Commit 7529df46 authored by Peter Pan's avatar Peter Pan Committed by Miquel Raynal

mtd: nand: Add core infrastructure to support SPI NANDs

Add a SPI NAND framework based on the generic NAND framework and the
spi-mem infrastructure.

In its current state, this framework supports the following features:

- single/dual/quad IO modes
- on-die ECC
Signed-off-by: default avatarPeter Pan <peterpandong@micron.com>
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: default avatarMiquel Raynal <miquel.raynal@bootlin.com>
parent 0cf5c7db
......@@ -4,3 +4,4 @@ config MTD_NAND_CORE
source "drivers/mtd/nand/onenand/Kconfig"
source "drivers/mtd/nand/raw/Kconfig"
source "drivers/mtd/nand/spi/Kconfig"
......@@ -5,3 +5,4 @@ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
obj-y += onenand/
obj-y += raw/
obj-y += spi/
menuconfig MTD_SPI_NAND
tristate "SPI NAND device Support"
select MTD_NAND_CORE
depends on SPI_MASTER
select SPI_MEM
help
This is the framework for the SPI NAND device drivers.
# SPDX-License-Identifier: GPL-2.0
spinand-objs := core.o
obj-$(CONFIG_MTD_SPI_NAND) += spinand.o
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#define pr_fmt(fmt) "spi-nand: " fmt
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
const struct nand_page_io_req *req,
u16 *column)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int shift;
if (nand->memorg.planes_per_lun < 2)
return;
/* The plane number is passed in MSB just above the column address */
shift = fls(nand->memorg.pagesize);
*column |= req->pos.plane << shift;
}
static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
spinand->scratchbuf);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
*val = *spinand->scratchbuf;
return 0;
}
static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
spinand->scratchbuf);
*spinand->scratchbuf = val;
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_status(struct spinand_device *spinand, u8 *status)
{
return spinand_read_reg_op(spinand, REG_STATUS, status);
}
static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
*cfg = spinand->cfg_cache[spinand->cur_target];
return 0;
}
static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cfg_cache[spinand->cur_target] == cfg)
return 0;
ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
if (ret)
return ret;
spinand->cfg_cache[spinand->cur_target] = cfg;
return 0;
}
/**
* spinand_upd_cfg() - Update the configuration register
* @spinand: the spinand device
* @mask: the mask encoding the bits to update in the config reg
* @val: the new value to apply
*
* Update the configuration register.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
{
int ret;
u8 cfg;
ret = spinand_get_cfg(spinand, &cfg);
if (ret)
return ret;
cfg &= ~mask;
cfg |= val;
return spinand_set_cfg(spinand, cfg);
}
/**
* spinand_select_target() - Select a specific NAND target/die
* @spinand: the spinand device
* @target: the target/die to select
*
* Select a new target/die. If chip only has one die, this function is a NOOP.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cur_target == target)
return 0;
if (nand->memorg.ntargets == 1) {
spinand->cur_target = target;
return 0;
}
ret = spinand->select_target(spinand, target);
if (ret)
return ret;
spinand->cur_target = target;
return 0;
}
static int spinand_init_cfg_cache(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct device *dev = &spinand->spimem->spi->dev;
unsigned int target;
int ret;
spinand->cfg_cache = devm_kcalloc(dev,
nand->memorg.ntargets,
sizeof(*spinand->cfg_cache),
GFP_KERNEL);
if (!spinand->cfg_cache)
return -ENOMEM;
for (target = 0; target < nand->memorg.ntargets; target++) {
ret = spinand_select_target(spinand, target);
if (ret)
return ret;
/*
* We use spinand_read_reg_op() instead of spinand_get_cfg()
* here to bypass the config cache.
*/
ret = spinand_read_reg_op(spinand, REG_CFG,
&spinand->cfg_cache[target]);
if (ret)
return ret;
}
return 0;
}
static int spinand_init_quad_enable(struct spinand_device *spinand)
{
bool enable = false;
if (!(spinand->flags & SPINAND_HAS_QE_BIT))
return 0;
if (spinand->op_templates.read_cache->data.buswidth == 4 ||
spinand->op_templates.write_cache->data.buswidth == 4 ||
spinand->op_templates.update_cache->data.buswidth == 4)
enable = true;
return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
enable ? CFG_QUAD_ENABLE : 0);
}
static int spinand_ecc_enable(struct spinand_device *spinand,
bool enable)
{
return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
enable ? CFG_ECC_ENABLE : 0);
}
static int spinand_write_enable_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_load_page_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_from_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct spi_mem_op op = *spinand->op_templates.read_cache;
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_page_io_req adjreq = *req;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
int ret;
if (req->datalen) {
adjreq.datalen = nanddev_page_size(nand);
adjreq.dataoffs = 0;
adjreq.databuf.in = spinand->databuf;
buf = spinand->databuf;
nbytes = adjreq.datalen;
}
if (req->ooblen) {
adjreq.ooblen = nanddev_per_page_oobsize(nand);
adjreq.ooboffs = 0;
adjreq.oobbuf.in = spinand->oobbuf;
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
op.addr.val = column;
/*
* Some controllers are limited in term of max RX data size. In this
* case, just repeat the READ_CACHE operation after updating the
* column.
*/
while (nbytes) {
op.data.buf.in = buf;
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
buf += op.data.nbytes;
nbytes -= op.data.nbytes;
op.addr.val += op.data.nbytes;
}
if (req->datalen)
memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
req->ooblen);
}
return 0;
}
static int spinand_write_to_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct spi_mem_op op = *spinand->op_templates.write_cache;
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_page_io_req adjreq = *req;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
int ret;
memset(spinand->databuf, 0xff,
nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand));
if (req->datalen) {
memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
req->datalen);
adjreq.dataoffs = 0;
adjreq.datalen = nanddev_page_size(nand);
adjreq.databuf.out = spinand->databuf;
nbytes = adjreq.datalen;
buf = spinand->databuf;
}
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
req->ooblen);
adjreq.ooblen = nanddev_per_page_oobsize(nand);
adjreq.ooboffs = 0;
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
op = *spinand->op_templates.write_cache;
op.addr.val = column;
/*
* Some controllers are limited in term of max TX data size. In this
* case, split the operation into one LOAD CACHE and one or more
* LOAD RANDOM CACHE.
*/
while (nbytes) {
op.data.buf.out = buf;
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
buf += op.data.nbytes;
nbytes -= op.data.nbytes;
op.addr.val += op.data.nbytes;
/*
* We need to use the RANDOM LOAD CACHE operation if there's
* more than one iteration, because the LOAD operation resets
* the cache to 0xff.
*/
if (nbytes) {
column = op.addr.val;
op = *spinand->op_templates.update_cache;
op.addr.val = column;
}
}
return 0;
}
static int spinand_program_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_erase_op(struct spinand_device *spinand,
const struct nand_pos *pos)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, pos);
struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_wait(struct spinand_device *spinand, u8 *s)
{
unsigned long timeo = jiffies + msecs_to_jiffies(400);
u8 status;
int ret;
do {
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
if (!(status & STATUS_BUSY))
goto out;
} while (time_before(jiffies, timeo));
/*
* Extra read, just in case the STATUS_READY bit has changed
* since our last check
*/
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
out:
if (s)
*s = status;
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
SPINAND_MAX_ID_LEN);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (!ret)
memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
return ret;
}
static int spinand_reset_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_RESET_OP;
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
return spinand_wait(spinand, NULL);
}
static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
{
return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
}
static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (spinand->eccinfo.get_status)
return spinand->eccinfo.get_status(spinand, status);
switch (status & STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_HAS_BITFLIPS:
/*
* We have no way to know exactly how many bitflips have been
* fixed, so let's return the maximum possible value so that
* wear-leveling layers move the data immediately.
*/
return nand->eccreq.strength;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
default:
break;
}
return -EINVAL;
}
static int spinand_read_page(struct spinand_device *spinand,
const struct nand_page_io_req *req,
bool ecc_enabled)
{
u8 status;
int ret;
ret = spinand_load_page_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (ret < 0)
return ret;
ret = spinand_read_from_cache_op(spinand, req);
if (ret)
return ret;
if (!ecc_enabled)
return 0;
return spinand_check_ecc_status(spinand, status);
}
static int spinand_write_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
u8 status;
int ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_write_to_cache_op(spinand, req);
if (ret)
return ret;
ret = spinand_program_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (!ret && (status & STATUS_PROG_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
unsigned int max_bitflips = 0;
struct nand_io_iter iter;
bool enable_ecc = false;
bool ecc_failed = false;
int ret = 0;
if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
enable_ecc = true;
mutex_lock(&spinand->lock);
nanddev_io_for_each_page(nand, from, ops, &iter) {
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_ecc_enable(spinand, enable_ecc);
if (ret)
break;
ret = spinand_read_page(spinand, &iter.req, enable_ecc);
if (ret < 0 && ret != -EBADMSG)
break;
if (ret == -EBADMSG) {
ecc_failed = true;
mtd->ecc_stats.failed++;
ret = 0;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
}
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
mutex_unlock(&spinand->lock);
if (ecc_failed && !ret)
ret = -EBADMSG;
return ret ? ret : max_bitflips;
}
static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_io_iter iter;
bool enable_ecc = false;
int ret = 0;
if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
enable_ecc = true;
mutex_lock(&spinand->lock);
nanddev_io_for_each_page(nand, to, ops, &iter) {
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_ecc_enable(spinand, enable_ecc);
if (ret)
break;
ret = spinand_write_page(spinand, &iter.req);
if (ret)
break;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
mutex_unlock(&spinand->lock);
return ret;
}
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_page_io_req req = {
.pos = *pos,
.ooblen = 2,
.ooboffs = 0,
.oobbuf.in = spinand->oobbuf,
.mode = MTD_OPS_RAW,
};
memset(spinand->oobbuf, 0, 2);
spinand_select_target(spinand, pos->target);
spinand_read_page(spinand, &req, false);
if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
return true;
return false;
}
static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_page_io_req req = {
.pos = *pos,
.ooboffs = 0,
.ooblen = 2,
.oobbuf.out = spinand->oobbuf,
};
int ret;
/* Erase block before marking it bad. */
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
spinand_erase_op(spinand, pos);
memset(spinand->oobbuf, 0, 2);
return spinand_write_page(spinand, &req);
}
static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_markbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 status;
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_erase_op(spinand, pos);
if (ret)
return ret;
ret = spinand_wait(spinand, &status);
if (!ret && (status & STATUS_ERASE_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_erase(struct mtd_info *mtd,
struct erase_info *einfo)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
int ret;
mutex_lock(&spinand->lock);
ret = nanddev_mtd_erase(mtd, einfo);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isreserved(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static const struct nand_ops spinand_ops = {
.erase = spinand_erase,
.markbad = spinand_markbad,
.isbad = spinand_isbad,
};
static int spinand_manufacturer_detect(struct spinand_device *spinand)
{
return -ENOTSUPP;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
return spinand->manufacturer->ops->init(spinand);
return 0;
}
static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
{
/* Release manufacturer private data */
if (spinand->manufacturer->ops->cleanup)
return spinand->manufacturer->ops->cleanup(spinand);
}
static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device *spinand,
const struct spinand_op_variants *variants)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < variants->nops; i++) {
struct spi_mem_op op = variants->ops[i];
unsigned int nbytes;
int ret;
nbytes = nanddev_per_page_oobsize(nand) +
nanddev_page_size(nand);
while (nbytes) {
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
if (ret)
break;
if (!spi_mem_supports_op(spinand->spimem, &op))
break;
nbytes -= op.data.nbytes;
}
if (!nbytes)
return &variants->ops[i];
}
return NULL;
}
/**
* spinand_match_and_init() - Try to find a match between a device ID and an
* entry in a spinand_info table
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
*
* Should be used by SPI NAND manufacturer drivers when they want to find a
* match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u8 devid)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < table_size; i++) {
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (devid != info->devid)
continue;
nand->memorg = table[i].memorg;
nand->eccreq = table[i].eccreq;
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
info->op_variants.read_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.read_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.write_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.write_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.update_cache);
spinand->op_templates.update_cache = op;
return 0;
}
return -ENOTSUPP;
}
static int spinand_detect(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return ret;
ret = spinand_read_id_op(spinand, spinand->id.data);
if (ret)
return ret;
spinand->id.len = SPINAND_MAX_ID_LEN;
ret = spinand_manufacturer_detect(spinand);
if (ret) {
dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
spinand->id.data);
return ret;
}
if (nand->memorg.ntargets > 1 && !spinand->select_target) {
dev_err(dev,
"SPI NANDs with more than one die must implement ->select_target()\n");
return -EINVAL;
}
dev_info(&spinand->spimem->spi->dev,
"%s SPI NAND was found.\n", spinand->manufacturer->name);
dev_info(&spinand->spimem->spi->dev,
"%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
return 0;
}
static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
return -ERANGE;
}
static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = 62;
return 0;
}
static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
.ecc = spinand_noecc_ooblayout_ecc,
.free = spinand_noecc_ooblayout_free,
};
static int spinand_init(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct nand_device *nand = mtd_to_nanddev(mtd);
int ret, i;
/*
* We need a scratch buffer because the spi_mem interface requires that
* buf passed in spi_mem_op->data.buf be DMA-able.
*/
spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
if (!spinand->scratchbuf)
return -ENOMEM;
ret = spinand_detect(spinand);
if (ret)
goto err_free_bufs;
/*
* Use kzalloc() instead of devm_kzalloc() here, because some drivers
* may use this buffer for DMA access.
* Memory allocated by devm_ does not guarantee DMA-safe alignment.
*/
spinand->databuf = kzalloc(nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
GFP_KERNEL);
if (!spinand->databuf) {
ret = -ENOMEM;
goto err_free_bufs;
}
spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
ret = spinand_init_cfg_cache(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_init_quad_enable(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
if (ret)
goto err_free_bufs;
ret = spinand_manufacturer_init(spinand);
if (ret) {
dev_err(dev,
"Failed to initialize the SPI NAND chip (err = %d)\n",
ret);
goto err_free_bufs;
}
/* After power up, all blocks are locked, so unlock them here. */
for (i = 0; i < nand->memorg.ntargets; i++) {
ret = spinand_select_target(spinand, i);
if (ret)
goto err_free_bufs;
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
if (ret)
goto err_free_bufs;
}
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
if (ret)
goto err_manuf_cleanup;
/*
* Right now, we don't support ECC, so let the whole oob
* area is available for user.
*/
mtd->_read_oob = spinand_mtd_read;
mtd->_write_oob = spinand_mtd_write;
mtd->_block_isbad = spinand_mtd_block_isbad;
mtd->_block_markbad = spinand_mtd_block_markbad;
mtd->_block_isreserved = spinand_mtd_block_isreserved;
mtd->_erase = spinand_mtd_erase;
if (spinand->eccinfo.ooblayout)
mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
else
mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
goto err_cleanup_nanddev;
mtd->oobavail = ret;
return 0;
err_cleanup_nanddev:
nanddev_cleanup(nand);
err_manuf_cleanup:
spinand_manufacturer_cleanup(spinand);
err_free_bufs:
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
return ret;
}
static void spinand_cleanup(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
nanddev_cleanup(nand);
spinand_manufacturer_cleanup(spinand);
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
}
static int spinand_probe(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
GFP_KERNEL);
if (!spinand)
return -ENOMEM;
spinand->spimem = mem;
spi_mem_set_drvdata(mem, spinand);
spinand_set_of_node(spinand, mem->spi->dev.of_node);
mutex_init(&spinand->lock);
mtd = spinand_to_mtd(spinand);
mtd->dev.parent = &mem->spi->dev;
ret = spinand_init(spinand);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_spinand_cleanup;
return 0;
err_spinand_cleanup:
spinand_cleanup(spinand);
return ret;
}
static int spinand_remove(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = spi_mem_get_drvdata(mem);
mtd = spinand_to_mtd(spinand);
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
spinand_cleanup(spinand);
return 0;
}
static const struct spi_device_id spinand_ids[] = {
{ .name = "spi-nand" },
{ /* sentinel */ },
};
#ifdef CONFIG_OF
static const struct of_device_id spinand_of_ids[] = {
{ .compatible = "spi-nand" },
{ /* sentinel */ },
};
#endif
static struct spi_mem_driver spinand_drv = {
.spidrv = {
.id_table = spinand_ids,
.driver = {
.name = "spi-nand",
.of_match_table = of_match_ptr(spinand_of_ids),
},
},
.probe = spinand_probe,
.remove = spinand_remove,
};
module_spi_mem_driver(spinand_drv);
MODULE_DESCRIPTION("SPI NAND framework");
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
*/
#ifndef __LINUX_MTD_SPINAND_H
#define __LINUX_MTD_SPINAND_H
#include <linux/mutex.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/**
* Standard SPI NAND flash operations
*/
#define SPINAND_RESET_OP \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_WR_EN_DIS_OP(enable) \
SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_READID_OP(ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
#define SPINAND_SET_FEATURE_OP(reg, valptr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
SPI_MEM_OP_ADDR(1, reg, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(1, valptr, 1))
#define SPINAND_GET_FEATURE_OP(reg, valptr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
SPI_MEM_OP_ADDR(1, reg, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_IN(1, valptr, 1))
#define SPINAND_BLK_ERASE_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PAGE_READ_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
SPI_MEM_OP_ADDR(2, addr, 2), \
SPI_MEM_OP_DUMMY(ndummy, 2), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
SPI_MEM_OP_ADDR(2, addr, 4), \
SPI_MEM_OP_DUMMY(ndummy, 4), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PROG_EXEC_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PROG_LOAD(reset, addr, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(len, buf, 1))
#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(len, buf, 4))
/**
* Standard SPI NAND flash commands
*/
#define SPINAND_CMD_PROG_LOAD_X4 0x32
#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
/* feature register */
#define REG_BLOCK_LOCK 0xa0
#define BL_ALL_UNLOCKED 0x00
/* configuration register */
#define REG_CFG 0xb0
#define CFG_OTP_ENABLE BIT(6)
#define CFG_ECC_ENABLE BIT(4)
#define CFG_QUAD_ENABLE BIT(0)
/* status register */
#define REG_STATUS 0xc0
#define STATUS_BUSY BIT(0)
#define STATUS_ERASE_FAILED BIT(2)
#define STATUS_PROG_FAILED BIT(3)
#define STATUS_ECC_MASK GENMASK(5, 4)
#define STATUS_ECC_NO_BITFLIPS (0 << 4)
#define STATUS_ECC_HAS_BITFLIPS (1 << 4)
#define STATUS_ECC_UNCOR_ERROR (2 << 4)
struct spinand_op;
struct spinand_device;
#define SPINAND_MAX_ID_LEN 4
/**
* struct spinand_id - SPI NAND id structure
* @data: buffer containing the id bytes. Currently 4 bytes large, but can
* be extended if required
* @len: ID length
*
* struct_spinand_id->data contains all bytes returned after a READ_ID command,
* including dummy bytes if the chip does not emit ID bytes right after the
* READ_ID command. The responsibility to extract real ID bytes is left to
* struct_manufacurer_ops->detect().
*/
struct spinand_id {
u8 data[SPINAND_MAX_ID_LEN];
int len;
};
/**
* struct manufacurer_ops - SPI NAND manufacturer specific operations
* @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
* the core calls the struct_manufacurer_ops->detect() hook of each
* registered manufacturer until one of them return 1. Note that
* the first thing to check in this hook is that the manufacturer ID
* in struct_spinand_device->id matches the manufacturer whose
* ->detect() hook has been called. Should return 1 if there's a
* match, 0 if the manufacturer ID does not match and a negative
* error code otherwise. When true is returned, the core assumes
* that properties of the NAND chip (spinand->base.memorg and
* spinand->base.eccreq) have been filled
* @init: initialize a SPI NAND device
* @cleanup: cleanup a SPI NAND device
*
* Each SPI NAND manufacturer driver should implement this interface so that
* NAND chips coming from this vendor can be detected and initialized properly.
*/
struct spinand_manufacturer_ops {
int (*detect)(struct spinand_device *spinand);
int (*init)(struct spinand_device *spinand);
void (*cleanup)(struct spinand_device *spinand);
};
/**
* struct spinand_manufacturer - SPI NAND manufacturer instance
* @id: manufacturer ID
* @name: manufacturer name
* @ops: manufacturer operations
*/
struct spinand_manufacturer {
u8 id;
char *name;
const struct spinand_manufacturer_ops *ops;
};
/**
* struct spinand_op_variants - SPI NAND operation variants
* @ops: the list of variants for a given operation
* @nops: the number of variants
*
* Some operations like read-from-cache/write-to-cache have several variants
* depending on the number of IO lines you use to transfer data or address
* cycles. This structure is a way to describe the different variants supported
* by a chip and let the core pick the best one based on the SPI mem controller
* capabilities.
*/
struct spinand_op_variants {
const struct spi_mem_op *ops;
unsigned int nops;
};
#define SPINAND_OP_VARIANTS(name, ...) \
const struct spinand_op_variants name = { \
.ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
sizeof(struct spi_mem_op), \
}
/**
* spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
* chip
* @get_status: get the ECC status. Should return a positive number encoding
* the number of corrected bitflips if correction was possible or
* -EBADMSG if there are uncorrectable errors. I can also return
* other negative error codes if the error is not caused by
* uncorrectable bitflips
* @ooblayout: the OOB layout used by the on-die ECC implementation
*/
struct spinand_ecc_info {
int (*get_status)(struct spinand_device *spinand, u8 status);
const struct mtd_ooblayout_ops *ooblayout;
};
#define SPINAND_HAS_QE_BIT BIT(0)
/**
* struct spinand_info - Structure used to describe SPI NAND chips
* @model: model name
* @devid: device ID
* @flags: OR-ing of the SPINAND_XXX flags
* @memorg: memory organization
* @eccreq: ECC requirements
* @eccinfo: on-die ECC info
* @op_variants: operations variants
* @op_variants.read_cache: variants of the read-cache operation
* @op_variants.write_cache: variants of the write-cache operation
* @op_variants.update_cache: variants of the update-cache operation
* @select_target: function used to select a target/die. Required only for
* multi-die chips
*
* Each SPI NAND manufacturer driver should have a spinand_info table
* describing all the chips supported by the driver.
*/
struct spinand_info {
const char *model;
u8 devid;
u32 flags;
struct nand_memory_organization memorg;
struct nand_ecc_req eccreq;
struct spinand_ecc_info eccinfo;
struct {
const struct spinand_op_variants *read_cache;
const struct spinand_op_variants *write_cache;
const struct spinand_op_variants *update_cache;
} op_variants;
int (*select_target)(struct spinand_device *spinand,
unsigned int target);
};
#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
{ \
.read_cache = __read, \
.write_cache = __write, \
.update_cache = __update, \
}
#define SPINAND_ECCINFO(__ooblayout, __get_status) \
.eccinfo = { \
.ooblayout = __ooblayout, \
.get_status = __get_status, \
}
#define SPINAND_SELECT_TARGET(__func) \
.select_target = __func,
#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
__flags, ...) \
{ \
.model = __model, \
.devid = __id, \
.memorg = __memorg, \
.eccreq = __eccreq, \
.op_variants = __op_variants, \
.flags = __flags, \
__VA_ARGS__ \
}
/**
* struct spinand_device - SPI NAND device instance
* @base: NAND device instance
* @spimem: pointer to the SPI mem object
* @lock: lock used to serialize accesses to the NAND
* @id: NAND ID as returned by READ_ID
* @flags: NAND flags
* @op_templates: various SPI mem op templates
* @op_templates.read_cache: read cache op template
* @op_templates.write_cache: write cache op template
* @op_templates.update_cache: update cache op template
* @select_target: select a specific target/die. Usually called before sending
* a command addressing a page or an eraseblock embedded in
* this die. Only required if your chip exposes several dies
* @cur_target: currently selected target/die
* @eccinfo: on-die ECC information
* @cfg_cache: config register cache. One entry per die
* @databuf: bounce buffer for data
* @oobbuf: bounce buffer for OOB data
* @scratchbuf: buffer used for everything but page accesses. This is needed
* because the spi-mem interface explicitly requests that buffers
* passed in spi_mem_op be DMA-able, so we can't based the bufs on
* the stack
* @manufacturer: SPI NAND manufacturer information
* @priv: manufacturer private data
*/
struct spinand_device {
struct nand_device base;
struct spi_mem *spimem;
struct mutex lock;
struct spinand_id id;
u32 flags;
struct {
const struct spi_mem_op *read_cache;
const struct spi_mem_op *write_cache;
const struct spi_mem_op *update_cache;
} op_templates;
int (*select_target)(struct spinand_device *spinand,
unsigned int target);
unsigned int cur_target;
struct spinand_ecc_info eccinfo;
u8 *cfg_cache;
u8 *databuf;
u8 *oobbuf;
u8 *scratchbuf;
const struct spinand_manufacturer *manufacturer;
void *priv;
};
/**
* mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
* @mtd: MTD instance
*
* Return: the SPI NAND device attached to @mtd.
*/
static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
{
return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
}
/**
* spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
* @spinand: SPI NAND device
*
* Return: the MTD device embedded in @spinand.
*/
static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
{
return nanddev_to_mtd(&spinand->base);
}
/**
* nand_to_spinand() - Get the SPI NAND device embedding an NAND object
* @nand: NAND object
*
* Return: the SPI NAND device embedding @nand.
*/
static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
{
return container_of(nand, struct spinand_device, base);
}
/**
* spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
* @spinand: SPI NAND device
*
* Return: the NAND device embedded in @spinand.
*/
static inline struct nand_device *
spinand_to_nand(struct spinand_device *spinand)
{
return &spinand->base;
}
/**
* spinand_set_of_node - Attach a DT node to a SPI NAND device
* @spinand: SPI NAND device
* @np: DT node
*
* Attach a DT node to a SPI NAND device.
*/
static inline void spinand_set_of_node(struct spinand_device *spinand,
struct device_node *np)
{
nanddev_set_of_node(&spinand->base, np);
}
int spinand_match_and_init(struct spinand_device *dev,
const struct spinand_info *table,
unsigned int table_size, u8 devid);
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
int spinand_select_target(struct spinand_device *spinand, unsigned int target);
#endif /* __LINUX_MTD_SPINAND_H */
......@@ -3,7 +3,9 @@
* Copyright (C) 2018 Exceet Electronics GmbH
* Copyright (C) 2018 Bootlin
*
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
* Author:
* Peter Pan <peterpandong@micron.com>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#ifndef __LINUX_SPI_MEM_H
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment