uint64_t ce_lsi_seq_cnt_fifo_ptr; /* 0x00z460 */
uint64_t ce_lsi_seq_cnt_rd_wr_ptr; /* 0x00z468 */
uint64_t ce_lsi_tx_lk_ts_ctl; /* 0x00z470 */
uint64_t ce_pad_00z478; /* 0x00z478 */
uint64_t ce_lsi_mem_addr_ctl; /* 0x00z480 */
uint64_t ce_lsi_mem_d_ld0; /* 0x00z488 */
uint64_t ce_lsi_mem_d_ld1; /* 0x00z490 */
uint64_t ce_lsi_mem_d_ld2; /* 0x00z498 */
uint64_t ce_lsi_mem_d_ld3; /* 0x00z4A0 */
uint64_t ce_lsi_mem_d_ld4; /* 0x00z4A8 */
uint64_t ce_pad_00z4B0[2]; /* 0x00z4B0 -- 0x00z4B8 */
uint64_t ce_lsi_rty_d_cnt; /* 0x00z4C0 */
uint64_t ce_lsi_seq_buf_cnt; /* 0x00z4C8 */
uint64_t ce_lsi_seq_buf_bt_d; /* 0x00z4D0 */
uint64_t ce_pad_00z4D8; /* 0x00z4D8 */
uint64_t ce_lsi_ack_lat_thr; /* 0x00z4E0 */
uint64_t ce_pad_00z4E8[3]; /* 0x00z4E8 -- 0x00z4F8 */
uint64_t ce_lsi_nxt_rcv_seq_1_cntr; /* 0x00z500 */
uint64_t ce_lsi_unsp_dllp_rcvd; /* 0x00z508 */
uint64_t ce_lsi_rcv_lk_ts_ctl; /* 0x00z510 */
uint64_t ce_pad_00z518[29]; /* 0x00z518 -- 0x00z5F8 */
uint64_t ce_lsi_phy_lyr_cfg; /* 0x00z600 */
uint64_t ce_pad_00z608; /* 0x00z608 */
uint64_t ce_lsi_phy_lyr_int_stat; /* 0x00z610 */
uint64_t ce_lsi_phy_lyr_int_stat_test; /* 0x00z618 */
uint64_t ce_lsi_phy_lyr_int_mask; /* 0x00z620 */
uint64_t ce_pad_00z628[11]; /* 0x00z628 -- 0x00z678 */
uint64_t ce_lsi_rcv_phy_cfg; /* 0x00z680 */
uint64_t ce_lsi_rcv_phy_stat1; /* 0x00z688 */
uint64_t ce_lsi_rcv_phy_stat2; /* 0x00z690 */
uint64_t ce_lsi_rcv_phy_stat3; /* 0x00z698 */
uint64_t ce_lsi_rcv_phy_int_stat; /* 0x00z6A0 */
uint64_t ce_lsi_rcv_phy_int_stat_test; /* 0x00z6A8 */
uint64_t ce_lsi_rcv_phy_int_mask; /* 0x00z6B0 */
uint64_t ce_pad_00z6B8[9]; /* 0x00z6B8 -- 0x00z6F8 */
uint64_t ce_lsi_tx_phy_cfg; /* 0x00z700 */
uint64_t ce_lsi_tx_phy_stat; /* 0x00z708 */
uint64_t ce_lsi_tx_phy_int_stat; /* 0x00z710 */
uint64_t ce_lsi_tx_phy_int_stat_test; /* 0x00z718 */
uint64_t ce_lsi_tx_phy_int_mask; /* 0x00z720 */
uint64_t ce_lsi_tx_phy_stat2; /* 0x00z728 */
uint64_t ce_pad_00z730[10]; /* 0x00z730 -- 0x00z77F */
uint64_t ce_lsi_ltssm_cfg1; /* 0x00z780 */
uint64_t ce_lsi_ltssm_cfg2; /* 0x00z788 */
uint64_t ce_lsi_ltssm_cfg3; /* 0x00z790 */
uint64_t ce_lsi_ltssm_cfg4; /* 0x00z798 */
uint64_t ce_lsi_ltssm_cfg5; /* 0x00z7A0 */
uint64_t ce_lsi_ltssm_stat1; /* 0x00z7A8 */
uint64_t ce_lsi_ltssm_stat2; /* 0x00z7B0 */
uint64_t ce_lsi_ltssm_int_stat; /* 0x00z7B8 */
uint64_t ce_lsi_ltssm_int_stat_test; /* 0x00z7C0 */
uint64_t ce_lsi_ltssm_int_mask; /* 0x00z7C8 */
uint64_t ce_lsi_ltssm_stat_wr_en; /* 0x00z7D0 */
uint64_t ce_pad_00z7D8[5]; /* 0x00z7D8 -- 0x00z7F8 */
uint64_t ce_lsi_gb_cfg1; /* 0x00z800 */
uint64_t ce_lsi_gb_cfg2; /* 0x00z808 */
uint64_t ce_lsi_gb_cfg3; /* 0x00z810 */
uint64_t ce_lsi_gb_cfg4; /* 0x00z818 */
uint64_t ce_lsi_gb_stat; /* 0x00z820 */
uint64_t ce_lsi_gb_int_stat; /* 0x00z828 */
uint64_t ce_lsi_gb_int_stat_test; /* 0x00z830 */
uint64_t ce_lsi_gb_int_mask; /* 0x00z838 */
uint64_t ce_lsi_gb_pwr_dn1; /* 0x00z840 */
uint64_t ce_lsi_gb_pwr_dn2; /* 0x00z848 */
uint64_t ce_pad_00z850[246]; /* 0x00z850 -- 0x00zFF8 */
} ce_lsi[2];
uint64_t ce_pad_004000[10]; /* 0x004000 -- 0x004048 */
/*
* CRM: Coretalk Receive Module Registers
*/
uint64_t ce_crm_debug_mux; /* 0x004050 */
uint64_t ce_pad_004058; /* 0x004058 */
uint64_t ce_crm_ssp_err_cmd_wrd; /* 0x004060 */
uint64_t ce_crm_ssp_err_addr; /* 0x004068 */
uint64_t ce_crm_ssp_err_syn; /* 0x004070 */
uint64_t ce_pad_004078[499]; /* 0x004078 -- 0x005008 */
/*
* CXM: Coretalk Xmit Module Registers
*/
uint64_t ce_cxm_dyn_credit_status; /* 0x005010 */
uint64_t ce_cxm_last_credit_status; /* 0x005018 */
uint64_t ce_cxm_credit_limit; /* 0x005020 */
uint64_t ce_cxm_force_credit; /* 0x005028 */
uint64_t ce_cxm_disable_bypass; /* 0x005030 */
uint64_t ce_pad_005038[3]; /* 0x005038 -- 0x005048 */
uint64_t ce_cxm_debug_mux; /* 0x005050 */
uint64_t ce_pad_005058[501]; /* 0x005058 -- 0x005FF8 */
/*
* DTL: Downstream Transaction Layer Regs (Link#1 and Link#2)
* DTL: Link#1 MMRs at start at 0x006000, Link#2 MMRs at 0x008000
* DTL: the comment offsets at far right: let 'y' = {6 or 8}
*
* UTL: Downstream Transaction Layer Regs (Link#1 and Link#2)
* UTL: Link#1 MMRs at start at 0x007000, Link#2 MMRs at 0x009000
* UTL: the comment offsets at far right: let 'z' = {7 or 9}
*/
#define ce_dtl(link_num) ce_dtl_utl[link_num-1]
#define ce_utl(link_num) ce_dtl_utl[link_num-1]
struct ce_dtl_utl_reg {
/* DTL */
uint64_t ce_dtl_dtdr_credit_limit; /* 0x00y000 */
uint64_t ce_dtl_dtdr_credit_force; /* 0x00y008 */
uint64_t ce_dtl_dyn_credit_status; /* 0x00y010 */
uint64_t ce_dtl_dtl_last_credit_stat; /* 0x00y018 */
uint64_t ce_dtl_dtl_ctrl; /* 0x00y020 */
uint64_t ce_pad_00y028[5]; /* 0x00y028 -- 0x00y048 */
uint64_t ce_dtl_debug_sel; /* 0x00y050 */
uint64_t ce_pad_00y058[501]; /* 0x00y058 -- 0x00yFF8 */
/* UTL */
uint64_t ce_utl_utl_ctrl; /* 0x00z000 */
uint64_t ce_utl_debug_sel; /* 0x00z008 */
uint64_t ce_pad_00z010[510]; /* 0x00z010 -- 0x00zFF8 */
} ce_dtl_utl[2];
uint64_t ce_pad_00A000[514]; /* 0x00A000 -- 0x00B008 */
/*
* URE: Upstream Request Engine
*/
uint64_t ce_ure_dyn_credit_status; /* 0x00B010 */
uint64_t ce_ure_last_credit_status; /* 0x00B018 */
uint64_t ce_ure_credit_limit; /* 0x00B020 */
uint64_t ce_pad_00B028; /* 0x00B028 */
uint64_t ce_ure_control; /* 0x00B030 */
uint64_t ce_ure_status; /* 0x00B038 */
uint64_t ce_pad_00B040[2]; /* 0x00B040 -- 0x00B048 */
uint64_t ce_ure_debug_sel; /* 0x00B050 */
uint64_t ce_ure_pcie_debug_sel; /* 0x00B058 */
uint64_t ce_ure_ssp_err_cmd_wrd; /* 0x00B060 */
uint64_t ce_ure_ssp_err_addr; /* 0x00B068 */
uint64_t ce_ure_page_map; /* 0x00B070 */
uint64_t ce_ure_dir_map[TIOCE_NUM_PORTS]; /* 0x00B078 */
uint64_t ce_ure_pipe_sel1; /* 0x00B088 */
uint64_t ce_ure_pipe_mask1; /* 0x00B090 */
uint64_t ce_ure_pipe_sel2; /* 0x00B098 */
uint64_t ce_ure_pipe_mask2; /* 0x00B0A0 */
uint64_t ce_ure_pcie1_credits_sent; /* 0x00B0A8 */
uint64_t ce_ure_pcie1_credits_used; /* 0x00B0B0 */
uint64_t ce_ure_pcie1_credit_limit; /* 0x00B0B8 */
uint64_t ce_ure_pcie2_credits_sent; /* 0x00B0C0 */
uint64_t ce_ure_pcie2_credits_used; /* 0x00B0C8 */
uint64_t ce_ure_pcie2_credit_limit; /* 0x00B0D0 */
uint64_t ce_ure_pcie_force_credit; /* 0x00B0D8 */
uint64_t ce_ure_rd_tnum_val; /* 0x00B0E0 */
uint64_t ce_ure_rd_tnum_rsp_rcvd; /* 0x00B0E8 */
uint64_t ce_ure_rd_tnum_esent_timer; /* 0x00B0F0 */
uint64_t ce_ure_rd_tnum_error; /* 0x00B0F8 */
uint64_t ce_ure_rd_tnum_first_cl; /* 0x00B100 */
uint64_t ce_ure_rd_tnum_link_buf; /* 0x00B108 */
uint64_t ce_ure_wr_tnum_val; /* 0x00B110 */
uint64_t ce_ure_sram_err_addr0; /* 0x00B118 */
uint64_t ce_ure_sram_err_addr1; /* 0x00B120 */
uint64_t ce_ure_sram_err_addr2; /* 0x00B128 */
uint64_t ce_ure_sram_rd_addr0; /* 0x00B130 */
uint64_t ce_ure_sram_rd_addr1; /* 0x00B138 */
uint64_t ce_ure_sram_rd_addr2; /* 0x00B140 */
uint64_t ce_ure_sram_wr_addr0; /* 0x00B148 */
uint64_t ce_ure_sram_wr_addr1; /* 0x00B150 */
uint64_t ce_ure_sram_wr_addr2; /* 0x00B158 */
uint64_t ce_ure_buf_flush10; /* 0x00B160 */
uint64_t ce_ure_buf_flush11; /* 0x00B168 */
uint64_t ce_ure_buf_flush12; /* 0x00B170 */
uint64_t ce_ure_buf_flush13; /* 0x00B178 */
uint64_t ce_ure_buf_flush20; /* 0x00B180 */
uint64_t ce_ure_buf_flush21; /* 0x00B188 */
uint64_t ce_ure_buf_flush22; /* 0x00B190 */
uint64_t ce_ure_buf_flush23; /* 0x00B198 */
uint64_t ce_ure_pcie_control1; /* 0x00B1A0 */
uint64_t ce_ure_pcie_control2; /* 0x00B1A8 */
uint64_t ce_pad_00B1B0[458]; /* 0x00B1B0 -- 0x00BFF8 */
/* Upstream Data Buffer, Port1 */
struct ce_ure_maint_ups_dat1_data {
uint64_t data63_0[512]; /* 0x00C000 -- 0x00CFF8 */
uint64_t data127_64[512]; /* 0x00D000 -- 0x00DFF8 */
uint64_t parity[512]; /* 0x00E000 -- 0x00EFF8 */
} ce_ure_maint_ups_dat1;
/* Upstream Header Buffer, Port1 */
struct ce_ure_maint_ups_hdr1_data {
uint64_t data63_0[512]; /* 0x00F000 -- 0x00FFF8 */
uint64_t data127_64[512]; /* 0x010000 -- 0x010FF8 */
uint64_t parity[512]; /* 0x011000 -- 0x011FF8 */
} ce_ure_maint_ups_hdr1;
/* Upstream Data Buffer, Port2 */
struct ce_ure_maint_ups_dat2_data {
uint64_t data63_0[512]; /* 0x012000 -- 0x012FF8 */
uint64_t data127_64[512]; /* 0x013000 -- 0x013FF8 */
uint64_t parity[512]; /* 0x014000 -- 0x014FF8 */
} ce_ure_maint_ups_dat2;
/* Upstream Header Buffer, Port2 */
struct ce_ure_maint_ups_hdr2_data {
uint64_t data63_0[512]; /* 0x015000 -- 0x015FF8 */
uint64_t data127_64[512]; /* 0x016000 -- 0x016FF8 */
uint64_t parity[512]; /* 0x017000 -- 0x017FF8 */
} ce_ure_maint_ups_hdr2;
/* Downstream Data Buffer */
struct ce_ure_maint_dns_dat_data {
uint64_t data63_0[512]; /* 0x018000 -- 0x018FF8 */
uint64_t data127_64[512]; /* 0x019000 -- 0x019FF8 */
uint64_t parity[512]; /* 0x01A000 -- 0x01AFF8 */
} ce_ure_maint_dns_dat;
/* Downstream Header Buffer */
struct ce_ure_maint_dns_hdr_data {
uint64_t data31_0[64]; /* 0x01B000 -- 0x01B1F8 */
uint64_t data95_32[64]; /* 0x01B200 -- 0x01B3F8 */
uint64_t parity[64]; /* 0x01B400 -- 0x01B5F8 */
} ce_ure_maint_dns_hdr;
/* RCI Buffer Data */
struct ce_ure_maint_rci_data {
uint64_t data41_0[64]; /* 0x01B600 -- 0x01B7F8 */
uint64_t data69_42[64]; /* 0x01B800 -- 0x01B9F8 */
} ce_ure_maint_rci;
/* Response Queue */
uint64_t ce_ure_maint_rspq[64]; /* 0x01BA00 -- 0x01BBF8 */
uint64_t ce_pad_01C000[4224]; /* 0x01BC00 -- 0x023FF8 */
/* Admin Build-a-Packet Buffer */
struct ce_adm_maint_bap_buf_data {
uint64_t data63_0[258]; /* 0x024000 -- 0x024808 */
uint64_t data127_64[258]; /* 0x024810 -- 0x025018 */
uint64_t parity[258]; /* 0x025020 -- 0x025828 */
} ce_adm_maint_bap_buf;
uint64_t ce_pad_025830[5370]; /* 0x025830 -- 0x02FFF8 */
/* URE: 40bit PMU ATE Buffer */ /* 0x030000 -- 0x037FF8 */
uint64_t ce_ure_ate40[TIOCE_NUM_M40_ATES];
/* URE: 32/40bit PMU ATE Buffer */ /* 0x038000 -- 0x03BFF8 */
uint64_t ce_ure_ate3240[TIOCE_NUM_M3240_ATES];
uint64_t ce_pad_03C000[2050]; /* 0x03C000 -- 0x040008 */
/*
* DRE: Down Stream Request Engine
*/
uint64_t ce_dre_dyn_credit_status1; /* 0x040010 */
uint64_t ce_dre_dyn_credit_status2; /* 0x040018 */
uint64_t ce_dre_last_credit_status1; /* 0x040020 */
uint64_t ce_dre_last_credit_status2; /* 0x040028 */
uint64_t ce_dre_credit_limit1; /* 0x040030 */
uint64_t ce_dre_credit_limit2; /* 0x040038 */
uint64_t ce_dre_force_credit1; /* 0x040040 */
uint64_t ce_dre_force_credit2; /* 0x040048 */
uint64_t ce_dre_debug_mux1; /* 0x040050 */
uint64_t ce_dre_debug_mux2; /* 0x040058 */
uint64_t ce_dre_ssp_err_cmd_wrd; /* 0x040060 */
uint64_t ce_dre_ssp_err_addr; /* 0x040068 */
uint64_t ce_dre_comp_err_cmd_wrd; /* 0x040070 */
uint64_t ce_dre_comp_err_addr; /* 0x040078 */
uint64_t ce_dre_req_status; /* 0x040080 */
uint64_t ce_dre_config1; /* 0x040088 */
uint64_t ce_dre_config2; /* 0x040090 */
uint64_t ce_dre_config_req_status; /* 0x040098 */
uint64_t ce_pad_0400A0[12]; /* 0x0400A0 -- 0x0400F8 */
uint64_t ce_dre_dyn_fifo; /* 0x040100 */
uint64_t ce_pad_040108[3]; /* 0x040108 -- 0x040118 */
uint64_t ce_dre_last_fifo; /* 0x040120 */
uint64_t ce_pad_040128[27]; /* 0x040128 -- 0x0401F8 */
/* DRE Downstream Head Queue */
struct ce_dre_maint_ds_head_queue {
uint64_t data63_0[32]; /* 0x040200 -- 0x0402F8 */
uint64_t data127_64[32]; /* 0x040300 -- 0x0403F8 */
uint64_t parity[32]; /* 0x040400 -- 0x0404F8 */
} ce_dre_maint_ds_head_q;
uint64_t ce_pad_040500[352]; /* 0x040500 -- 0x040FF8 */
/* DRE Downstream Data Queue */
struct ce_dre_maint_ds_data_queue {
uint64_t data63_0[256]; /* 0x041000 -- 0x0417F8 */
uint64_t ce_pad_041800[256]; /* 0x041800 -- 0x041FF8 */
uint64_t data127_64[256]; /* 0x042000 -- 0x0427F8 */
uint64_t ce_pad_042800[256]; /* 0x042800 -- 0x042FF8 */
uint64_t parity[256]; /* 0x043000 -- 0x0437F8 */
uint64_t ce_pad_043800[256]; /* 0x043800 -- 0x043FF8 */
} ce_dre_maint_ds_data_q;
/* DRE URE Upstream Response Queue */
struct ce_dre_maint_ure_us_rsp_queue {
uint64_t data63_0[8]; /* 0x044000 -- 0x044038 */
uint64_t ce_pad_044040[24]; /* 0x044040 -- 0x0440F8 */
uint64_t data127_64[8]; /* 0x044100 -- 0x044138 */
uint64_t ce_pad_044140[24]; /* 0x044140 -- 0x0441F8 */
uint64_t parity[8]; /* 0x044200 -- 0x044238 */
uint64_t ce_pad_044240[24]; /* 0x044240 -- 0x0442F8 */
} ce_dre_maint_ure_us_rsp_q;
uint64_t ce_dre_maint_us_wrt_rsp[32];/* 0x044300 -- 0x0443F8 */
uint64_t ce_end_of_struct; /* 0x044400 */
} tioce_t;
/* ce_adm_int_mask/ce_adm_int_status register bit defines */
#define CE_ADM_INT_CE_ERROR_SHFT 0
#define CE_ADM_INT_LSI1_IP_ERROR_SHFT 1
#define CE_ADM_INT_LSI2_IP_ERROR_SHFT 2
#define CE_ADM_INT_PCIE_ERROR_SHFT 3
#define CE_ADM_INT_PORT1_HOTPLUG_EVENT_SHFT 4
#define CE_ADM_INT_PORT2_HOTPLUG_EVENT_SHFT 5
#define CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT 6
#define CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT 7
#define CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT 8
#define CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT 9
#define CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT 10
#define CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT 11
#define CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT 12
#define CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT 13
#define CE_ADM_INT_PCIE_MSG_SHFT 14 /*see int_dest_14*/
#define CE_ADM_INT_PCIE_MSG_SLOT_0_SHFT 14
#define CE_ADM_INT_PCIE_MSG_SLOT_1_SHFT 15
#define CE_ADM_INT_PCIE_MSG_SLOT_2_SHFT 16
#define CE_ADM_INT_PCIE_MSG_SLOT_3_SHFT 17
#define CE_ADM_INT_PORT1_PM_PME_MSG_SHFT 22
#define CE_ADM_INT_PORT2_PM_PME_MSG_SHFT 23
/* ce_adm_force_int register bit defines */
#define CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT 0
#define CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT 1
#define CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT 2
#define CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT 3
#define CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT 4
#define CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT 5
#define CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT 6
#define CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT 7
#define CE_ADM_FORCE_INT_ALWAYS_SHFT 8
/* ce_adm_int_dest register bit masks & shifts */
#define INTR_VECTOR_SHFT 56
/* ce_adm_error_mask and ce_adm_error_summary register bit masks */
#define CE_ADM_ERR_CRM_SSP_REQ_INVALID (0x1ULL << 0)
#define CE_ADM_ERR_SSP_REQ_HEADER (0x1ULL << 1)
#define CE_ADM_ERR_SSP_RSP_HEADER (0x1ULL << 2)
#define CE_ADM_ERR_SSP_PROTOCOL_ERROR (0x1ULL << 3)
#define CE_ADM_ERR_SSP_SBE (0x1ULL << 4)
#define CE_ADM_ERR_SSP_MBE (0x1ULL << 5)
#define CE_ADM_ERR_CXM_CREDIT_OFLOW (0x1ULL << 6)
#define CE_ADM_ERR_DRE_SSP_REQ_INVAL (0x1ULL << 7)
#define CE_ADM_ERR_SSP_REQ_LONG (0x1ULL << 8)
#define CE_ADM_ERR_SSP_REQ_OFLOW (0x1ULL << 9)
#define CE_ADM_ERR_SSP_REQ_SHORT (0x1ULL << 10)
#define CE_ADM_ERR_SSP_REQ_SIDEBAND (0x1ULL << 11)
#define CE_ADM_ERR_SSP_REQ_ADDR_ERR (0x1ULL << 12)
#define CE_ADM_ERR_SSP_REQ_BAD_BE (0x1ULL << 13)
#define CE_ADM_ERR_PCIE_COMPL_TIMEOUT (0x1ULL << 14)
#define CE_ADM_ERR_PCIE_UNEXP_COMPL (0x1ULL << 15)
#define CE_ADM_ERR_PCIE_ERR_COMPL (0x1ULL << 16)
#define CE_ADM_ERR_DRE_CREDIT_OFLOW (0x1ULL << 17)
#define CE_ADM_ERR_DRE_SRAM_PE (0x1ULL << 18)
#define CE_ADM_ERR_SSP_RSP_INVALID (0x1ULL << 19)
#define CE_ADM_ERR_SSP_RSP_LONG (0x1ULL << 20)
#define CE_ADM_ERR_SSP_RSP_SHORT (0x1ULL << 21)
#define CE_ADM_ERR_SSP_RSP_SIDEBAND (0x1ULL << 22)
#define CE_ADM_ERR_URE_SSP_RSP_UNEXP (0x1ULL << 23)
#define CE_ADM_ERR_URE_SSP_WR_REQ_TIMEOUT (0x1ULL << 24)
#define CE_ADM_ERR_URE_SSP_RD_REQ_TIMEOUT (0x1ULL << 25)
#define CE_ADM_ERR_URE_ATE3240_PAGE_FAULT (0x1ULL << 26)
#define CE_ADM_ERR_URE_ATE40_PAGE_FAULT (0x1ULL << 27)
#define CE_ADM_ERR_URE_CREDIT_OFLOW (0x1ULL << 28)
#define CE_ADM_ERR_URE_SRAM_PE (0x1ULL << 29)
#define CE_ADM_ERR_ADM_SSP_RSP_UNEXP (0x1ULL << 30)
#define CE_ADM_ERR_ADM_SSP_REQ_TIMEOUT (0x1ULL << 31)
#define CE_ADM_ERR_MMR_ACCESS_ERROR (0x1ULL << 32)
#define CE_ADM_ERR_MMR_ADDR_ERROR (0x1ULL << 33)
#define CE_ADM_ERR_ADM_CREDIT_OFLOW (0x1ULL << 34)
#define CE_ADM_ERR_ADM_SRAM_PE (0x1ULL << 35)
#define CE_ADM_ERR_DTL1_MIN_PDATA_CREDIT_ERR (0x1ULL << 36)
#define CE_ADM_ERR_DTL1_INF_COMPL_CRED_UPDT_ERR (0x1ULL << 37)
#define CE_ADM_ERR_DTL1_INF_POSTED_CRED_UPDT_ERR (0x1ULL << 38)
#define CE_ADM_ERR_DTL1_INF_NPOSTED_CRED_UPDT_ERR (0x1ULL << 39)
#define CE_ADM_ERR_DTL1_COMP_HD_CRED_MAX_ERR (0x1ULL << 40)
#define CE_ADM_ERR_DTL1_COMP_D_CRED_MAX_ERR (0x1ULL << 41)
#define CE_ADM_ERR_DTL1_NPOSTED_HD_CRED_MAX_ERR (0x1ULL << 42)
#define CE_ADM_ERR_DTL1_NPOSTED_D_CRED_MAX_ERR (0x1ULL << 43)
#define CE_ADM_ERR_DTL1_POSTED_HD_CRED_MAX_ERR (0x1ULL << 44)
#define CE_ADM_ERR_DTL1_POSTED_D_CRED_MAX_ERR (0x1ULL << 45)
#define CE_ADM_ERR_DTL2_MIN_PDATA_CREDIT_ERR (0x1ULL << 46)
#define CE_ADM_ERR_DTL2_INF_COMPL_CRED_UPDT_ERR (0x1ULL << 47)
#define CE_ADM_ERR_DTL2_INF_POSTED_CRED_UPDT_ERR (0x1ULL << 48)
#define CE_ADM_ERR_DTL2_INF_NPOSTED_CRED_UPDT_ERR (0x1ULL << 49)
#define CE_ADM_ERR_DTL2_COMP_HD_CRED_MAX_ERR (0x1ULL << 50)
#define CE_ADM_ERR_DTL2_COMP_D_CRED_MAX_ERR (0x1ULL << 51)
#define CE_ADM_ERR_DTL2_NPOSTED_HD_CRED_MAX_ERR (0x1ULL << 52)
#define CE_ADM_ERR_DTL2_NPOSTED_D_CRED_MAX_ERR (0x1ULL << 53)
#define CE_ADM_ERR_DTL2_POSTED_HD_CRED_MAX_ERR (0x1ULL << 54)
#define CE_ADM_ERR_DTL2_POSTED_D_CRED_MAX_ERR (0x1ULL << 55)
#define CE_ADM_ERR_PORT1_PCIE_COR_ERR (0x1ULL << 56)
#define CE_ADM_ERR_PORT1_PCIE_NFAT_ERR (0x1ULL << 57)
#define CE_ADM_ERR_PORT1_PCIE_FAT_ERR (0x1ULL << 58)
#define CE_ADM_ERR_PORT2_PCIE_COR_ERR (0x1ULL << 59)
#define CE_ADM_ERR_PORT2_PCIE_NFAT_ERR (0x1ULL << 60)
#define CE_ADM_ERR_PORT2_PCIE_FAT_ERR (0x1ULL << 61)
/* ce_adm_ure_ups_buf_barrier_flush register bit masks and shifts */
#define FLUSH_SEL_PORT1_PIPE0_SHFT 0
#define FLUSH_SEL_PORT1_PIPE1_SHFT 4
#define FLUSH_SEL_PORT1_PIPE2_SHFT 8
#define FLUSH_SEL_PORT1_PIPE3_SHFT 12
#define FLUSH_SEL_PORT2_PIPE0_SHFT 16
#define FLUSH_SEL_PORT2_PIPE1_SHFT 20
#define FLUSH_SEL_PORT2_PIPE2_SHFT 24
#define FLUSH_SEL_PORT2_PIPE3_SHFT 28
/* ce_dre_config1 register bit masks and shifts */
#define CE_DRE_RO_ENABLE (0x1ULL << 0)
#define CE_DRE_DYN_RO_ENABLE (0x1ULL << 1)
#define CE_DRE_SUP_CONFIG_COMP_ERROR (0x1ULL << 2)
#define CE_DRE_SUP_IO_COMP_ERROR (0x1ULL << 3)
#define CE_DRE_ADDR_MODE_SHFT 4
/* ce_dre_config_req_status register bit masks */
#define CE_DRE_LAST_CONFIG_COMPLETION (0x7ULL << 0)
#define CE_DRE_DOWNSTREAM_CONFIG_ERROR (0x1ULL << 3)
#define CE_DRE_CONFIG_COMPLETION_VALID (0x1ULL << 4)
#define CE_DRE_CONFIG_REQUEST_ACTIVE (0x1ULL << 5)
/* ce_ure_control register bit masks & shifts */
#define CE_URE_RD_MRG_ENABLE (0x1ULL << 0)
#define CE_URE_WRT_MRG_ENABLE1 (0x1ULL << 4)
#define CE_URE_WRT_MRG_ENABLE2 (0x1ULL << 5)
#define CE_URE_RSPQ_BYPASS_DISABLE (0x1ULL << 24)
#define CE_URE_UPS_DAT1_PAR_DISABLE (0x1ULL << 32)
#define CE_URE_UPS_HDR1_PAR_DISABLE (0x1ULL << 33)
#define CE_URE_UPS_DAT2_PAR_DISABLE (0x1ULL << 34)
#define CE_URE_UPS_HDR2_PAR_DISABLE (0x1ULL << 35)
#define CE_URE_ATE_PAR_DISABLE (0x1ULL << 36)
#define CE_URE_RCI_PAR_DISABLE (0x1ULL << 37)
#define CE_URE_RSPQ_PAR_DISABLE (0x1ULL << 38)
#define CE_URE_DNS_DAT_PAR_DISABLE (0x1ULL << 39)
#define CE_URE_DNS_HDR_PAR_DISABLE (0x1ULL << 40)
#define CE_URE_MALFORM_DISABLE (0x1ULL << 44)
#define CE_URE_UNSUP_DISABLE (0x1ULL << 45)
/* ce_ure_page_map register bit masks & shifts */
#define CE_URE_ATE3240_ENABLE (0x1ULL << 0)
#define CE_URE_ATE40_ENABLE (0x1ULL << 1)
#define CE_URE_PAGESIZE_SHFT 4
#define CE_URE_PAGESIZE_MASK (0x7ULL << CE_URE_PAGESIZE_SHFT)
#define CE_URE_4K_PAGESIZE (0x0ULL << CE_URE_PAGESIZE_SHFT)
#define CE_URE_16K_PAGESIZE (0x1ULL << CE_URE_PAGESIZE_SHFT)
#define CE_URE_64K_PAGESIZE (0x2ULL << CE_URE_PAGESIZE_SHFT)
#define CE_URE_128K_PAGESIZE (0x3ULL << CE_URE_PAGESIZE_SHFT)
#define CE_URE_256K_PAGESIZE (0x4ULL << CE_URE_PAGESIZE_SHFT)
/* ce_ure_pipe_sel register bit masks & shifts */
#define PKT_TRAFIC_SHRT 16
#define BUS_SRC_ID_SHFT 8
#define DEV_SRC_ID_SHFT 3
#define FNC_SRC_ID_SHFT 0
#define CE_URE_TC_MASK (0x07ULL << PKT_TRAFIC_SHRT)
#define CE_URE_BUS_MASK (0xFFULL << BUS_SRC_ID_SHFT)
#define CE_URE_DEV_MASK (0x1FULL << DEV_SRC_ID_SHFT)
#define CE_URE_FNC_MASK (0x07ULL << FNC_SRC_ID_SHFT)
#define CE_URE_PIPE_BUS(b) (((uint64_t)(b) << BUS_SRC_ID_SHFT) & \
CE_URE_BUS_MASK)
#define CE_URE_PIPE_DEV(d) (((uint64_t)(d) << DEV_SRC_ID_SHFT) & \
CE_URE_DEV_MASK)
#define CE_URE_PIPE_FNC(f) (((uint64_t)(f) << FNC_SRC_ID_SHFT) & \
CE_URE_FNC_MASK)
#define CE_URE_SEL1_SHFT 0
#define CE_URE_SEL2_SHFT 20
#define CE_URE_SEL3_SHFT 40
#define CE_URE_SEL1_MASK (0x7FFFFULL << CE_URE_SEL1_SHFT)
#define CE_URE_SEL2_MASK (0x7FFFFULL << CE_URE_SEL2_SHFT)
#define CE_URE_SEL3_MASK (0x7FFFFULL << CE_URE_SEL3_SHFT)
/* ce_ure_pipe_mask register bit masks & shifts */
#define CE_URE_MASK1_SHFT 0
#define CE_URE_MASK2_SHFT 20
#define CE_URE_MASK3_SHFT 40
#define CE_URE_MASK1_MASK (0x7FFFFULL << CE_URE_MASK1_SHFT)
#define CE_URE_MASK2_MASK (0x7FFFFULL << CE_URE_MASK2_SHFT)
#define CE_URE_MASK3_MASK (0x7FFFFULL << CE_URE_MASK3_SHFT)
/* ce_ure_pcie_control1 register bit masks & shifts */
#define CE_URE_SI (0x1ULL << 0)
#define CE_URE_ELAL_SHFT 4
#define CE_URE_ELAL_MASK (0x7ULL << CE_URE_ELAL_SHFT)
#define CE_URE_ELAL1_SHFT 8
#define CE_URE_ELAL1_MASK (0x7ULL << CE_URE_ELAL1_SHFT)
#define CE_URE_SCC (0x1ULL << 12)
#define CE_URE_PN1_SHFT 16
#define CE_URE_PN1_MASK (0xFFULL << CE_URE_PN1_SHFT)
#define CE_URE_PN2_SHFT 24
#define CE_URE_PN2_MASK (0xFFULL << CE_URE_PN2_SHFT)
#define CE_URE_PN1_SET(n) (((uint64_t)(n) << CE_URE_PN1_SHFT) & \
CE_URE_PN1_MASK)
#define CE_URE_PN2_SET(n) (((uint64_t)(n) << CE_URE_PN2_SHFT) & \
CE_URE_PN2_MASK)
/* ce_ure_pcie_control2 register bit masks & shifts */
#define CE_URE_ABP (0x1ULL << 0)
#define CE_URE_PCP (0x1ULL << 1)
#define CE_URE_MSP (0x1ULL << 2)
#define CE_URE_AIP (0x1ULL << 3)
#define CE_URE_PIP (0x1ULL << 4)
#define CE_URE_HPS (0x1ULL << 5)
#define CE_URE_HPC (0x1ULL << 6)
#define CE_URE_SPLV_SHFT 7
#define CE_URE_SPLV_MASK (0xFFULL << CE_URE_SPLV_SHFT)
#define CE_URE_SPLS_SHFT 15
#define CE_URE_SPLS_MASK (0x3ULL << CE_URE_SPLS_SHFT)
#define CE_URE_PSN1_SHFT 19
#define CE_URE_PSN1_MASK (0x1FFFULL << CE_URE_PSN1_SHFT)
#define CE_URE_PSN2_SHFT 32
#define CE_URE_PSN2_MASK (0x1FFFULL << CE_URE_PSN2_SHFT)
#define CE_URE_PSN1_SET(n) (((uint64_t)(n) << CE_URE_PSN1_SHFT) & \
CE_URE_PSN1_MASK)
#define CE_URE_PSN2_SET(n) (((uint64_t)(n) << CE_URE_PSN2_SHFT) & \
CE_URE_PSN2_MASK)
/*
* PIO address space ranges for CE
*/
/* Local CE Registers Space */
#define CE_PIO_MMR 0x00000000
#define CE_PIO_MMR_LEN 0x04000000
/* PCI Compatible Config Space */
#define CE_PIO_CONFIG_SPACE 0x04000000
#define CE_PIO_CONFIG_SPACE_LEN 0x04000000
/* PCI I/O Space Alias */
#define CE_PIO_IO_SPACE_ALIAS 0x08000000
#define CE_PIO_IO_SPACE_ALIAS_LEN 0x08000000
/* PCI Enhanced Config Space */
#define CE_PIO_E_CONFIG_SPACE 0x10000000
#define CE_PIO_E_CONFIG_SPACE_LEN 0x10000000
/* PCI I/O Space */
#define CE_PIO_IO_SPACE 0x100000000
#define CE_PIO_IO_SPACE_LEN 0x100000000
/* PCI MEM Space */
#define CE_PIO_MEM_SPACE 0x200000000
#define CE_PIO_MEM_SPACE_LEN TIO_HWIN_SIZE
/*
* CE PCI Enhanced Config Space shifts & masks
*/
#define CE_E_CONFIG_BUS_SHFT 20
#define CE_E_CONFIG_BUS_MASK (0xFF << CE_E_CONFIG_BUS_SHFT)
#define CE_E_CONFIG_DEVICE_SHFT 15
#define CE_E_CONFIG_DEVICE_MASK (0x1F << CE_E_CONFIG_DEVICE_SHFT)
#define CE_E_CONFIG_FUNC_SHFT 12
#define CE_E_CONFIG_FUNC_MASK (0x7 << CE_E_CONFIG_FUNC_SHFT)
#endif /* __ASM_IA64_SN_TIOCE_H__ */
/**************************************************************************
* Copyright (C) 2005, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
**************************************************************************/
#ifndef _ASM_IA64_SN_CE_PROVIDER_H
#define _ASM_IA64_SN_CE_PROVIDER_H
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/tioce.h>
/*
* Common TIOCE structure shared between the prom and kernel
*
* DO NOT CHANGE THIS STRUCT WITHOUT MAKING CORRESPONDING CHANGES TO THE
* PROM VERSION.
*/
struct tioce_common {
struct pcibus_bussoft ce_pcibus; /* common pciio header */
uint32_t ce_rev;
uint64_t ce_kernel_private;
uint64_t ce_prom_private;
};
struct tioce_kernel {
struct tioce_common *ce_common;
spinlock_t ce_lock;
struct list_head ce_dmamap_list;
uint64_t ce_ate40_shadow[TIOCE_NUM_M40_ATES];
uint64_t ce_ate3240_shadow[TIOCE_NUM_M3240_ATES];
uint32_t ce_ate3240_pagesize;
uint8_t ce_port1_secondary;
/* per-port resources */
struct {
int dirmap_refcnt;
uint64_t dirmap_shadow;
} ce_port[TIOCE_NUM_PORTS];
};
struct tioce_dmamap {
struct list_head ce_dmamap_list; /* headed by tioce_kernel */
uint32_t refcnt;
uint64_t nbytes; /* # bytes mapped */
uint64_t ct_start; /* coretalk start address */
uint64_t pci_start; /* bus start address */
uint64_t *ate_hw; /* hw ptr of first ate in map */
uint64_t *ate_shadow; /* shadow ptr of firat ate */
uint16_t ate_count; /* # ate's in the map */
};
extern int tioce_init_provider(void);
#endif /* __ASM_IA64_SN_CE_PROVIDER_H */
......@@ -93,7 +93,15 @@ _raw_spin_lock_flags (spinlock_t *lock, unsigned long flags)
# endif /* CONFIG_MCKINLEY */
#endif
}
#define _raw_spin_lock(lock) _raw_spin_lock_flags(lock, 0)
/* Unlock by doing an ordered store and releasing the cacheline with nta */
static inline void _raw_spin_unlock(spinlock_t *x) {
barrier();
asm volatile ("st4.rel.nta [%0] = r0\n\t" :: "r"(x));
}
#else /* !ASM_SUPPORTED */
#define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock)
# define _raw_spin_lock(x) \
......@@ -109,16 +117,16 @@ do { \
} while (ia64_spinlock_val); \
} \
} while (0)
#define _raw_spin_unlock(x) do { barrier(); ((spinlock_t *) x)->lock = 0; } while (0)
#endif /* !ASM_SUPPORTED */
#define spin_is_locked(x) ((x)->lock != 0)
#define _raw_spin_unlock(x) do { barrier(); ((spinlock_t *) x)->lock = 0; } while (0)
#define _raw_spin_trylock(x) (cmpxchg_acq(&(x)->lock, 0, 1) == 0)
#define spin_unlock_wait(x) do { barrier(); } while ((x)->lock)
typedef struct {
volatile unsigned int read_counter : 31;
volatile unsigned int write_lock : 1;
volatile unsigned int read_counter : 24;
volatile unsigned int write_lock : 8;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
......@@ -174,6 +182,13 @@ do { \
(result == 0); \
})
static inline void _raw_write_unlock(rwlock_t *x)
{
u8 *y = (u8 *)x;
barrier();
asm volatile ("st1.rel.nta [%0] = r0\n\t" :: "r"(y+3) : "memory" );
}
#else /* !ASM_SUPPORTED */
#define _raw_write_lock(l) \
......@@ -195,14 +210,14 @@ do { \
(ia64_val == 0); \
})
static inline void _raw_write_unlock(rwlock_t *x)
{
barrier();
x->write_lock = 0;
}
#endif /* !ASM_SUPPORTED */
#define _raw_read_trylock(lock) generic_raw_read_trylock(lock)
#define _raw_write_unlock(x) \
({ \
smp_mb__before_clear_bit(); /* need barrier before releasing lock... */ \
clear_bit(31, (x)); \
})
#endif /* _ASM_IA64_SPINLOCK_H */
......@@ -19,12 +19,13 @@
#include <asm/pal.h>
#include <asm/percpu.h>
#define GATE_ADDR __IA64_UL_CONST(0xa000000000000000)
#define GATE_ADDR RGN_BASE(RGN_GATE)
/*
* 0xa000000000000000+2*PERCPU_PAGE_SIZE
* - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page)
*/
#define KERNEL_START __IA64_UL_CONST(0xa000000100000000)
#define KERNEL_START (GATE_ADDR+0x100000000)
#define PERCPU_ADDR (-PERCPU_PAGE_SIZE)
#ifndef __ASSEMBLY__
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment