Commit 758602c0 authored by Sam Tebbs's avatar Sam Tebbs Committed by Will Deacon

arm64: Import latest version of Cortex Strings' strcmp

Import the latest version of the former Cortex Strings - now
Arm Optimized Routines - strcmp function based on the upstream
code of string/aarch64/strcmp.S at commit afd6244 from
https://github.com/ARM-software/optimized-routines

Note that for simplicity Arm have chosen to contribute this code
to Linux under GPLv2 rather than the original MIT license.
Signed-off-by: default avatarSam Tebbs <sam.tebbs@arm.com>
[ rm: update attribution and commit message ]
Signed-off-by: default avatarRobin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/0fe90c90b96b569fbdfd46e47bd1298abb02079e.1622128527.git.robin.murphy@arm.comSigned-off-by: default avatarWill Deacon <will@kernel.org>
parent 43de30d3
/* SPDX-License-Identifier: GPL-2.0-only */ /* SPDX-License-Identifier: GPL-2.0-only */
/* /*
* Copyright (C) 2013 ARM Ltd. * Copyright (c) 2012-2020, Arm Limited.
* Copyright (C) 2013 Linaro.
* *
* This code is based on glibc cortex strings work originally authored by Linaro * Adapted from the original at:
* be found @ * https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strcmp.S
*
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
* files/head:/src/aarch64/
*/ */
#include <linux/linkage.h> #include <linux/linkage.h>
#include <asm/assembler.h> #include <asm/assembler.h>
/* /* Assumptions:
* compare two strings
* *
* Parameters: * ARMv8-a, AArch64
* x0 - const string 1 pointer
* x1 - const string 2 pointer
* Returns:
* x0 - an integer less than, equal to, or greater than zero
* if s1 is found, respectively, to be less than, to match,
* or be greater than s2.
*/ */
#define L(label) .L ## label
#define REP8_01 0x0101010101010101 #define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080 #define REP8_80 0x8080808080808080
/* Parameters and result. */ /* Parameters and result. */
src1 .req x0 #define src1 x0
src2 .req x1 #define src2 x1
result .req x0 #define result x0
/* Internal variables. */ /* Internal variables. */
data1 .req x2 #define data1 x2
data1w .req w2 #define data1w w2
data2 .req x3 #define data2 x3
data2w .req w3 #define data2w w3
has_nul .req x4 #define has_nul x4
diff .req x5 #define diff x5
syndrome .req x6 #define syndrome x6
tmp1 .req x7 #define tmp1 x7
tmp2 .req x8 #define tmp2 x8
tmp3 .req x9 #define tmp3 x9
zeroones .req x10 #define zeroones x10
pos .req x11 #define pos x11
/* Start of performance-critical section -- one 64B cache line. */
.align 6
SYM_FUNC_START_WEAK_PI(strcmp) SYM_FUNC_START_WEAK_PI(strcmp)
eor tmp1, src1, src2 eor tmp1, src1, src2
mov zeroones, #REP8_01 mov zeroones, #REP8_01
tst tmp1, #7 tst tmp1, #7
b.ne .Lmisaligned8 b.ne L(misaligned8)
ands tmp1, src1, #7 ands tmp1, src1, #7
b.ne .Lmutual_align b.ne L(mutual_align)
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
/* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
* NUL detection works on the principle that (X - 1) & (~X) & 0x80 can be done in parallel across the entire word. */
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and L(loop_aligned):
* can be done in parallel across the entire word.
*/
.Lloop_aligned:
ldr data1, [src1], #8 ldr data1, [src1], #8
ldr data2, [src2], #8 ldr data2, [src2], #8
.Lstart_realigned: L(start_realigned):
sub tmp1, data1, zeroones sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */ eor diff, data1, data2 /* Non-zero if differences found. */
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
orr syndrome, diff, has_nul orr syndrome, diff, has_nul
cbz syndrome, .Lloop_aligned cbz syndrome, L(loop_aligned)
b .Lcal_cmpresult /* End of performance-critical section -- one 64B cache line. */
L(end):
#ifndef __AARCH64EB__
rev syndrome, syndrome
rev data1, data1
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
clz pos, syndrome
rev data2, data2
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#else
/* For big-endian we cannot use the trick with the syndrome value
as carry-propagation can corrupt the upper bits if the trailing
bytes in the string contain 0x01. */
/* However, if there is no NUL byte in the dword, we can generate
the result directly. We can't just subtract the bytes as the
MSB might be significant. */
cbnz has_nul, 1f
cmp data1, data2
cset result, ne
cneg result, result, lo
ret
1:
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
rev tmp3, data1
sub tmp1, tmp3, zeroones
orr tmp2, tmp3, #REP8_7f
bic has_nul, tmp1, tmp2
rev has_nul, has_nul
orr syndrome, diff, has_nul
clz pos, syndrome
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#endif
.Lmutual_align: L(mutual_align):
/* /* Sources are mutually aligned, but are not currently at an
* Sources are mutually aligned, but are not currently at an alignment boundary. Round down the addresses and then mask off
* alignment boundary. Round down the addresses and then mask off the bytes that preceed the start point. */
* the bytes that preceed the start point.
*/
bic src1, src1, #7 bic src1, src1, #7
bic src2, src2, #7 bic src2, src2, #7
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
...@@ -86,138 +125,52 @@ SYM_FUNC_START_WEAK_PI(strcmp) ...@@ -86,138 +125,52 @@ SYM_FUNC_START_WEAK_PI(strcmp)
neg tmp1, tmp1 /* Bits to alignment -64. */ neg tmp1, tmp1 /* Bits to alignment -64. */
ldr data2, [src2], #8 ldr data2, [src2], #8
mov tmp2, #~0 mov tmp2, #~0
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */ /* Big-endian. Early bytes are at MSB. */
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */ /* Little-endian. Early bytes are at LSB. */
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#endif
orr data1, data1, tmp2 orr data1, data1, tmp2
orr data2, data2, tmp2 orr data2, data2, tmp2
b .Lstart_realigned b L(start_realigned)
.Lmisaligned8: L(misaligned8):
/* /* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
* Get the align offset length to compare per byte first. checking to make sure that we don't access beyond page boundary in
* After this process, one string's address will be aligned. SRC2. */
*/ tst src1, #7
and tmp1, src1, #7 b.eq L(loop_misaligned)
neg tmp1, tmp1 L(do_misaligned):
add tmp1, tmp1, #8
and tmp2, src2, #7
neg tmp2, tmp2
add tmp2, tmp2, #8
subs tmp3, tmp1, tmp2
csel pos, tmp1, tmp2, hi /*Choose the maximum. */
.Ltinycmp:
ldrb data1w, [src1], #1 ldrb data1w, [src1], #1
ldrb data2w, [src2], #1 ldrb data2w, [src2], #1
subs pos, pos, #1
ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.eq .Ltinycmp
cbnz pos, 1f /*find the null or unequal...*/
cmp data1w, #1 cmp data1w, #1
ccmp data1w, data2w, #0, cs ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.eq .Lstart_align /*the last bytes are equal....*/ b.ne L(done)
1: tst src1, #7
sub result, data1, data2 b.ne L(do_misaligned)
ret
L(loop_misaligned):
.Lstart_align: /* Test if we are within the last dword of the end of a 4K page. If
ands xzr, src1, #7 yes then jump back to the misaligned loop to copy a byte at a time. */
b.eq .Lrecal_offset and tmp1, src2, #0xff8
/*process more leading bytes to make str1 aligned...*/ eor tmp1, tmp1, #0xff8
add src1, src1, tmp3 cbz tmp1, L(do_misaligned)
add src2, src2, tmp3
/*load 8 bytes from aligned str1 and non-aligned str2..*/
ldr data1, [src1], #8 ldr data1, [src1], #8
ldr data2, [src2], #8 ldr data2, [src2], #8
sub tmp1, data1, zeroones sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f orr tmp2, data1, #REP8_7f
bic has_nul, tmp1, tmp2 eor diff, data1, data2 /* Non-zero if differences found. */
eor diff, data1, data2 /* Non-zero if differences found. */ bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
orr syndrome, diff, has_nul
cbnz syndrome, .Lcal_cmpresult
/*How far is the current str2 from the alignment boundary...*/
and tmp3, tmp3, #7
.Lrecal_offset:
neg pos, tmp3
.Lloopcmp_proc:
/*
* Divide the eight bytes into two parts. First,backwards the src2
* to an alignment boundary,load eight bytes from the SRC2 alignment
* boundary,then compare with the relative bytes from SRC1.
* If all 8 bytes are equal,then start the second part's comparison.
* Otherwise finish the comparison.
* This special handle can garantee all the accesses are in the
* thread/task space in avoid to overrange access.
*/
ldr data1, [src1,pos]
ldr data2, [src2,pos]
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
bic has_nul, tmp1, tmp2
eor diff, data1, data2 /* Non-zero if differences found. */
orr syndrome, diff, has_nul
cbnz syndrome, .Lcal_cmpresult
/*The second part process*/
ldr data1, [src1], #8
ldr data2, [src2], #8
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
bic has_nul, tmp1, tmp2
eor diff, data1, data2 /* Non-zero if differences found. */
orr syndrome, diff, has_nul orr syndrome, diff, has_nul
cbz syndrome, .Lloopcmp_proc cbz syndrome, L(loop_misaligned)
b L(end)
.Lcal_cmpresult: L(done):
/* sub result, data1, data2
* reversed the byte-order as big-endian,then CLZ can find the most
* significant zero bits.
*/
CPU_LE( rev syndrome, syndrome )
CPU_LE( rev data1, data1 )
CPU_LE( rev data2, data2 )
/*
* For big-endian we cannot use the trick with the syndrome value
* as carry-propagation can corrupt the upper bits if the trailing
* bytes in the string contain 0x01.
* However, if there is no NUL byte in the dword, we can generate
* the result directly. We cannot just subtract the bytes as the
* MSB might be significant.
*/
CPU_BE( cbnz has_nul, 1f )
CPU_BE( cmp data1, data2 )
CPU_BE( cset result, ne )
CPU_BE( cneg result, result, lo )
CPU_BE( ret )
CPU_BE( 1: )
/*Re-compute the NUL-byte detection, using a byte-reversed value. */
CPU_BE( rev tmp3, data1 )
CPU_BE( sub tmp1, tmp3, zeroones )
CPU_BE( orr tmp2, tmp3, #REP8_7f )
CPU_BE( bic has_nul, tmp1, tmp2 )
CPU_BE( rev has_nul, has_nul )
CPU_BE( orr syndrome, diff, has_nul )
clz pos, syndrome
/*
* The MS-non-zero bit of the syndrome marks either the first bit
* that is different, or the top bit of the first zero byte.
* Shifting left now will bring the critical information into the
* top bits.
*/
lsl data1, data1, pos
lsl data2, data2, pos
/*
* But we need to zero-extend (char is unsigned) the value and then
* perform a signed 32-bit subtraction.
*/
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret ret
SYM_FUNC_END_PI(strcmp) SYM_FUNC_END_PI(strcmp)
EXPORT_SYMBOL_NOKASAN(strcmp) EXPORT_SYMBOL_NOKASAN(strcmp)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment