Commit 76e3e7c4 authored by Karl Relton's avatar Karl Relton Committed by Greg Kroah-Hartman

Staging: wlan-ng: Move firmware loading into driver

Move prism2 firmware loading from userspace into driver, using linux
request_firmware(). Firmware is now loaded (if available) on device
probing, before it is registered as a netdevice and advertised to userspace.
Signed-off-by: default avatarKarl Relton <karllinuxtest.relton@ntlworld.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 24b8a9df
......@@ -64,6 +64,7 @@
#define HFA384x_PORTID_MAX ((u16)7)
#define HFA384x_NUMPORTS_MAX ((u16)(HFA384x_PORTID_MAX+1))
#define HFA384x_PDR_LEN_MAX ((u16)512) /* in bytes, from EK */
#define HFA384x_PDA_RECS_MAX ((u16)200) /* a guess */
#define HFA384x_PDA_LEN_MAX ((u16)1024) /* in bytes, from EK */
#define HFA384x_SCANRESULT_MAX ((u16)31)
#define HFA384x_HSCANRESULT_MAX ((u16)31)
......@@ -882,6 +883,249 @@ typedef union hfa384x_usbin {
u8 boguspad[3000];
} __attribute__ ((packed)) hfa384x_usbin_t;
/*--------------------------------------------------------------------
PD record structures.
--------------------------------------------------------------------*/
typedef struct hfa384x_pdr_pcb_partnum
{
u8 num[8];
} __attribute__ ((packed)) hfa384x_pdr_pcb_partnum_t;
typedef struct hfa384x_pdr_pcb_tracenum
{
u8 num[8];
} __attribute__ ((packed)) hfa384x_pdr_pcb_tracenum_t;
typedef struct hfa384x_pdr_nic_serial
{
u8 num[12];
} __attribute__ ((packed)) hfa384x_pdr_nic_serial_t;
typedef struct hfa384x_pdr_mkk_measurements
{
double carrier_freq;
double occupied_band;
double power_density;
double tx_spur_f1;
double tx_spur_f2;
double tx_spur_f3;
double tx_spur_f4;
double tx_spur_l1;
double tx_spur_l2;
double tx_spur_l3;
double tx_spur_l4;
double rx_spur_f1;
double rx_spur_f2;
double rx_spur_l1;
double rx_spur_l2;
} __attribute__ ((packed)) hfa384x_pdr_mkk_measurements_t;
typedef struct hfa384x_pdr_nic_ramsize
{
u8 size[12]; /* units of KB */
} __attribute__ ((packed)) hfa384x_pdr_nic_ramsize_t;
typedef struct hfa384x_pdr_mfisuprange
{
u16 id;
u16 variant;
u16 bottom;
u16 top;
} __attribute__ ((packed)) hfa384x_pdr_mfisuprange_t;
typedef struct hfa384x_pdr_cfisuprange
{
u16 id;
u16 variant;
u16 bottom;
u16 top;
} __attribute__ ((packed)) hfa384x_pdr_cfisuprange_t;
typedef struct hfa384x_pdr_nicid
{
u16 id;
u16 variant;
u16 major;
u16 minor;
} __attribute__ ((packed)) hfa384x_pdr_nicid_t;
typedef struct hfa384x_pdr_refdac_measurements
{
u16 value[0];
} __attribute__ ((packed)) hfa384x_pdr_refdac_measurements_t;
typedef struct hfa384x_pdr_vgdac_measurements
{
u16 value[0];
} __attribute__ ((packed)) hfa384x_pdr_vgdac_measurements_t;
typedef struct hfa384x_pdr_level_comp_measurements
{
u16 value[0];
} __attribute__ ((packed)) hfa384x_pdr_level_compc_measurements_t;
typedef struct hfa384x_pdr_mac_address
{
u8 addr[6];
} __attribute__ ((packed)) hfa384x_pdr_mac_address_t;
typedef struct hfa384x_pdr_mkk_callname
{
u8 callname[8];
} __attribute__ ((packed)) hfa384x_pdr_mkk_callname_t;
typedef struct hfa384x_pdr_regdomain
{
u16 numdomains;
u16 domain[5];
} __attribute__ ((packed)) hfa384x_pdr_regdomain_t;
typedef struct hfa384x_pdr_allowed_channel
{
u16 ch_bitmap;
} __attribute__ ((packed)) hfa384x_pdr_allowed_channel_t;
typedef struct hfa384x_pdr_default_channel
{
u16 channel;
} __attribute__ ((packed)) hfa384x_pdr_default_channel_t;
typedef struct hfa384x_pdr_privacy_option
{
u16 available;
} __attribute__ ((packed)) hfa384x_pdr_privacy_option_t;
typedef struct hfa384x_pdr_temptype
{
u16 type;
} __attribute__ ((packed)) hfa384x_pdr_temptype_t;
typedef struct hfa384x_pdr_refdac_setup
{
u16 ch_value[14];
} __attribute__ ((packed)) hfa384x_pdr_refdac_setup_t;
typedef struct hfa384x_pdr_vgdac_setup
{
u16 ch_value[14];
} __attribute__ ((packed)) hfa384x_pdr_vgdac_setup_t;
typedef struct hfa384x_pdr_level_comp_setup
{
u16 ch_value[14];
} __attribute__ ((packed)) hfa384x_pdr_level_comp_setup_t;
typedef struct hfa384x_pdr_trimdac_setup
{
u16 trimidac;
u16 trimqdac;
} __attribute__ ((packed)) hfa384x_pdr_trimdac_setup_t;
typedef struct hfa384x_pdr_ifr_setting
{
u16 value[3];
} __attribute__ ((packed)) hfa384x_pdr_ifr_setting_t;
typedef struct hfa384x_pdr_rfr_setting
{
u16 value[3];
} __attribute__ ((packed)) hfa384x_pdr_rfr_setting_t;
typedef struct hfa384x_pdr_hfa3861_baseline
{
u16 value[50];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_baseline_t;
typedef struct hfa384x_pdr_hfa3861_shadow
{
u32 value[32];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_shadow_t;
typedef struct hfa384x_pdr_hfa3861_ifrf
{
u32 value[20];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_ifrf_t;
typedef struct hfa384x_pdr_hfa3861_chcalsp
{
u16 value[14];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_chcalsp_t;
typedef struct hfa384x_pdr_hfa3861_chcali
{
u16 value[17];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_chcali_t;
typedef struct hfa384x_pdr_hfa3861_nic_config
{
u16 config_bitmap;
} __attribute__ ((packed)) hfa384x_pdr_nic_config_t;
typedef struct hfa384x_pdr_hfo_delay
{
u8 hfo_delay;
} __attribute__ ((packed)) hfa384x_hfo_delay_t;
typedef struct hfa384x_pdr_hfa3861_manf_testsp
{
u16 value[30];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_manf_testsp_t;
typedef struct hfa384x_pdr_hfa3861_manf_testi
{
u16 value[30];
} __attribute__ ((packed)) hfa384x_pdr_hfa3861_manf_testi_t;
typedef struct hfa384x_end_of_pda
{
u16 crc;
} __attribute__ ((packed)) hfa384x_pdr_end_of_pda_t;
typedef struct hfa384x_pdrec
{
u16 len; /* in words */
u16 code;
union pdr {
hfa384x_pdr_pcb_partnum_t pcb_partnum;
hfa384x_pdr_pcb_tracenum_t pcb_tracenum;
hfa384x_pdr_nic_serial_t nic_serial;
hfa384x_pdr_mkk_measurements_t mkk_measurements;
hfa384x_pdr_nic_ramsize_t nic_ramsize;
hfa384x_pdr_mfisuprange_t mfisuprange;
hfa384x_pdr_cfisuprange_t cfisuprange;
hfa384x_pdr_nicid_t nicid;
hfa384x_pdr_refdac_measurements_t refdac_measurements;
hfa384x_pdr_vgdac_measurements_t vgdac_measurements;
hfa384x_pdr_level_compc_measurements_t level_compc_measurements;
hfa384x_pdr_mac_address_t mac_address;
hfa384x_pdr_mkk_callname_t mkk_callname;
hfa384x_pdr_regdomain_t regdomain;
hfa384x_pdr_allowed_channel_t allowed_channel;
hfa384x_pdr_default_channel_t default_channel;
hfa384x_pdr_privacy_option_t privacy_option;
hfa384x_pdr_temptype_t temptype;
hfa384x_pdr_refdac_setup_t refdac_setup;
hfa384x_pdr_vgdac_setup_t vgdac_setup;
hfa384x_pdr_level_comp_setup_t level_comp_setup;
hfa384x_pdr_trimdac_setup_t trimdac_setup;
hfa384x_pdr_ifr_setting_t ifr_setting;
hfa384x_pdr_rfr_setting_t rfr_setting;
hfa384x_pdr_hfa3861_baseline_t hfa3861_baseline;
hfa384x_pdr_hfa3861_shadow_t hfa3861_shadow;
hfa384x_pdr_hfa3861_ifrf_t hfa3861_ifrf;
hfa384x_pdr_hfa3861_chcalsp_t hfa3861_chcalsp;
hfa384x_pdr_hfa3861_chcali_t hfa3861_chcali;
hfa384x_pdr_nic_config_t nic_config;
hfa384x_hfo_delay_t hfo_delay;
hfa384x_pdr_hfa3861_manf_testsp_t hfa3861_manf_testsp;
hfa384x_pdr_hfa3861_manf_testi_t hfa3861_manf_testi;
hfa384x_pdr_end_of_pda_t end_of_pda;
} data;
} __attribute__ ((packed)) hfa384x_pdrec_t;
#ifdef __KERNEL__
/*--------------------------------------------------------------------
--- MAC state structure, argument to all functions --
......
......@@ -50,6 +50,14 @@
#define DIDmsg_dot11req_mibget \
(P80211DID_MKSECTION(1) | \
P80211DID_MKGROUP(1))
#define DIDmsg_dot11req_mibget_mibattribute \
(P80211DID_MKSECTION(1) | \
P80211DID_MKGROUP(1) | \
P80211DID_MKITEM(1) | 0x00000000)
#define DIDmsg_dot11req_mibget_resultcode \
(P80211DID_MKSECTION(1) | \
P80211DID_MKGROUP(1) | \
P80211DID_MKITEM(2) | 0x00000000)
#define DIDmsg_dot11req_mibset \
(P80211DID_MKSECTION(1) | \
P80211DID_MKGROUP(2))
......@@ -94,12 +102,48 @@
#define DIDmsg_p2req_readpda \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(2))
#define DIDmsg_p2req_readpda_pda \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(2) | \
P80211DID_MKITEM(1) | 0x00000000)
#define DIDmsg_p2req_readpda_resultcode \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(2) | \
P80211DID_MKITEM(2) | 0x00000000)
#define DIDmsg_p2req_ramdl_state \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(11))
#define DIDmsg_p2req_ramdl_state_enable \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(11) | \
P80211DID_MKITEM(1) | 0x00000000)
#define DIDmsg_p2req_ramdl_state_exeaddr \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(11) | \
P80211DID_MKITEM(2) | 0x00000000)
#define DIDmsg_p2req_ramdl_state_resultcode \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(11) | \
P80211DID_MKITEM(3) | 0x00000000)
#define DIDmsg_p2req_ramdl_write \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(12))
#define DIDmsg_p2req_ramdl_write_addr \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(12) | \
P80211DID_MKITEM(1) | 0x00000000)
#define DIDmsg_p2req_ramdl_write_len \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(12) | \
P80211DID_MKITEM(2) | 0x00000000)
#define DIDmsg_p2req_ramdl_write_data \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(12) | \
P80211DID_MKITEM(3) | 0x00000000)
#define DIDmsg_p2req_ramdl_write_resultcode \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(12) | \
P80211DID_MKITEM(4) | 0x00000000)
#define DIDmsg_p2req_flashdl_state \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(13))
......@@ -203,6 +247,10 @@
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(2) | \
P80211DID_MKITEM(1) | 0x18000000)
#define DIDmib_p2_p2NIC_p2PRISupRange \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(5) | \
P80211DID_MKITEM(6) | 0x10000000)
#define DIDmib_p2_p2MAC \
(P80211DID_MKSECTION(5) | \
P80211DID_MKGROUP(6))
......
......@@ -566,8 +566,6 @@ static int p80211knetdev_do_ioctl(netdevice_t *dev, struct ifreq *ifr, int cmd)
pr_debug("rx'd ioctl, cmd=%d, len=%d\n", cmd, req->len);
mutex_lock(&wlandev->ioctl_lock);
#ifdef SIOCETHTOOL
if (cmd == SIOCETHTOOL) {
result =
......@@ -608,8 +606,6 @@ static int p80211knetdev_do_ioctl(netdevice_t *dev, struct ifreq *ifr, int cmd)
result = -ENOMEM;
}
bail:
mutex_unlock(&wlandev->ioctl_lock);
return result; /* If allocate,copyfrom or copyto fails, return errno */
}
......@@ -771,11 +767,6 @@ int wlan_setup(wlandevice_t *wlandev)
dev->ml_priv = wlandev;
dev->netdev_ops = &p80211_netdev_ops;
mutex_init(&wlandev->ioctl_lock);
/* block ioctls until fully initialised. Don't forget to call
allow_ioctls at some point!*/
mutex_lock(&wlandev->ioctl_lock);
#if (WIRELESS_EXT < 21)
dev->get_wireless_stats = p80211wext_get_wireless_stats;
#endif
......@@ -1116,8 +1107,3 @@ static void p80211knetdev_tx_timeout(netdevice_t *netdev)
netif_wake_queue(wlandev->netdev);
}
}
void p80211_allow_ioctls(wlandevice_t *wlandev)
{
mutex_unlock(&wlandev->ioctl_lock);
}
......@@ -227,8 +227,6 @@ typedef struct wlandevice {
u8 spy_number;
char spy_address[IW_MAX_SPY][ETH_ALEN];
struct iw_quality spy_stat[IW_MAX_SPY];
struct mutex ioctl_lock;
} wlandevice_t;
/* WEP stuff */
......@@ -244,5 +242,4 @@ int register_wlandev(wlandevice_t *wlandev);
int unregister_wlandev(wlandevice_t *wlandev);
void p80211netdev_rx(wlandevice_t *wlandev, struct sk_buff *skb);
void p80211netdev_hwremoved(wlandevice_t *wlandev);
void p80211_allow_ioctls(wlandevice_t *wlandev);
#endif
/* from src/prism2/download/prism2dl.c
*
* utility for downloading prism2 images moved into kernelspace
*
* Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
* --------------------------------------------------------------------
*
* linux-wlan
*
* The contents of this file are subject to the Mozilla Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU Public License version 2 (the "GPL"), in which
* case the provisions of the GPL are applicable instead of the
* above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use
* your version of this file under the MPL, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete
* the provisions above, a recipient may use your version of this
* file under either the MPL or the GPL.
*
* --------------------------------------------------------------------
*
* Inquiries regarding the linux-wlan Open Source project can be
* made directly to:
*
* AbsoluteValue Systems Inc.
* info@linux-wlan.com
* http://www.linux-wlan.com
*
* --------------------------------------------------------------------
*
* Portions of the development of this software were funded by
* Intersil Corporation as part of PRISM(R) chipset product development.
*
* --------------------------------------------------------------------
*/
/*================================================================*/
/* System Includes */
#include <linux/sort.h>
#include <linux/firmware.h>
/*================================================================*/
/* Local Constants */
#define PRISM2_USB_FWFILE "prism2_ru.hex"
#define S3DATA_MAX 5000
#define S3PLUG_MAX 200
#define S3CRC_MAX 200
#define S3INFO_MAX 50
#define SREC_LINE_MAX 264
#define S3LEN_TXTOFFSET 2
#define S3LEN_TXTLEN 2
#define S3ADDR_TXTOFFSET 4
#define S3ADDR_TXTLEN 8
#define S3DATA_TXTOFFSET 12
/*S3DATA_TXTLEN variable, depends on len field */
/*S3CKSUM_TXTOFFSET variable, depends on len field */
#define S3CKSUM_TXTLEN 2
#define SERNUM_LEN_MAX 12
#define S3PLUG_ITEMCODE_TXTOFFSET (S3DATA_TXTOFFSET)
#define S3PLUG_ITEMCODE_TXTLEN 8
#define S3PLUG_ADDR_TXTOFFSET (S3DATA_TXTOFFSET+8)
#define S3PLUG_ADDR_TXTLEN 8
#define S3PLUG_LEN_TXTOFFSET (S3DATA_TXTOFFSET+16)
#define S3PLUG_LEN_TXTLEN 8
#define S3CRC_ADDR_TXTOFFSET (S3DATA_TXTOFFSET)
#define S3CRC_ADDR_TXTLEN 8
#define S3CRC_LEN_TXTOFFSET (S3DATA_TXTOFFSET+8)
#define S3CRC_LEN_TXTLEN 8
#define S3CRC_DOWRITE_TXTOFFSET (S3DATA_TXTOFFSET+16)
#define S3CRC_DOWRITE_TXTLEN 8
#define S3INFO_LEN_TXTOFFSET (S3DATA_TXTOFFSET)
#define S3INFO_LEN_TXTLEN 4
#define S3INFO_TYPE_TXTOFFSET (S3DATA_TXTOFFSET+4)
#define S3INFO_TYPE_TXTLEN 4
#define S3INFO_DATA_TXTOFFSET (S3DATA_TXTOFFSET+8)
/* S3INFO_DATA_TXTLEN variable, depends on INFO_LEN field */
#define S3ADDR_PLUG (0xff000000UL)
#define S3ADDR_CRC (0xff100000UL)
#define S3ADDR_INFO (0xff200000UL)
#define PDAFILE_LINE_MAX 1024
#define CHUNKS_MAX 100
#define WRITESIZE_MAX 4096
/*================================================================*/
/* Local Macros */
#define bswap_16(x) \
(__extension__ \
({ register unsigned short int __v, __x = (x); \
__asm__ ("rorw $8, %w0" \
: "=r" (__v) \
: "0" (__x) \
: "cc"); \
__v; }))
#define bswap_32(x) \
(__extension__ \
({ register unsigned int __v, __x = (x); \
__asm__ ("rorw $8, %w0;" \
"rorl $16, %0;" \
"rorw $8, %w0" \
: "=r" (__v) \
: "0" (__x) \
: "cc"); \
__v; }))
/*================================================================*/
/* Local Types */
typedef struct s3datarec
{
u32 len;
u32 addr;
u8 checksum;
u8 *data;
} s3datarec_t;
typedef struct s3plugrec
{
u32 itemcode;
u32 addr;
u32 len;
} s3plugrec_t;
typedef struct s3crcrec
{
u32 addr;
u32 len;
unsigned int dowrite;
} s3crcrec_t;
typedef struct s3inforec
{
u16 len;
u16 type;
union {
hfa384x_compident_t version;
hfa384x_caplevel_t compat;
u16 buildseq;
hfa384x_compident_t platform;
} info;
} s3inforec_t;
typedef struct pda
{
u8 buf[HFA384x_PDA_LEN_MAX];
hfa384x_pdrec_t *rec[HFA384x_PDA_RECS_MAX];
unsigned int nrec;
} pda_t;
typedef struct imgchunk
{
u32 addr; /* start address */
u32 len; /* in bytes */
u16 crc; /* CRC value (if it falls at a chunk boundary) */
u8 *data;
} imgchunk_t;
/*================================================================*/
/* Local Static Definitions */
/*----------------------------------------------------------------*/
/* s-record image processing */
/* Data records */
unsigned int ns3data = 0;
s3datarec_t s3data[S3DATA_MAX];
/* Plug records */
unsigned int ns3plug = 0;
s3plugrec_t s3plug[S3PLUG_MAX];
/* CRC records */
unsigned int ns3crc = 0;
s3crcrec_t s3crc[S3CRC_MAX];
/* Info records */
unsigned int ns3info = 0;
s3inforec_t s3info[S3INFO_MAX];
/* S7 record (there _better_ be only one) */
u32 startaddr;
/* Load image chunks */
unsigned int nfchunks;
imgchunk_t fchunk[CHUNKS_MAX];
/* Note that for the following pdrec_t arrays, the len and code */
/* fields are stored in HOST byte order. The mkpdrlist() function */
/* does the conversion. */
/*----------------------------------------------------------------*/
/* PDA, built from [card|newfile]+[addfile1+addfile2...] */
pda_t pda;
hfa384x_compident_t nicid;
hfa384x_caplevel_t rfid;
hfa384x_caplevel_t macid;
hfa384x_caplevel_t priid;
/*================================================================*/
/* Local Function Declarations */
int prism2_fwapply(char *rfptr, int rfsize, wlandevice_t *wlandev);
int read_srecfile(char *rfptr, int rfsize);
int mkimage(imgchunk_t *clist, unsigned int *ccnt);
int read_cardpda(pda_t *pda, wlandevice_t *wlandev);
int mkpdrlist( pda_t *pda);
int s3datarec_compare(const void *p1, const void *p2);
int plugimage( imgchunk_t *fchunk, unsigned int nfchunks,
s3plugrec_t* s3plug, unsigned int ns3plug, pda_t *pda);
int crcimage( imgchunk_t *fchunk, unsigned int nfchunks,
s3crcrec_t *s3crc, unsigned int ns3crc);
int writeimage(wlandevice_t *wlandev, imgchunk_t *fchunk, unsigned int nfchunks);
void free_chunks(imgchunk_t *fchunk, unsigned int *nfchunks);
void free_srecs(void);
int validate_identity(void);
/*================================================================*/
/* Function Definitions */
/*----------------------------------------------------------------
* prism2_fwtry
*
* Try and get firmware into memory
*
* Arguments:
* udev usb device structure
* wlandev wlan device structure
*
* Returns:
* 0 - success
* ~0 - failure
----------------------------------------------------------------*/
int prism2_fwtry(struct usb_device *udev, wlandevice_t *wlandev)
{
const struct firmware *fw_entry = NULL;
printk(KERN_INFO "prism2_usb: Checking for firmware %s\n", PRISM2_USB_FWFILE);
if(request_firmware(&fw_entry, PRISM2_USB_FWFILE, &udev->dev) != 0)
{
printk(KERN_INFO
"prism2_usb: Firmware not available, but not essential\n");
printk(KERN_INFO
"prism2_usb: can continue to use card anyway.\n");
return 1;
}
printk(KERN_INFO "prism2_usb: %s will be processed, size %d\n", PRISM2_USB_FWFILE, fw_entry->size);
prism2_fwapply((char *)fw_entry->data, fw_entry->size, wlandev);
release_firmware(fw_entry);
return 0;
}
/*----------------------------------------------------------------
* prism2_fwapply
*
* Apply the firmware loaded into memory
*
* Arguments:
* rfptr firmware image in kernel memory
* rfsize firmware size in kernel memory
* wlandev device
*
* Returns:
* 0 - success
* ~0 - failure
----------------------------------------------------------------*/
int prism2_fwapply(char *rfptr, int rfsize, wlandevice_t *wlandev)
{
signed int result = 0;
p80211msg_dot11req_mibget_t getmsg;
p80211itemd_t *item;
u32 *data;
/* Initialize the data structures */
ns3data = 0;
memset(s3data, 0, sizeof(s3data));
ns3plug = 0;
memset(s3plug, 0, sizeof(s3plug));
ns3crc = 0;
memset(s3crc, 0, sizeof(s3crc));
ns3info = 0;
memset(s3info, 0, sizeof(s3info));
startaddr = 0;
nfchunks = 0;
memset( fchunk, 0, sizeof(fchunk));
memset( &nicid, 0, sizeof(nicid));
memset( &rfid, 0, sizeof(rfid));
memset( &macid, 0, sizeof(macid));
memset( &priid, 0, sizeof(priid));
/* clear the pda and add an initial END record */
memset(&pda, 0, sizeof(pda));
pda.rec[0] = (hfa384x_pdrec_t*)pda.buf;
pda.rec[0]->len = cpu_to_le16(2); /* len in words */ /* len in words */
pda.rec[0]->code = cpu_to_le16(HFA384x_PDR_END_OF_PDA);
pda.nrec = 1;
/*-----------------------------------------------------*/
/* Put card into fwload state */
prism2sta_ifstate(wlandev, P80211ENUM_ifstate_fwload);
/* Build the PDA we're going to use. */
if (read_cardpda(&pda, wlandev)) {
printk(KERN_ERR "load_cardpda failed, exiting.\n");
return(1);
}
/* read the card's PRI-SUP */
memset(&getmsg, 0, sizeof(getmsg));
getmsg.msgcode = DIDmsg_dot11req_mibget;
getmsg.msglen = sizeof(getmsg);
strcpy(getmsg.devname, wlandev->name);
getmsg.mibattribute.did = DIDmsg_dot11req_mibget_mibattribute;
getmsg.mibattribute.status = P80211ENUM_msgitem_status_data_ok;
getmsg.resultcode.did = DIDmsg_dot11req_mibget_resultcode;
getmsg.resultcode.status = P80211ENUM_msgitem_status_no_value;
item = (p80211itemd_t *) getmsg.mibattribute.data;
item->did = DIDmib_p2_p2NIC_p2PRISupRange;
item->status = P80211ENUM_msgitem_status_no_value;
data = (u32*) item->data;
/* DIDmsg_dot11req_mibget */
prism2mgmt_mibset_mibget(wlandev, &getmsg);
if (getmsg.resultcode.data != P80211ENUM_resultcode_success) {
printk(KERN_ERR "Couldn't fetch PRI-SUP info\n");
}
/* Already in host order */
priid.role = *data++;
priid.id = *data++;
priid.variant = *data++;
priid.bottom = *data++;
priid.top = *data++;
/* Read the S3 file */
result = read_srecfile(rfptr, rfsize);
if ( result ) {
printk(KERN_ERR "Failed to read the data exiting.\n");
return(1);
}
/* Sort the S3 data records */
sort( s3data,
ns3data,
sizeof(s3datarec_t),
s3datarec_compare, NULL);
result = validate_identity();
if ( result ) {
printk(KERN_ERR "Incompatible firmware image.\n");
return(1);
}
if (startaddr == 0x00000000) {
printk(KERN_ERR "Can't RAM download a Flash image!\n");
return(1);
}
/* Make the image chunks */
result = mkimage(fchunk, &nfchunks);
/* Do any plugging */
result = plugimage(fchunk, nfchunks, s3plug, ns3plug,
&pda);
if ( result ) {
printk(KERN_ERR "Failed to plug data.\n");
return(1);
}
/* Insert any CRCs */
if (crcimage(fchunk, nfchunks, s3crc, ns3crc) ) {
printk(KERN_ERR "Failed to insert all CRCs\n");
return(1);
}
/* Write the image */
result = writeimage(wlandev, fchunk, nfchunks);
if ( result ) {
printk(KERN_ERR "Failed to ramwrite image data.\n");
return(1);
}
/* clear any allocated memory */
free_chunks(fchunk, &nfchunks);
free_srecs();
printk(KERN_INFO "prism2_usb: firmware loading finished.\n");
return result;
}
/*----------------------------------------------------------------
* crcimage
*
* Adds a CRC16 in the two bytes prior to each block identified by
* an S3 CRC record. Currently, we don't actually do a CRC we just
* insert the value 0xC0DE in hfa384x order.
*
* Arguments:
* fchunk Array of image chunks
* nfchunks Number of image chunks
* s3crc Array of crc records
* ns3crc Number of crc records
*
* Returns:
* 0 success
* ~0 failure
----------------------------------------------------------------*/
int crcimage(imgchunk_t *fchunk, unsigned int nfchunks, s3crcrec_t *s3crc,
unsigned int ns3crc)
{
int result = 0;
int i;
int c;
u32 crcstart;
u32 crcend;
u32 cstart = 0;
u32 cend;
u8 *dest;
u32 chunkoff;
for ( i = 0; i < ns3crc; i++ ) {
if ( !s3crc[i].dowrite ) continue;
crcstart = s3crc[i].addr;
crcend = s3crc[i].addr + s3crc[i].len;
/* Find chunk */
for ( c = 0; c < nfchunks; c++) {
cstart = fchunk[c].addr;
cend = fchunk[c].addr + fchunk[c].len;
/* the line below does an address & len match search */
/* unfortunately, I've found that the len fields of */
/* some crc records don't match with the length of */
/* the actual data, so we're not checking right */
/* now */
/* if ( crcstart-2 >= cstart && crcend <= cend ) break;*/
/* note the -2 below, it's to make sure the chunk has */
/* space for the CRC value */
if ( crcstart-2 >= cstart && crcstart < cend ) break;
}
if ( c >= nfchunks ) {
printk(KERN_ERR
"Failed to find chunk for "
"crcrec[%d], addr=0x%06x len=%d , "
"aborting crc.\n",
i, s3crc[i].addr, s3crc[i].len);
return 1;
}
/* Insert crc */
pr_debug("Adding crc @ 0x%06x\n", s3crc[i].addr-2);
chunkoff = crcstart - cstart - 2;
dest = fchunk[c].data + chunkoff;
*dest = 0xde;
*(dest+1) = 0xc0;
}
return result;
}
/*----------------------------------------------------------------
* free_chunks
*
* Clears the chunklist data structures in preparation for a new file.
*
* Arguments:
* none
*
* Returns:
* nothing
----------------------------------------------------------------*/
void free_chunks(imgchunk_t *fchunk, unsigned int *nfchunks)
{
int i;
for ( i = 0; i < *nfchunks; i++) {
if ( fchunk[i].data != NULL ) {
kfree(fchunk[i].data);
}
}
*nfchunks = 0;
memset( fchunk, 0, sizeof(fchunk));
}
/*----------------------------------------------------------------
* free_srecs
*
* Clears the srec data structures in preparation for a new file.
*
* Arguments:
* none
*
* Returns:
* nothing
----------------------------------------------------------------*/
void free_srecs(void)
{
int i;
for ( i = 0; i < ns3data; i++) {
kfree(s3data[i].data);
}
ns3data = 0;
memset(s3data, 0, sizeof(s3data));
ns3plug = 0;
memset(s3plug, 0, sizeof(s3plug));
ns3crc = 0;
memset(s3crc, 0, sizeof(s3crc));
ns3info = 0;
memset(s3info, 0, sizeof(s3info));
startaddr = 0;
}
/*----------------------------------------------------------------
* mkimage
*
* Scans the currently loaded set of S records for data residing
* in contiguous memory regions. Each contiguous region is then
* made into a 'chunk'. This function assumes that we're building
* a new chunk list. Assumes the s3data items are in sorted order.
*
* Arguments: none
*
* Returns:
* 0 - success
* ~0 - failure (probably an errno)
----------------------------------------------------------------*/
int mkimage(imgchunk_t *clist, unsigned int *ccnt)
{
int result = 0;
int i;
int j;
int currchunk = 0;
u32 nextaddr = 0;
u32 s3start;
u32 s3end;
u32 cstart = 0;
u32 cend;
u32 coffset;
/* There may already be data in the chunklist */
*ccnt = 0;
/* Establish the location and size of each chunk */
for ( i = 0; i < ns3data; i++) {
if ( s3data[i].addr == nextaddr ) {
/* existing chunk, grow it */
clist[currchunk].len += s3data[i].len;
nextaddr += s3data[i].len;
} else {
/* New chunk */
(*ccnt)++;
currchunk = *ccnt - 1;
clist[currchunk].addr = s3data[i].addr;
clist[currchunk].len = s3data[i].len;
nextaddr = s3data[i].addr + s3data[i].len;
/* Expand the chunk if there is a CRC record at */
/* their beginning bound */
for ( j = 0; j < ns3crc; j++) {
if ( s3crc[j].dowrite &&
s3crc[j].addr == clist[currchunk].addr ) {
clist[currchunk].addr -= 2;
clist[currchunk].len += 2;
}
}
}
}
/* We're currently assuming there aren't any overlapping chunks */
/* if this proves false, we'll need to add code to coalesce. */
/* Allocate buffer space for chunks */
for ( i = 0; i < *ccnt; i++) {
clist[i].data = kmalloc(clist[i].len, GFP_KERNEL);
if ( clist[i].data == NULL ) {
printk(KERN_ERR "failed to allocate image space, exitting.\n");
return(1);
}
memset(clist[i].data, 0, clist[i].len);
}
/* Display chunks */
for ( i = 0; i < *ccnt; i++) {
pr_debug("chunk[%d]: addr=0x%06x len=%d\n",
i, clist[i].addr, clist[i].len);
}
/* Copy srec data to chunks */
for ( i = 0; i < ns3data; i++) {
s3start = s3data[i].addr;
s3end = s3start + s3data[i].len - 1;
for ( j = 0; j < *ccnt; j++) {
cstart = clist[j].addr;
cend = cstart + clist[j].len - 1;
if ( s3start >= cstart && s3end <= cend ) {
break;
}
}
if ( ((unsigned int)j) >= (*ccnt) ) {
printk(KERN_ERR
"s3rec(a=0x%06x,l=%d), no chunk match, exiting.\n",
s3start, s3data[i].len);
return(1);
}
coffset = s3start - cstart;
memcpy( clist[j].data + coffset, s3data[i].data, s3data[i].len);
}
return result;
}
/*----------------------------------------------------------------
* mkpdrlist
*
* Reads a raw PDA and builds an array of pdrec_t structures.
*
* Arguments:
* pda buffer containing raw PDA bytes
* pdrec ptr to an array of pdrec_t's. Will be filled on exit.
* nrec ptr to a variable that will contain the count of PDRs
*
* Returns:
* 0 - success
* ~0 - failure (probably an errno)
----------------------------------------------------------------*/
int mkpdrlist( pda_t *pda)
{
int result = 0;
u16 *pda16 = (u16*)pda->buf;
int curroff; /* in 'words' */
pda->nrec = 0;
curroff = 0;
while ( curroff < (HFA384x_PDA_LEN_MAX / 2) &&
le16_to_cpu(pda16[curroff + 1]) !=
HFA384x_PDR_END_OF_PDA ) {
pda->rec[pda->nrec] = (hfa384x_pdrec_t*)&(pda16[curroff]);
if (le16_to_cpu(pda->rec[pda->nrec]->code) ==
HFA384x_PDR_NICID) {
memcpy(&nicid, &pda->rec[pda->nrec]->data.nicid,
sizeof(nicid));
nicid.id = le16_to_cpu(nicid.id);
nicid.variant = le16_to_cpu(nicid.variant);
nicid.major = le16_to_cpu(nicid.major);
nicid.minor = le16_to_cpu(nicid.minor);
}
if (le16_to_cpu(pda->rec[pda->nrec]->code) ==
HFA384x_PDR_MFISUPRANGE) {
memcpy(&rfid, &pda->rec[pda->nrec]->data.mfisuprange,
sizeof(rfid));
rfid.id = le16_to_cpu(rfid.id);
rfid.variant = le16_to_cpu(rfid.variant);
rfid.bottom = le16_to_cpu(rfid.bottom);
rfid.top = le16_to_cpu(rfid.top);
}
if (le16_to_cpu(pda->rec[pda->nrec]->code) ==
HFA384x_PDR_CFISUPRANGE) {
memcpy(&macid, &pda->rec[pda->nrec]->data.cfisuprange,
sizeof(macid));
macid.id = le16_to_cpu(macid.id);
macid.variant = le16_to_cpu(macid.variant);
macid.bottom = le16_to_cpu(macid.bottom);
macid.top = le16_to_cpu(macid.top);
}
(pda->nrec)++;
curroff += le16_to_cpu(pda16[curroff]) + 1;
}
if ( curroff >= (HFA384x_PDA_LEN_MAX / 2) ) {
printk(KERN_ERR
"no end record found or invalid lengths in "
"PDR data, exiting. %x %d\n", curroff, pda->nrec);
return(1);
}
if (le16_to_cpu(pda16[curroff + 1]) == HFA384x_PDR_END_OF_PDA ) {
pda->rec[pda->nrec] = (hfa384x_pdrec_t*)&(pda16[curroff]);
(pda->nrec)++;
}
return result;
}
/*----------------------------------------------------------------
* plugimage
*
* Plugs the given image using the given plug records from the given
* PDA and filename.
*
* Arguments:
* fchunk Array of image chunks
* nfchunks Number of image chunks
* s3plug Array of plug records
* ns3plug Number of plug records
* pda Current pda data
*
* Returns:
* 0 success
* ~0 failure
----------------------------------------------------------------*/
int plugimage( imgchunk_t *fchunk, unsigned int nfchunks,
s3plugrec_t* s3plug, unsigned int ns3plug, pda_t *pda)
{
int result = 0;
int i; /* plug index */
int j; /* index of PDR or -1 if fname plug */
int c; /* chunk index */
u32 pstart;
u32 pend;
u32 cstart = 0;
u32 cend;
u32 chunkoff;
u8 *dest;
/* for each plug record */
for ( i = 0; i < ns3plug; i++) {
pstart = s3plug[i].addr;
pend = s3plug[i].addr + s3plug[i].len;
/* find the matching PDR (or filename) */
if ( s3plug[i].itemcode != 0xffffffffUL ) { /* not filename */
for ( j = 0; j < pda->nrec; j++) {
if ( s3plug[i].itemcode ==
le16_to_cpu(pda->rec[j]->code) ) break;
}
} else {
j = -1;
}
if ( j >= pda->nrec && j != -1 ) { /* if no matching PDR, fail */
printk(KERN_WARNING
"warning: Failed to find PDR for "
"plugrec 0x%04x.\n",
s3plug[i].itemcode);
continue; /* and move on to the next PDR */
#if 0
/* MSM: They swear that unless it's the MAC address,
* the serial number, or the TX calibration records,
* then there's reasonable defaults in the f/w
* image. Therefore, missing PDRs in the card
* should only be a warning, not fatal.
* TODO: add fatals for the PDRs mentioned above.
*/
result = 1;
continue;
#endif
}
/* Validate plug len against PDR len */
if ( j != -1 &&
s3plug[i].len < le16_to_cpu(pda->rec[j]->len) ) {
printk(KERN_ERR
"error: Plug vs. PDR len mismatch for "
"plugrec 0x%04x, abort plugging.\n",
s3plug[i].itemcode);
result = 1;
continue;
}
/* Validate plug address against chunk data and identify chunk */
for ( c = 0; c < nfchunks; c++) {
cstart = fchunk[c].addr;
cend = fchunk[c].addr + fchunk[c].len;
if ( pstart >= cstart && pend <= cend ) break;
}
if ( c >= nfchunks ) {
printk(KERN_ERR
"error: Failed to find image chunk for "
"plugrec 0x%04x.\n",
s3plug[i].itemcode);
result = 1;
continue;
}
/* Plug data */
chunkoff = pstart - cstart;
dest = fchunk[c].data + chunkoff;
pr_debug("Plugging item 0x%04x @ 0x%06x, len=%d, "
"cnum=%d coff=0x%06x\n",
s3plug[i].itemcode, pstart, s3plug[i].len,
c, chunkoff);
if ( j == -1 ) { /* plug the filename */
memset(dest, 0, s3plug[i].len);
strncpy(dest, PRISM2_USB_FWFILE, s3plug[i].len - 1);
} else { /* plug a PDR */
memcpy( dest, &(pda->rec[j]->data), s3plug[i].len);
}
}
return result;
}
/*----------------------------------------------------------------
* read_cardpda
*
* Sends the command for the driver to read the pda from the card
* named in the device variable. Upon success, the card pda is
* stored in the "cardpda" variables. Note that the pda structure
* is considered 'well formed' after this function. That means
* that the nrecs is valid, the rec array has been set up, and there's
* a valid PDAEND record in the raw PDA data.
*
* Arguments:
* pda pda structure
* wlandev device
*
* Returns:
* 0 - success
* ~0 - failure (probably an errno)
----------------------------------------------------------------*/
int read_cardpda(pda_t *pda, wlandevice_t *wlandev)
{
int result = 0;
p80211msg_p2req_readpda_t msg;
/* set up the msg */
msg.msgcode = DIDmsg_p2req_readpda;
msg.msglen = sizeof(msg);
strcpy(msg.devname, wlandev->name);
msg.pda.did = DIDmsg_p2req_readpda_pda;
msg.pda.len = HFA384x_PDA_LEN_MAX;
msg.pda.status = P80211ENUM_msgitem_status_no_value;
msg.resultcode.did = DIDmsg_p2req_readpda_resultcode;
msg.resultcode.len = sizeof(u32);
msg.resultcode.status = P80211ENUM_msgitem_status_no_value;
if ( prism2mgmt_readpda(wlandev, &msg) != 0 ) {
/* prism2mgmt_readpda prints an errno if appropriate */
result = -1;
} else if ( msg.resultcode.data == P80211ENUM_resultcode_success ) {
memcpy(pda->buf, msg.pda.data, HFA384x_PDA_LEN_MAX);
result = mkpdrlist(pda);
} else {
/* resultcode must've been something other than success */
result = -1;
}
return result;
}
/*----------------------------------------------------------------
* copy_line
*
* Copies a line of text, up to \n, \0, or SREC_LINE_MAX, or limit of
* From array
*
* Arguments:
* from From addr
* to To addr
* limit Addr of last character in From array that can be copied
*
* Returns:
* Num characters copied
----------------------------------------------------------------*/
int copyline(char *from, char *to, char *limit)
{
int c = 0;
while ((c < SREC_LINE_MAX - 1) && (from + c <= limit) &&
(from[c] != '\n') && (from[c] != '\0')) {
to[c] = from[c];
c++;
}
to[c] = '\0';
return (c < SREC_LINE_MAX - 1) ? c + 1 : c;
}
/*----------------------------------------------------------------
* read_srecfile
*
* Reads the given srecord file and loads the records into the
* s3xxx arrays. This function can be called repeatedly (once for
* each of a set of files), if necessary. This function performs
* no validation of the data except for the grossest of S-record
* line format checks. Don't forget that these will be DOS files...
* CR/LF at the end of each line.
*
* Here's the SREC format we're dealing with:
* S[37]nnaaaaaaaaddd...dddcc
*
* nn - number of bytes starting with the address field
* aaaaaaaa - address in readable (or big endian) format
* dd....dd - 0-245 data bytes (two chars per byte)
* cc - checksum
*
* The S7 record's (there should be only one) address value gets
* saved in startaddr. It's the start execution address used
* for RAM downloads.
*
* The S3 records have a collection of subformats indicated by the
* value of aaaaaaaa:
* 0xff000000 - Plug record, data field format:
* xxxxxxxxaaaaaaaassssssss
* x - PDR code number (little endian)
* a - Address in load image to plug (little endian)
* s - Length of plug data area (little endian)
*
* 0xff100000 - CRC16 generation record, data field format:
* aaaaaaaassssssssbbbbbbbb
* a - Start address for CRC calculation (little endian)
* s - Length of data to calculate over (little endian)
* b - Boolean, true=write crc, false=don't write
*
* 0xff200000 - Info record, data field format:
* ssssttttdd..dd
* s - Size in words (little endian)
* t - Info type (little endian), see #defines and
* s3inforec_t for details about types.
* d - (s - 1) little endian words giving the contents of
* the given info type.
*
* Arguments:
* rfptr firmware image (s-record structure) in kernel memory
* rfsize firmware size in kernel memory
*
* Returns:
* 0 - success
* ~0 - failure (probably an errno)
----------------------------------------------------------------*/
int read_srecfile(char *rfptr, int rfsize)
{
int result = 0;
char buf[SREC_LINE_MAX];
char tmpbuf[30];
s3datarec_t tmprec;
int i, c;
int line = 0;
u16 *tmpinfo;
char *endptr = rfptr + rfsize;
pr_debug("Reading S-record file ...\n");
while ( (c = copyline(rfptr, buf, endptr)) >= 12 ) {
rfptr = rfptr + c;
line++;
if ( buf[0] != 'S' ) {
printk(KERN_ERR "%d warning: No initial \'S\'\n", line);
return 1;
}
if ( buf[1] == '7' ) { /* S7 record, start address */
buf[12] = '\0';
startaddr = simple_strtoul(buf+4, NULL, 16);
pr_debug(" S7 start addr, line=%d "
" addr=0x%08x\n",
line,
startaddr);
continue;
} else if ( buf[1] == '3') {
/* Ok, it's an S3, parse and put it in the right array */
/* Record Length field (we only want datalen) */
memcpy(tmpbuf, buf+S3LEN_TXTOFFSET, S3LEN_TXTLEN);
tmpbuf[S3LEN_TXTLEN] = '\0';
tmprec.len = simple_strtoul( tmpbuf, NULL, 16) - 4 - 1; /* 4=addr, 1=cksum */
/* Address field */
memcpy(tmpbuf, buf+S3ADDR_TXTOFFSET, S3ADDR_TXTLEN);
tmpbuf[S3ADDR_TXTLEN] = '\0';
tmprec.addr = simple_strtoul( tmpbuf, NULL, 16);
/* Checksum field */
tmprec.checksum = simple_strtoul( buf+strlen(buf)-2, NULL, 16);
switch( tmprec.addr )
{
case S3ADDR_PLUG:
memcpy(tmpbuf, buf+S3PLUG_ITEMCODE_TXTOFFSET, S3PLUG_ITEMCODE_TXTLEN);
tmpbuf[S3PLUG_ITEMCODE_TXTLEN] = '\0';
s3plug[ns3plug].itemcode = simple_strtoul(tmpbuf,NULL,16);
s3plug[ns3plug].itemcode = bswap_32(s3plug[ns3plug].itemcode);
memcpy(tmpbuf, buf+S3PLUG_ADDR_TXTOFFSET, S3PLUG_ADDR_TXTLEN);
tmpbuf[S3PLUG_ADDR_TXTLEN] = '\0';
s3plug[ns3plug].addr = simple_strtoul(tmpbuf,NULL,16);
s3plug[ns3plug].addr = bswap_32(s3plug[ns3plug].addr);
memcpy(tmpbuf, buf+S3PLUG_LEN_TXTOFFSET, S3PLUG_LEN_TXTLEN);
tmpbuf[S3PLUG_LEN_TXTLEN] = '\0';
s3plug[ns3plug].len = simple_strtoul(tmpbuf,NULL,16);
s3plug[ns3plug].len = bswap_32(s3plug[ns3plug].len);
pr_debug(" S3 plugrec, line=%d "
"itemcode=0x%04x addr=0x%08x len=%d\n",
line,
s3plug[ns3plug].itemcode,
s3plug[ns3plug].addr,
s3plug[ns3plug].len);
ns3plug++;
if ( ns3plug == S3PLUG_MAX ) {
printk(KERN_ERR "S3 plugrec limit reached - aborting\n");
return 1;
}
break;
case S3ADDR_CRC:
memcpy(tmpbuf, buf+S3CRC_ADDR_TXTOFFSET, S3CRC_ADDR_TXTLEN);
tmpbuf[S3CRC_ADDR_TXTLEN] = '\0';
s3crc[ns3crc].addr = simple_strtoul(tmpbuf,NULL,16);
s3crc[ns3crc].addr = bswap_32(s3crc[ns3crc].addr);
memcpy(tmpbuf, buf+S3CRC_LEN_TXTOFFSET, S3CRC_LEN_TXTLEN);
tmpbuf[S3CRC_LEN_TXTLEN] = '\0';
s3crc[ns3crc].len = simple_strtoul(tmpbuf,NULL,16);
s3crc[ns3crc].len = bswap_32(s3crc[ns3crc].len);
memcpy(tmpbuf, buf+S3CRC_DOWRITE_TXTOFFSET, S3CRC_DOWRITE_TXTLEN);
tmpbuf[S3CRC_DOWRITE_TXTLEN] = '\0';
s3crc[ns3crc].dowrite = simple_strtoul(tmpbuf,NULL,16);
s3crc[ns3crc].dowrite = bswap_32(s3crc[ns3crc].dowrite);
pr_debug(" S3 crcrec, line=%d "
"addr=0x%08x len=%d write=0x%08x\n",
line,
s3crc[ns3crc].addr,
s3crc[ns3crc].len,
s3crc[ns3crc].dowrite);
ns3crc++;
if ( ns3crc == S3CRC_MAX ) {
printk(KERN_ERR "S3 crcrec limit reached - aborting\n");
return 1;
}
break;
case S3ADDR_INFO:
memcpy(tmpbuf, buf+S3INFO_LEN_TXTOFFSET, S3INFO_LEN_TXTLEN);
tmpbuf[S3INFO_LEN_TXTLEN] = '\0';
s3info[ns3info].len = simple_strtoul(tmpbuf,NULL,16);
s3info[ns3info].len = bswap_16(s3info[ns3info].len);
memcpy(tmpbuf, buf+S3INFO_TYPE_TXTOFFSET, S3INFO_TYPE_TXTLEN);
tmpbuf[S3INFO_TYPE_TXTLEN] = '\0';
s3info[ns3info].type = simple_strtoul(tmpbuf,NULL,16);
s3info[ns3info].type = bswap_16(s3info[ns3info].type);
pr_debug(" S3 inforec, line=%d "
"len=0x%04x type=0x%04x\n",
line,
s3info[ns3info].len,
s3info[ns3info].type);
if ( ((s3info[ns3info].len - 1) * sizeof(u16)) > sizeof(s3info[ns3info].info) ) {
printk(KERN_ERR " S3 inforec length too long - aborting\n");
return 1;
}
tmpinfo = (u16*)&(s3info[ns3info].info.version);
for (i = 0; i < s3info[ns3info].len - 1; i++) {
memcpy( tmpbuf, buf+S3INFO_DATA_TXTOFFSET+(i*4), 4);
tmpbuf[4] = '\0';
tmpinfo[i] = simple_strtoul(tmpbuf,NULL,16);
tmpinfo[i] = bswap_16(tmpinfo[i]);
}
pr_debug(" info=");
for (i = 0; i < s3info[ns3info].len - 1; i++) {
pr_debug("%04x ", tmpinfo[i]);
}
pr_debug("\n");
ns3info++;
if ( ns3info == S3INFO_MAX ) {
printk(KERN_ERR "S3 inforec limit reached - aborting\n");
return 1;
}
break;
default: /* Data record */
s3data[ns3data].addr = tmprec.addr;
s3data[ns3data].len = tmprec.len;
s3data[ns3data].checksum = tmprec.checksum;
s3data[ns3data].data = kmalloc(tmprec.len, GFP_KERNEL);
for ( i = 0; i < tmprec.len; i++) {
memcpy(tmpbuf, buf+S3DATA_TXTOFFSET+(i*2), 2);
tmpbuf[2] = '\0';
s3data[ns3data].data[i] = simple_strtoul(tmpbuf, NULL, 16);
}
ns3data++;
if ( ns3data == S3DATA_MAX ) {
printk(KERN_ERR "S3 datarec limit reached - aborting\n");
return 1;
}
break;
}
} else {
printk(KERN_WARNING "%d warning: Unknown S-record detected.\n", line);
}
}
return result;
}
/*----------------------------------------------------------------
* s3datarec_compare
*
* Comparison function for sort().
*
* Arguments:
* p1 ptr to the first item
* p2 ptr to the second item
* Returns:
* 0 items are equal
* <0 p1 < p2
* >0 p1 > p2
----------------------------------------------------------------*/
int s3datarec_compare(const void *p1, const void *p2)
{
const s3datarec_t *s1 = p1;
const s3datarec_t *s2 = p2;
if ( s1->addr == s2->addr ) return 0;
if ( s1->addr < s2->addr ) return -1;
return 1;
}
/*----------------------------------------------------------------
* writeimage
*
* Takes the chunks, builds p80211 messages and sends them down
* to the driver for writing to the card.
*
* Arguments:
* wlandev device
* fchunk Array of image chunks
* nfchunks Number of image chunks
*
* Returns:
* 0 success
* ~0 failure
----------------------------------------------------------------*/
int writeimage(wlandevice_t *wlandev, imgchunk_t *fchunk, unsigned int nfchunks)
{
int result = 0;
p80211msg_p2req_ramdl_state_t rstatemsg;
p80211msg_p2req_ramdl_write_t rwritemsg;
p80211msg_t *msgp;
u32 resultcode;
int i;
int j;
unsigned int nwrites;
u32 curroff;
u32 currlen;
u32 currdaddr;
/* Initialize the messages */
memset(&rstatemsg, 0, sizeof(rstatemsg));
strcpy(rstatemsg.devname, wlandev->name);
rstatemsg.msgcode = DIDmsg_p2req_ramdl_state;
rstatemsg.msglen = sizeof(rstatemsg);
rstatemsg.enable.did = DIDmsg_p2req_ramdl_state_enable;
rstatemsg.exeaddr.did = DIDmsg_p2req_ramdl_state_exeaddr;
rstatemsg.resultcode.did = DIDmsg_p2req_ramdl_state_resultcode;
rstatemsg.enable.status = P80211ENUM_msgitem_status_data_ok;
rstatemsg.exeaddr.status = P80211ENUM_msgitem_status_data_ok;
rstatemsg.resultcode.status = P80211ENUM_msgitem_status_no_value;
rstatemsg.enable.len = sizeof(u32);
rstatemsg.exeaddr.len = sizeof(u32);
rstatemsg.resultcode.len = sizeof(u32);
memset(&rwritemsg, 0, sizeof(rwritemsg));
strcpy(rwritemsg.devname, wlandev->name);
rwritemsg.msgcode = DIDmsg_p2req_ramdl_write;
rwritemsg.msglen = sizeof(rwritemsg);
rwritemsg.addr.did = DIDmsg_p2req_ramdl_write_addr;
rwritemsg.len.did = DIDmsg_p2req_ramdl_write_len;
rwritemsg.data.did = DIDmsg_p2req_ramdl_write_data;
rwritemsg.resultcode.did = DIDmsg_p2req_ramdl_write_resultcode;
rwritemsg.addr.status = P80211ENUM_msgitem_status_data_ok;
rwritemsg.len.status = P80211ENUM_msgitem_status_data_ok;
rwritemsg.data.status = P80211ENUM_msgitem_status_data_ok;
rwritemsg.resultcode.status = P80211ENUM_msgitem_status_no_value;
rwritemsg.addr.len = sizeof(u32);
rwritemsg.len.len = sizeof(u32);
rwritemsg.data.len = WRITESIZE_MAX;
rwritemsg.resultcode.len = sizeof(u32);
/* Send xxx_state(enable) */
pr_debug("Sending dl_state(enable) message.\n");
rstatemsg.enable.data = P80211ENUM_truth_true;
rstatemsg.exeaddr.data = startaddr;
msgp = (p80211msg_t*)&rstatemsg;
result = prism2mgmt_ramdl_state(wlandev, msgp);
if ( result ) {
printk(KERN_ERR
"writeimage state enable failed w/ result=%d, "
"aborting download\n", result);
return result;
}
resultcode = rstatemsg.resultcode.data;
if ( resultcode != P80211ENUM_resultcode_success ) {
printk(KERN_ERR
"writeimage()->xxxdl_state msg indicates failure, "
"w/ resultcode=%d, aborting download.\n",
resultcode);
return 1;
}
/* Now, loop through the data chunks and send WRITESIZE_MAX data */
for ( i = 0; i < nfchunks; i++) {
nwrites = fchunk[i].len / WRITESIZE_MAX;
nwrites += (fchunk[i].len % WRITESIZE_MAX) ? 1 : 0;
curroff = 0;
for ( j = 0; j < nwrites; j++) {
currlen =
(fchunk[i].len - (WRITESIZE_MAX * j)) > WRITESIZE_MAX ?
WRITESIZE_MAX :
(fchunk[i].len - (WRITESIZE_MAX * j));
curroff = j * WRITESIZE_MAX;
currdaddr = fchunk[i].addr + curroff;
/* Setup the message */
rwritemsg.addr.data = currdaddr;
rwritemsg.len.data = currlen;
memcpy(rwritemsg.data.data,
fchunk[i].data + curroff,
currlen);
/* Send flashdl_write(pda) */
pr_debug("Sending xxxdl_write message addr=%06x len=%d.\n",
currdaddr, currlen);
msgp = (p80211msg_t*)&rwritemsg;
result = prism2mgmt_ramdl_write(wlandev, msgp);
/* Check the results */
if ( result ) {
printk(KERN_ERR
"writeimage chunk write failed w/ result=%d, "
"aborting download\n", result);
return result;
}
resultcode = rstatemsg.resultcode.data;
if ( resultcode != P80211ENUM_resultcode_success ) {
printk(KERN_ERR
"writeimage()->xxxdl_write msg indicates failure, "
"w/ resultcode=%d, aborting download.\n",
resultcode);
return 1;
}
}
}
/* Send xxx_state(disable) */
pr_debug("Sending dl_state(disable) message.\n");
rstatemsg.enable.data = P80211ENUM_truth_false;
rstatemsg.exeaddr.data = 0;
msgp = (p80211msg_t*)&rstatemsg;
result = prism2mgmt_ramdl_state(wlandev, msgp);
if ( result ) {
printk(KERN_ERR
"writeimage state disable failed w/ result=%d, "
"aborting download\n", result);
return result;
}
resultcode = rstatemsg.resultcode.data;
if ( resultcode != P80211ENUM_resultcode_success ) {
printk(KERN_ERR
"writeimage()->xxxdl_state msg indicates failure, "
"w/ resultcode=%d, aborting download.\n",
resultcode);
return 1;
}
return result;
}
int validate_identity(void)
{
int i;
int result = 1;
pr_debug("NIC ID: %#x v%d.%d.%d\n",
nicid.id,
nicid.major,
nicid.minor,
nicid.variant);
pr_debug("MFI ID: %#x v%d %d->%d\n",
rfid.id,
rfid.variant,
rfid.bottom,
rfid.top);
pr_debug("CFI ID: %#x v%d %d->%d\n",
macid.id,
macid.variant,
macid.bottom,
macid.top);
pr_debug("PRI ID: %#x v%d %d->%d\n",
priid.id,
priid.variant,
priid.bottom,
priid.top);
for (i = 0 ; i < ns3info ; i ++) {
switch (s3info[i].type) {
case 1:
pr_debug("Version: ID %#x %d.%d.%d\n",
s3info[i].info.version.id,
s3info[i].info.version.major,
s3info[i].info.version.minor,
s3info[i].info.version.variant);
break;
case 2:
pr_debug("Compat: Role %#x Id %#x v%d %d->%d\n",
s3info[i].info.compat.role,
s3info[i].info.compat.id,
s3info[i].info.compat.variant,
s3info[i].info.compat.bottom,
s3info[i].info.compat.top);
/* MAC compat range */
if ((s3info[i].info.compat.role == 1) &&
(s3info[i].info.compat.id == 2)) {
if (s3info[i].info.compat.variant !=
macid.variant) {
result = 2;
}
}
/* PRI compat range */
if ((s3info[i].info.compat.role == 1) &&
(s3info[i].info.compat.id == 3)) {
if ((s3info[i].info.compat.bottom > priid.top) ||
(s3info[i].info.compat.top < priid.bottom)){
result = 3;
}
}
/* SEC compat range */
if ((s3info[i].info.compat.role == 1) &&
(s3info[i].info.compat.id == 4)) {
}
break;
case 3:
pr_debug("Seq: %#x\n", s3info[i].info.buildseq);
break;
case 4:
pr_debug("Platform: ID %#x %d.%d.%d\n",
s3info[i].info.version.id,
s3info[i].info.version.major,
s3info[i].info.version.minor,
s3info[i].info.version.variant);
if (nicid.id != s3info[i].info.version.id)
continue;
if (nicid.major != s3info[i].info.version.major)
continue;
if (nicid.minor != s3info[i].info.version.minor)
continue;
if ((nicid.variant != s3info[i].info.version.variant) &&
(nicid.id != 0x8008))
continue;
if (result != 2)
result = 0;
break;
case 0x8001:
pr_debug("name inforec len %d\n", s3info[i].len);
break;
default:
pr_debug("Unknown inforec type %d\n", s3info[i].type);
}
}
// walk through
return result;
}
......@@ -2,6 +2,7 @@
#include "prism2mgmt.c"
#include "prism2mib.c"
#include "prism2sta.c"
#include "prism2fw.c"
#define PRISM_USB_DEVICE(vid, pid, name) \
USB_DEVICE(vid, pid), \
......@@ -153,15 +154,16 @@ static int prism2sta_probe_usb(struct usb_interface *interface,
wlandev->msdstate = WLAN_MSD_HWPRESENT;
/* Try and load firmware, then enable card before we register */
prism2_fwtry(dev, wlandev);
prism2sta_ifstate(wlandev, P80211ENUM_ifstate_enable);
if (register_wlandev(wlandev) != 0) {
printk(KERN_ERR "%s: register_wlandev() failed.\n", dev_info);
result = -EIO;
goto failed;
}
/* enable the card */
prism2sta_ifstate(wlandev, P80211ENUM_ifstate_enable);
goto done;
failed:
......@@ -170,7 +172,6 @@ static int prism2sta_probe_usb(struct usb_interface *interface,
wlandev = NULL;
done:
p80211_allow_ioctls(wlandev);
usb_set_intfdata(interface, wlandev);
return result;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment