Commit 78d94353 authored by Mark Brown's avatar Mark Brown

Add add SPI-NAND Flash controller driver for EN7581

Merge series from Lorenzo Bianconi <lorenzo@kernel.org>:

Introduce support for SPI-NAND driver of the Airoha NAND Flash Interface
found on Airoha ARM EN7581 SoCs.
parents 52267fe8 8bd0d557
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/airoha,en7581-snand.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: SPI-NAND flash controller for Airoha ARM SoCs
maintainers:
- Lorenzo Bianconi <lorenzo@kernel.org>
allOf:
- $ref: spi-controller.yaml#
properties:
compatible:
const: airoha,en7581-snand
reg:
items:
- description: spi base address
- description: nfi2spi base address
clocks:
maxItems: 1
clock-names:
items:
- const: spi
required:
- compatible
- reg
- clocks
- clock-names
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/en7523-clk.h>
soc {
#address-cells = <2>;
#size-cells = <2>;
spi@1fa10000 {
compatible = "airoha,en7581-snand";
reg = <0x0 0x1fa10000 0x0 0x140>,
<0x0 0x1fa11000 0x0 0x160>;
clocks = <&scuclk EN7523_CLK_SPI>;
clock-names = "spi";
#address-cells = <1>;
#size-cells = <0>;
flash@0 {
compatible = "spi-nand";
reg = <0>;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <2>;
};
};
};
......@@ -653,6 +653,15 @@ S: Supported
F: fs/aio.c
F: include/linux/*aio*.h
AIROHA SPI SNFI DRIVER
M: Lorenzo Bianconi <lorenzo@kernel.org>
M: Ray Liu <ray.liu@airoha.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: linux-spi@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/spi/airoha,en7581-snand.yaml
F: drivers/spi/spi-airoha.c
AIRSPY MEDIA DRIVER
L: linux-media@vger.kernel.org
S: Orphan
......
......@@ -57,6 +57,16 @@ config SPI_MEM
comment "SPI Master Controller Drivers"
config SPI_AIROHA_SNFI
tristate "Airoha SPI NAND Flash Interface"
depends on ARCH_AIROHA || COMPILE_TEST
depends on SPI_MASTER
select REGMAP_MMIO
help
This enables support for SPI-NAND mode on the Airoha NAND
Flash Interface found on Airoha ARM SoCs. This controller
is implemented as a SPI-MEM controller.
config SPI_ALTERA
tristate "Altera SPI Controller platform driver"
select SPI_ALTERA_CORE
......
......@@ -14,6 +14,7 @@ obj-$(CONFIG_SPI_SPIDEV) += spidev.o
obj-$(CONFIG_SPI_LOOPBACK_TEST) += spi-loopback-test.o
# SPI master controller drivers (bus)
obj-$(CONFIG_SPI_AIROHA_SNFI) += spi-airoha-snfi.o
obj-$(CONFIG_SPI_ALTERA) += spi-altera-platform.o
obj-$(CONFIG_SPI_ALTERA_CORE) += spi-altera-core.o
obj-$(CONFIG_SPI_ALTERA_DFL) += spi-altera-dfl.o
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2024 AIROHA Inc
* Author: Lorenzo Bianconi <lorenzo@kernel.org>
* Author: Ray Liu <ray.liu@airoha.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/limits.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/types.h>
#include <asm/unaligned.h>
/* SPI */
#define REG_SPI_CTRL_BASE 0x1FA10000
#define REG_SPI_CTRL_READ_MODE 0x0000
#define REG_SPI_CTRL_READ_IDLE_EN 0x0004
#define REG_SPI_CTRL_SIDLY 0x0008
#define REG_SPI_CTRL_CSHEXT 0x000c
#define REG_SPI_CTRL_CSLEXT 0x0010
#define REG_SPI_CTRL_MTX_MODE_TOG 0x0014
#define SPI_CTRL_MTX_MODE_TOG GENMASK(3, 0)
#define REG_SPI_CTRL_RDCTL_FSM 0x0018
#define SPI_CTRL_RDCTL_FSM GENMASK(3, 0)
#define REG_SPI_CTRL_MACMUX_SEL 0x001c
#define REG_SPI_CTRL_MANUAL_EN 0x0020
#define SPI_CTRL_MANUAL_EN BIT(0)
#define REG_SPI_CTRL_OPFIFO_EMPTY 0x0024
#define SPI_CTRL_OPFIFO_EMPTY BIT(0)
#define REG_SPI_CTRL_OPFIFO_WDATA 0x0028
#define SPI_CTRL_OPFIFO_LEN GENMASK(8, 0)
#define SPI_CTRL_OPFIFO_OP GENMASK(13, 9)
#define REG_SPI_CTRL_OPFIFO_FULL 0x002c
#define SPI_CTRL_OPFIFO_FULL BIT(0)
#define REG_SPI_CTRL_OPFIFO_WR 0x0030
#define SPI_CTRL_OPFIFO_WR BIT(0)
#define REG_SPI_CTRL_DFIFO_FULL 0x0034
#define SPI_CTRL_DFIFO_FULL BIT(0)
#define REG_SPI_CTRL_DFIFO_WDATA 0x0038
#define SPI_CTRL_DFIFO_WDATA GENMASK(7, 0)
#define REG_SPI_CTRL_DFIFO_EMPTY 0x003c
#define SPI_CTRL_DFIFO_EMPTY BIT(0)
#define REG_SPI_CTRL_DFIFO_RD 0x0040
#define SPI_CTRL_DFIFO_RD BIT(0)
#define REG_SPI_CTRL_DFIFO_RDATA 0x0044
#define SPI_CTRL_DFIFO_RDATA GENMASK(7, 0)
#define REG_SPI_CTRL_DUMMY 0x0080
#define SPI_CTRL_CTRL_DUMMY GENMASK(3, 0)
#define REG_SPI_CTRL_PROBE_SEL 0x0088
#define REG_SPI_CTRL_INTERRUPT 0x0090
#define REG_SPI_CTRL_INTERRUPT_EN 0x0094
#define REG_SPI_CTRL_SI_CK_SEL 0x009c
#define REG_SPI_CTRL_SW_CFGNANDADDR_VAL 0x010c
#define REG_SPI_CTRL_SW_CFGNANDADDR_EN 0x0110
#define REG_SPI_CTRL_SFC_STRAP 0x0114
#define REG_SPI_CTRL_NFI2SPI_EN 0x0130
#define SPI_CTRL_NFI2SPI_EN BIT(0)
/* NFI2SPI */
#define REG_SPI_NFI_CNFG 0x0000
#define SPI_NFI_DMA_MODE BIT(0)
#define SPI_NFI_READ_MODE BIT(1)
#define SPI_NFI_DMA_BURST_EN BIT(2)
#define SPI_NFI_HW_ECC_EN BIT(8)
#define SPI_NFI_AUTO_FDM_EN BIT(9)
#define SPI_NFI_OPMODE GENMASK(14, 12)
#define REG_SPI_NFI_PAGEFMT 0x0004
#define SPI_NFI_PAGE_SIZE GENMASK(1, 0)
#define SPI_NFI_SPARE_SIZE GENMASK(5, 4)
#define REG_SPI_NFI_CON 0x0008
#define SPI_NFI_FIFO_FLUSH BIT(0)
#define SPI_NFI_RST BIT(1)
#define SPI_NFI_RD_TRIG BIT(8)
#define SPI_NFI_WR_TRIG BIT(9)
#define SPI_NFI_SEC_NUM GENMASK(15, 12)
#define REG_SPI_NFI_INTR_EN 0x0010
#define SPI_NFI_RD_DONE_EN BIT(0)
#define SPI_NFI_WR_DONE_EN BIT(1)
#define SPI_NFI_RST_DONE_EN BIT(2)
#define SPI_NFI_ERASE_DONE_EN BIT(3)
#define SPI_NFI_BUSY_RETURN_EN BIT(4)
#define SPI_NFI_ACCESS_LOCK_EN BIT(5)
#define SPI_NFI_AHB_DONE_EN BIT(6)
#define SPI_NFI_ALL_IRQ_EN \
(SPI_NFI_RD_DONE_EN | SPI_NFI_WR_DONE_EN | \
SPI_NFI_RST_DONE_EN | SPI_NFI_ERASE_DONE_EN | \
SPI_NFI_BUSY_RETURN_EN | SPI_NFI_ACCESS_LOCK_EN | \
SPI_NFI_AHB_DONE_EN)
#define REG_SPI_NFI_INTR 0x0014
#define SPI_NFI_AHB_DONE BIT(6)
#define REG_SPI_NFI_CMD 0x0020
#define REG_SPI_NFI_ADDR_NOB 0x0030
#define SPI_NFI_ROW_ADDR_NOB GENMASK(6, 4)
#define REG_SPI_NFI_STA 0x0060
#define REG_SPI_NFI_FIFOSTA 0x0064
#define REG_SPI_NFI_STRADDR 0x0080
#define REG_SPI_NFI_FDM0L 0x00a0
#define REG_SPI_NFI_FDM0M 0x00a4
#define REG_SPI_NFI_FDM7L 0x00d8
#define REG_SPI_NFI_FDM7M 0x00dc
#define REG_SPI_NFI_FIFODATA0 0x0190
#define REG_SPI_NFI_FIFODATA1 0x0194
#define REG_SPI_NFI_FIFODATA2 0x0198
#define REG_SPI_NFI_FIFODATA3 0x019c
#define REG_SPI_NFI_MASTERSTA 0x0224
#define REG_SPI_NFI_SECCUS_SIZE 0x022c
#define SPI_NFI_CUS_SEC_SIZE GENMASK(12, 0)
#define SPI_NFI_CUS_SEC_SIZE_EN BIT(16)
#define REG_SPI_NFI_RD_CTL2 0x0510
#define REG_SPI_NFI_RD_CTL3 0x0514
#define REG_SPI_NFI_PG_CTL1 0x0524
#define SPI_NFI_PG_LOAD_CMD GENMASK(15, 8)
#define REG_SPI_NFI_PG_CTL2 0x0528
#define REG_SPI_NFI_NOR_PROG_ADDR 0x052c
#define REG_SPI_NFI_NOR_RD_ADDR 0x0534
#define REG_SPI_NFI_SNF_MISC_CTL 0x0538
#define SPI_NFI_DATA_READ_WR_MODE GENMASK(18, 16)
#define REG_SPI_NFI_SNF_MISC_CTL2 0x053c
#define SPI_NFI_READ_DATA_BYTE_NUM GENMASK(12, 0)
#define SPI_NFI_PROG_LOAD_BYTE_NUM GENMASK(28, 16)
#define REG_SPI_NFI_SNF_STA_CTL1 0x0550
#define SPI_NFI_READ_FROM_CACHE_DONE BIT(25)
#define SPI_NFI_LOAD_TO_CACHE_DONE BIT(26)
#define REG_SPI_NFI_SNF_STA_CTL2 0x0554
#define REG_SPI_NFI_SNF_NFI_CNFG 0x055c
#define SPI_NFI_SPI_MODE BIT(0)
/* SPI NAND Protocol OP */
#define SPI_NAND_OP_GET_FEATURE 0x0f
#define SPI_NAND_OP_SET_FEATURE 0x1f
#define SPI_NAND_OP_PAGE_READ 0x13
#define SPI_NAND_OP_READ_FROM_CACHE_SINGLE 0x03
#define SPI_NAND_OP_READ_FROM_CACHE_SINGLE_FAST 0x0b
#define SPI_NAND_OP_READ_FROM_CACHE_DUAL 0x3b
#define SPI_NAND_OP_READ_FROM_CACHE_QUAD 0x6b
#define SPI_NAND_OP_WRITE_ENABLE 0x06
#define SPI_NAND_OP_WRITE_DISABLE 0x04
#define SPI_NAND_OP_PROGRAM_LOAD_SINGLE 0x02
#define SPI_NAND_OP_PROGRAM_LOAD_QUAD 0x32
#define SPI_NAND_OP_PROGRAM_LOAD_RAMDOM_SINGLE 0x84
#define SPI_NAND_OP_PROGRAM_LOAD_RAMDON_QUAD 0x34
#define SPI_NAND_OP_PROGRAM_EXECUTE 0x10
#define SPI_NAND_OP_READ_ID 0x9f
#define SPI_NAND_OP_BLOCK_ERASE 0xd8
#define SPI_NAND_OP_RESET 0xff
#define SPI_NAND_OP_DIE_SELECT 0xc2
#define SPI_NAND_CACHE_SIZE (SZ_4K + SZ_256)
#define SPI_MAX_TRANSFER_SIZE 511
enum airoha_snand_mode {
SPI_MODE_AUTO,
SPI_MODE_MANUAL,
SPI_MODE_DMA,
};
enum airoha_snand_cs {
SPI_CHIP_SEL_HIGH,
SPI_CHIP_SEL_LOW,
};
struct airoha_snand_dev {
size_t buf_len;
u8 *txrx_buf;
dma_addr_t dma_addr;
u64 cur_page_num;
bool data_need_update;
};
struct airoha_snand_ctrl {
struct device *dev;
struct regmap *regmap_ctrl;
struct regmap *regmap_nfi;
struct clk *spi_clk;
struct {
size_t page_size;
size_t sec_size;
u8 sec_num;
u8 spare_size;
} nfi_cfg;
};
static int airoha_snand_set_fifo_op(struct airoha_snand_ctrl *as_ctrl,
u8 op_cmd, int op_len)
{
int err;
u32 val;
err = regmap_write(as_ctrl->regmap_ctrl, REG_SPI_CTRL_OPFIFO_WDATA,
FIELD_PREP(SPI_CTRL_OPFIFO_LEN, op_len) |
FIELD_PREP(SPI_CTRL_OPFIFO_OP, op_cmd));
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_OPFIFO_FULL,
val, !(val & SPI_CTRL_OPFIFO_FULL),
0, 250 * USEC_PER_MSEC);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_ctrl, REG_SPI_CTRL_OPFIFO_WR,
SPI_CTRL_OPFIFO_WR);
if (err)
return err;
return regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_OPFIFO_EMPTY,
val, (val & SPI_CTRL_OPFIFO_EMPTY),
0, 250 * USEC_PER_MSEC);
}
static int airoha_snand_set_cs(struct airoha_snand_ctrl *as_ctrl, u8 cs)
{
return airoha_snand_set_fifo_op(as_ctrl, cs, sizeof(cs));
}
static int airoha_snand_write_data_to_fifo(struct airoha_snand_ctrl *as_ctrl,
const u8 *data, int len)
{
int i;
for (i = 0; i < len; i++) {
int err;
u32 val;
/* 1. Wait until dfifo is not full */
err = regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_FULL, val,
!(val & SPI_CTRL_DFIFO_FULL),
0, 250 * USEC_PER_MSEC);
if (err)
return err;
/* 2. Write data to register DFIFO_WDATA */
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_WDATA,
FIELD_PREP(SPI_CTRL_DFIFO_WDATA, data[i]));
if (err)
return err;
/* 3. Wait until dfifo is not full */
err = regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_FULL, val,
!(val & SPI_CTRL_DFIFO_FULL),
0, 250 * USEC_PER_MSEC);
if (err)
return err;
}
return 0;
}
static int airoha_snand_read_data_from_fifo(struct airoha_snand_ctrl *as_ctrl,
u8 *ptr, int len)
{
int i;
for (i = 0; i < len; i++) {
int err;
u32 val;
/* 1. wait until dfifo is not empty */
err = regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_EMPTY, val,
!(val & SPI_CTRL_DFIFO_EMPTY),
0, 250 * USEC_PER_MSEC);
if (err)
return err;
/* 2. read from dfifo to register DFIFO_RDATA */
err = regmap_read(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_RDATA, &val);
if (err)
return err;
ptr[i] = FIELD_GET(SPI_CTRL_DFIFO_RDATA, val);
/* 3. enable register DFIFO_RD to read next byte */
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_DFIFO_RD, SPI_CTRL_DFIFO_RD);
if (err)
return err;
}
return 0;
}
static int airoha_snand_set_mode(struct airoha_snand_ctrl *as_ctrl,
enum airoha_snand_mode mode)
{
int err;
switch (mode) {
case SPI_MODE_MANUAL: {
u32 val;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_NFI2SPI_EN, 0);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_READ_IDLE_EN, 0);
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_RDCTL_FSM, val,
!(val & SPI_CTRL_RDCTL_FSM),
0, 250 * USEC_PER_MSEC);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_MTX_MODE_TOG, 9);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_MANUAL_EN, SPI_CTRL_MANUAL_EN);
if (err)
return err;
break;
}
case SPI_MODE_DMA:
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_NFI2SPI_EN,
SPI_CTRL_MANUAL_EN);
if (err < 0)
return err;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_MTX_MODE_TOG, 0x0);
if (err < 0)
return err;
err = regmap_write(as_ctrl->regmap_ctrl,
REG_SPI_CTRL_MANUAL_EN, 0x0);
if (err < 0)
return err;
break;
case SPI_MODE_AUTO:
default:
break;
}
return regmap_write(as_ctrl->regmap_ctrl, REG_SPI_CTRL_DUMMY, 0);
}
static int airoha_snand_write_data(struct airoha_snand_ctrl *as_ctrl, u8 cmd,
const u8 *data, int len)
{
int i, data_len;
for (i = 0; i < len; i += data_len) {
int err;
data_len = min(len, SPI_MAX_TRANSFER_SIZE);
err = airoha_snand_set_fifo_op(as_ctrl, cmd, data_len);
if (err)
return err;
err = airoha_snand_write_data_to_fifo(as_ctrl, &data[i],
data_len);
if (err < 0)
return err;
}
return 0;
}
static int airoha_snand_read_data(struct airoha_snand_ctrl *as_ctrl, u8 *data,
int len)
{
int i, data_len;
for (i = 0; i < len; i += data_len) {
int err;
data_len = min(len, SPI_MAX_TRANSFER_SIZE);
err = airoha_snand_set_fifo_op(as_ctrl, 0xc, data_len);
if (err)
return err;
err = airoha_snand_read_data_from_fifo(as_ctrl, &data[i],
data_len);
if (err < 0)
return err;
}
return 0;
}
static int airoha_snand_nfi_init(struct airoha_snand_ctrl *as_ctrl)
{
int err;
/* switch to SNFI mode */
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_SNF_NFI_CNFG,
SPI_NFI_SPI_MODE);
if (err)
return err;
/* Enable DMA */
return regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_INTR_EN,
SPI_NFI_ALL_IRQ_EN, SPI_NFI_AHB_DONE_EN);
}
static int airoha_snand_nfi_config(struct airoha_snand_ctrl *as_ctrl)
{
int err;
u32 val;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_FIFO_FLUSH | SPI_NFI_RST);
if (err)
return err;
/* auto FDM */
err = regmap_clear_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_AUTO_FDM_EN);
if (err)
return err;
/* HW ECC */
err = regmap_clear_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_HW_ECC_EN);
if (err)
return err;
/* DMA Burst */
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_DMA_BURST_EN);
if (err)
return err;
/* page format */
switch (as_ctrl->nfi_cfg.spare_size) {
case 26:
val = FIELD_PREP(SPI_NFI_SPARE_SIZE, 0x1);
break;
case 27:
val = FIELD_PREP(SPI_NFI_SPARE_SIZE, 0x2);
break;
case 28:
val = FIELD_PREP(SPI_NFI_SPARE_SIZE, 0x3);
break;
default:
val = FIELD_PREP(SPI_NFI_SPARE_SIZE, 0x0);
break;
}
err = regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_PAGEFMT,
SPI_NFI_SPARE_SIZE, val);
if (err)
return err;
switch (as_ctrl->nfi_cfg.page_size) {
case 2048:
val = FIELD_PREP(SPI_NFI_PAGE_SIZE, 0x1);
break;
case 4096:
val = FIELD_PREP(SPI_NFI_PAGE_SIZE, 0x2);
break;
default:
val = FIELD_PREP(SPI_NFI_PAGE_SIZE, 0x0);
break;
}
err = regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_PAGEFMT,
SPI_NFI_PAGE_SIZE, val);
if (err)
return err;
/* sec num */
val = FIELD_PREP(SPI_NFI_SEC_NUM, as_ctrl->nfi_cfg.sec_num);
err = regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_SEC_NUM, val);
if (err)
return err;
/* enable cust sec size */
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_SECCUS_SIZE,
SPI_NFI_CUS_SEC_SIZE_EN);
if (err)
return err;
/* set cust sec size */
val = FIELD_PREP(SPI_NFI_CUS_SEC_SIZE, as_ctrl->nfi_cfg.sec_size);
return regmap_update_bits(as_ctrl->regmap_nfi,
REG_SPI_NFI_SECCUS_SIZE,
SPI_NFI_CUS_SEC_SIZE, val);
}
static bool airoha_snand_is_page_ops(const struct spi_mem_op *op)
{
if (op->addr.nbytes != 2)
return false;
if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
op->addr.buswidth != 4)
return false;
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > 0xf)
return false;
/* quad in / quad out */
if (op->addr.buswidth == 4)
return op->data.buswidth == 4;
if (op->addr.buswidth == 2)
return op->data.buswidth == 2;
/* standard spi */
return op->data.buswidth == 4 || op->data.buswidth == 2 ||
op->data.buswidth == 1;
case SPI_MEM_DATA_OUT:
return !op->dummy.nbytes && op->addr.buswidth == 1 &&
(op->data.buswidth == 4 || op->data.buswidth == 1);
default:
return false;
}
}
static int airoha_snand_adjust_op_size(struct spi_mem *mem,
struct spi_mem_op *op)
{
size_t max_len;
if (airoha_snand_is_page_ops(op)) {
struct airoha_snand_ctrl *as_ctrl;
as_ctrl = spi_controller_get_devdata(mem->spi->controller);
max_len = as_ctrl->nfi_cfg.sec_size;
max_len += as_ctrl->nfi_cfg.spare_size;
max_len *= as_ctrl->nfi_cfg.sec_num;
if (op->data.nbytes > max_len)
op->data.nbytes = max_len;
} else {
max_len = 1 + op->addr.nbytes + op->dummy.nbytes;
if (max_len >= 160)
return -EOPNOTSUPP;
if (op->data.nbytes > 160 - max_len)
op->data.nbytes = 160 - max_len;
}
return 0;
}
static bool airoha_snand_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->cmd.buswidth != 1)
return false;
if (airoha_snand_is_page_ops(op))
return true;
return (!op->addr.nbytes || op->addr.buswidth == 1) &&
(!op->dummy.nbytes || op->dummy.buswidth == 1) &&
(!op->data.nbytes || op->data.buswidth == 1);
}
static int airoha_snand_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct airoha_snand_dev *as_dev = spi_get_ctldata(desc->mem->spi);
if (!as_dev->txrx_buf)
return -EINVAL;
if (desc->info.offset + desc->info.length > U32_MAX)
return -EINVAL;
if (!airoha_snand_supports_op(desc->mem, &desc->info.op_tmpl))
return -EOPNOTSUPP;
return 0;
}
static ssize_t airoha_snand_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct spi_device *spi = desc->mem->spi;
struct airoha_snand_dev *as_dev = spi_get_ctldata(spi);
struct spi_mem_op *op = &desc->info.op_tmpl;
struct airoha_snand_ctrl *as_ctrl;
u32 val, rd_mode;
int err;
if (!as_dev->data_need_update)
return len;
as_dev->data_need_update = false;
switch (op->cmd.opcode) {
case SPI_NAND_OP_READ_FROM_CACHE_DUAL:
rd_mode = 1;
break;
case SPI_NAND_OP_READ_FROM_CACHE_QUAD:
rd_mode = 2;
break;
default:
rd_mode = 0;
break;
}
as_ctrl = spi_controller_get_devdata(spi->controller);
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_DMA);
if (err < 0)
return err;
err = airoha_snand_nfi_config(as_ctrl);
if (err)
return err;
dma_sync_single_for_device(as_ctrl->dev, as_dev->dma_addr,
as_dev->buf_len, DMA_BIDIRECTIONAL);
/* set dma addr */
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_STRADDR,
as_dev->dma_addr);
if (err)
return err;
/* set cust sec size */
val = as_ctrl->nfi_cfg.sec_size * as_ctrl->nfi_cfg.sec_num;
val = FIELD_PREP(SPI_NFI_READ_DATA_BYTE_NUM, val);
err = regmap_update_bits(as_ctrl->regmap_nfi,
REG_SPI_NFI_SNF_MISC_CTL2,
SPI_NFI_READ_DATA_BYTE_NUM, val);
if (err)
return err;
/* set read command */
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_RD_CTL2,
op->cmd.opcode);
if (err)
return err;
/* set read mode */
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_SNF_MISC_CTL,
FIELD_PREP(SPI_NFI_DATA_READ_WR_MODE, rd_mode));
if (err)
return err;
/* set read addr */
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_RD_CTL3, 0x0);
if (err)
return err;
/* set nfi read */
err = regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_OPMODE,
FIELD_PREP(SPI_NFI_OPMODE, 6));
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_READ_MODE | SPI_NFI_DMA_MODE);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_CMD, 0x0);
if (err)
return err;
/* trigger dma start read */
err = regmap_clear_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_RD_TRIG);
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_RD_TRIG);
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_nfi,
REG_SPI_NFI_SNF_STA_CTL1, val,
(val & SPI_NFI_READ_FROM_CACHE_DONE),
0, 1 * USEC_PER_SEC);
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_SNF_STA_CTL1,
SPI_NFI_READ_FROM_CACHE_DONE);
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_nfi, REG_SPI_NFI_INTR,
val, (val & SPI_NFI_AHB_DONE), 0,
1 * USEC_PER_SEC);
if (err)
return err;
/* DMA read need delay for data ready from controller to DRAM */
udelay(1);
dma_sync_single_for_cpu(as_ctrl->dev, as_dev->dma_addr,
as_dev->buf_len, DMA_BIDIRECTIONAL);
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_MANUAL);
if (err < 0)
return err;
memcpy(buf, as_dev->txrx_buf + offs, len);
return len;
}
static ssize_t airoha_snand_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf)
{
struct spi_device *spi = desc->mem->spi;
struct airoha_snand_dev *as_dev = spi_get_ctldata(spi);
struct spi_mem_op *op = &desc->info.op_tmpl;
struct airoha_snand_ctrl *as_ctrl;
u32 wr_mode, val;
int err;
as_ctrl = spi_controller_get_devdata(spi->controller);
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_MANUAL);
if (err < 0)
return err;
dma_sync_single_for_cpu(as_ctrl->dev, as_dev->dma_addr,
as_dev->buf_len, DMA_BIDIRECTIONAL);
memcpy(as_dev->txrx_buf + offs, buf, len);
dma_sync_single_for_device(as_ctrl->dev, as_dev->dma_addr,
as_dev->buf_len, DMA_BIDIRECTIONAL);
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_DMA);
if (err < 0)
return err;
err = airoha_snand_nfi_config(as_ctrl);
if (err)
return err;
if (op->cmd.opcode == SPI_NAND_OP_PROGRAM_LOAD_QUAD ||
op->cmd.opcode == SPI_NAND_OP_PROGRAM_LOAD_RAMDON_QUAD)
wr_mode = BIT(1);
else
wr_mode = 0;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_STRADDR,
as_dev->dma_addr);
if (err)
return err;
val = FIELD_PREP(SPI_NFI_PROG_LOAD_BYTE_NUM,
as_ctrl->nfi_cfg.sec_size * as_ctrl->nfi_cfg.sec_num);
err = regmap_update_bits(as_ctrl->regmap_nfi,
REG_SPI_NFI_SNF_MISC_CTL2,
SPI_NFI_PROG_LOAD_BYTE_NUM, val);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_PG_CTL1,
FIELD_PREP(SPI_NFI_PG_LOAD_CMD,
op->cmd.opcode));
if (err)
return err;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_SNF_MISC_CTL,
FIELD_PREP(SPI_NFI_DATA_READ_WR_MODE, wr_mode));
if (err)
return err;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_PG_CTL2, 0x0);
if (err)
return err;
err = regmap_clear_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_READ_MODE);
if (err)
return err;
err = regmap_update_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_OPMODE,
FIELD_PREP(SPI_NFI_OPMODE, 3));
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CNFG,
SPI_NFI_DMA_MODE);
if (err)
return err;
err = regmap_write(as_ctrl->regmap_nfi, REG_SPI_NFI_CMD, 0x80);
if (err)
return err;
err = regmap_clear_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_WR_TRIG);
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_CON,
SPI_NFI_WR_TRIG);
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_nfi, REG_SPI_NFI_INTR,
val, (val & SPI_NFI_AHB_DONE), 0,
1 * USEC_PER_SEC);
if (err)
return err;
err = regmap_read_poll_timeout(as_ctrl->regmap_nfi,
REG_SPI_NFI_SNF_STA_CTL1, val,
(val & SPI_NFI_LOAD_TO_CACHE_DONE),
0, 1 * USEC_PER_SEC);
if (err)
return err;
err = regmap_set_bits(as_ctrl->regmap_nfi, REG_SPI_NFI_SNF_STA_CTL1,
SPI_NFI_LOAD_TO_CACHE_DONE);
if (err)
return err;
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_MANUAL);
if (err < 0)
return err;
return len;
}
static int airoha_snand_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct airoha_snand_dev *as_dev = spi_get_ctldata(mem->spi);
u8 data[8], cmd, opcode = op->cmd.opcode;
struct airoha_snand_ctrl *as_ctrl;
int i, err;
as_ctrl = spi_controller_get_devdata(mem->spi->controller);
if (opcode == SPI_NAND_OP_PROGRAM_EXECUTE &&
op->addr.val == as_dev->cur_page_num) {
as_dev->data_need_update = true;
} else if (opcode == SPI_NAND_OP_PAGE_READ) {
if (!as_dev->data_need_update &&
op->addr.val == as_dev->cur_page_num)
return 0;
as_dev->data_need_update = true;
as_dev->cur_page_num = op->addr.val;
}
/* switch to manual mode */
err = airoha_snand_set_mode(as_ctrl, SPI_MODE_MANUAL);
if (err < 0)
return err;
err = airoha_snand_set_cs(as_ctrl, SPI_CHIP_SEL_LOW);
if (err < 0)
return err;
/* opcode */
err = airoha_snand_write_data(as_ctrl, 0x8, &opcode, sizeof(opcode));
if (err)
return err;
/* addr part */
cmd = opcode == SPI_NAND_OP_GET_FEATURE ? 0x11 : 0x8;
put_unaligned_be64(op->addr.val, data);
for (i = ARRAY_SIZE(data) - op->addr.nbytes;
i < ARRAY_SIZE(data); i++) {
err = airoha_snand_write_data(as_ctrl, cmd, &data[i],
sizeof(data[0]));
if (err)
return err;
}
/* dummy */
data[0] = 0xff;
for (i = 0; i < op->dummy.nbytes; i++) {
err = airoha_snand_write_data(as_ctrl, 0x8, &data[0],
sizeof(data[0]));
if (err)
return err;
}
/* data */
if (op->data.dir == SPI_MEM_DATA_IN) {
err = airoha_snand_read_data(as_ctrl, op->data.buf.in,
op->data.nbytes);
if (err)
return err;
} else {
err = airoha_snand_write_data(as_ctrl, 0x8, op->data.buf.out,
op->data.nbytes);
if (err)
return err;
}
return airoha_snand_set_cs(as_ctrl, SPI_CHIP_SEL_HIGH);
}
static const struct spi_controller_mem_ops airoha_snand_mem_ops = {
.adjust_op_size = airoha_snand_adjust_op_size,
.supports_op = airoha_snand_supports_op,
.exec_op = airoha_snand_exec_op,
.dirmap_create = airoha_snand_dirmap_create,
.dirmap_read = airoha_snand_dirmap_read,
.dirmap_write = airoha_snand_dirmap_write,
};
static int airoha_snand_setup(struct spi_device *spi)
{
struct airoha_snand_ctrl *as_ctrl;
struct airoha_snand_dev *as_dev;
as_ctrl = spi_controller_get_devdata(spi->controller);
as_dev = devm_kzalloc(as_ctrl->dev, sizeof(*as_dev), GFP_KERNEL);
if (!as_dev)
return -ENOMEM;
/* prepare device buffer */
as_dev->buf_len = SPI_NAND_CACHE_SIZE;
as_dev->txrx_buf = devm_kzalloc(as_ctrl->dev, as_dev->buf_len,
GFP_KERNEL);
if (!as_dev->txrx_buf)
return -ENOMEM;
as_dev->dma_addr = dma_map_single(as_ctrl->dev, as_dev->txrx_buf,
as_dev->buf_len, DMA_BIDIRECTIONAL);
if (dma_mapping_error(as_ctrl->dev, as_dev->dma_addr))
return -ENOMEM;
as_dev->data_need_update = true;
spi_set_ctldata(spi, as_dev);
return 0;
}
static void airoha_snand_cleanup(struct spi_device *spi)
{
struct airoha_snand_dev *as_dev = spi_get_ctldata(spi);
struct airoha_snand_ctrl *as_ctrl;
as_ctrl = spi_controller_get_devdata(spi->controller);
dma_unmap_single(as_ctrl->dev, as_dev->dma_addr,
as_dev->buf_len, DMA_BIDIRECTIONAL);
spi_set_ctldata(spi, NULL);
}
static int airoha_snand_nfi_setup(struct airoha_snand_ctrl *as_ctrl)
{
u32 val, sec_size, sec_num;
int err;
err = regmap_read(as_ctrl->regmap_nfi, REG_SPI_NFI_CON, &val);
if (err)
return err;
sec_num = FIELD_GET(SPI_NFI_SEC_NUM, val);
err = regmap_read(as_ctrl->regmap_nfi, REG_SPI_NFI_SECCUS_SIZE, &val);
if (err)
return err;
sec_size = FIELD_GET(SPI_NFI_CUS_SEC_SIZE, val);
/* init default value */
as_ctrl->nfi_cfg.sec_size = sec_size;
as_ctrl->nfi_cfg.sec_num = sec_num;
as_ctrl->nfi_cfg.page_size = round_down(sec_size * sec_num, 1024);
as_ctrl->nfi_cfg.spare_size = 16;
err = airoha_snand_nfi_init(as_ctrl);
if (err)
return err;
return airoha_snand_nfi_config(as_ctrl);
}
static const struct regmap_config spi_ctrl_regmap_config = {
.name = "ctrl",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_SPI_CTRL_NFI2SPI_EN,
};
static const struct regmap_config spi_nfi_regmap_config = {
.name = "nfi",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = REG_SPI_NFI_SNF_NFI_CNFG,
};
static const struct of_device_id airoha_snand_ids[] = {
{ .compatible = "airoha,en7581-snand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, airoha_snand_ids);
static int airoha_snand_probe(struct platform_device *pdev)
{
struct airoha_snand_ctrl *as_ctrl;
struct device *dev = &pdev->dev;
struct spi_controller *ctrl;
void __iomem *base;
int err;
ctrl = devm_spi_alloc_host(dev, sizeof(*as_ctrl));
if (!ctrl)
return -ENOMEM;
as_ctrl = spi_controller_get_devdata(ctrl);
as_ctrl->dev = dev;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
as_ctrl->regmap_ctrl = devm_regmap_init_mmio(dev, base,
&spi_ctrl_regmap_config);
if (IS_ERR(as_ctrl->regmap_ctrl))
return dev_err_probe(dev, PTR_ERR(as_ctrl->regmap_ctrl),
"failed to init spi ctrl regmap\n");
base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(base))
return PTR_ERR(base);
as_ctrl->regmap_nfi = devm_regmap_init_mmio(dev, base,
&spi_nfi_regmap_config);
if (IS_ERR(as_ctrl->regmap_nfi))
return dev_err_probe(dev, PTR_ERR(as_ctrl->regmap_nfi),
"failed to init spi nfi regmap\n");
as_ctrl->spi_clk = devm_clk_get_enabled(dev, "spi");
if (IS_ERR(as_ctrl->spi_clk))
return dev_err_probe(dev, PTR_ERR(as_ctrl->spi_clk),
"unable to get spi clk\n");
err = dma_set_mask(as_ctrl->dev, DMA_BIT_MASK(32));
if (err)
return err;
ctrl->num_chipselect = 2;
ctrl->mem_ops = &airoha_snand_mem_ops;
ctrl->bits_per_word_mask = SPI_BPW_MASK(8);
ctrl->mode_bits = SPI_RX_DUAL;
ctrl->setup = airoha_snand_setup;
ctrl->cleanup = airoha_snand_cleanup;
device_set_node(&ctrl->dev, dev_fwnode(dev));
err = airoha_snand_nfi_setup(as_ctrl);
if (err)
return err;
return devm_spi_register_controller(dev, ctrl);
}
static struct platform_driver airoha_snand_driver = {
.driver = {
.name = "airoha-spi",
.of_match_table = airoha_snand_ids,
},
.probe = airoha_snand_probe,
};
module_platform_driver(airoha_snand_driver);
MODULE_DESCRIPTION("Airoha SPI-NAND Flash Controller Driver");
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_AUTHOR("Ray Liu <ray.liu@airoha.com>");
MODULE_LICENSE("GPL");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment