Commit 79b6f7ec authored by David S. Miller's avatar David S. Miller

Merge branch 'new-drivers' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6

parents 02a14164 c4e84bde
Copyright (c) 2003-2008 QLogic Corporation
QLogic Linux Networking HBA Driver
This program includes a device driver for Linux 2.6 that may be
distributed with QLogic hardware specific firmware binary file.
You may modify and redistribute the device driver code under the
GNU General Public License as published by the Free Software
Foundation (version 2 or a later version).
You may redistribute the hardware specific firmware binary file
under the following terms:
1. Redistribution of source code (only if applicable),
must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistribution in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
3. The name of QLogic Corporation may not be used to
endorse or promote products derived from this software
without specific prior written permission
REGARDLESS OF WHAT LICENSING MECHANISM IS USED OR APPLICABLE,
THIS PROGRAM IS PROVIDED BY QLOGIC CORPORATION "AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
USER ACKNOWLEDGES AND AGREES THAT USE OF THIS PROGRAM WILL NOT
CREATE OR GIVE GROUNDS FOR A LICENSE BY IMPLICATION, ESTOPPEL, OR
OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT,
TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN
ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN
COMBINATION WITH THIS PROGRAM.
...@@ -1046,6 +1046,13 @@ L: cbe-oss-dev@ozlabs.org ...@@ -1046,6 +1046,13 @@ L: cbe-oss-dev@ozlabs.org
W: http://www.ibm.com/developerworks/power/cell/ W: http://www.ibm.com/developerworks/power/cell/
S: Supported S: Supported
CISCO 10G ETHERNET DRIVER
P: Scott Feldman
M: scofeldm@cisco.com
P: Joe Eykholt
M: jeykholt@cisco.com
S: Supported
CFAG12864B LCD DRIVER CFAG12864B LCD DRIVER
P: Miguel Ojeda Sandonis P: Miguel Ojeda Sandonis
M: miguel.ojeda.sandonis@gmail.com M: miguel.ojeda.sandonis@gmail.com
...@@ -2319,6 +2326,12 @@ L: video4linux-list@redhat.com ...@@ -2319,6 +2326,12 @@ L: video4linux-list@redhat.com
W: http://www.ivtvdriver.org W: http://www.ivtvdriver.org
S: Maintained S: Maintained
JME NETWORK DRIVER
P: Guo-Fu Tseng
M: cooldavid@cooldavid.org
L: netdev@vger.kernel.org
S: Maintained
JOURNALLING FLASH FILE SYSTEM V2 (JFFS2) JOURNALLING FLASH FILE SYSTEM V2 (JFFS2)
P: David Woodhouse P: David Woodhouse
M: dwmw2@infradead.org M: dwmw2@infradead.org
...@@ -3383,6 +3396,13 @@ M: linux-driver@qlogic.com ...@@ -3383,6 +3396,13 @@ M: linux-driver@qlogic.com
L: netdev@vger.kernel.org L: netdev@vger.kernel.org
S: Supported S: Supported
QLOGIC QLGE 10Gb ETHERNET DRIVER
P: Ron Mercer
M: linux-driver@qlogic.com
M: ron.mercer@qlogic.com
L: netdev@vger.kernel.org
S: Supported
QNX4 FILESYSTEM QNX4 FILESYSTEM
P: Anders Larsen P: Anders Larsen
M: al@alarsen.net M: al@alarsen.net
......
...@@ -1840,6 +1840,17 @@ config NE_H8300 ...@@ -1840,6 +1840,17 @@ config NE_H8300
Say Y here if you want to use the NE2000 compatible Say Y here if you want to use the NE2000 compatible
controller on the Renesas H8/300 processor. controller on the Renesas H8/300 processor.
config ATL2
tristate "Atheros L2 Fast Ethernet support"
depends on PCI
select CRC32
select MII
help
This driver supports the Atheros L2 fast ethernet adapter.
To compile this driver as a module, choose M here. The module
will be called atl2.
source "drivers/net/fs_enet/Kconfig" source "drivers/net/fs_enet/Kconfig"
endif # NET_ETHERNET endif # NET_ETHERNET
...@@ -2302,6 +2313,18 @@ config ATL1E ...@@ -2302,6 +2313,18 @@ config ATL1E
To compile this driver as a module, choose M here. The module To compile this driver as a module, choose M here. The module
will be called atl1e. will be called atl1e.
config JME
tristate "JMicron(R) PCI-Express Gigabit Ethernet support"
depends on PCI
select CRC32
select MII
---help---
This driver supports the PCI-Express gigabit ethernet adapters
based on JMicron JMC250 chipset.
To compile this driver as a module, choose M here. The module
will be called jme.
endif # NETDEV_1000 endif # NETDEV_1000
# #
...@@ -2377,6 +2400,13 @@ config EHEA ...@@ -2377,6 +2400,13 @@ config EHEA
To compile the driver as a module, choose M here. The module To compile the driver as a module, choose M here. The module
will be called ehea. will be called ehea.
config ENIC
tristate "E, the Cisco 10G Ethernet NIC"
depends on PCI && INET
select INET_LRO
help
This enables the support for the Cisco 10G Ethernet card.
config IXGBE config IXGBE
tristate "Intel(R) 10GbE PCI Express adapters support" tristate "Intel(R) 10GbE PCI Express adapters support"
depends on PCI && INET depends on PCI && INET
...@@ -2496,6 +2526,15 @@ config BNX2X ...@@ -2496,6 +2526,15 @@ config BNX2X
To compile this driver as a module, choose M here: the module To compile this driver as a module, choose M here: the module
will be called bnx2x. This is recommended. will be called bnx2x. This is recommended.
config QLGE
tristate "QLogic QLGE 10Gb Ethernet Driver Support"
depends on PCI
help
This driver supports QLogic ISP8XXX 10Gb Ethernet cards.
To compile this driver as a module, choose M here: the module
will be called qlge.
source "drivers/net/sfc/Kconfig" source "drivers/net/sfc/Kconfig"
endif # NETDEV_10000 endif # NETDEV_10000
......
...@@ -15,9 +15,12 @@ obj-$(CONFIG_EHEA) += ehea/ ...@@ -15,9 +15,12 @@ obj-$(CONFIG_EHEA) += ehea/
obj-$(CONFIG_CAN) += can/ obj-$(CONFIG_CAN) += can/
obj-$(CONFIG_BONDING) += bonding/ obj-$(CONFIG_BONDING) += bonding/
obj-$(CONFIG_ATL1) += atlx/ obj-$(CONFIG_ATL1) += atlx/
obj-$(CONFIG_ATL2) += atlx/
obj-$(CONFIG_ATL1E) += atl1e/ obj-$(CONFIG_ATL1E) += atl1e/
obj-$(CONFIG_GIANFAR) += gianfar_driver.o obj-$(CONFIG_GIANFAR) += gianfar_driver.o
obj-$(CONFIG_TEHUTI) += tehuti.o obj-$(CONFIG_TEHUTI) += tehuti.o
obj-$(CONFIG_ENIC) += enic/
obj-$(CONFIG_JME) += jme.o
gianfar_driver-objs := gianfar.o \ gianfar_driver-objs := gianfar.o \
gianfar_ethtool.o \ gianfar_ethtool.o \
...@@ -128,6 +131,7 @@ obj-$(CONFIG_AX88796) += ax88796.o ...@@ -128,6 +131,7 @@ obj-$(CONFIG_AX88796) += ax88796.o
obj-$(CONFIG_TSI108_ETH) += tsi108_eth.o obj-$(CONFIG_TSI108_ETH) += tsi108_eth.o
obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o
obj-$(CONFIG_QLA3XXX) += qla3xxx.o obj-$(CONFIG_QLA3XXX) += qla3xxx.o
obj-$(CONFIG_QLGE) += qlge/
obj-$(CONFIG_PPP) += ppp_generic.o obj-$(CONFIG_PPP) += ppp_generic.o
obj-$(CONFIG_PPP_ASYNC) += ppp_async.o obj-$(CONFIG_PPP_ASYNC) += ppp_async.o
......
obj-$(CONFIG_ATL1) += atl1.o obj-$(CONFIG_ATL1) += atl1.o
obj-$(CONFIG_ATL2) += atl2.o
/*
* Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <asm/atomic.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/hardirq.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/irqflags.h>
#include <linux/irqreturn.h>
#include <linux/mii.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tcp.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "atl2.h"
#define ATL2_DRV_VERSION "2.2.3"
static char atl2_driver_name[] = "atl2";
static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
static char atl2_driver_version[] = ATL2_DRV_VERSION;
MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL2_DRV_VERSION);
/*
* atl2_pci_tbl - PCI Device ID Table
*/
static struct pci_device_id atl2_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
static void atl2_set_ethtool_ops(struct net_device *netdev);
static void atl2_check_options(struct atl2_adapter *adapter);
/*
* atl2_sw_init - Initialize general software structures (struct atl2_adapter)
* @adapter: board private structure to initialize
*
* atl2_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl2_sw_init(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->wol = 0;
adapter->ict = 50000; /* ~100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->retry_buf = 2;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->fc_rxd_hi = 0;
hw->fc_rxd_lo = 0;
hw->max_frame_size = adapter->netdev->mtu;
spin_lock_init(&adapter->stats_lock);
spin_lock_init(&adapter->tx_lock);
set_bit(__ATL2_DOWN, &adapter->flags);
return 0;
}
/*
* atl2_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl2_set_multi(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
u32 rctl;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC) {
rctl |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
rctl |= MAC_CTRL_MC_ALL_EN;
rctl &= ~MAC_CTRL_PROMIS_EN;
} else
rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr);
atl2_hash_set(hw, hash_value);
}
}
static void init_ring_ptrs(struct atl2_adapter *adapter)
{
/* Read / Write Ptr Initialize: */
adapter->txd_write_ptr = 0;
atomic_set(&adapter->txd_read_ptr, 0);
adapter->rxd_read_ptr = 0;
adapter->rxd_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, 0);
adapter->txs_next_clear = 0;
}
/*
* atl2_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl2_configure(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
/* set MAC Address */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
/* HI base address */
ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
/* LO base address */
ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
/* element count */
ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
/* config Internal SRAM */
/*
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
*/
/* config IPG/IFG */
value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
MAC_IPG_IFG_IPGT_SHIFT) |
(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
MAC_IPG_IFG_MIFG_SHIFT) |
(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
MAC_IPG_IFG_IPGR1_SHIFT)|
(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
MAC_IPG_IFG_IPGR2_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
/* config Half-Duplex Control */
value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
/* set Interrupt Moderator Timer */
ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
/* set Interrupt Clear Timer */
ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
/* set MTU */
ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
/* 1590 */
ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
/* flow control */
ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
/* Init mailbox */
ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
/* enable DMA read/write */
ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
value = ATL2_READ_REG(&adapter->hw, REG_ISR);
if ((value & ISR_PHY_LINKDOWN) != 0)
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return value;
}
/*
* atl2_setup_ring_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
/* real ring DMA buffer */
adapter->ring_size = size =
adapter->txd_ring_size * 1 + 7 + /* dword align */
adapter->txs_ring_size * 4 + 7 + /* dword align */
adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
&adapter->ring_dma);
if (!adapter->ring_vir_addr)
return -ENOMEM;
memset(adapter->ring_vir_addr, 0, adapter->ring_size);
/* Init TXD Ring */
adapter->txd_dma = adapter->ring_dma ;
offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
adapter->txd_dma += offset;
adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr +
offset);
/* Init TXS Ring */
adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
adapter->txs_dma += offset;
adapter->txs_ring = (struct tx_pkt_status *)
(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
/* Init RXD Ring */
adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
offset = (adapter->rxd_dma & 127) ?
(128 - (adapter->rxd_dma & 127)) : 0;
if (offset > 7)
offset -= 8;
else
offset += (128 - 8);
adapter->rxd_dma += offset;
adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
(adapter->txs_ring_size * 4 + offset));
/*
* Read / Write Ptr Initialize:
* init_ring_ptrs(adapter);
*/
return 0;
}
/*
* atl2_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl2_irq_enable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
ATL2_WRITE_FLUSH(&adapter->hw);
}
/*
* atl2_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl2_irq_disable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
#ifdef NETIF_F_HW_VLAN_TX
static void atl2_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 ctrl;
atl2_irq_disable(adapter);
adapter->vlgrp = grp;
if (grp) {
/* enable VLAN tag insert/strip */
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
ctrl |= MAC_CTRL_RMV_VLAN;
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
} else {
/* disable VLAN tag insert/strip */
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
ctrl &= ~MAC_CTRL_RMV_VLAN;
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
}
atl2_irq_enable(adapter);
}
static void atl2_restore_vlan(struct atl2_adapter *adapter)
{
atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
#endif
static void atl2_intr_rx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct rx_desc *rxd;
struct sk_buff *skb;
do {
rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
if (!rxd->status.update)
break; /* end of tx */
/* clear this flag at once */
rxd->status.update = 0;
if (rxd->status.ok && rxd->status.pkt_size >= 60) {
int rx_size = (int)(rxd->status.pkt_size - 4);
/* alloc new buffer */
skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN);
if (NULL == skb) {
printk(KERN_WARNING
"%s: Mem squeeze, deferring packet.\n",
netdev->name);
/*
* Check that some rx space is free. If not,
* free one and mark stats->rx_dropped++.
*/
adapter->net_stats.rx_dropped++;
break;
}
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = netdev;
memcpy(skb->data, rxd->packet, rx_size);
skb_put(skb, rx_size);
skb->protocol = eth_type_trans(skb, netdev);
#ifdef NETIF_F_HW_VLAN_TX
if (adapter->vlgrp && (rxd->status.vlan)) {
u16 vlan_tag = (rxd->status.vtag>>4) |
((rxd->status.vtag&7) << 13) |
((rxd->status.vtag&8) << 9);
vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
} else
#endif
netif_rx(skb);
adapter->net_stats.rx_bytes += rx_size;
adapter->net_stats.rx_packets++;
netdev->last_rx = jiffies;
} else {
adapter->net_stats.rx_errors++;
if (rxd->status.ok && rxd->status.pkt_size <= 60)
adapter->net_stats.rx_length_errors++;
if (rxd->status.mcast)
adapter->net_stats.multicast++;
if (rxd->status.crc)
adapter->net_stats.rx_crc_errors++;
if (rxd->status.align)
adapter->net_stats.rx_frame_errors++;
}
/* advance write ptr */
if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
adapter->rxd_write_ptr = 0;
} while (1);
/* update mailbox? */
adapter->rxd_read_ptr = adapter->rxd_write_ptr;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
}
static void atl2_intr_tx(struct atl2_adapter *adapter)
{
u32 txd_read_ptr;
u32 txs_write_ptr;
struct tx_pkt_status *txs;
struct tx_pkt_header *txph;
int free_hole = 0;
do {
txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
txs = adapter->txs_ring + txs_write_ptr;
if (!txs->update)
break; /* tx stop here */
free_hole = 1;
txs->update = 0;
if (++txs_write_ptr == adapter->txs_ring_size)
txs_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
txph = (struct tx_pkt_header *)
(((u8 *)adapter->txd_ring) + txd_read_ptr);
if (txph->pkt_size != txs->pkt_size) {
struct tx_pkt_status *old_txs = txs;
printk(KERN_WARNING
"%s: txs packet size not consistent with txd"
" txd_:0x%08x, txs_:0x%08x!\n",
adapter->netdev->name,
*(u32 *)txph, *(u32 *)txs);
printk(KERN_WARNING
"txd read ptr: 0x%x\n",
txd_read_ptr);
txs = adapter->txs_ring + txs_write_ptr;
printk(KERN_WARNING
"txs-behind:0x%08x\n",
*(u32 *)txs);
if (txs_write_ptr < 2) {
txs = adapter->txs_ring +
(adapter->txs_ring_size +
txs_write_ptr - 2);
} else {
txs = adapter->txs_ring + (txs_write_ptr - 2);
}
printk(KERN_WARNING
"txs-before:0x%08x\n",
*(u32 *)txs);
txs = old_txs;
}
/* 4for TPH */
txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
if (txd_read_ptr >= adapter->txd_ring_size)
txd_read_ptr -= adapter->txd_ring_size;
atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
/* tx statistics: */
if (txs->ok)
adapter->net_stats.tx_packets++;
else
adapter->net_stats.tx_errors++;
if (txs->defer)
adapter->net_stats.collisions++;
if (txs->abort_col)
adapter->net_stats.tx_aborted_errors++;
if (txs->late_col)
adapter->net_stats.tx_window_errors++;
if (txs->underun)
adapter->net_stats.tx_fifo_errors++;
} while (1);
if (free_hole) {
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
}
static void atl2_check_for_link(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 phy_data = 0;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->stats_lock);
/* notify upper layer link down ASAP */
if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: %s NIC Link is Down\n",
atl2_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
spin_unlock(&adapter->stats_lock);
}
/*
* atl2_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl2_intr(int irq, void *data)
{
struct atl2_adapter *adapter = netdev_priv(data);
struct atl2_hw *hw = &adapter->hw;
u32 status;
status = ATL2_READ_REG(hw, REG_ISR);
if (0 == status)
return IRQ_NONE;
/* link event */
if (status & ISR_PHY)
atl2_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
if (netif_running(adapter->netdev)) { /* reset MAC */
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
/* link event */
if (status & (ISR_PHY | ISR_MANUAL)) {
adapter->net_stats.tx_carrier_errors++;
atl2_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_TX_EVENT)
atl2_intr_tx(adapter);
/* rx exception */
if (status & ISR_RX_EVENT)
atl2_intr_rx(adapter);
/* re-enable Interrupt */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return IRQ_HANDLED;
}
static int atl2_request_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int flags, err = 0;
flags = IRQF_SHARED;
#ifdef CONFIG_PCI_MSI
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err)
adapter->have_msi = false;
if (adapter->have_msi)
flags &= ~IRQF_SHARED;
#endif
return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name,
netdev);
}
/*
* atl2_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl2_free_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
adapter->ring_dma);
}
/*
* atl2_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl2_open(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
int err;
u32 val;
/* disallow open during test */
if (test_bit(__ATL2_TESTING, &adapter->flags))
return -EBUSY;
/* allocate transmit descriptors */
err = atl2_setup_ring_resources(adapter);
if (err)
return err;
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_init_hw;
}
/* hardware has been reset, we need to reload some things */
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
#ifdef NETIF_F_HW_VLAN_TX
atl2_restore_vlan(adapter);
#endif
if (atl2_configure(adapter)) {
err = -EIO;
goto err_config;
}
err = atl2_request_irq(adapter);
if (err)
goto err_req_irq;
clear_bit(__ATL2_DOWN, &adapter->flags);
mod_timer(&adapter->watchdog_timer, jiffies + 4*HZ);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
val | MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
return 0;
err_init_hw:
err_req_irq:
err_config:
atl2_free_ring_resources(adapter);
atl2_reset_hw(&adapter->hw);
return err;
}
static void atl2_down(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__ATL2_DOWN, &adapter->flags);
#ifdef NETIF_F_LLTX
netif_stop_queue(netdev);
#else
netif_tx_disable(netdev);
#endif
/* reset MAC to disable all RX/TX */
atl2_reset_hw(&adapter->hw);
msleep(1);
atl2_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
clear_bit(0, &adapter->cfg_phy);
netif_carrier_off(netdev);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
}
static void atl2_free_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
#endif
}
/*
* atl2_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl2_close(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
atl2_free_irq(adapter);
atl2_free_ring_resources(adapter);
return 0;
}
static inline int TxsFreeUnit(struct atl2_adapter *adapter)
{
u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
return (adapter->txs_next_clear >= txs_write_ptr) ?
(int) (adapter->txs_ring_size - adapter->txs_next_clear +
txs_write_ptr - 1) :
(int) (txs_write_ptr - adapter->txs_next_clear - 1);
}
static inline int TxdFreeBytes(struct atl2_adapter *adapter)
{
u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
return (adapter->txd_write_ptr >= txd_read_ptr) ?
(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
txd_read_ptr - 1) :
(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
}
static int atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
struct tx_pkt_header *txph;
u32 offset, copy_len;
int txs_unused;
int txbuf_unused;
if (test_bit(__ATL2_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
#ifdef NETIF_F_LLTX
local_irq_save(flags);
if (!spin_trylock(&adapter->tx_lock)) {
/* Collision - tell upper layer to requeue */
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
#else
spin_lock_irqsave(&adapter->tx_lock, flags);
#endif
txs_unused = TxsFreeUnit(adapter);
txbuf_unused = TxdFreeBytes(adapter);
if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
txs_unused < 1) {
/* not enough resources */
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_BUSY;
}
offset = adapter->txd_write_ptr;
txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
*(u32 *)txph = 0;
txph->pkt_size = skb->len;
offset += 4;
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
copy_len = adapter->txd_ring_size - offset;
if (copy_len >= skb->len) {
memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
offset += ((u32)(skb->len + 3) & ~3);
} else {
memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
skb->len-copy_len);
offset = ((u32)(skb->len-copy_len + 3) & ~3);
}
#ifdef NETIF_F_HW_VLAN_TX
if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
u16 vlan_tag = vlan_tx_tag_get(skb);
vlan_tag = (vlan_tag << 4) |
(vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
txph->ins_vlan = 1;
txph->vlan = vlan_tag;
}
#endif
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
adapter->txd_write_ptr = offset;
/* clear txs before send */
adapter->txs_ring[adapter->txs_next_clear].update = 0;
if (++adapter->txs_next_clear == adapter->txs_ring_size)
adapter->txs_next_clear = 0;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
(adapter->txd_write_ptr >> 2));
spin_unlock_irqrestore(&adapter->tx_lock, flags);
netdev->trans_start = jiffies;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* atl2_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
*/
static struct net_device_stats *atl2_get_stats(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
return &adapter->net_stats;
}
/*
* atl2_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
return -EINVAL;
/* set MTU */
if (hw->max_frame_size != new_mtu) {
netdev->mtu = new_mtu;
ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
VLAN_SIZE + ETHERNET_FCS_SIZE);
}
return 0;
}
/*
* atl2_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl2_set_mac(struct net_device *netdev, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl2_set_mac_addr(&adapter->hw);
return 0;
}
/*
* atl2_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_read_phy_reg(&adapter->hw,
data->reg_num & 0x1F, &data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (data->reg_num & ~(0x1F))
return -EFAULT;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
data->val_in)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
/*
* atl2_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl2_mii_ioctl(netdev, ifr, cmd);
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
/*
* atl2_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl2_tx_timeout(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
}
/*
* atl2_watchdog - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_watchdog(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
u32 drop_rxd, drop_rxs;
unsigned long flags;
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
spin_lock_irqsave(&adapter->stats_lock, flags);
drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
adapter->net_stats.rx_over_errors += (drop_rxd+drop_rxs);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
/* Reset the timer */
mod_timer(&adapter->watchdog_timer, jiffies + 4 * HZ);
}
}
/*
* atl2_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_phy_config(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
struct atl2_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
clear_bit(0, &adapter->cfg_phy);
}
static int atl2_up(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
u32 val;
/* hardware has been reset, we need to reload some things */
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
return err;
}
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
#ifdef NETIF_F_HW_VLAN_TX
atl2_restore_vlan(adapter);
#endif
if (atl2_configure(adapter)) {
err = -EIO;
goto err_up;
}
clear_bit(__ATL2_DOWN, &adapter->flags);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
err_up:
return err;
}
static void atl2_reinit_locked(struct atl2_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
atl2_down(adapter);
atl2_up(adapter);
clear_bit(__ATL2_RESETTING, &adapter->flags);
}
static void atl2_reset_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
adapter = container_of(work, struct atl2_adapter, reset_task);
atl2_reinit_locked(adapter);
}
static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
{
u32 value;
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
if (adapter->vlgrp)
value |= MAC_CTRL_RMV_VLAN;
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* half retry buffer */
value |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
}
static int atl2_check_link(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twise */
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data&BMSR_LSTATUS)) { /* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
return 0;
}
/* Link Up */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->MediaType) {
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (reconfig == 0) {
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl2_setup_mac_ctrl(adapter);
printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
atl2_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
return 0;
}
/* change original link status */
if (netif_carrier_ok(netdev)) {
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
/* auto-neg, insert timer to re-config phy
* (if interval smaller than 5 seconds, something strange) */
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
if (!test_and_set_bit(0, &adapter->cfg_phy))
mod_timer(&adapter->phy_config_timer, jiffies + 5 * HZ);
}
return 0;
}
/*
* atl2_link_chg_task - deal with link change event Out of interrupt context
* @netdev: network interface device structure
*/
static void atl2_link_chg_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
unsigned long flags;
adapter = container_of(work, struct atl2_adapter, link_chg_task);
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_check_link(adapter);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
static void atl2_setup_pcicmd(struct pci_dev *pdev)
{
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (cmd & PCI_COMMAND_INTX_DISABLE)
cmd &= ~PCI_COMMAND_INTX_DISABLE;
if (cmd & PCI_COMMAND_IO)
cmd &= ~PCI_COMMAND_IO;
if (0 == (cmd & PCI_COMMAND_MEMORY))
cmd |= PCI_COMMAND_MEMORY;
if (0 == (cmd & PCI_COMMAND_MASTER))
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
/*
* some motherboards BIOS(PXE/EFI) driver may set PME
* while they transfer control to OS (Windows/Linux)
* so we should clear this bit before NIC work normally
*/
pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
}
/*
* atl2_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl2_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl2_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl2_adapter *adapter;
static int cards_found;
unsigned long mmio_start;
int mmio_len;
int err;
cards_found = 0;
err = pci_enable_device(pdev);
if (err)
return err;
/*
* atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
* until the kernel has the proper infrastructure to support 64-bit DMA
* on these devices.
*/
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) &&
pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
goto err_dma;
}
/* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl2_driver_name */
err = pci_request_regions(pdev, atl2_driver_name);
if (err)
goto err_pci_reg;
/* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings */
pci_set_master(pdev);
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct atl2_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
mmio_start = pci_resource_start(pdev, 0x0);
mmio_len = pci_resource_len(pdev, 0x0);
adapter->hw.mem_rang = (u32)mmio_len;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_ioremap;
}
atl2_setup_pcicmd(pdev);
netdev->open = &atl2_open;
netdev->stop = &atl2_close;
netdev->hard_start_xmit = &atl2_xmit_frame;
netdev->get_stats = &atl2_get_stats;
netdev->set_multicast_list = &atl2_set_multi;
netdev->set_mac_address = &atl2_set_mac;
netdev->change_mtu = &atl2_change_mtu;
netdev->do_ioctl = &atl2_ioctl;
atl2_set_ethtool_ops(netdev);
#ifdef HAVE_TX_TIMEOUT
netdev->tx_timeout = &atl2_tx_timeout;
netdev->watchdog_timeo = 5 * HZ;
#endif
#ifdef NETIF_F_HW_VLAN_TX
netdev->vlan_rx_register = atl2_vlan_rx_register;
#endif
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found;
adapter->pci_using_64 = false;
/* setup the private structure */
err = atl2_sw_init(adapter);
if (err)
goto err_sw_init;
err = -EIO;
#ifdef NETIF_F_HW_VLAN_TX
netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
#endif
#ifdef NETIF_F_LLTX
netdev->features |= NETIF_F_LLTX;
#endif
/* Init PHY as early as possible due to power saving issue */
atl2_phy_init(&adapter->hw);
/* reset the controller to
* put the device in a known good starting state */
if (atl2_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_reset;
}
/* copy the MAC address out of the EEPROM */
atl2_read_mac_addr(&adapter->hw);
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
/* FIXME: do we still need this? */
#ifdef ETHTOOL_GPERMADDR
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
#else
if (!is_valid_ether_addr(netdev->dev_addr)) {
#endif
err = -EIO;
goto err_eeprom;
}
atl2_check_options(adapter);
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = &atl2_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
init_timer(&adapter->phy_config_timer);
adapter->phy_config_timer.function = &atl2_phy_config;
adapter->phy_config_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task, atl2_reset_task);
INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
strcpy(netdev->name, "eth%d"); /* ?? */
err = register_netdev(netdev);
if (err)
goto err_register;
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/*
* atl2_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl2_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
/* FIXME: write the original MAC address back in case it was changed from a
* BIOS-set value, as in atl1 -- CHS */
static void __devexit atl2_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__ATL2_DOWN, &adapter->flags);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
flush_scheduled_work();
unregister_netdev(netdev);
atl2_force_ps(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u16 speed, duplex;
u32 ctrl = 0;
u32 wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
if (ctrl & BMSR_LSTATUS)
wufc &= ~ATLX_WUFC_LNKC;
if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
u32 ret_val;
/* get current link speed & duplex */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
printk(KERN_DEBUG
"%s: get speed&duplex error while suspend\n",
atl2_driver_name);
goto wol_dis;
}
ctrl = 0;
/* turn on magic packet wol */
if (wufc & ATLX_WUFC_MAG)
ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
/* ignore Link Chg event when Link is up */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
/* Config MAC CTRL Register */
ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
if (FULL_DUPLEX == adapter->link_duplex)
ctrl |= MAC_CTRL_DUPLX;
ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
ctrl |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
ctrl |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
MAC_CTRL_HALF_LEFT_BUF_SHIFT);
if (wufc & ATLX_WUFC_MAG) {
/* magic packet maybe Broadcast&multicast&Unicast */
ctrl |= MAC_CTRL_BC_EN;
}
ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
/* link is down, so only LINK CHG WOL event enable */
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
atl2_force_ps(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
if (netif_running(netdev))
atl2_free_irq(adapter);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int atl2_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR
"atl2: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
err = atl2_request_irq(adapter);
if (netif_running(netdev) && err)
return err;
atl2_reset_hw(&adapter->hw);
if (netif_running(netdev))
atl2_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void atl2_shutdown(struct pci_dev *pdev)
{
atl2_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver atl2_driver = {
.name = atl2_driver_name,
.id_table = atl2_pci_tbl,
.probe = atl2_probe,
.remove = __devexit_p(atl2_remove),
/* Power Managment Hooks */
.suspend = atl2_suspend,
#ifdef CONFIG_PM
.resume = atl2_resume,
#endif
.shutdown = atl2_shutdown,
};
/*
* atl2_init_module - Driver Registration Routine
*
* atl2_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl2_init_module(void)
{
printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
atl2_driver_version);
printk(KERN_INFO "%s\n", atl2_copyright);
return pci_register_driver(&atl2_driver);
}
module_init(atl2_init_module);
/*
* atl2_exit_module - Driver Exit Cleanup Routine
*
* atl2_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl2_exit_module(void)
{
pci_unregister_driver(&atl2_driver);
}
module_exit(atl2_exit_module);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
static int atl2_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->advertising |= hw->autoneg_advertised;
ecmd->port = PORT_TP;
ecmd->phy_address = 0;
ecmd->transceiver = XCVR_INTERNAL;
if (adapter->link_speed != SPEED_0) {
ecmd->speed = adapter->link_speed;
if (adapter->link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_ENABLE;
return 0;
}
static int atl2_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
if (ecmd->autoneg == AUTONEG_ENABLE) {
#define MY_ADV_MASK (ADVERTISE_10_HALF | \
ADVERTISE_10_FULL | \
ADVERTISE_100_HALF| \
ADVERTISE_100_FULL)
if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
hw->autoneg_advertised = MY_ADV_MASK;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_FULL) {
hw->MediaType = MEDIA_TYPE_100M_FULL;
hw->autoneg_advertised = ADVERTISE_100_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_HALF) {
hw->MediaType = MEDIA_TYPE_100M_HALF;
hw->autoneg_advertised = ADVERTISE_100_HALF;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_FULL) {
hw->MediaType = MEDIA_TYPE_10M_FULL;
hw->autoneg_advertised = ADVERTISE_10_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_HALF) {
hw->MediaType = MEDIA_TYPE_10M_HALF;
hw->autoneg_advertised = ADVERTISE_10_HALF;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
ecmd->advertising = hw->autoneg_advertised |
ADVERTISED_TP | ADVERTISED_Autoneg;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
atl2_down(adapter);
atl2_up(adapter);
} else
atl2_reset_hw(&adapter->hw);
clear_bit(__ATL2_RESETTING, &adapter->flags);
return 0;
}
static u32 atl2_get_tx_csum(struct net_device *netdev)
{
return (netdev->features & NETIF_F_HW_CSUM) != 0;
}
static u32 atl2_get_msglevel(struct net_device *netdev)
{
return 0;
}
/*
* It's sane for this to be empty, but we might want to take advantage of this.
*/
static void atl2_set_msglevel(struct net_device *netdev, u32 data)
{
}
static int atl2_get_regs_len(struct net_device *netdev)
{
#define ATL2_REGS_LEN 42
return sizeof(u32) * ATL2_REGS_LEN;
}
static void atl2_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
regs_buff[40] = (u32)phy_data;
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
regs_buff[41] = (u32)phy_data;
}
static int atl2_get_eeprom_len(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (!atl2_check_eeprom_exist(&adapter->hw))
return 512;
else
return 0;
}
static int atl2_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EINVAL;
if (atl2_check_eeprom_exist(hw))
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
for (i = first_dword; i < last_dword; i++) {
if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword])))
return -EIO;
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int atl2_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
u32 *ptr;
int max_len, first_dword, last_dword, ret_val = 0;
int i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = 512;
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (u32 *)eeprom_buff;
if (eeprom->offset & 3) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0])))
return -EIO;
ptr++;
}
if (((eeprom->offset + eeprom->len) & 3)) {
/*
* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
if (!atl2_read_eeprom(hw, last_dword * 4,
&(eeprom_buff[last_dword - first_dword])))
return -EIO;
}
/* Device's eeprom is always little-endian, word addressable */
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_dword - first_dword + 1; i++) {
if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i]))
return -EIO;
}
kfree(eeprom_buff);
return ret_val;
}
static void atl2_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
strncpy(drvinfo->driver, atl2_driver_name, 32);
strncpy(drvinfo->version, atl2_driver_version, 32);
strncpy(drvinfo->fw_version, "L2", 32);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = atl2_get_regs_len(netdev);
drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
}
static void atl2_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
if (adapter->wol & ATLX_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & ATLX_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & ATLX_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & ATLX_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & ATLX_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (wol->wolopts & (WAKE_MCAST|WAKE_BCAST|WAKE_MCAST))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= ATLX_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= ATLX_WUFC_LNKC;
return 0;
}
static int atl2_nway_reset(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
atl2_reinit_locked(adapter);
return 0;
}
static struct ethtool_ops atl2_ethtool_ops = {
.get_settings = atl2_get_settings,
.set_settings = atl2_set_settings,
.get_drvinfo = atl2_get_drvinfo,
.get_regs_len = atl2_get_regs_len,
.get_regs = atl2_get_regs,
.get_wol = atl2_get_wol,
.set_wol = atl2_set_wol,
.get_msglevel = atl2_get_msglevel,
.set_msglevel = atl2_set_msglevel,
.nway_reset = atl2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = atl2_get_eeprom_len,
.get_eeprom = atl2_get_eeprom,
.set_eeprom = atl2_set_eeprom,
.get_tx_csum = atl2_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
#endif
};
static void atl2_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
}
#define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
(((a) & 0xff00ff00) >> 8))
#define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
#define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
/*
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static s32 atl2_reset_hw(struct atl2_hw *hw)
{
u32 icr;
u16 pci_cfg_cmd_word;
int i;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word &
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
pci_cfg_cmd_word |=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
}
/* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/* FIXME */
/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
/* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
wmb();
msleep(1); /* delay about 1ms */
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
if (!icr)
break;
msleep(1); /* delay 1 ms */
cpu_relax();
}
if (icr)
return icr;
return 0;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static struct atl2_spi_flash_dev flash_table[] =
{
/* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
{"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
{"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
{"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
};
static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT |
(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT |
(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT |
(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT |
(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT |
(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
value |= SPI_FLASH_CTRL_START;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
for (i = 0; i < 10; i++) {
msleep(1);
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int get_permanent_address(struct atl2_hw *hw)
{
u32 Addr[2];
u32 i, Control;
u16 Register;
u8 EthAddr[NODE_ADDRESS_SIZE];
bool KeyValid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
Addr[0] = 0;
Addr[1] = 0;
if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
Register = 0;
KeyValid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register ==
(REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
/* assume data end while encount an invalid KEYWORD */
break;
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
return 1;
}
/* see if SPI flash exists? */
Addr[0] = 0;
Addr[1] = 0;
Register = 0;
KeyValid = false;
i = 0;
while (1) {
if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register == (REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
break; /* data end */
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
/* maybe MAC-address is from BIOS */
Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_read_mac_addr(struct atl2_hw *hw)
{
u16 i;
if (get_permanent_address(hw)) {
/* for test */
/* FIXME: shouldn't we use random_ether_addr() here? */
hw->perm_mac_addr[0] = 0x00;
hw->perm_mac_addr[1] = 0x13;
hw->perm_mac_addr[2] = 0x74;
hw->perm_mac_addr[3] = 0x00;
hw->perm_mac_addr[4] = 0x5c;
hw->perm_mac_addr[5] = 0x38;
}
for (i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return 0;
}
/*
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl2_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
{
u32 crc32, value;
int i;
value = 0;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* atl2_init_pcie - init PCIE module
*/
static void atl2_init_pcie(struct atl2_hw *hw)
{
u32 value;
value = LTSSM_TEST_MODE_DEF;
ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
value = PCIE_DLL_TX_CTRL1_DEF;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
}
static void atl2_init_flash_opcode(struct atl2_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
hw->flash_vendor = 0; /* ATMEL */
/* Init OP table */
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
flash_table[hw->flash_vendor].cmdPROGRAM);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
flash_table[hw->flash_vendor].cmdCHIP_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
flash_table[hw->flash_vendor].cmdRDID);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
flash_table[hw->flash_vendor].cmdWREN);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
flash_table[hw->flash_vendor].cmdRDSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
flash_table[hw->flash_vendor].cmdWRSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
flash_table[hw->flash_vendor].cmdREAD);
}
/********************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
********************************************************************/
static s32 atl2_init_hw(struct atl2_hw *hw)
{
u32 ret_val = 0;
atl2_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
atl2_init_flash_opcode(hw);
ret_val = atl2_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
return ATLX_ERR_PHY_RES;
switch (phy_data & MII_ATLX_PSSR_SPEED) {
case MII_ATLX_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_ATLX_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return ATLX_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_ATLX_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START |
MDIO_SUP_PREAMBLE |
MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return ATLX_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return ATLX_ERR_PHY;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
{
s32 ret_val;
s16 mii_autoneg_adv_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9). */
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
/* Need to parse MediaType and setup the
* appropriate PHY registers. */
switch (hw->MediaType) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |=
(MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS|
MII_AR_100TX_FD_CAPS);
hw->autoneg_advertised =
ADVERTISE_10_HALF |
ADVERTISE_10_FULL |
ADVERTISE_100_HALF|
ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
return 0;
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl2_phy_commit(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_data;
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down ! */
for (i = 0; i < 25; i++) {
msleep(1);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
return ret_val;
}
}
return 0;
}
static s32 atl2_phy_init(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_val;
if (hw->phy_configured)
return 0;
/* Enable PHY */
ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
ATL2_WRITE_FLUSH(hw);
msleep(1);
/* check if the PHY is in powersaving mode */
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
/* 024E / 124E 0r 0274 / 1274 ? */
if (phy_val & 0x1000) {
phy_val &= ~0x1000;
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
}
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* setup AutoNeg parameters */
ret_val = atl2_phy_setup_autoneg_adv(hw);
if (ret_val)
return ret_val;
/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
ret_val = atl2_phy_commit(hw);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return ret_val;
}
static void atl2_set_mac_addr(struct atl2_hw *hw)
{
u32 value;
/* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl2_check_eeprom_exist(struct atl2_hw *hw)
{
u32 value;
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
/* FIXME: This doesn't look right. -- CHS */
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
{
return true;
}
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
{
int i;
u32 Control;
if (Offset & 0x3)
return false; /* address do not align */
ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
for (i = 0; i < 10; i++) {
msleep(2);
Control = ATL2_READ_REG(hw, REG_VPD_CAP);
if (Control & VPD_CAP_VPD_FLAG)
break;
}
if (Control & VPD_CAP_VPD_FLAG) {
*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
static void atl2_force_ps(struct atl2_hw *hw)
{
u16 phy_val;
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
}
/* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL2_MAX_NIC 4
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
#ifndef module_param_array
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when atl2_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define ATL2_PARAM(X, desc) \
static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, desc);
#else
#define ATL2_PARAM(X, desc) \
static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
static int num_##X = 0; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
#endif
/*
* Transmit Memory Size
* Valid Range: 64-2048
* Default Value: 128
*/
#define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
#define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
#define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
/*
* Receive Memory Block Count
* Valid Range: 16-512
* Default Value: 128
*/
#define ATL2_MIN_RXD_COUNT 16
#define ATL2_MAX_RXD_COUNT 512
#define ATL2_DEFAULT_RXD_COUNT 64
ATL2_PARAM(RxMemBlock, "Number of receive memory block");
/*
* User Specified MediaType Override
*
* Valid Range: 0-5
* - 0 - auto-negotiate at all supported speeds
* - 1 - only link at 1000Mbps Full Duplex
* - 2 - only link at 100Mbps Full Duplex
* - 3 - only link at 100Mbps Half Duplex
* - 4 - only link at 10Mbps Full Duplex
* - 5 - only link at 10Mbps Half Duplex
* Default Value: 0
*/
ATL2_PARAM(MediaType, "MediaType Select");
/*
* Interrupt Moderate Timer in units of 2048 ns (~2 us)
* Valid Range: 10-65535
* Default Value: 45000(90ms)
*/
#define INT_MOD_DEFAULT_CNT 100 /* 200us */
#define INT_MOD_MAX_CNT 65000
#define INT_MOD_MIN_CNT 50
ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
/*
* FlashVendor
* Valid Range: 0-2
* 0 - Atmel
* 1 - SST
* 2 - ST
*/
ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
#define FLASH_VENDOR_DEFAULT 0
#define FLASH_VENDOR_MIN 0
#define FLASH_VENDOR_MAX 2
struct atl2_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl2_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit atl2_validate_option(int *value, struct atl2_option *opt)
{
int i;
struct atl2_opt_list *ent;
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
printk(KERN_INFO "%s Enabled\n", opt->name);
return 0;
break;
case OPTION_DISABLED:
printk(KERN_INFO "%s Disabled\n", opt->name);
return 0;
break;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
printk(KERN_INFO "%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option:
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
printk(KERN_INFO "%s\n", ent->str);
return 0;
}
}
break;
default:
BUG();
}
printk(KERN_INFO "Invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/*
* atl2_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
static void __devinit atl2_check_options(struct atl2_adapter *adapter)
{
int val;
struct atl2_option opt;
int bd = adapter->bd_number;
if (bd >= ATL2_MAX_NIC) {
printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
bd);
printk(KERN_NOTICE "Using defaults for all values\n");
#ifndef module_param_array
bd = ATL2_MAX_NIC;
#endif
}
/* Bytes of Transmit Memory */
opt.type = range_option;
opt.name = "Bytes of Transmit Memory";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
opt.def = ATL2_DEFAULT_TX_MEMSIZE;
opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
#ifdef module_param_array
if (num_TxMemSize > bd) {
#endif
val = TxMemSize[bd];
atl2_validate_option(&val, &opt);
adapter->txd_ring_size = ((u32) val) * 1024;
#ifdef module_param_array
} else
adapter->txd_ring_size = ((u32)opt.def) * 1024;
#endif
/* txs ring size: */
adapter->txs_ring_size = adapter->txd_ring_size / 128;
if (adapter->txs_ring_size > 160)
adapter->txs_ring_size = 160;
/* Receive Memory Block Count */
opt.type = range_option;
opt.name = "Number of receive memory block";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
opt.def = ATL2_DEFAULT_RXD_COUNT;
opt.arg.r.min = ATL2_MIN_RXD_COUNT;
opt.arg.r.max = ATL2_MAX_RXD_COUNT;
#ifdef module_param_array
if (num_RxMemBlock > bd) {
#endif
val = RxMemBlock[bd];
atl2_validate_option(&val, &opt);
adapter->rxd_ring_size = (u32)val;
/* FIXME */
/* ((u16)val)&~1; */ /* even number */
#ifdef module_param_array
} else
adapter->rxd_ring_size = (u32)opt.def;
#endif
/* init RXD Flow control value */
adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
(adapter->rxd_ring_size / 12);
/* Interrupt Moderate Timer */
opt.type = range_option;
opt.name = "Interrupt Moderate Timer";
opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
opt.def = INT_MOD_DEFAULT_CNT;
opt.arg.r.min = INT_MOD_MIN_CNT;
opt.arg.r.max = INT_MOD_MAX_CNT;
#ifdef module_param_array
if (num_IntModTimer > bd) {
#endif
val = IntModTimer[bd];
atl2_validate_option(&val, &opt);
adapter->imt = (u16) val;
#ifdef module_param_array
} else
adapter->imt = (u16)(opt.def);
#endif
/* Flash Vendor */
opt.type = range_option;
opt.name = "SPI Flash Vendor";
opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
opt.def = FLASH_VENDOR_DEFAULT;
opt.arg.r.min = FLASH_VENDOR_MIN;
opt.arg.r.max = FLASH_VENDOR_MAX;
#ifdef module_param_array
if (num_FlashVendor > bd) {
#endif
val = FlashVendor[bd];
atl2_validate_option(&val, &opt);
adapter->hw.flash_vendor = (u8) val;
#ifdef module_param_array
} else
adapter->hw.flash_vendor = (u8)(opt.def);
#endif
/* MediaType */
opt.type = range_option;
opt.name = "Speed/Duplex Selection";
opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
opt.def = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.max = MEDIA_TYPE_10M_HALF;
#ifdef module_param_array
if (num_MediaType > bd) {
#endif
val = MediaType[bd];
atl2_validate_option(&val, &opt);
adapter->hw.MediaType = (u16) val;
#ifdef module_param_array
} else
adapter->hw.MediaType = (u16)(opt.def);
#endif
}
/* atl2.h -- atl2 driver definitions
*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2006 xiong huang <xiong.huang@atheros.com>
* Copyright(c) 2007 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _ATL2_H_
#define _ATL2_H_
#include <asm/atomic.h>
#include <linux/netdevice.h>
#ifndef _ATL2_HW_H_
#define _ATL2_HW_H_
#ifndef _ATL2_OSDEP_H_
#define _ATL2_OSDEP_H_
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include "atlx.h"
#ifdef ETHTOOL_OPS_COMPAT
extern int ethtool_ioctl(struct ifreq *ifr);
#endif
#define PCI_COMMAND_REGISTER PCI_COMMAND
#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE
#define ETH_ADDR_LEN ETH_ALEN
#define ATL2_WRITE_REG(a, reg, value) (iowrite32((value), \
((a)->hw_addr + (reg))))
#define ATL2_WRITE_FLUSH(a) (ioread32((a)->hw_addr))
#define ATL2_READ_REG(a, reg) (ioread32((a)->hw_addr + (reg)))
#define ATL2_WRITE_REGB(a, reg, value) (iowrite8((value), \
((a)->hw_addr + (reg))))
#define ATL2_READ_REGB(a, reg) (ioread8((a)->hw_addr + (reg)))
#define ATL2_WRITE_REGW(a, reg, value) (iowrite16((value), \
((a)->hw_addr + (reg))))
#define ATL2_READ_REGW(a, reg) (ioread16((a)->hw_addr + (reg)))
#define ATL2_WRITE_REG_ARRAY(a, reg, offset, value) \
(iowrite32((value), (((a)->hw_addr + (reg)) + ((offset) << 2))))
#define ATL2_READ_REG_ARRAY(a, reg, offset) \
(ioread32(((a)->hw_addr + (reg)) + ((offset) << 2)))
#endif /* _ATL2_OSDEP_H_ */
struct atl2_adapter;
struct atl2_hw;
/* function prototype */
static s32 atl2_reset_hw(struct atl2_hw *hw);
static s32 atl2_read_mac_addr(struct atl2_hw *hw);
static s32 atl2_init_hw(struct atl2_hw *hw);
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex);
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr);
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value);
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data);
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value);
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value);
static void atl2_set_mac_addr(struct atl2_hw *hw);
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue);
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value);
static s32 atl2_phy_init(struct atl2_hw *hw);
static int atl2_check_eeprom_exist(struct atl2_hw *hw);
static void atl2_force_ps(struct atl2_hw *hw);
/* register definition */
/* Block IDLE Status Register */
#define IDLE_STATUS_RXMAC 1 /* 1: RXMAC is non-IDLE */
#define IDLE_STATUS_TXMAC 2 /* 1: TXMAC is non-IDLE */
#define IDLE_STATUS_DMAR 8 /* 1: DMAR is non-IDLE */
#define IDLE_STATUS_DMAW 4 /* 1: DMAW is non-IDLE */
/* MDIO Control Register */
#define MDIO_WAIT_TIMES 10
/* MAC Control Register */
#define MAC_CTRL_DBG_TX_BKPRESURE 0x100000 /* 1: TX max backoff */
#define MAC_CTRL_MACLP_CLK_PHY 0x8000000 /* 1: 25MHz from phy */
#define MAC_CTRL_HALF_LEFT_BUF_SHIFT 28
#define MAC_CTRL_HALF_LEFT_BUF_MASK 0xF /* MAC retry buf x32B */
/* Internal SRAM Partition Register */
#define REG_SRAM_TXRAM_END 0x1500 /* Internal tail address of TXRAM
* default: 2byte*1024 */
#define REG_SRAM_RXRAM_END 0x1502 /* Internal tail address of RXRAM
* default: 2byte*1024 */
/* Descriptor Control register */
#define REG_TXD_BASE_ADDR_LO 0x1544 /* The base address of the Transmit
* Data Mem low 32-bit(dword align) */
#define REG_TXD_MEM_SIZE 0x1548 /* Transmit Data Memory size(by
* double word , max 256KB) */
#define REG_TXS_BASE_ADDR_LO 0x154C /* The base address of the Transmit
* Status Memory low 32-bit(dword word
* align) */
#define REG_TXS_MEM_SIZE 0x1550 /* double word unit, max 4*2047
* bytes. */
#define REG_RXD_BASE_ADDR_LO 0x1554 /* The base address of the Transmit
* Status Memory low 32-bit(unit 8
* bytes) */
#define REG_RXD_BUF_NUM 0x1558 /* Receive Data & Status Memory buffer
* number (unit 1536bytes, max
* 1536*2047) */
/* DMAR Control Register */
#define REG_DMAR 0x1580
#define DMAR_EN 0x1 /* 1: Enable DMAR */
/* TX Cur-Through (early tx threshold) Control Register */
#define REG_TX_CUT_THRESH 0x1590 /* TxMac begin transmit packet
* threshold(unit word) */
/* DMAW Control Register */
#define REG_DMAW 0x15A0
#define DMAW_EN 0x1
/* Flow control register */
#define REG_PAUSE_ON_TH 0x15A8 /* RXD high watermark of overflow
* threshold configuration register */
#define REG_PAUSE_OFF_TH 0x15AA /* RXD lower watermark of overflow
* threshold configuration register */
/* Mailbox Register */
#define REG_MB_TXD_WR_IDX 0x15f0 /* double word align */
#define REG_MB_RXD_RD_IDX 0x15F4 /* RXD Read index (unit: 1536byets) */
/* Interrupt Status Register */
#define ISR_TIMER 1 /* Interrupt when Timer counts down to zero */
#define ISR_MANUAL 2 /* Software manual interrupt, for debug. Set
* when SW_MAN_INT_EN is set in Table 51
* Selene Master Control Register
* (Offset 0x1400). */
#define ISR_RXF_OV 4 /* RXF overflow interrupt */
#define ISR_TXF_UR 8 /* TXF underrun interrupt */
#define ISR_TXS_OV 0x10 /* Internal transmit status buffer full
* interrupt */
#define ISR_RXS_OV 0x20 /* Internal receive status buffer full
* interrupt */
#define ISR_LINK_CHG 0x40 /* Link Status Change Interrupt */
#define ISR_HOST_TXD_UR 0x80
#define ISR_HOST_RXD_OV 0x100 /* Host rx data memory full , one pulse */
#define ISR_DMAR_TO_RST 0x200 /* DMAR op timeout interrupt. SW should
* do Reset */
#define ISR_DMAW_TO_RST 0x400
#define ISR_PHY 0x800 /* phy interrupt */
#define ISR_TS_UPDATE 0x10000 /* interrupt after new tx pkt status written
* to host */
#define ISR_RS_UPDATE 0x20000 /* interrupt ater new rx pkt status written
* to host. */
#define ISR_TX_EARLY 0x40000 /* interrupt when txmac begin transmit one
* packet */
#define ISR_TX_EVENT (ISR_TXF_UR | ISR_TXS_OV | ISR_HOST_TXD_UR |\
ISR_TS_UPDATE | ISR_TX_EARLY)
#define ISR_RX_EVENT (ISR_RXF_OV | ISR_RXS_OV | ISR_HOST_RXD_OV |\
ISR_RS_UPDATE)
#define IMR_NORMAL_MASK (\
/*ISR_LINK_CHG |*/\
ISR_MANUAL |\
ISR_DMAR_TO_RST |\
ISR_DMAW_TO_RST |\
ISR_PHY |\
ISR_PHY_LINKDOWN |\
ISR_TS_UPDATE |\
ISR_RS_UPDATE)
/* Receive MAC Statistics Registers */
#define REG_STS_RX_PAUSE 0x1700 /* Num pause packets received */
#define REG_STS_RXD_OV 0x1704 /* Num frames dropped due to RX
* FIFO overflow */
#define REG_STS_RXS_OV 0x1708 /* Num frames dropped due to RX
* Status Buffer Overflow */
#define REG_STS_RX_FILTER 0x170C /* Num packets dropped due to
* address filtering */
/* MII definitions */
/* PHY Common Register */
#define MII_SMARTSPEED 0x14
#define MII_DBG_ADDR 0x1D
#define MII_DBG_DATA 0x1E
/* PCI Command Register Bit Definitions */
#define PCI_REG_COMMAND 0x04
#define CMD_IO_SPACE 0x0001
#define CMD_MEMORY_SPACE 0x0002
#define CMD_BUS_MASTER 0x0004
#define MEDIA_TYPE_100M_FULL 1
#define MEDIA_TYPE_100M_HALF 2
#define MEDIA_TYPE_10M_FULL 3
#define MEDIA_TYPE_10M_HALF 4
#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x000F /* Everything */
/* The size (in bytes) of a ethernet packet */
#define ENET_HEADER_SIZE 14
#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* with FCS */
#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* with FCS */
#define ETHERNET_FCS_SIZE 4
#define MAX_JUMBO_FRAME_SIZE 0x2000
#define VLAN_SIZE 4
struct tx_pkt_header {
unsigned pkt_size:11;
unsigned:4; /* reserved */
unsigned ins_vlan:1; /* txmac should insert vlan */
unsigned short vlan; /* vlan tag */
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define TX_PKT_HEADER_SIZE_MASK 0x7FF
#define TX_PKT_HEADER_SIZE_SHIFT 0
#define TX_PKT_HEADER_INS_VLAN_MASK 0x1
#define TX_PKT_HEADER_INS_VLAN_SHIFT 15
#define TX_PKT_HEADER_VLAN_TAG_MASK 0xFFFF
#define TX_PKT_HEADER_VLAN_TAG_SHIFT 16
struct tx_pkt_status {
unsigned pkt_size:11;
unsigned:5; /* reserved */
unsigned ok:1; /* current packet transmitted without error */
unsigned bcast:1; /* broadcast packet */
unsigned mcast:1; /* multicast packet */
unsigned pause:1; /* transmiited a pause frame */
unsigned ctrl:1;
unsigned defer:1; /* current packet is xmitted with defer */
unsigned exc_defer:1;
unsigned single_col:1;
unsigned multi_col:1;
unsigned late_col:1;
unsigned abort_col:1;
unsigned underun:1; /* current packet is aborted
* due to txram underrun */
unsigned:3; /* reserved */
unsigned update:1; /* always 1'b1 in tx_status_buf */
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define TX_PKT_STATUS_SIZE_MASK 0x7FF
#define TX_PKT_STATUS_SIZE_SHIFT 0
#define TX_PKT_STATUS_OK_MASK 0x1
#define TX_PKT_STATUS_OK_SHIFT 16
#define TX_PKT_STATUS_BCAST_MASK 0x1
#define TX_PKT_STATUS_BCAST_SHIFT 17
#define TX_PKT_STATUS_MCAST_MASK 0x1
#define TX_PKT_STATUS_MCAST_SHIFT 18
#define TX_PKT_STATUS_PAUSE_MASK 0x1
#define TX_PKT_STATUS_PAUSE_SHIFT 19
#define TX_PKT_STATUS_CTRL_MASK 0x1
#define TX_PKT_STATUS_CTRL_SHIFT 20
#define TX_PKT_STATUS_DEFER_MASK 0x1
#define TX_PKT_STATUS_DEFER_SHIFT 21
#define TX_PKT_STATUS_EXC_DEFER_MASK 0x1
#define TX_PKT_STATUS_EXC_DEFER_SHIFT 22
#define TX_PKT_STATUS_SINGLE_COL_MASK 0x1
#define TX_PKT_STATUS_SINGLE_COL_SHIFT 23
#define TX_PKT_STATUS_MULTI_COL_MASK 0x1
#define TX_PKT_STATUS_MULTI_COL_SHIFT 24
#define TX_PKT_STATUS_LATE_COL_MASK 0x1
#define TX_PKT_STATUS_LATE_COL_SHIFT 25
#define TX_PKT_STATUS_ABORT_COL_MASK 0x1
#define TX_PKT_STATUS_ABORT_COL_SHIFT 26
#define TX_PKT_STATUS_UNDERRUN_MASK 0x1
#define TX_PKT_STATUS_UNDERRUN_SHIFT 27
#define TX_PKT_STATUS_UPDATE_MASK 0x1
#define TX_PKT_STATUS_UPDATE_SHIFT 31
struct rx_pkt_status {
unsigned pkt_size:11; /* packet size, max 2047 bytes */
unsigned:5; /* reserved */
unsigned ok:1; /* current packet received ok without error */
unsigned bcast:1; /* current packet is broadcast */
unsigned mcast:1; /* current packet is multicast */
unsigned pause:1;
unsigned ctrl:1;
unsigned crc:1; /* received a packet with crc error */
unsigned code:1; /* received a packet with code error */
unsigned runt:1; /* received a packet less than 64 bytes
* with good crc */
unsigned frag:1; /* received a packet less than 64 bytes
* with bad crc */
unsigned trunc:1; /* current frame truncated due to rxram full */
unsigned align:1; /* this packet is alignment error */
unsigned vlan:1; /* this packet has vlan */
unsigned:3; /* reserved */
unsigned update:1;
unsigned short vtag; /* vlan tag */
unsigned:16;
};
/* FIXME: replace above bitfields with MASK/SHIFT defines below */
#define RX_PKT_STATUS_SIZE_MASK 0x7FF
#define RX_PKT_STATUS_SIZE_SHIFT 0
#define RX_PKT_STATUS_OK_MASK 0x1
#define RX_PKT_STATUS_OK_SHIFT 16
#define RX_PKT_STATUS_BCAST_MASK 0x1
#define RX_PKT_STATUS_BCAST_SHIFT 17
#define RX_PKT_STATUS_MCAST_MASK 0x1
#define RX_PKT_STATUS_MCAST_SHIFT 18
#define RX_PKT_STATUS_PAUSE_MASK 0x1
#define RX_PKT_STATUS_PAUSE_SHIFT 19
#define RX_PKT_STATUS_CTRL_MASK 0x1
#define RX_PKT_STATUS_CTRL_SHIFT 20
#define RX_PKT_STATUS_CRC_MASK 0x1
#define RX_PKT_STATUS_CRC_SHIFT 21
#define RX_PKT_STATUS_CODE_MASK 0x1
#define RX_PKT_STATUS_CODE_SHIFT 22
#define RX_PKT_STATUS_RUNT_MASK 0x1
#define RX_PKT_STATUS_RUNT_SHIFT 23
#define RX_PKT_STATUS_FRAG_MASK 0x1
#define RX_PKT_STATUS_FRAG_SHIFT 24
#define RX_PKT_STATUS_TRUNK_MASK 0x1
#define RX_PKT_STATUS_TRUNK_SHIFT 25
#define RX_PKT_STATUS_ALIGN_MASK 0x1
#define RX_PKT_STATUS_ALIGN_SHIFT 26
#define RX_PKT_STATUS_VLAN_MASK 0x1
#define RX_PKT_STATUS_VLAN_SHIFT 27
#define RX_PKT_STATUS_UPDATE_MASK 0x1
#define RX_PKT_STATUS_UPDATE_SHIFT 31
#define RX_PKT_STATUS_VLAN_TAG_MASK 0xFFFF
#define RX_PKT_STATUS_VLAN_TAG_SHIFT 32
struct rx_desc {
struct rx_pkt_status status;
unsigned char packet[1536-sizeof(struct rx_pkt_status)];
};
enum atl2_speed_duplex {
atl2_10_half = 0,
atl2_10_full = 1,
atl2_100_half = 2,
atl2_100_full = 3
};
struct atl2_spi_flash_dev {
const char *manu_name; /* manufacturer id */
/* op-code */
u8 cmdWRSR;
u8 cmdREAD;
u8 cmdPROGRAM;
u8 cmdWREN;
u8 cmdWRDI;
u8 cmdRDSR;
u8 cmdRDID;
u8 cmdSECTOR_ERASE;
u8 cmdCHIP_ERASE;
};
/* Structure containing variables used by the shared code (atl2_hw.c) */
struct atl2_hw {
u8 __iomem *hw_addr;
void *back;
u8 preamble_len;
u8 max_retry; /* Retransmission maximum, afterwards the
* packet will be discarded. */
u8 jam_ipg; /* IPG to start JAM for collision based flow
* control in half-duplex mode. In unit of
* 8-bit time. */
u8 ipgt; /* Desired back to back inter-packet gap. The
* default is 96-bit time. */
u8 min_ifg; /* Minimum number of IFG to enforce in between
* RX frames. Frame gap below such IFP is
* dropped. */
u8 ipgr1; /* 64bit Carrier-Sense window */
u8 ipgr2; /* 96-bit IPG window */
u8 retry_buf; /* When half-duplex mode, should hold some
* bytes for mac retry . (8*4bytes unit) */
u16 fc_rxd_hi;
u16 fc_rxd_lo;
u16 lcol; /* Collision Window */
u16 max_frame_size;
u16 MediaType;
u16 autoneg_advertised;
u16 pci_cmd_word;
u16 mii_autoneg_adv_reg;
u32 mem_rang;
u32 txcw;
u32 mc_filter_type;
u32 num_mc_addrs;
u32 collision_delta;
u32 tx_packet_delta;
u16 phy_spd_default;
u16 device_id;
u16 vendor_id;
u16 subsystem_id;
u16 subsystem_vendor_id;
u8 revision_id;
/* spi flash */
u8 flash_vendor;
u8 dma_fairness;
u8 mac_addr[NODE_ADDRESS_SIZE];
u8 perm_mac_addr[NODE_ADDRESS_SIZE];
/* FIXME */
/* bool phy_preamble_sup; */
bool phy_configured;
};
#endif /* _ATL2_HW_H_ */
struct atl2_ring_header {
/* pointer to the descriptor ring memory */
void *desc;
/* physical adress of the descriptor ring */
dma_addr_t dma;
/* length of descriptor ring in bytes */
unsigned int size;
};
/* board specific private data structure */
struct atl2_adapter {
/* OS defined structs */
struct net_device *netdev;
struct pci_dev *pdev;
struct net_device_stats net_stats;
#ifdef NETIF_F_HW_VLAN_TX
struct vlan_group *vlgrp;
#endif
u32 wol;
u16 link_speed;
u16 link_duplex;
spinlock_t stats_lock;
spinlock_t tx_lock;
struct work_struct reset_task;
struct work_struct link_chg_task;
struct timer_list watchdog_timer;
struct timer_list phy_config_timer;
unsigned long cfg_phy;
bool mac_disabled;
/* All Descriptor memory */
dma_addr_t ring_dma;
void *ring_vir_addr;
int ring_size;
struct tx_pkt_header *txd_ring;
dma_addr_t txd_dma;
struct tx_pkt_status *txs_ring;
dma_addr_t txs_dma;
struct rx_desc *rxd_ring;
dma_addr_t rxd_dma;
u32 txd_ring_size; /* bytes per unit */
u32 txs_ring_size; /* dwords per unit */
u32 rxd_ring_size; /* 1536 bytes per unit */
/* read /write ptr: */
/* host */
u32 txd_write_ptr;
u32 txs_next_clear;
u32 rxd_read_ptr;
/* nic */
atomic_t txd_read_ptr;
atomic_t txs_write_ptr;
u32 rxd_write_ptr;
/* Interrupt Moderator timer ( 2us resolution) */
u16 imt;
/* Interrupt Clear timer (2us resolution) */
u16 ict;
unsigned long flags;
/* structs defined in atl2_hw.h */
u32 bd_number; /* board number */
bool pci_using_64;
bool have_msi;
struct atl2_hw hw;
u32 usr_cmd;
/* FIXME */
/* u32 regs_buff[ATL2_REGS_LEN]; */
u32 pci_state[16];
u32 *config_space;
};
enum atl2_state_t {
__ATL2_TESTING,
__ATL2_RESETTING,
__ATL2_DOWN
};
#endif /* _ATL2_H_ */
obj-$(CONFIG_ENIC) := enic.o
enic-y := enic_main.o vnic_cq.o vnic_intr.o vnic_wq.o \
enic_res.o vnic_dev.o vnic_rq.o
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _CQ_DESC_H_
#define _CQ_DESC_H_
/*
* Completion queue descriptor types
*/
enum cq_desc_types {
CQ_DESC_TYPE_WQ_ENET = 0,
CQ_DESC_TYPE_DESC_COPY = 1,
CQ_DESC_TYPE_WQ_EXCH = 2,
CQ_DESC_TYPE_RQ_ENET = 3,
CQ_DESC_TYPE_RQ_FCP = 4,
};
/* Completion queue descriptor: 16B
*
* All completion queues have this basic layout. The
* type_specfic area is unique for each completion
* queue type.
*/
struct cq_desc {
__le16 completed_index;
__le16 q_number;
u8 type_specfic[11];
u8 type_color;
};
#define CQ_DESC_TYPE_BITS 7
#define CQ_DESC_TYPE_MASK ((1 << CQ_DESC_TYPE_BITS) - 1)
#define CQ_DESC_COLOR_MASK 1
#define CQ_DESC_Q_NUM_BITS 10
#define CQ_DESC_Q_NUM_MASK ((1 << CQ_DESC_Q_NUM_BITS) - 1)
#define CQ_DESC_COMP_NDX_BITS 12
#define CQ_DESC_COMP_NDX_MASK ((1 << CQ_DESC_COMP_NDX_BITS) - 1)
static inline void cq_desc_dec(const struct cq_desc *desc_arg,
u8 *type, u8 *color, u16 *q_number, u16 *completed_index)
{
const struct cq_desc *desc = desc_arg;
const u8 type_color = desc->type_color;
*color = (type_color >> CQ_DESC_TYPE_BITS) & CQ_DESC_COLOR_MASK;
/*
* Make sure color bit is read from desc *before* other fields
* are read from desc. Hardware guarantees color bit is last
* bit (byte) written. Adding the rmb() prevents the compiler
* and/or CPU from reordering the reads which would potentially
* result in reading stale values.
*/
rmb();
*type = type_color & CQ_DESC_TYPE_MASK;
*q_number = le16_to_cpu(desc->q_number) & CQ_DESC_Q_NUM_MASK;
*completed_index = le16_to_cpu(desc->completed_index) &
CQ_DESC_COMP_NDX_MASK;
}
#endif /* _CQ_DESC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _CQ_ENET_DESC_H_
#define _CQ_ENET_DESC_H_
#include "cq_desc.h"
/* Ethernet completion queue descriptor: 16B */
struct cq_enet_wq_desc {
__le16 completed_index;
__le16 q_number;
u8 reserved[11];
u8 type_color;
};
static inline void cq_enet_wq_desc_dec(struct cq_enet_wq_desc *desc,
u8 *type, u8 *color, u16 *q_number, u16 *completed_index)
{
cq_desc_dec((struct cq_desc *)desc, type,
color, q_number, completed_index);
}
/* Completion queue descriptor: Ethernet receive queue, 16B */
struct cq_enet_rq_desc {
__le16 completed_index_flags;
__le16 q_number_rss_type_flags;
__le32 rss_hash;
__le16 bytes_written_flags;
__le16 vlan;
__le16 checksum_fcoe;
u8 flags;
u8 type_color;
};
#define CQ_ENET_RQ_DESC_FLAGS_INGRESS_PORT (0x1 << 12)
#define CQ_ENET_RQ_DESC_FLAGS_FCOE (0x1 << 13)
#define CQ_ENET_RQ_DESC_FLAGS_EOP (0x1 << 14)
#define CQ_ENET_RQ_DESC_FLAGS_SOP (0x1 << 15)
#define CQ_ENET_RQ_DESC_RSS_TYPE_BITS 4
#define CQ_ENET_RQ_DESC_RSS_TYPE_MASK \
((1 << CQ_ENET_RQ_DESC_RSS_TYPE_BITS) - 1)
#define CQ_ENET_RQ_DESC_RSS_TYPE_NONE 0
#define CQ_ENET_RQ_DESC_RSS_TYPE_IPv4 1
#define CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4 2
#define CQ_ENET_RQ_DESC_RSS_TYPE_IPv6 3
#define CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6 4
#define CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX 5
#define CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX 6
#define CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC (0x1 << 14)
#define CQ_ENET_RQ_DESC_BYTES_WRITTEN_BITS 14
#define CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK \
((1 << CQ_ENET_RQ_DESC_BYTES_WRITTEN_BITS) - 1)
#define CQ_ENET_RQ_DESC_FLAGS_TRUNCATED (0x1 << 14)
#define CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED (0x1 << 15)
#define CQ_ENET_RQ_DESC_FCOE_SOF_BITS 4
#define CQ_ENET_RQ_DESC_FCOE_SOF_MASK \
((1 << CQ_ENET_RQ_DESC_FCOE_SOF_BITS) - 1)
#define CQ_ENET_RQ_DESC_FCOE_EOF_BITS 8
#define CQ_ENET_RQ_DESC_FCOE_EOF_MASK \
((1 << CQ_ENET_RQ_DESC_FCOE_EOF_BITS) - 1)
#define CQ_ENET_RQ_DESC_FCOE_EOF_SHIFT 8
#define CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK (0x1 << 0)
#define CQ_ENET_RQ_DESC_FCOE_FC_CRC_OK (0x1 << 0)
#define CQ_ENET_RQ_DESC_FLAGS_UDP (0x1 << 1)
#define CQ_ENET_RQ_DESC_FCOE_ENC_ERROR (0x1 << 1)
#define CQ_ENET_RQ_DESC_FLAGS_TCP (0x1 << 2)
#define CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK (0x1 << 3)
#define CQ_ENET_RQ_DESC_FLAGS_IPV6 (0x1 << 4)
#define CQ_ENET_RQ_DESC_FLAGS_IPV4 (0x1 << 5)
#define CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT (0x1 << 6)
#define CQ_ENET_RQ_DESC_FLAGS_FCS_OK (0x1 << 7)
static inline void cq_enet_rq_desc_dec(struct cq_enet_rq_desc *desc,
u8 *type, u8 *color, u16 *q_number, u16 *completed_index,
u8 *ingress_port, u8 *fcoe, u8 *eop, u8 *sop, u8 *rss_type,
u8 *csum_not_calc, u32 *rss_hash, u16 *bytes_written, u8 *packet_error,
u8 *vlan_stripped, u16 *vlan, u16 *checksum, u8 *fcoe_sof,
u8 *fcoe_fc_crc_ok, u8 *fcoe_enc_error, u8 *fcoe_eof,
u8 *tcp_udp_csum_ok, u8 *udp, u8 *tcp, u8 *ipv4_csum_ok,
u8 *ipv6, u8 *ipv4, u8 *ipv4_fragment, u8 *fcs_ok)
{
u16 completed_index_flags = le16_to_cpu(desc->completed_index_flags);
u16 q_number_rss_type_flags =
le16_to_cpu(desc->q_number_rss_type_flags);
u16 bytes_written_flags = le16_to_cpu(desc->bytes_written_flags);
cq_desc_dec((struct cq_desc *)desc, type,
color, q_number, completed_index);
*ingress_port = (completed_index_flags &
CQ_ENET_RQ_DESC_FLAGS_INGRESS_PORT) ? 1 : 0;
*fcoe = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_FCOE) ?
1 : 0;
*eop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_EOP) ?
1 : 0;
*sop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_SOP) ?
1 : 0;
*rss_type = (u8)((q_number_rss_type_flags >> CQ_DESC_Q_NUM_BITS) &
CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
*csum_not_calc = (q_number_rss_type_flags &
CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ? 1 : 0;
*rss_hash = le32_to_cpu(desc->rss_hash);
*bytes_written = bytes_written_flags &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
*packet_error = (bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ? 1 : 0;
*vlan_stripped = (bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) ? 1 : 0;
*vlan = le16_to_cpu(desc->vlan);
if (*fcoe) {
*fcoe_sof = (u8)(le16_to_cpu(desc->checksum_fcoe) &
CQ_ENET_RQ_DESC_FCOE_SOF_MASK);
*fcoe_fc_crc_ok = (desc->flags &
CQ_ENET_RQ_DESC_FCOE_FC_CRC_OK) ? 1 : 0;
*fcoe_enc_error = (desc->flags &
CQ_ENET_RQ_DESC_FCOE_ENC_ERROR) ? 1 : 0;
*fcoe_eof = (u8)((desc->checksum_fcoe >>
CQ_ENET_RQ_DESC_FCOE_EOF_SHIFT) &
CQ_ENET_RQ_DESC_FCOE_EOF_MASK);
*checksum = 0;
} else {
*fcoe_sof = 0;
*fcoe_fc_crc_ok = 0;
*fcoe_enc_error = 0;
*fcoe_eof = 0;
*checksum = le16_to_cpu(desc->checksum_fcoe);
}
*tcp_udp_csum_ok =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ? 1 : 0;
*udp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_UDP) ? 1 : 0;
*tcp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP) ? 1 : 0;
*ipv4_csum_ok =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ? 1 : 0;
*ipv6 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV6) ? 1 : 0;
*ipv4 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4) ? 1 : 0;
*ipv4_fragment =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT) ? 1 : 0;
*fcs_ok = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_FCS_OK) ? 1 : 0;
}
#endif /* _CQ_ENET_DESC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _ENIC_H_
#define _ENIC_H_
#include <linux/inet_lro.h>
#include "vnic_enet.h"
#include "vnic_dev.h"
#include "vnic_wq.h"
#include "vnic_rq.h"
#include "vnic_cq.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "vnic_rss.h"
#define DRV_NAME "enic"
#define DRV_DESCRIPTION "Cisco 10G Ethernet Driver"
#define DRV_VERSION "0.0.1.18163.472"
#define DRV_COPYRIGHT "Copyright 2008 Cisco Systems, Inc"
#define PFX DRV_NAME ": "
#define ENIC_LRO_MAX_DESC 8
#define ENIC_LRO_MAX_AGGR 64
enum enic_cq_index {
ENIC_CQ_RQ,
ENIC_CQ_WQ,
ENIC_CQ_MAX,
};
enum enic_intx_intr_index {
ENIC_INTX_WQ_RQ,
ENIC_INTX_ERR,
ENIC_INTX_NOTIFY,
ENIC_INTX_MAX,
};
enum enic_msix_intr_index {
ENIC_MSIX_RQ,
ENIC_MSIX_WQ,
ENIC_MSIX_ERR,
ENIC_MSIX_NOTIFY,
ENIC_MSIX_MAX,
};
struct enic_msix_entry {
int requested;
char devname[IFNAMSIZ];
irqreturn_t (*isr)(int, void *);
void *devid;
};
/* Per-instance private data structure */
struct enic {
struct net_device *netdev;
struct pci_dev *pdev;
struct vnic_enet_config config;
struct vnic_dev_bar bar0;
struct vnic_dev *vdev;
struct net_device_stats net_stats;
struct timer_list notify_timer;
struct work_struct reset;
struct msix_entry msix_entry[ENIC_MSIX_MAX];
struct enic_msix_entry msix[ENIC_MSIX_MAX];
u32 msg_enable;
spinlock_t devcmd_lock;
u8 mac_addr[ETH_ALEN];
u8 mc_addr[ENIC_MULTICAST_PERFECT_FILTERS][ETH_ALEN];
unsigned int mc_count;
int csum_rx_enabled;
u32 port_mtu;
/* work queue cache line section */
____cacheline_aligned struct vnic_wq wq[1];
spinlock_t wq_lock[1];
unsigned int wq_count;
struct vlan_group *vlan_group;
/* receive queue cache line section */
____cacheline_aligned struct vnic_rq rq[1];
unsigned int rq_count;
int (*rq_alloc_buf)(struct vnic_rq *rq);
struct napi_struct napi;
struct net_lro_mgr lro_mgr;
struct net_lro_desc lro_desc[ENIC_LRO_MAX_DESC];
/* interrupt resource cache line section */
____cacheline_aligned struct vnic_intr intr[ENIC_MSIX_MAX];
unsigned int intr_count;
u32 __iomem *legacy_pba; /* memory-mapped */
/* completion queue cache line section */
____cacheline_aligned struct vnic_cq cq[ENIC_CQ_MAX];
unsigned int cq_count;
};
#endif /* _ENIC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/workqueue.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include "cq_enet_desc.h"
#include "vnic_dev.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "enic_res.h"
#include "enic.h"
#define ENIC_NOTIFY_TIMER_PERIOD (2 * HZ)
#define ENIC_JUMBO_FIRST_BUF_SIZE 256
/* Supported devices */
static struct pci_device_id enic_id_table[] = {
{ PCI_VDEVICE(CISCO, 0x0043) },
{ 0, } /* end of table */
};
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Scott Feldman <scofeldm@cisco.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, enic_id_table);
struct enic_stat {
char name[ETH_GSTRING_LEN];
unsigned int offset;
};
#define ENIC_TX_STAT(stat) \
{ .name = #stat, .offset = offsetof(struct vnic_tx_stats, stat) / 8 }
#define ENIC_RX_STAT(stat) \
{ .name = #stat, .offset = offsetof(struct vnic_rx_stats, stat) / 8 }
static const struct enic_stat enic_tx_stats[] = {
ENIC_TX_STAT(tx_frames_ok),
ENIC_TX_STAT(tx_unicast_frames_ok),
ENIC_TX_STAT(tx_multicast_frames_ok),
ENIC_TX_STAT(tx_broadcast_frames_ok),
ENIC_TX_STAT(tx_bytes_ok),
ENIC_TX_STAT(tx_unicast_bytes_ok),
ENIC_TX_STAT(tx_multicast_bytes_ok),
ENIC_TX_STAT(tx_broadcast_bytes_ok),
ENIC_TX_STAT(tx_drops),
ENIC_TX_STAT(tx_errors),
ENIC_TX_STAT(tx_tso),
};
static const struct enic_stat enic_rx_stats[] = {
ENIC_RX_STAT(rx_frames_ok),
ENIC_RX_STAT(rx_frames_total),
ENIC_RX_STAT(rx_unicast_frames_ok),
ENIC_RX_STAT(rx_multicast_frames_ok),
ENIC_RX_STAT(rx_broadcast_frames_ok),
ENIC_RX_STAT(rx_bytes_ok),
ENIC_RX_STAT(rx_unicast_bytes_ok),
ENIC_RX_STAT(rx_multicast_bytes_ok),
ENIC_RX_STAT(rx_broadcast_bytes_ok),
ENIC_RX_STAT(rx_drop),
ENIC_RX_STAT(rx_no_bufs),
ENIC_RX_STAT(rx_errors),
ENIC_RX_STAT(rx_rss),
ENIC_RX_STAT(rx_crc_errors),
ENIC_RX_STAT(rx_frames_64),
ENIC_RX_STAT(rx_frames_127),
ENIC_RX_STAT(rx_frames_255),
ENIC_RX_STAT(rx_frames_511),
ENIC_RX_STAT(rx_frames_1023),
ENIC_RX_STAT(rx_frames_1518),
ENIC_RX_STAT(rx_frames_to_max),
};
static const unsigned int enic_n_tx_stats = ARRAY_SIZE(enic_tx_stats);
static const unsigned int enic_n_rx_stats = ARRAY_SIZE(enic_rx_stats);
static int enic_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct enic *enic = netdev_priv(netdev);
ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
if (netif_carrier_ok(netdev)) {
ecmd->speed = vnic_dev_port_speed(enic->vdev);
ecmd->duplex = DUPLEX_FULL;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_DISABLE;
return 0;
}
static void enic_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_devcmd_fw_info *fw_info;
spin_lock(&enic->devcmd_lock);
vnic_dev_fw_info(enic->vdev, &fw_info);
spin_unlock(&enic->devcmd_lock);
strncpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
strncpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
strncpy(drvinfo->fw_version, fw_info->fw_version,
sizeof(drvinfo->fw_version));
strncpy(drvinfo->bus_info, pci_name(enic->pdev),
sizeof(drvinfo->bus_info));
}
static void enic_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
unsigned int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < enic_n_tx_stats; i++) {
memcpy(data, enic_tx_stats[i].name, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
for (i = 0; i < enic_n_rx_stats; i++) {
memcpy(data, enic_rx_stats[i].name, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int enic_get_stats_count(struct net_device *netdev)
{
return enic_n_tx_stats + enic_n_rx_stats;
}
static void enic_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_stats *vstats;
unsigned int i;
spin_lock(&enic->devcmd_lock);
vnic_dev_stats_dump(enic->vdev, &vstats);
spin_unlock(&enic->devcmd_lock);
for (i = 0; i < enic_n_tx_stats; i++)
*(data++) = ((u64 *)&vstats->tx)[enic_tx_stats[i].offset];
for (i = 0; i < enic_n_rx_stats; i++)
*(data++) = ((u64 *)&vstats->rx)[enic_rx_stats[i].offset];
}
static u32 enic_get_rx_csum(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
return enic->csum_rx_enabled;
}
static int enic_set_rx_csum(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
enic->csum_rx_enabled =
(data && ENIC_SETTING(enic, RXCSUM)) ? 1 : 0;
return 0;
}
static int enic_set_tx_csum(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
if (data && ENIC_SETTING(enic, TXCSUM))
netdev->features |= NETIF_F_HW_CSUM;
else
netdev->features &= ~NETIF_F_HW_CSUM;
return 0;
}
static int enic_set_tso(struct net_device *netdev, u32 data)
{
struct enic *enic = netdev_priv(netdev);
if (data && ENIC_SETTING(enic, TSO))
netdev->features |=
NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN;
else
netdev->features &=
~(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN);
return 0;
}
static u32 enic_get_msglevel(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
return enic->msg_enable;
}
static void enic_set_msglevel(struct net_device *netdev, u32 value)
{
struct enic *enic = netdev_priv(netdev);
enic->msg_enable = value;
}
static struct ethtool_ops enic_ethtool_ops = {
.get_settings = enic_get_settings,
.get_drvinfo = enic_get_drvinfo,
.get_msglevel = enic_get_msglevel,
.set_msglevel = enic_set_msglevel,
.get_link = ethtool_op_get_link,
.get_strings = enic_get_strings,
.get_stats_count = enic_get_stats_count,
.get_ethtool_stats = enic_get_ethtool_stats,
.get_rx_csum = enic_get_rx_csum,
.set_rx_csum = enic_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = enic_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tso = ethtool_op_get_tso,
.set_tso = enic_set_tso,
};
static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf)
{
struct enic *enic = vnic_dev_priv(wq->vdev);
if (buf->sop)
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
else
pci_unmap_page(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
if (buf->os_buf)
dev_kfree_skb_any(buf->os_buf);
}
static void enic_wq_free_buf(struct vnic_wq *wq,
struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque)
{
enic_free_wq_buf(wq, buf);
}
static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
spin_lock(&enic->wq_lock[q_number]);
vnic_wq_service(&enic->wq[q_number], cq_desc,
completed_index, enic_wq_free_buf,
opaque);
if (netif_queue_stopped(enic->netdev) &&
vnic_wq_desc_avail(&enic->wq[q_number]) >= MAX_SKB_FRAGS + 1)
netif_wake_queue(enic->netdev);
spin_unlock(&enic->wq_lock[q_number]);
return 0;
}
static void enic_log_q_error(struct enic *enic)
{
unsigned int i;
u32 error_status;
for (i = 0; i < enic->wq_count; i++) {
error_status = vnic_wq_error_status(&enic->wq[i]);
if (error_status)
printk(KERN_ERR PFX "%s: WQ[%d] error_status %d\n",
enic->netdev->name, i, error_status);
}
for (i = 0; i < enic->rq_count; i++) {
error_status = vnic_rq_error_status(&enic->rq[i]);
if (error_status)
printk(KERN_ERR PFX "%s: RQ[%d] error_status %d\n",
enic->netdev->name, i, error_status);
}
}
static void enic_link_check(struct enic *enic)
{
int link_status = vnic_dev_link_status(enic->vdev);
int carrier_ok = netif_carrier_ok(enic->netdev);
if (link_status && !carrier_ok) {
printk(KERN_INFO PFX "%s: Link UP\n", enic->netdev->name);
netif_carrier_on(enic->netdev);
} else if (!link_status && carrier_ok) {
printk(KERN_INFO PFX "%s: Link DOWN\n", enic->netdev->name);
netif_carrier_off(enic->netdev);
}
}
static void enic_mtu_check(struct enic *enic)
{
u32 mtu = vnic_dev_mtu(enic->vdev);
if (mtu != enic->port_mtu) {
if (mtu < enic->netdev->mtu)
printk(KERN_WARNING PFX
"%s: interface MTU (%d) set higher "
"than switch port MTU (%d)\n",
enic->netdev->name, enic->netdev->mtu, mtu);
enic->port_mtu = mtu;
}
}
static void enic_msglvl_check(struct enic *enic)
{
u32 msg_enable = vnic_dev_msg_lvl(enic->vdev);
if (msg_enable != enic->msg_enable) {
printk(KERN_INFO PFX "%s: msg lvl changed from 0x%x to 0x%x\n",
enic->netdev->name, enic->msg_enable, msg_enable);
enic->msg_enable = msg_enable;
}
}
static void enic_notify_check(struct enic *enic)
{
enic_msglvl_check(enic);
enic_mtu_check(enic);
enic_link_check(enic);
}
#define ENIC_TEST_INTR(pba, i) (pba & (1 << i))
static irqreturn_t enic_isr_legacy(int irq, void *data)
{
struct net_device *netdev = data;
struct enic *enic = netdev_priv(netdev);
u32 pba;
vnic_intr_mask(&enic->intr[ENIC_INTX_WQ_RQ]);
pba = vnic_intr_legacy_pba(enic->legacy_pba);
if (!pba) {
vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]);
return IRQ_NONE; /* not our interrupt */
}
if (ENIC_TEST_INTR(pba, ENIC_INTX_NOTIFY))
enic_notify_check(enic);
if (ENIC_TEST_INTR(pba, ENIC_INTX_ERR)) {
enic_log_q_error(enic);
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
if (ENIC_TEST_INTR(pba, ENIC_INTX_WQ_RQ)) {
if (netif_rx_schedule_prep(netdev, &enic->napi))
__netif_rx_schedule(netdev, &enic->napi);
} else {
vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]);
}
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msi(int irq, void *data)
{
struct enic *enic = data;
/* With MSI, there is no sharing of interrupts, so this is
* our interrupt and there is no need to ack it. The device
* is not providing per-vector masking, so the OS will not
* write to PCI config space to mask/unmask the interrupt.
* We're using mask_on_assertion for MSI, so the device
* automatically masks the interrupt when the interrupt is
* generated. Later, when exiting polling, the interrupt
* will be unmasked (see enic_poll).
*
* Also, the device uses the same PCIe Traffic Class (TC)
* for Memory Write data and MSI, so there are no ordering
* issues; the MSI will always arrive at the Root Complex
* _after_ corresponding Memory Writes (i.e. descriptor
* writes).
*/
netif_rx_schedule(enic->netdev, &enic->napi);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_rq(int irq, void *data)
{
struct enic *enic = data;
/* schedule NAPI polling for RQ cleanup */
netif_rx_schedule(enic->netdev, &enic->napi);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_wq(int irq, void *data)
{
struct enic *enic = data;
unsigned int wq_work_to_do = -1; /* no limit */
unsigned int wq_work_done;
wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
wq_work_to_do, enic_wq_service, NULL);
vnic_intr_return_credits(&enic->intr[ENIC_MSIX_WQ],
wq_work_done,
1 /* unmask intr */,
1 /* reset intr timer */);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_err(int irq, void *data)
{
struct enic *enic = data;
enic_log_q_error(enic);
/* schedule recovery from WQ/RQ error */
schedule_work(&enic->reset);
return IRQ_HANDLED;
}
static irqreturn_t enic_isr_msix_notify(int irq, void *data)
{
struct enic *enic = data;
enic_notify_check(enic);
vnic_intr_unmask(&enic->intr[ENIC_MSIX_NOTIFY]);
return IRQ_HANDLED;
}
static inline void enic_queue_wq_skb_cont(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
unsigned int len_left)
{
skb_frag_t *frag;
/* Queue additional data fragments */
for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
len_left -= frag->size;
enic_queue_wq_desc_cont(wq, skb,
pci_map_page(enic->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE),
frag->size,
(len_left == 0)); /* EOP? */
}
}
static inline void enic_queue_wq_skb_vlan(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
int eop = (len_left == 0);
/* Queue the main skb fragment */
enic_queue_wq_desc(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb_csum_l4(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
unsigned int hdr_len = skb_transport_offset(skb);
unsigned int csum_offset = hdr_len + skb->csum_offset;
int eop = (len_left == 0);
/* Queue the main skb fragment */
enic_queue_wq_desc_csum_l4(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
csum_offset,
hdr_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb_tso(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb, unsigned int mss,
int vlan_tag_insert, unsigned int vlan_tag)
{
unsigned int head_len = skb_headlen(skb);
unsigned int len_left = skb->len - head_len;
unsigned int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int eop = (len_left == 0);
/* Preload TCP csum field with IP pseudo hdr calculated
* with IP length set to zero. HW will later add in length
* to each TCP segment resulting from the TSO.
*/
if (skb->protocol == __constant_htons(ETH_P_IP)) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else if (skb->protocol == __constant_htons(ETH_P_IPV6)) {
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
}
/* Queue the main skb fragment */
enic_queue_wq_desc_tso(wq, skb,
pci_map_single(enic->pdev, skb->data,
head_len, PCI_DMA_TODEVICE),
head_len,
mss, hdr_len,
vlan_tag_insert, vlan_tag,
eop);
if (!eop)
enic_queue_wq_skb_cont(enic, wq, skb, len_left);
}
static inline void enic_queue_wq_skb(struct enic *enic,
struct vnic_wq *wq, struct sk_buff *skb)
{
unsigned int mss = skb_shinfo(skb)->gso_size;
unsigned int vlan_tag = 0;
int vlan_tag_insert = 0;
if (enic->vlan_group && vlan_tx_tag_present(skb)) {
/* VLAN tag from trunking driver */
vlan_tag_insert = 1;
vlan_tag = vlan_tx_tag_get(skb);
}
if (mss)
enic_queue_wq_skb_tso(enic, wq, skb, mss,
vlan_tag_insert, vlan_tag);
else if (skb->ip_summed == CHECKSUM_PARTIAL)
enic_queue_wq_skb_csum_l4(enic, wq, skb,
vlan_tag_insert, vlan_tag);
else
enic_queue_wq_skb_vlan(enic, wq, skb,
vlan_tag_insert, vlan_tag);
}
/* netif_tx_lock held, process context with BHs disabled */
static int enic_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_wq *wq = &enic->wq[0];
unsigned long flags;
if (skb->len <= 0) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs,
* which is very likely. In the off chance it's going to take
* more than * ENIC_NON_TSO_MAX_DESC, linearize the skb.
*/
if (skb_shinfo(skb)->gso_size == 0 &&
skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC &&
skb_linearize(skb)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
spin_lock_irqsave(&enic->wq_lock[0], flags);
if (vnic_wq_desc_avail(wq) < skb_shinfo(skb)->nr_frags + 1) {
netif_stop_queue(netdev);
/* This is a hard error, log it */
printk(KERN_ERR PFX "%s: BUG! Tx ring full when "
"queue awake!\n", netdev->name);
spin_unlock_irqrestore(&enic->wq_lock[0], flags);
return NETDEV_TX_BUSY;
}
enic_queue_wq_skb(enic, wq, skb);
if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + 1)
netif_stop_queue(netdev);
netdev->trans_start = jiffies;
spin_unlock_irqrestore(&enic->wq_lock[0], flags);
return NETDEV_TX_OK;
}
/* dev_base_lock rwlock held, nominally process context */
static struct net_device_stats *enic_get_stats(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_stats *stats;
spin_lock(&enic->devcmd_lock);
vnic_dev_stats_dump(enic->vdev, &stats);
spin_unlock(&enic->devcmd_lock);
enic->net_stats.tx_packets = stats->tx.tx_frames_ok;
enic->net_stats.tx_bytes = stats->tx.tx_bytes_ok;
enic->net_stats.tx_errors = stats->tx.tx_errors;
enic->net_stats.tx_dropped = stats->tx.tx_drops;
enic->net_stats.rx_packets = stats->rx.rx_frames_ok;
enic->net_stats.rx_bytes = stats->rx.rx_bytes_ok;
enic->net_stats.rx_errors = stats->rx.rx_errors;
enic->net_stats.multicast = stats->rx.rx_multicast_frames_ok;
enic->net_stats.rx_crc_errors = stats->rx.rx_crc_errors;
enic->net_stats.rx_dropped = stats->rx.rx_no_bufs;
return &enic->net_stats;
}
static void enic_reset_mcaddrs(struct enic *enic)
{
enic->mc_count = 0;
}
static int enic_set_mac_addr(struct net_device *netdev, char *addr)
{
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr, netdev->addr_len);
return 0;
}
/* netif_tx_lock held, BHs disabled */
static void enic_set_multicast_list(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct dev_mc_list *list = netdev->mc_list;
int directed = 1;
int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0;
int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0;
int promisc = (netdev->flags & IFF_PROMISC) ? 1 : 0;
int allmulti = (netdev->flags & IFF_ALLMULTI) ||
(netdev->mc_count > ENIC_MULTICAST_PERFECT_FILTERS);
u8 mc_addr[ENIC_MULTICAST_PERFECT_FILTERS][ETH_ALEN];
unsigned int mc_count = netdev->mc_count;
unsigned int i, j;
if (mc_count > ENIC_MULTICAST_PERFECT_FILTERS)
mc_count = ENIC_MULTICAST_PERFECT_FILTERS;
spin_lock(&enic->devcmd_lock);
vnic_dev_packet_filter(enic->vdev, directed,
multicast, broadcast, promisc, allmulti);
/* Is there an easier way? Trying to minimize to
* calls to add/del multicast addrs. We keep the
* addrs from the last call in enic->mc_addr and
* look for changes to add/del.
*/
for (i = 0; list && i < mc_count; i++) {
memcpy(mc_addr[i], list->dmi_addr, ETH_ALEN);
list = list->next;
}
for (i = 0; i < enic->mc_count; i++) {
for (j = 0; j < mc_count; j++)
if (compare_ether_addr(enic->mc_addr[i],
mc_addr[j]) == 0)
break;
if (j == mc_count)
enic_del_multicast_addr(enic, enic->mc_addr[i]);
}
for (i = 0; i < mc_count; i++) {
for (j = 0; j < enic->mc_count; j++)
if (compare_ether_addr(mc_addr[i],
enic->mc_addr[j]) == 0)
break;
if (j == enic->mc_count)
enic_add_multicast_addr(enic, mc_addr[i]);
}
/* Save the list to compare against next time
*/
for (i = 0; i < mc_count; i++)
memcpy(enic->mc_addr[i], mc_addr[i], ETH_ALEN);
enic->mc_count = mc_count;
spin_unlock(&enic->devcmd_lock);
}
/* rtnl lock is held */
static void enic_vlan_rx_register(struct net_device *netdev,
struct vlan_group *vlan_group)
{
struct enic *enic = netdev_priv(netdev);
enic->vlan_group = vlan_group;
}
/* rtnl lock is held */
static void enic_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
struct enic *enic = netdev_priv(netdev);
spin_lock(&enic->devcmd_lock);
enic_add_vlan(enic, vid);
spin_unlock(&enic->devcmd_lock);
}
/* rtnl lock is held */
static void enic_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct enic *enic = netdev_priv(netdev);
spin_lock(&enic->devcmd_lock);
enic_del_vlan(enic, vid);
spin_unlock(&enic->devcmd_lock);
}
/* netif_tx_lock held, BHs disabled */
static void enic_tx_timeout(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
schedule_work(&enic->reset);
}
static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
if (!buf->os_buf)
return;
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(buf->os_buf);
}
static inline struct sk_buff *enic_rq_alloc_skb(unsigned int size)
{
struct sk_buff *skb;
skb = dev_alloc_skb(size + NET_IP_ALIGN);
if (skb)
skb_reserve(skb, NET_IP_ALIGN);
return skb;
}
static int enic_rq_alloc_buf(struct vnic_rq *rq)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb;
unsigned int len = enic->netdev->mtu + ETH_HLEN;
unsigned int os_buf_index = 0;
dma_addr_t dma_addr;
skb = enic_rq_alloc_skb(len);
if (!skb)
return -ENOMEM;
dma_addr = pci_map_single(enic->pdev, skb->data,
len, PCI_DMA_FROMDEVICE);
enic_queue_rq_desc(rq, skb, os_buf_index,
dma_addr, len);
return 0;
}
static int enic_get_skb_header(struct sk_buff *skb, void **iphdr,
void **tcph, u64 *hdr_flags, void *priv)
{
struct cq_enet_rq_desc *cq_desc = priv;
unsigned int ip_len;
struct iphdr *iph;
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 q_number, completed_index, bytes_written, vlan, checksum;
u32 rss_hash;
cq_enet_rq_desc_dec(cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop, &rss_type,
&csum_not_calc, &rss_hash, &bytes_written,
&packet_error, &vlan_stripped, &vlan, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
&fcs_ok);
if (!(ipv4 && tcp && !ipv4_fragment))
return -1;
skb_reset_network_header(skb);
iph = ip_hdr(skb);
ip_len = ip_hdrlen(skb);
skb_set_transport_header(skb, ip_len);
/* check if ip header and tcp header are complete */
if (ntohs(iph->tot_len) < ip_len + tcp_hdrlen(skb))
return -1;
*hdr_flags = LRO_IPV4 | LRO_TCP;
*tcph = tcp_hdr(skb);
*iphdr = iph;
return 0;
}
static void enic_rq_indicate_buf(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb;
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 q_number, completed_index, bytes_written, vlan, checksum;
u32 rss_hash;
if (skipped)
return;
skb = buf->os_buf;
prefetch(skb->data - NET_IP_ALIGN);
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop, &rss_type,
&csum_not_calc, &rss_hash, &bytes_written,
&packet_error, &vlan_stripped, &vlan, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
&fcs_ok);
if (packet_error) {
if (bytes_written > 0 && !fcs_ok) {
if (net_ratelimit())
printk(KERN_ERR PFX
"%s: packet error: bad FCS\n",
enic->netdev->name);
}
dev_kfree_skb_any(skb);
return;
}
if (eop && bytes_written > 0) {
/* Good receive
*/
skb_put(skb, bytes_written);
skb->protocol = eth_type_trans(skb, enic->netdev);
if (enic->csum_rx_enabled && !csum_not_calc) {
skb->csum = htons(checksum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->dev = enic->netdev;
enic->netdev->last_rx = jiffies;
if (enic->vlan_group && vlan_stripped) {
if (ENIC_SETTING(enic, LRO))
lro_vlan_hwaccel_receive_skb(&enic->lro_mgr,
skb, enic->vlan_group,
vlan, cq_desc);
else
vlan_hwaccel_receive_skb(skb,
enic->vlan_group, vlan);
} else {
if (ENIC_SETTING(enic, LRO))
lro_receive_skb(&enic->lro_mgr, skb, cq_desc);
else
netif_receive_skb(skb);
}
} else {
/* Buffer overflow
*/
dev_kfree_skb_any(skb);
}
}
static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
vnic_rq_service(&enic->rq[q_number], cq_desc,
completed_index, VNIC_RQ_RETURN_DESC,
enic_rq_indicate_buf, opaque);
return 0;
}
static void enic_rq_drop_buf(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb = buf->os_buf;
if (skipped)
return;
pci_unmap_single(enic->pdev, buf->dma_addr,
buf->len, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
static int enic_rq_service_drop(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque)
{
struct enic *enic = vnic_dev_priv(vdev);
vnic_rq_service(&enic->rq[q_number], cq_desc,
completed_index, VNIC_RQ_RETURN_DESC,
enic_rq_drop_buf, opaque);
return 0;
}
static int enic_poll(struct napi_struct *napi, int budget)
{
struct enic *enic = container_of(napi, struct enic, napi);
struct net_device *netdev = enic->netdev;
unsigned int rq_work_to_do = budget;
unsigned int wq_work_to_do = -1; /* no limit */
unsigned int work_done, rq_work_done, wq_work_done;
/* Service RQ (first) and WQ
*/
rq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
rq_work_to_do, enic_rq_service, NULL);
wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
wq_work_to_do, enic_wq_service, NULL);
/* Accumulate intr event credits for this polling
* cycle. An intr event is the completion of a
* a WQ or RQ packet.
*/
work_done = rq_work_done + wq_work_done;
if (work_done > 0)
vnic_intr_return_credits(&enic->intr[ENIC_INTX_WQ_RQ],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
if (rq_work_done > 0) {
/* Replenish RQ
*/
vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);
} else {
/* If no work done, flush all LROs and exit polling
*/
if (ENIC_SETTING(enic, LRO))
lro_flush_all(&enic->lro_mgr);
netif_rx_complete(netdev, napi);
vnic_intr_unmask(&enic->intr[ENIC_MSIX_RQ]);
}
return rq_work_done;
}
static int enic_poll_msix(struct napi_struct *napi, int budget)
{
struct enic *enic = container_of(napi, struct enic, napi);
struct net_device *netdev = enic->netdev;
unsigned int work_to_do = budget;
unsigned int work_done;
/* Service RQ
*/
work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
work_to_do, enic_rq_service, NULL);
if (work_done > 0) {
/* Replenish RQ
*/
vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);
/* Accumulate intr event credits for this polling
* cycle. An intr event is the completion of a
* a WQ or RQ packet.
*/
vnic_intr_return_credits(&enic->intr[ENIC_MSIX_RQ],
work_done,
0 /* don't unmask intr */,
0 /* don't reset intr timer */);
} else {
/* If no work done, flush all LROs and exit polling
*/
if (ENIC_SETTING(enic, LRO))
lro_flush_all(&enic->lro_mgr);
netif_rx_complete(netdev, napi);
vnic_intr_unmask(&enic->intr[ENIC_MSIX_RQ]);
}
return work_done;
}
static void enic_notify_timer(unsigned long data)
{
struct enic *enic = (struct enic *)data;
enic_notify_check(enic);
mod_timer(&enic->notify_timer, round_jiffies(ENIC_NOTIFY_TIMER_PERIOD));
}
static void enic_free_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
case VNIC_DEV_INTR_MODE_MSI:
free_irq(enic->pdev->irq, netdev);
break;
case VNIC_DEV_INTR_MODE_MSIX:
for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
if (enic->msix[i].requested)
free_irq(enic->msix_entry[i].vector,
enic->msix[i].devid);
break;
default:
break;
}
}
static int enic_request_intr(struct enic *enic)
{
struct net_device *netdev = enic->netdev;
unsigned int i;
int err = 0;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = request_irq(enic->pdev->irq, enic_isr_legacy,
IRQF_SHARED, netdev->name, netdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
err = request_irq(enic->pdev->irq, enic_isr_msi,
0, netdev->name, enic);
break;
case VNIC_DEV_INTR_MODE_MSIX:
sprintf(enic->msix[ENIC_MSIX_RQ].devname,
"%.11s-rx", netdev->name);
enic->msix[ENIC_MSIX_RQ].isr = enic_isr_msix_rq;
enic->msix[ENIC_MSIX_RQ].devid = enic;
sprintf(enic->msix[ENIC_MSIX_WQ].devname,
"%.11s-tx", netdev->name);
enic->msix[ENIC_MSIX_WQ].isr = enic_isr_msix_wq;
enic->msix[ENIC_MSIX_WQ].devid = enic;
sprintf(enic->msix[ENIC_MSIX_ERR].devname,
"%.11s-err", netdev->name);
enic->msix[ENIC_MSIX_ERR].isr = enic_isr_msix_err;
enic->msix[ENIC_MSIX_ERR].devid = enic;
sprintf(enic->msix[ENIC_MSIX_NOTIFY].devname,
"%.11s-notify", netdev->name);
enic->msix[ENIC_MSIX_NOTIFY].isr = enic_isr_msix_notify;
enic->msix[ENIC_MSIX_NOTIFY].devid = enic;
for (i = 0; i < ARRAY_SIZE(enic->msix); i++) {
err = request_irq(enic->msix_entry[i].vector,
enic->msix[i].isr, 0,
enic->msix[i].devname,
enic->msix[i].devid);
if (err) {
enic_free_intr(enic);
break;
}
enic->msix[i].requested = 1;
}
break;
default:
break;
}
return err;
}
static int enic_notify_set(struct enic *enic)
{
int err;
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_INTX:
err = vnic_dev_notify_set(enic->vdev, ENIC_INTX_NOTIFY);
break;
case VNIC_DEV_INTR_MODE_MSIX:
err = vnic_dev_notify_set(enic->vdev, ENIC_MSIX_NOTIFY);
break;
default:
err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */);
break;
}
return err;
}
static void enic_notify_timer_start(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSI:
mod_timer(&enic->notify_timer, jiffies);
break;
default:
/* Using intr for notification for INTx/MSI-X */
break;
};
}
/* rtnl lock is held, process context */
static int enic_open(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err;
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf);
if (err) {
printk(KERN_ERR PFX
"%s: Unable to alloc receive buffers.\n",
netdev->name);
return err;
}
}
for (i = 0; i < enic->wq_count; i++)
vnic_wq_enable(&enic->wq[i]);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_enable(&enic->rq[i]);
enic_add_station_addr(enic);
enic_set_multicast_list(netdev);
netif_wake_queue(netdev);
napi_enable(&enic->napi);
vnic_dev_enable(enic->vdev);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_unmask(&enic->intr[i]);
enic_notify_timer_start(enic);
return 0;
}
/* rtnl lock is held, process context */
static int enic_stop(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
unsigned int i;
int err;
del_timer_sync(&enic->notify_timer);
vnic_dev_disable(enic->vdev);
napi_disable(&enic->napi);
netif_stop_queue(netdev);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_mask(&enic->intr[i]);
for (i = 0; i < enic->wq_count; i++) {
err = vnic_wq_disable(&enic->wq[i]);
if (err)
return err;
}
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_disable(&enic->rq[i]);
if (err)
return err;
}
(void)vnic_cq_service(&enic->cq[ENIC_CQ_RQ],
-1, enic_rq_service_drop, NULL);
(void)vnic_cq_service(&enic->cq[ENIC_CQ_WQ],
-1, enic_wq_service, NULL);
for (i = 0; i < enic->wq_count; i++)
vnic_wq_clean(&enic->wq[i], enic_free_wq_buf);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
for (i = 0; i < enic->cq_count; i++)
vnic_cq_clean(&enic->cq[i]);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_clean(&enic->intr[i]);
return 0;
}
static int enic_change_mtu(struct net_device *netdev, int new_mtu)
{
struct enic *enic = netdev_priv(netdev);
int running = netif_running(netdev);
if (running)
enic_stop(netdev);
if (new_mtu < ENIC_MIN_MTU)
new_mtu = ENIC_MIN_MTU;
if (new_mtu > ENIC_MAX_MTU)
new_mtu = ENIC_MAX_MTU;
netdev->mtu = new_mtu;
if (netdev->mtu > enic->port_mtu)
printk(KERN_WARNING PFX
"%s: interface MTU (%d) set higher "
"than port MTU (%d)\n",
netdev->name, netdev->mtu, enic->port_mtu);
if (running)
enic_open(netdev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void enic_poll_controller(struct net_device *netdev)
{
struct enic *enic = netdev_priv(netdev);
struct vnic_dev *vdev = enic->vdev;
switch (vnic_dev_get_intr_mode(vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
enic_isr_msix_rq(enic->pdev->irq, enic);
enic_isr_msix_wq(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_MSI:
enic_isr_msi(enic->pdev->irq, enic);
break;
case VNIC_DEV_INTR_MODE_INTX:
enic_isr_legacy(enic->pdev->irq, netdev);
break;
default:
break;
}
}
#endif
static int enic_dev_wait(struct vnic_dev *vdev,
int (*start)(struct vnic_dev *, int),
int (*finished)(struct vnic_dev *, int *),
int arg)
{
unsigned long time;
int done;
int err;
BUG_ON(in_interrupt());
err = start(vdev, arg);
if (err)
return err;
/* Wait for func to complete...2 seconds max
*/
time = jiffies + (HZ * 2);
do {
err = finished(vdev, &done);
if (err)
return err;
if (done)
return 0;
schedule_timeout_uninterruptible(HZ / 10);
} while (time_after(time, jiffies));
return -ETIMEDOUT;
}
static int enic_dev_open(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_open,
vnic_dev_open_done, 0);
if (err)
printk(KERN_ERR PFX
"vNIC device open failed, err %d.\n", err);
return err;
}
static int enic_dev_soft_reset(struct enic *enic)
{
int err;
err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset,
vnic_dev_soft_reset_done, 0);
if (err)
printk(KERN_ERR PFX
"vNIC soft reset failed, err %d.\n", err);
return err;
}
static void enic_reset(struct work_struct *work)
{
struct enic *enic = container_of(work, struct enic, reset);
if (!netif_running(enic->netdev))
return;
rtnl_lock();
spin_lock(&enic->devcmd_lock);
vnic_dev_hang_notify(enic->vdev);
spin_unlock(&enic->devcmd_lock);
enic_stop(enic->netdev);
enic_dev_soft_reset(enic);
enic_reset_mcaddrs(enic);
enic_init_vnic_resources(enic);
enic_open(enic->netdev);
rtnl_unlock();
}
static int enic_set_intr_mode(struct enic *enic)
{
unsigned int n = ARRAY_SIZE(enic->rq);
unsigned int m = ARRAY_SIZE(enic->wq);
unsigned int i;
/* Set interrupt mode (INTx, MSI, MSI-X) depending
* system capabilities.
*
* Try MSI-X first
*
* We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs
* (the second to last INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2);
for (i = 0; i < n + m + 2; i++)
enic->msix_entry[i].entry = i;
if (enic->config.intr_mode < 1 &&
enic->rq_count >= n &&
enic->wq_count >= m &&
enic->cq_count >= n + m &&
enic->intr_count >= n + m + 2 &&
!pci_enable_msix(enic->pdev, enic->msix_entry, n + m + 2)) {
enic->rq_count = n;
enic->wq_count = m;
enic->cq_count = n + m;
enic->intr_count = n + m + 2;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSIX);
return 0;
}
/* Next try MSI
*
* We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR
*/
if (enic->config.intr_mode < 2 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 1 &&
!pci_enable_msi(enic->pdev)) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 1;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI);
return 0;
}
/* Next try INTx
*
* We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs
* (the first INTR is used for WQ/RQ)
* (the second INTR is used for WQ/RQ errors)
* (the last INTR is used for notifications)
*/
if (enic->config.intr_mode < 3 &&
enic->rq_count >= 1 &&
enic->wq_count >= 1 &&
enic->cq_count >= 2 &&
enic->intr_count >= 3) {
enic->rq_count = 1;
enic->wq_count = 1;
enic->cq_count = 2;
enic->intr_count = 3;
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX);
return 0;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
return -EINVAL;
}
static void enic_clear_intr_mode(struct enic *enic)
{
switch (vnic_dev_get_intr_mode(enic->vdev)) {
case VNIC_DEV_INTR_MODE_MSIX:
pci_disable_msix(enic->pdev);
break;
case VNIC_DEV_INTR_MODE_MSI:
pci_disable_msi(enic->pdev);
break;
default:
break;
}
vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
}
static void enic_iounmap(struct enic *enic)
{
if (enic->bar0.vaddr)
iounmap(enic->bar0.vaddr);
}
static int __devinit enic_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct enic *enic;
int using_dac = 0;
unsigned int i;
int err;
const u8 rss_default_cpu = 0;
const u8 rss_hash_type = 0;
const u8 rss_hash_bits = 0;
const u8 rss_base_cpu = 0;
const u8 rss_enable = 0;
const u8 tso_ipid_split_en = 0;
const u8 ig_vlan_strip_en = 1;
/* Allocate net device structure and initialize. Private
* instance data is initialized to zero.
*/
netdev = alloc_etherdev(sizeof(struct enic));
if (!netdev) {
printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
return -ENOMEM;
}
/* Set the netdev name early so intr vectors are properly
* named and any error msgs can include netdev->name
*/
rtnl_lock();
err = dev_alloc_name(netdev, netdev->name);
rtnl_unlock();
if (err < 0) {
printk(KERN_ERR PFX "Unable to allocate netdev name.\n");
goto err_out_free_netdev;
}
pci_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
enic = netdev_priv(netdev);
enic->netdev = netdev;
enic->pdev = pdev;
/* Setup PCI resources
*/
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX
"%s: Cannot enable PCI device, aborting.\n",
netdev->name);
goto err_out_free_netdev;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
printk(KERN_ERR PFX
"%s: Cannot request PCI regions, aborting.\n",
netdev->name);
goto err_out_disable_device;
}
pci_set_master(pdev);
/* Query PCI controller on system for DMA addressing
* limitation for the device. Try 40-bit first, and
* fail to 32-bit.
*/
err = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
if (err) {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"%s: No usable DMA configuration, aborting.\n",
netdev->name);
goto err_out_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"%s: Unable to obtain 32-bit DMA "
"for consistent allocations, aborting.\n",
netdev->name);
goto err_out_release_regions;
}
} else {
err = pci_set_consistent_dma_mask(pdev, DMA_40BIT_MASK);
if (err) {
printk(KERN_ERR PFX
"%s: Unable to obtain 40-bit DMA "
"for consistent allocations, aborting.\n",
netdev->name);
goto err_out_release_regions;
}
using_dac = 1;
}
/* Map vNIC resources from BAR0
*/
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
printk(KERN_ERR PFX
"%s: BAR0 not memory-map'able, aborting.\n",
netdev->name);
err = -ENODEV;
goto err_out_release_regions;
}
enic->bar0.vaddr = pci_iomap(pdev, 0, enic->bar0.len);
enic->bar0.bus_addr = pci_resource_start(pdev, 0);
enic->bar0.len = pci_resource_len(pdev, 0);
if (!enic->bar0.vaddr) {
printk(KERN_ERR PFX
"%s: Cannot memory-map BAR0 res hdr, aborting.\n",
netdev->name);
err = -ENODEV;
goto err_out_release_regions;
}
/* Register vNIC device
*/
enic->vdev = vnic_dev_register(NULL, enic, pdev, &enic->bar0);
if (!enic->vdev) {
printk(KERN_ERR PFX
"%s: vNIC registration failed, aborting.\n",
netdev->name);
err = -ENODEV;
goto err_out_iounmap;
}
/* Issue device open to get device in known state
*/
err = enic_dev_open(enic);
if (err) {
printk(KERN_ERR PFX
"%s: vNIC dev open failed, aborting.\n",
netdev->name);
goto err_out_vnic_unregister;
}
/* Issue device init to initialize the vnic-to-switch link.
* We'll start with carrier off and wait for link UP
* notification later to turn on carrier. We don't need
* to wait here for the vnic-to-switch link initialization
* to complete; link UP notification is the indication that
* the process is complete.
*/
netif_carrier_off(netdev);
err = vnic_dev_init(enic->vdev, 0);
if (err) {
printk(KERN_ERR PFX
"%s: vNIC dev init failed, aborting.\n",
netdev->name);
goto err_out_dev_close;
}
/* Get vNIC configuration
*/
err = enic_get_vnic_config(enic);
if (err) {
printk(KERN_ERR PFX
"%s: Get vNIC configuration failed, aborting.\n",
netdev->name);
goto err_out_dev_close;
}
/* Get available resource counts
*/
enic_get_res_counts(enic);
/* Set interrupt mode based on resource counts and system
* capabilities
*/
err = enic_set_intr_mode(enic);
if (err) {
printk(KERN_ERR PFX
"%s: Failed to set intr mode, aborting.\n",
netdev->name);
goto err_out_dev_close;
}
/* Request interrupt vector(s)
*/
err = enic_request_intr(enic);
if (err) {
printk(KERN_ERR PFX "%s: Unable to request irq.\n",
netdev->name);
goto err_out_dev_close;
}
/* Allocate and configure vNIC resources
*/
err = enic_alloc_vnic_resources(enic);
if (err) {
printk(KERN_ERR PFX
"%s: Failed to alloc vNIC resources, aborting.\n",
netdev->name);
goto err_out_free_vnic_resources;
}
enic_init_vnic_resources(enic);
/* Enable VLAN tag stripping. RSS not enabled (yet).
*/
err = enic_set_nic_cfg(enic,
rss_default_cpu, rss_hash_type,
rss_hash_bits, rss_base_cpu,
rss_enable, tso_ipid_split_en,
ig_vlan_strip_en);
if (err) {
printk(KERN_ERR PFX
"%s: Failed to config nic, aborting.\n",
netdev->name);
goto err_out_free_vnic_resources;
}
/* Setup notification buffer area
*/
err = enic_notify_set(enic);
if (err) {
printk(KERN_ERR PFX
"%s: Failed to alloc notify buffer, aborting.\n",
netdev->name);
goto err_out_free_vnic_resources;
}
/* Setup notification timer, HW reset task, and locks
*/
init_timer(&enic->notify_timer);
enic->notify_timer.function = enic_notify_timer;
enic->notify_timer.data = (unsigned long)enic;
INIT_WORK(&enic->reset, enic_reset);
for (i = 0; i < enic->wq_count; i++)
spin_lock_init(&enic->wq_lock[i]);
spin_lock_init(&enic->devcmd_lock);
/* Register net device
*/
enic->port_mtu = enic->config.mtu;
(void)enic_change_mtu(netdev, enic->port_mtu);
err = enic_set_mac_addr(netdev, enic->mac_addr);
if (err) {
printk(KERN_ERR PFX
"%s: Invalid MAC address, aborting.\n",
netdev->name);
goto err_out_notify_unset;
}
netdev->open = enic_open;
netdev->stop = enic_stop;
netdev->hard_start_xmit = enic_hard_start_xmit;
netdev->get_stats = enic_get_stats;
netdev->set_multicast_list = enic_set_multicast_list;
netdev->change_mtu = enic_change_mtu;
netdev->vlan_rx_register = enic_vlan_rx_register;
netdev->vlan_rx_add_vid = enic_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = enic_vlan_rx_kill_vid;
netdev->tx_timeout = enic_tx_timeout;
netdev->watchdog_timeo = 2 * HZ;
netdev->ethtool_ops = &enic_ethtool_ops;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = enic_poll_controller;
#endif
switch (vnic_dev_get_intr_mode(enic->vdev)) {
default:
netif_napi_add(netdev, &enic->napi, enic_poll, 64);
break;
case VNIC_DEV_INTR_MODE_MSIX:
netif_napi_add(netdev, &enic->napi, enic_poll_msix, 64);
break;
}
netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
if (ENIC_SETTING(enic, TXCSUM))
netdev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
if (ENIC_SETTING(enic, TSO))
netdev->features |= NETIF_F_TSO |
NETIF_F_TSO6 | NETIF_F_TSO_ECN;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
enic->csum_rx_enabled = ENIC_SETTING(enic, RXCSUM);
if (ENIC_SETTING(enic, LRO)) {
enic->lro_mgr.max_aggr = ENIC_LRO_MAX_AGGR;
enic->lro_mgr.max_desc = ENIC_LRO_MAX_DESC;
enic->lro_mgr.lro_arr = enic->lro_desc;
enic->lro_mgr.get_skb_header = enic_get_skb_header;
enic->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
enic->lro_mgr.dev = netdev;
enic->lro_mgr.ip_summed = CHECKSUM_COMPLETE;
enic->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
}
err = register_netdev(netdev);
if (err) {
printk(KERN_ERR PFX
"%s: Cannot register net device, aborting.\n",
netdev->name);
goto err_out_notify_unset;
}
return 0;
err_out_notify_unset:
vnic_dev_notify_unset(enic->vdev);
err_out_free_vnic_resources:
enic_free_vnic_resources(enic);
enic_free_intr(enic);
err_out_dev_close:
vnic_dev_close(enic->vdev);
err_out_vnic_unregister:
enic_clear_intr_mode(enic);
vnic_dev_unregister(enic->vdev);
err_out_iounmap:
enic_iounmap(enic);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out_free_netdev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
return err;
}
static void __devexit enic_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
if (netdev) {
struct enic *enic = netdev_priv(netdev);
flush_scheduled_work();
unregister_netdev(netdev);
vnic_dev_notify_unset(enic->vdev);
enic_free_vnic_resources(enic);
enic_free_intr(enic);
vnic_dev_close(enic->vdev);
enic_clear_intr_mode(enic);
vnic_dev_unregister(enic->vdev);
enic_iounmap(enic);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
}
}
static struct pci_driver enic_driver = {
.name = DRV_NAME,
.id_table = enic_id_table,
.probe = enic_probe,
.remove = __devexit_p(enic_remove),
};
static int __init enic_init_module(void)
{
printk(KERN_INFO PFX "%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION);
return pci_register_driver(&enic_driver);
}
static void __exit enic_cleanup_module(void)
{
pci_unregister_driver(&enic_driver);
}
module_init(enic_init_module);
module_exit(enic_cleanup_module);
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include "wq_enet_desc.h"
#include "rq_enet_desc.h"
#include "cq_enet_desc.h"
#include "vnic_resource.h"
#include "vnic_enet.h"
#include "vnic_dev.h"
#include "vnic_wq.h"
#include "vnic_rq.h"
#include "vnic_cq.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "vnic_nic.h"
#include "vnic_rss.h"
#include "enic_res.h"
#include "enic.h"
int enic_get_vnic_config(struct enic *enic)
{
struct vnic_enet_config *c = &enic->config;
int err;
err = vnic_dev_mac_addr(enic->vdev, enic->mac_addr);
if (err) {
printk(KERN_ERR PFX "Error getting MAC addr, %d\n", err);
return err;
}
#define GET_CONFIG(m) \
do { \
err = vnic_dev_spec(enic->vdev, \
offsetof(struct vnic_enet_config, m), \
sizeof(c->m), &c->m); \
if (err) { \
printk(KERN_ERR PFX \
"Error getting %s, %d\n", #m, err); \
return err; \
} \
} while (0)
GET_CONFIG(flags);
GET_CONFIG(wq_desc_count);
GET_CONFIG(rq_desc_count);
GET_CONFIG(mtu);
GET_CONFIG(intr_timer);
GET_CONFIG(intr_timer_type);
GET_CONFIG(intr_mode);
c->wq_desc_count =
min_t(u32, ENIC_MAX_WQ_DESCS,
max_t(u32, ENIC_MIN_WQ_DESCS,
c->wq_desc_count));
c->wq_desc_count &= 0xfffffff0; /* must be aligned to groups of 16 */
c->rq_desc_count =
min_t(u32, ENIC_MAX_RQ_DESCS,
max_t(u32, ENIC_MIN_RQ_DESCS,
c->rq_desc_count));
c->rq_desc_count &= 0xfffffff0; /* must be aligned to groups of 16 */
if (c->mtu == 0)
c->mtu = 1500;
c->mtu = min_t(u16, ENIC_MAX_MTU,
max_t(u16, ENIC_MIN_MTU,
c->mtu));
c->intr_timer = min_t(u16, VNIC_INTR_TIMER_MAX, c->intr_timer);
printk(KERN_INFO PFX "vNIC MAC addr %02x:%02x:%02x:%02x:%02x:%02x "
"wq/rq %d/%d\n",
enic->mac_addr[0], enic->mac_addr[1], enic->mac_addr[2],
enic->mac_addr[3], enic->mac_addr[4], enic->mac_addr[5],
c->wq_desc_count, c->rq_desc_count);
printk(KERN_INFO PFX "vNIC mtu %d csum tx/rx %d/%d tso/lro %d/%d "
"intr timer %d\n",
c->mtu, ENIC_SETTING(enic, TXCSUM),
ENIC_SETTING(enic, RXCSUM), ENIC_SETTING(enic, TSO),
ENIC_SETTING(enic, LRO), c->intr_timer);
return 0;
}
void enic_add_station_addr(struct enic *enic)
{
vnic_dev_add_addr(enic->vdev, enic->mac_addr);
}
void enic_add_multicast_addr(struct enic *enic, u8 *addr)
{
vnic_dev_add_addr(enic->vdev, addr);
}
void enic_del_multicast_addr(struct enic *enic, u8 *addr)
{
vnic_dev_del_addr(enic->vdev, addr);
}
void enic_add_vlan(struct enic *enic, u16 vlanid)
{
u64 a0 = vlanid, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(enic->vdev, CMD_VLAN_ADD, &a0, &a1, wait);
if (err)
printk(KERN_ERR PFX "Can't add vlan id, %d\n", err);
}
void enic_del_vlan(struct enic *enic, u16 vlanid)
{
u64 a0 = vlanid, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(enic->vdev, CMD_VLAN_DEL, &a0, &a1, wait);
if (err)
printk(KERN_ERR PFX "Can't delete vlan id, %d\n", err);
}
int enic_set_nic_cfg(struct enic *enic, u8 rss_default_cpu, u8 rss_hash_type,
u8 rss_hash_bits, u8 rss_base_cpu, u8 rss_enable, u8 tso_ipid_split_en,
u8 ig_vlan_strip_en)
{
u64 a0, a1;
u32 nic_cfg;
int wait = 1000;
vnic_set_nic_cfg(&nic_cfg, rss_default_cpu,
rss_hash_type, rss_hash_bits, rss_base_cpu,
rss_enable, tso_ipid_split_en, ig_vlan_strip_en);
a0 = nic_cfg;
a1 = 0;
return vnic_dev_cmd(enic->vdev, CMD_NIC_CFG, &a0, &a1, wait);
}
void enic_free_vnic_resources(struct enic *enic)
{
unsigned int i;
for (i = 0; i < enic->wq_count; i++)
vnic_wq_free(&enic->wq[i]);
for (i = 0; i < enic->rq_count; i++)
vnic_rq_free(&enic->rq[i]);
for (i = 0; i < enic->cq_count; i++)
vnic_cq_free(&enic->cq[i]);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_free(&enic->intr[i]);
}
void enic_get_res_counts(struct enic *enic)
{
enic->wq_count = vnic_dev_get_res_count(enic->vdev, RES_TYPE_WQ);
enic->rq_count = vnic_dev_get_res_count(enic->vdev, RES_TYPE_RQ);
enic->cq_count = vnic_dev_get_res_count(enic->vdev, RES_TYPE_CQ);
enic->intr_count = vnic_dev_get_res_count(enic->vdev,
RES_TYPE_INTR_CTRL);
printk(KERN_INFO PFX "vNIC resources avail: "
"wq %d rq %d cq %d intr %d\n",
enic->wq_count, enic->rq_count,
enic->cq_count, enic->intr_count);
}
void enic_init_vnic_resources(struct enic *enic)
{
enum vnic_dev_intr_mode intr_mode;
unsigned int mask_on_assertion;
unsigned int interrupt_offset;
unsigned int error_interrupt_enable;
unsigned int error_interrupt_offset;
unsigned int cq_index;
unsigned int i;
intr_mode = vnic_dev_get_intr_mode(enic->vdev);
/* Init RQ/WQ resources.
*
* RQ[0 - n-1] point to CQ[0 - n-1]
* WQ[0 - m-1] point to CQ[n - n+m-1]
*
* Error interrupt is not enabled for MSI.
*/
switch (intr_mode) {
case VNIC_DEV_INTR_MODE_INTX:
case VNIC_DEV_INTR_MODE_MSIX:
error_interrupt_enable = 1;
error_interrupt_offset = enic->intr_count - 2;
break;
default:
error_interrupt_enable = 0;
error_interrupt_offset = 0;
break;
}
for (i = 0; i < enic->rq_count; i++) {
cq_index = i;
vnic_rq_init(&enic->rq[i],
cq_index,
error_interrupt_enable,
error_interrupt_offset);
}
for (i = 0; i < enic->wq_count; i++) {
cq_index = enic->rq_count + i;
vnic_wq_init(&enic->wq[i],
cq_index,
error_interrupt_enable,
error_interrupt_offset);
}
/* Init CQ resources
*
* CQ[0 - n+m-1] point to INTR[0] for INTx, MSI
* CQ[0 - n+m-1] point to INTR[0 - n+m-1] for MSI-X
*/
for (i = 0; i < enic->cq_count; i++) {
switch (intr_mode) {
case VNIC_DEV_INTR_MODE_MSIX:
interrupt_offset = i;
break;
default:
interrupt_offset = 0;
break;
}
vnic_cq_init(&enic->cq[i],
0 /* flow_control_enable */,
1 /* color_enable */,
0 /* cq_head */,
0 /* cq_tail */,
1 /* cq_tail_color */,
1 /* interrupt_enable */,
1 /* cq_entry_enable */,
0 /* cq_message_enable */,
interrupt_offset,
0 /* cq_message_addr */);
}
/* Init INTR resources
*
* mask_on_assertion is not used for INTx due to the level-
* triggered nature of INTx
*/
switch (intr_mode) {
case VNIC_DEV_INTR_MODE_MSI:
case VNIC_DEV_INTR_MODE_MSIX:
mask_on_assertion = 1;
break;
default:
mask_on_assertion = 0;
break;
}
for (i = 0; i < enic->intr_count; i++) {
vnic_intr_init(&enic->intr[i],
enic->config.intr_timer,
enic->config.intr_timer_type,
mask_on_assertion);
}
/* Clear LIF stats
*/
vnic_dev_stats_clear(enic->vdev);
}
int enic_alloc_vnic_resources(struct enic *enic)
{
enum vnic_dev_intr_mode intr_mode;
unsigned int i;
int err;
intr_mode = vnic_dev_get_intr_mode(enic->vdev);
printk(KERN_INFO PFX "vNIC resources used: "
"wq %d rq %d cq %d intr %d intr mode %s\n",
enic->wq_count, enic->rq_count,
enic->cq_count, enic->intr_count,
intr_mode == VNIC_DEV_INTR_MODE_INTX ? "legacy PCI INTx" :
intr_mode == VNIC_DEV_INTR_MODE_MSI ? "MSI" :
intr_mode == VNIC_DEV_INTR_MODE_MSIX ? "MSI-X" :
"unknown"
);
/* Allocate queue resources
*/
for (i = 0; i < enic->wq_count; i++) {
err = vnic_wq_alloc(enic->vdev, &enic->wq[i], i,
enic->config.wq_desc_count,
sizeof(struct wq_enet_desc));
if (err)
goto err_out_cleanup;
}
for (i = 0; i < enic->rq_count; i++) {
err = vnic_rq_alloc(enic->vdev, &enic->rq[i], i,
enic->config.rq_desc_count,
sizeof(struct rq_enet_desc));
if (err)
goto err_out_cleanup;
}
for (i = 0; i < enic->cq_count; i++) {
if (i < enic->rq_count)
err = vnic_cq_alloc(enic->vdev, &enic->cq[i], i,
enic->config.rq_desc_count,
sizeof(struct cq_enet_rq_desc));
else
err = vnic_cq_alloc(enic->vdev, &enic->cq[i], i,
enic->config.wq_desc_count,
sizeof(struct cq_enet_wq_desc));
if (err)
goto err_out_cleanup;
}
for (i = 0; i < enic->intr_count; i++) {
err = vnic_intr_alloc(enic->vdev, &enic->intr[i], i);
if (err)
goto err_out_cleanup;
}
/* Hook remaining resource
*/
enic->legacy_pba = vnic_dev_get_res(enic->vdev,
RES_TYPE_INTR_PBA_LEGACY, 0);
if (!enic->legacy_pba && intr_mode == VNIC_DEV_INTR_MODE_INTX) {
printk(KERN_ERR PFX "Failed to hook legacy pba resource\n");
err = -ENODEV;
goto err_out_cleanup;
}
return 0;
err_out_cleanup:
enic_free_vnic_resources(enic);
return err;
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _ENIC_RES_H_
#define _ENIC_RES_H_
#include "wq_enet_desc.h"
#include "rq_enet_desc.h"
#include "vnic_wq.h"
#include "vnic_rq.h"
#define ENIC_MIN_WQ_DESCS 64
#define ENIC_MAX_WQ_DESCS 4096
#define ENIC_MIN_RQ_DESCS 64
#define ENIC_MAX_RQ_DESCS 4096
#define ENIC_MIN_MTU 576 /* minimum for IPv4 */
#define ENIC_MAX_MTU 9000
#define ENIC_MULTICAST_PERFECT_FILTERS 32
#define ENIC_NON_TSO_MAX_DESC 16
#define ENIC_SETTING(enic, f) ((enic->config.flags & VENETF_##f) ? 1 : 0)
static inline void enic_queue_wq_desc_ex(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr, unsigned int len,
unsigned int mss_or_csum_offset, unsigned int hdr_len,
int vlan_tag_insert, unsigned int vlan_tag,
int offload_mode, int cq_entry, int sop, int eop)
{
struct wq_enet_desc *desc = vnic_wq_next_desc(wq);
wq_enet_desc_enc(desc,
(u64)dma_addr | VNIC_PADDR_TARGET,
(u16)len,
(u16)mss_or_csum_offset,
(u16)hdr_len, (u8)offload_mode,
(u8)eop, (u8)cq_entry,
0, /* fcoe_encap */
(u8)vlan_tag_insert,
(u16)vlan_tag,
0 /* loopback */);
wmb();
vnic_wq_post(wq, os_buf, dma_addr, len, sop, eop);
}
static inline void enic_queue_wq_desc_cont(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr, unsigned int len, int eop)
{
enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len,
0, 0, 0, 0, 0,
eop, 0 /* !SOP */, eop);
}
static inline void enic_queue_wq_desc(struct vnic_wq *wq, void *os_buf,
dma_addr_t dma_addr, unsigned int len, int vlan_tag_insert,
unsigned int vlan_tag, int eop)
{
enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len,
0, 0, vlan_tag_insert, vlan_tag,
WQ_ENET_OFFLOAD_MODE_CSUM,
eop, 1 /* SOP */, eop);
}
static inline void enic_queue_wq_desc_csum(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr, unsigned int len,
int ip_csum, int tcpudp_csum, int vlan_tag_insert,
unsigned int vlan_tag, int eop)
{
enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len,
(ip_csum ? 1 : 0) + (tcpudp_csum ? 2 : 0),
0, vlan_tag_insert, vlan_tag,
WQ_ENET_OFFLOAD_MODE_CSUM,
eop, 1 /* SOP */, eop);
}
static inline void enic_queue_wq_desc_csum_l4(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr, unsigned int len,
unsigned int csum_offset, unsigned int hdr_len,
int vlan_tag_insert, unsigned int vlan_tag, int eop)
{
enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len,
csum_offset, hdr_len, vlan_tag_insert, vlan_tag,
WQ_ENET_OFFLOAD_MODE_CSUM_L4,
eop, 1 /* SOP */, eop);
}
static inline void enic_queue_wq_desc_tso(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr, unsigned int len,
unsigned int mss, unsigned int hdr_len, int vlan_tag_insert,
unsigned int vlan_tag, int eop)
{
enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len,
mss, hdr_len, vlan_tag_insert, vlan_tag,
WQ_ENET_OFFLOAD_MODE_TSO,
eop, 1 /* SOP */, eop);
}
static inline void enic_queue_rq_desc(struct vnic_rq *rq,
void *os_buf, unsigned int os_buf_index,
dma_addr_t dma_addr, unsigned int len)
{
struct rq_enet_desc *desc = vnic_rq_next_desc(rq);
u8 type = os_buf_index ?
RQ_ENET_TYPE_NOT_SOP : RQ_ENET_TYPE_ONLY_SOP;
rq_enet_desc_enc(desc,
(u64)dma_addr | VNIC_PADDR_TARGET,
type, (u16)len);
wmb();
vnic_rq_post(rq, os_buf, os_buf_index, dma_addr, len);
}
struct enic;
int enic_get_vnic_config(struct enic *);
void enic_add_station_addr(struct enic *enic);
void enic_add_multicast_addr(struct enic *enic, u8 *addr);
void enic_del_multicast_addr(struct enic *enic, u8 *addr);
void enic_add_vlan(struct enic *enic, u16 vlanid);
void enic_del_vlan(struct enic *enic, u16 vlanid);
int enic_set_nic_cfg(struct enic *enic, u8 rss_default_cpu, u8 rss_hash_type,
u8 rss_hash_bits, u8 rss_base_cpu, u8 rss_enable, u8 tso_ipid_split_en,
u8 ig_vlan_strip_en);
void enic_get_res_counts(struct enic *enic);
void enic_init_vnic_resources(struct enic *enic);
int enic_alloc_vnic_resources(struct enic *);
void enic_free_vnic_resources(struct enic *);
#endif /* _ENIC_RES_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _RQ_ENET_DESC_H_
#define _RQ_ENET_DESC_H_
/* Ethernet receive queue descriptor: 16B */
struct rq_enet_desc {
__le64 address;
__le16 length_type;
u8 reserved[6];
};
enum rq_enet_type_types {
RQ_ENET_TYPE_ONLY_SOP = 0,
RQ_ENET_TYPE_NOT_SOP = 1,
RQ_ENET_TYPE_RESV2 = 2,
RQ_ENET_TYPE_RESV3 = 3,
};
#define RQ_ENET_ADDR_BITS 64
#define RQ_ENET_LEN_BITS 14
#define RQ_ENET_LEN_MASK ((1 << RQ_ENET_LEN_BITS) - 1)
#define RQ_ENET_TYPE_BITS 2
#define RQ_ENET_TYPE_MASK ((1 << RQ_ENET_TYPE_BITS) - 1)
static inline void rq_enet_desc_enc(struct rq_enet_desc *desc,
u64 address, u8 type, u16 length)
{
desc->address = cpu_to_le64(address);
desc->length_type = cpu_to_le16((length & RQ_ENET_LEN_MASK) |
((type & RQ_ENET_TYPE_MASK) << RQ_ENET_LEN_BITS));
}
static inline void rq_enet_desc_dec(struct rq_enet_desc *desc,
u64 *address, u8 *type, u16 *length)
{
*address = le64_to_cpu(desc->address);
*length = le16_to_cpu(desc->length_type) & RQ_ENET_LEN_MASK;
*type = (u8)((le16_to_cpu(desc->length_type) >> RQ_ENET_LEN_BITS) &
RQ_ENET_TYPE_MASK);
}
#endif /* _RQ_ENET_DESC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include "vnic_dev.h"
#include "vnic_cq.h"
void vnic_cq_free(struct vnic_cq *cq)
{
vnic_dev_free_desc_ring(cq->vdev, &cq->ring);
cq->ctrl = NULL;
}
int vnic_cq_alloc(struct vnic_dev *vdev, struct vnic_cq *cq, unsigned int index,
unsigned int desc_count, unsigned int desc_size)
{
int err;
cq->index = index;
cq->vdev = vdev;
cq->ctrl = vnic_dev_get_res(vdev, RES_TYPE_CQ, index);
if (!cq->ctrl) {
printk(KERN_ERR "Failed to hook CQ[%d] resource\n", index);
return -EINVAL;
}
err = vnic_dev_alloc_desc_ring(vdev, &cq->ring, desc_count, desc_size);
if (err)
return err;
return 0;
}
void vnic_cq_init(struct vnic_cq *cq, unsigned int flow_control_enable,
unsigned int color_enable, unsigned int cq_head, unsigned int cq_tail,
unsigned int cq_tail_color, unsigned int interrupt_enable,
unsigned int cq_entry_enable, unsigned int cq_message_enable,
unsigned int interrupt_offset, u64 cq_message_addr)
{
u64 paddr;
paddr = (u64)cq->ring.base_addr | VNIC_PADDR_TARGET;
writeq(paddr, &cq->ctrl->ring_base);
iowrite32(cq->ring.desc_count, &cq->ctrl->ring_size);
iowrite32(flow_control_enable, &cq->ctrl->flow_control_enable);
iowrite32(color_enable, &cq->ctrl->color_enable);
iowrite32(cq_head, &cq->ctrl->cq_head);
iowrite32(cq_tail, &cq->ctrl->cq_tail);
iowrite32(cq_tail_color, &cq->ctrl->cq_tail_color);
iowrite32(interrupt_enable, &cq->ctrl->interrupt_enable);
iowrite32(cq_entry_enable, &cq->ctrl->cq_entry_enable);
iowrite32(cq_message_enable, &cq->ctrl->cq_message_enable);
iowrite32(interrupt_offset, &cq->ctrl->interrupt_offset);
writeq(cq_message_addr, &cq->ctrl->cq_message_addr);
}
void vnic_cq_clean(struct vnic_cq *cq)
{
cq->to_clean = 0;
cq->last_color = 0;
iowrite32(0, &cq->ctrl->cq_head);
iowrite32(0, &cq->ctrl->cq_tail);
iowrite32(1, &cq->ctrl->cq_tail_color);
vnic_dev_clear_desc_ring(&cq->ring);
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_CQ_H_
#define _VNIC_CQ_H_
#include "cq_desc.h"
#include "vnic_dev.h"
/* Completion queue control */
struct vnic_cq_ctrl {
u64 ring_base; /* 0x00 */
u32 ring_size; /* 0x08 */
u32 pad0;
u32 flow_control_enable; /* 0x10 */
u32 pad1;
u32 color_enable; /* 0x18 */
u32 pad2;
u32 cq_head; /* 0x20 */
u32 pad3;
u32 cq_tail; /* 0x28 */
u32 pad4;
u32 cq_tail_color; /* 0x30 */
u32 pad5;
u32 interrupt_enable; /* 0x38 */
u32 pad6;
u32 cq_entry_enable; /* 0x40 */
u32 pad7;
u32 cq_message_enable; /* 0x48 */
u32 pad8;
u32 interrupt_offset; /* 0x50 */
u32 pad9;
u64 cq_message_addr; /* 0x58 */
u32 pad10;
};
struct vnic_cq {
unsigned int index;
struct vnic_dev *vdev;
struct vnic_cq_ctrl __iomem *ctrl; /* memory-mapped */
struct vnic_dev_ring ring;
unsigned int to_clean;
unsigned int last_color;
};
static inline unsigned int vnic_cq_service(struct vnic_cq *cq,
unsigned int work_to_do,
int (*q_service)(struct vnic_dev *vdev, struct cq_desc *cq_desc,
u8 type, u16 q_number, u16 completed_index, void *opaque),
void *opaque)
{
struct cq_desc *cq_desc;
unsigned int work_done = 0;
u16 q_number, completed_index;
u8 type, color;
cq_desc = (struct cq_desc *)((u8 *)cq->ring.descs +
cq->ring.desc_size * cq->to_clean);
cq_desc_dec(cq_desc, &type, &color,
&q_number, &completed_index);
while (color != cq->last_color) {
if ((*q_service)(cq->vdev, cq_desc, type,
q_number, completed_index, opaque))
break;
cq->to_clean++;
if (cq->to_clean == cq->ring.desc_count) {
cq->to_clean = 0;
cq->last_color = cq->last_color ? 0 : 1;
}
cq_desc = (struct cq_desc *)((u8 *)cq->ring.descs +
cq->ring.desc_size * cq->to_clean);
cq_desc_dec(cq_desc, &type, &color,
&q_number, &completed_index);
work_done++;
if (work_done >= work_to_do)
break;
}
return work_done;
}
void vnic_cq_free(struct vnic_cq *cq);
int vnic_cq_alloc(struct vnic_dev *vdev, struct vnic_cq *cq, unsigned int index,
unsigned int desc_count, unsigned int desc_size);
void vnic_cq_init(struct vnic_cq *cq, unsigned int flow_control_enable,
unsigned int color_enable, unsigned int cq_head, unsigned int cq_tail,
unsigned int cq_tail_color, unsigned int interrupt_enable,
unsigned int cq_entry_enable, unsigned int message_enable,
unsigned int interrupt_offset, u64 message_addr);
void vnic_cq_clean(struct vnic_cq *cq);
#endif /* _VNIC_CQ_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/if_ether.h>
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#include "vnic_dev.h"
#include "vnic_stats.h"
struct vnic_res {
void __iomem *vaddr;
unsigned int count;
};
struct vnic_dev {
void *priv;
struct pci_dev *pdev;
struct vnic_res res[RES_TYPE_MAX];
enum vnic_dev_intr_mode intr_mode;
struct vnic_devcmd __iomem *devcmd;
struct vnic_devcmd_notify *notify;
struct vnic_devcmd_notify notify_copy;
dma_addr_t notify_pa;
u32 *linkstatus;
dma_addr_t linkstatus_pa;
struct vnic_stats *stats;
dma_addr_t stats_pa;
struct vnic_devcmd_fw_info *fw_info;
dma_addr_t fw_info_pa;
};
#define VNIC_MAX_RES_HDR_SIZE \
(sizeof(struct vnic_resource_header) + \
sizeof(struct vnic_resource) * RES_TYPE_MAX)
#define VNIC_RES_STRIDE 128
void *vnic_dev_priv(struct vnic_dev *vdev)
{
return vdev->priv;
}
static int vnic_dev_discover_res(struct vnic_dev *vdev,
struct vnic_dev_bar *bar)
{
struct vnic_resource_header __iomem *rh;
struct vnic_resource __iomem *r;
u8 type;
if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
printk(KERN_ERR "vNIC BAR0 res hdr length error\n");
return -EINVAL;
}
rh = bar->vaddr;
if (!rh) {
printk(KERN_ERR "vNIC BAR0 res hdr not mem-mapped\n");
return -EINVAL;
}
if (ioread32(&rh->magic) != VNIC_RES_MAGIC ||
ioread32(&rh->version) != VNIC_RES_VERSION) {
printk(KERN_ERR "vNIC BAR0 res magic/version error "
"exp (%lx/%lx) curr (%x/%x)\n",
VNIC_RES_MAGIC, VNIC_RES_VERSION,
ioread32(&rh->magic), ioread32(&rh->version));
return -EINVAL;
}
r = (struct vnic_resource __iomem *)(rh + 1);
while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
u8 bar_num = ioread8(&r->bar);
u32 bar_offset = ioread32(&r->bar_offset);
u32 count = ioread32(&r->count);
u32 len;
r++;
if (bar_num != 0) /* only mapping in BAR0 resources */
continue;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
/* each count is stride bytes long */
len = count * VNIC_RES_STRIDE;
if (len + bar_offset > bar->len) {
printk(KERN_ERR "vNIC BAR0 resource %d "
"out-of-bounds, offset 0x%x + "
"size 0x%x > bar len 0x%lx\n",
type, bar_offset,
len,
bar->len);
return -EINVAL;
}
break;
case RES_TYPE_INTR_PBA_LEGACY:
case RES_TYPE_DEVCMD:
len = count;
break;
default:
continue;
}
vdev->res[type].count = count;
vdev->res[type].vaddr = (char __iomem *)bar->vaddr + bar_offset;
}
return 0;
}
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type)
{
return vdev->res[type].count;
}
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index)
{
if (!vdev->res[type].vaddr)
return NULL;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
return (char __iomem *)vdev->res[type].vaddr +
index * VNIC_RES_STRIDE;
default:
return (char __iomem *)vdev->res[type].vaddr;
}
}
unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
/* The base address of the desc rings must be 512 byte aligned.
* Descriptor count is aligned to groups of 32 descriptors. A
* count of 0 means the maximum 4096 descriptors. Descriptor
* size is aligned to 16 bytes.
*/
unsigned int count_align = 32;
unsigned int desc_align = 16;
ring->base_align = 512;
if (desc_count == 0)
desc_count = 4096;
ring->desc_count = ALIGN(desc_count, count_align);
ring->desc_size = ALIGN(desc_size, desc_align);
ring->size = ring->desc_count * ring->desc_size;
ring->size_unaligned = ring->size + ring->base_align;
return ring->size_unaligned;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
memset(ring->descs, 0, ring->size);
}
int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
vnic_dev_desc_ring_size(ring, desc_count, desc_size);
ring->descs_unaligned = pci_alloc_consistent(vdev->pdev,
ring->size_unaligned,
&ring->base_addr_unaligned);
if (!ring->descs_unaligned) {
printk(KERN_ERR
"Failed to allocate ring (size=%d), aborting\n",
(int)ring->size);
return -ENOMEM;
}
ring->base_addr = ALIGN(ring->base_addr_unaligned,
ring->base_align);
ring->descs = (u8 *)ring->descs_unaligned +
(ring->base_addr - ring->base_addr_unaligned);
vnic_dev_clear_desc_ring(ring);
ring->desc_avail = ring->desc_count - 1;
return 0;
}
void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring)
{
if (ring->descs) {
pci_free_consistent(vdev->pdev,
ring->size_unaligned,
ring->descs_unaligned,
ring->base_addr_unaligned);
ring->descs = NULL;
}
}
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait)
{
struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
int delay;
u32 status;
int dev_cmd_err[] = {
/* convert from fw's version of error.h to host's version */
0, /* ERR_SUCCESS */
EINVAL, /* ERR_EINVAL */
EFAULT, /* ERR_EFAULT */
EPERM, /* ERR_EPERM */
EBUSY, /* ERR_EBUSY */
};
int err;
status = ioread32(&devcmd->status);
if (status & STAT_BUSY) {
printk(KERN_ERR "Busy devcmd %d\n", _CMD_N(cmd));
return -EBUSY;
}
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
writeq(*a0, &devcmd->args[0]);
writeq(*a1, &devcmd->args[1]);
wmb();
}
iowrite32(cmd, &devcmd->cmd);
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
return 0;
for (delay = 0; delay < wait; delay++) {
udelay(100);
status = ioread32(&devcmd->status);
if (!(status & STAT_BUSY)) {
if (status & STAT_ERROR) {
err = dev_cmd_err[(int)readq(&devcmd->args[0])];
printk(KERN_ERR "Error %d devcmd %d\n",
err, _CMD_N(cmd));
return -err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
rmb();
*a0 = readq(&devcmd->args[0]);
*a1 = readq(&devcmd->args[1]);
}
return 0;
}
}
printk(KERN_ERR "Timedout devcmd %d\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
int vnic_dev_fw_info(struct vnic_dev *vdev,
struct vnic_devcmd_fw_info **fw_info)
{
u64 a0, a1 = 0;
int wait = 1000;
int err = 0;
if (!vdev->fw_info) {
vdev->fw_info = pci_alloc_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_fw_info),
&vdev->fw_info_pa);
if (!vdev->fw_info)
return -ENOMEM;
a0 = vdev->fw_info_pa;
/* only get fw_info once and cache it */
err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO, &a0, &a1, wait);
}
*fw_info = vdev->fw_info;
return err;
}
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
void *value)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = offset;
a1 = size;
err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
switch (size) {
case 1: *(u8 *)value = (u8)a0; break;
case 2: *(u16 *)value = (u16)a0; break;
case 4: *(u32 *)value = (u32)a0; break;
case 8: *(u64 *)value = a0; break;
default: BUG(); break;
}
return err;
}
int vnic_dev_stats_clear(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
}
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
{
u64 a0, a1;
int wait = 1000;
if (!vdev->stats) {
vdev->stats = pci_alloc_consistent(vdev->pdev,
sizeof(struct vnic_stats), &vdev->stats_pa);
if (!vdev->stats)
return -ENOMEM;
}
*stats = vdev->stats;
a0 = vdev->stats_pa;
a1 = sizeof(struct vnic_stats);
return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
}
int vnic_dev_close(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
}
int vnic_dev_enable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
}
int vnic_dev_disable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
}
int vnic_dev_open(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
}
int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait);
}
int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_hang_notify(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait);
}
int vnic_dev_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
{
u64 a0, a1;
int wait = 1000;
int err, i;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = 0;
err = vnic_dev_cmd(vdev, CMD_MAC_ADDR, &a0, &a1, wait);
if (err)
return err;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = ((u8 *)&a0)[i];
return 0;
}
void vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti)
{
u64 a0, a1 = 0;
int wait = 1000;
int err;
a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
(multicast ? CMD_PFILTER_MULTICAST : 0) |
(broadcast ? CMD_PFILTER_BROADCAST : 0) |
(promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
(allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
if (err)
printk(KERN_ERR "Can't set packet filter\n");
}
void vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
if (err)
printk(KERN_ERR
"Can't add addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
}
void vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
if (err)
printk(KERN_ERR
"Can't del addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
}
int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
{
u64 a0, a1;
int wait = 1000;
if (!vdev->notify) {
vdev->notify = pci_alloc_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_notify),
&vdev->notify_pa);
if (!vdev->notify)
return -ENOMEM;
}
a0 = vdev->notify_pa;
a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
a1 += sizeof(struct vnic_devcmd_notify);
return vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
}
void vnic_dev_notify_unset(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
a0 = 0; /* paddr = 0 to unset notify buffer */
a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
a1 += sizeof(struct vnic_devcmd_notify);
vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
}
static int vnic_dev_notify_ready(struct vnic_dev *vdev)
{
u32 *words;
unsigned int nwords = sizeof(struct vnic_devcmd_notify) / 4;
unsigned int i;
u32 csum;
if (!vdev->notify)
return 0;
do {
csum = 0;
memcpy(&vdev->notify_copy, vdev->notify,
sizeof(struct vnic_devcmd_notify));
words = (u32 *)&vdev->notify_copy;
for (i = 1; i < nwords; i++)
csum += words[i];
} while (csum != words[0]);
return 1;
}
int vnic_dev_init(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
}
int vnic_dev_link_status(struct vnic_dev *vdev)
{
if (vdev->linkstatus)
return *vdev->linkstatus;
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_state;
}
u32 vnic_dev_port_speed(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.port_speed;
}
u32 vnic_dev_msg_lvl(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.msglvl;
}
u32 vnic_dev_mtu(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.mtu;
}
void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
enum vnic_dev_intr_mode intr_mode)
{
vdev->intr_mode = intr_mode;
}
enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
struct vnic_dev *vdev)
{
return vdev->intr_mode;
}
void vnic_dev_unregister(struct vnic_dev *vdev)
{
if (vdev) {
if (vdev->notify)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
if (vdev->linkstatus)
pci_free_consistent(vdev->pdev,
sizeof(u32),
vdev->linkstatus,
vdev->linkstatus_pa);
if (vdev->stats)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_dev),
vdev->stats, vdev->stats_pa);
if (vdev->fw_info)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_fw_info),
vdev->fw_info, vdev->fw_info_pa);
kfree(vdev);
}
}
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar)
{
if (!vdev) {
vdev = kzalloc(sizeof(struct vnic_dev), GFP_ATOMIC);
if (!vdev)
return NULL;
}
vdev->priv = priv;
vdev->pdev = pdev;
if (vnic_dev_discover_res(vdev, bar))
goto err_out;
vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
if (!vdev->devcmd)
goto err_out;
return vdev;
err_out:
vnic_dev_unregister(vdev);
return NULL;
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_DEV_H_
#define _VNIC_DEV_H_
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#ifndef VNIC_PADDR_TARGET
#define VNIC_PADDR_TARGET 0x0000000000000000ULL
#endif
enum vnic_dev_intr_mode {
VNIC_DEV_INTR_MODE_UNKNOWN,
VNIC_DEV_INTR_MODE_INTX,
VNIC_DEV_INTR_MODE_MSI,
VNIC_DEV_INTR_MODE_MSIX,
};
struct vnic_dev_bar {
void __iomem *vaddr;
dma_addr_t bus_addr;
unsigned long len;
};
struct vnic_dev_ring {
void *descs;
size_t size;
dma_addr_t base_addr;
size_t base_align;
void *descs_unaligned;
size_t size_unaligned;
dma_addr_t base_addr_unaligned;
unsigned int desc_size;
unsigned int desc_count;
unsigned int desc_avail;
};
struct vnic_dev;
struct vnic_stats;
void *vnic_dev_priv(struct vnic_dev *vdev);
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type);
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index);
unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size);
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring);
int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size);
void vnic_dev_free_desc_ring(struct vnic_dev *vdev,
struct vnic_dev_ring *ring);
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait);
int vnic_dev_fw_info(struct vnic_dev *vdev,
struct vnic_devcmd_fw_info **fw_info);
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
void *value);
int vnic_dev_stats_clear(struct vnic_dev *vdev);
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats);
int vnic_dev_hang_notify(struct vnic_dev *vdev);
void vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti);
void vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr);
void vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr);
int vnic_dev_mac_addr(struct vnic_dev *vdev, u8 *mac_addr);
int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr);
void vnic_dev_notify_unset(struct vnic_dev *vdev);
int vnic_dev_link_status(struct vnic_dev *vdev);
u32 vnic_dev_port_speed(struct vnic_dev *vdev);
u32 vnic_dev_msg_lvl(struct vnic_dev *vdev);
u32 vnic_dev_mtu(struct vnic_dev *vdev);
int vnic_dev_close(struct vnic_dev *vdev);
int vnic_dev_enable(struct vnic_dev *vdev);
int vnic_dev_disable(struct vnic_dev *vdev);
int vnic_dev_open(struct vnic_dev *vdev, int arg);
int vnic_dev_open_done(struct vnic_dev *vdev, int *done);
int vnic_dev_init(struct vnic_dev *vdev, int arg);
int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg);
int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done);
void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
enum vnic_dev_intr_mode intr_mode);
enum vnic_dev_intr_mode vnic_dev_get_intr_mode(struct vnic_dev *vdev);
void vnic_dev_unregister(struct vnic_dev *vdev);
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar);
#endif /* _VNIC_DEV_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_DEVCMD_H_
#define _VNIC_DEVCMD_H_
#define _CMD_NBITS 14
#define _CMD_VTYPEBITS 10
#define _CMD_FLAGSBITS 6
#define _CMD_DIRBITS 2
#define _CMD_NMASK ((1 << _CMD_NBITS)-1)
#define _CMD_VTYPEMASK ((1 << _CMD_VTYPEBITS)-1)
#define _CMD_FLAGSMASK ((1 << _CMD_FLAGSBITS)-1)
#define _CMD_DIRMASK ((1 << _CMD_DIRBITS)-1)
#define _CMD_NSHIFT 0
#define _CMD_VTYPESHIFT (_CMD_NSHIFT+_CMD_NBITS)
#define _CMD_FLAGSSHIFT (_CMD_VTYPESHIFT+_CMD_VTYPEBITS)
#define _CMD_DIRSHIFT (_CMD_FLAGSSHIFT+_CMD_FLAGSBITS)
/*
* Direction bits (from host perspective).
*/
#define _CMD_DIR_NONE 0U
#define _CMD_DIR_WRITE 1U
#define _CMD_DIR_READ 2U
#define _CMD_DIR_RW (_CMD_DIR_WRITE | _CMD_DIR_READ)
/*
* Flag bits.
*/
#define _CMD_FLAGS_NONE 0U
#define _CMD_FLAGS_NOWAIT 1U
/*
* vNIC type bits.
*/
#define _CMD_VTYPE_NONE 0U
#define _CMD_VTYPE_ENET 1U
#define _CMD_VTYPE_FC 2U
#define _CMD_VTYPE_SCSI 4U
#define _CMD_VTYPE_ALL (_CMD_VTYPE_ENET | _CMD_VTYPE_FC | _CMD_VTYPE_SCSI)
/*
* Used to create cmds..
*/
#define _CMDCF(dir, flags, vtype, nr) \
(((dir) << _CMD_DIRSHIFT) | \
((flags) << _CMD_FLAGSSHIFT) | \
((vtype) << _CMD_VTYPESHIFT) | \
((nr) << _CMD_NSHIFT))
#define _CMDC(dir, vtype, nr) _CMDCF(dir, 0, vtype, nr)
#define _CMDCNW(dir, vtype, nr) _CMDCF(dir, _CMD_FLAGS_NOWAIT, vtype, nr)
/*
* Used to decode cmds..
*/
#define _CMD_DIR(cmd) (((cmd) >> _CMD_DIRSHIFT) & _CMD_DIRMASK)
#define _CMD_FLAGS(cmd) (((cmd) >> _CMD_FLAGSSHIFT) & _CMD_FLAGSMASK)
#define _CMD_VTYPE(cmd) (((cmd) >> _CMD_VTYPESHIFT) & _CMD_VTYPEMASK)
#define _CMD_N(cmd) (((cmd) >> _CMD_NSHIFT) & _CMD_NMASK)
enum vnic_devcmd_cmd {
CMD_NONE = _CMDC(_CMD_DIR_NONE, _CMD_VTYPE_NONE, 0),
/* mcpu fw info in mem: (u64)a0=paddr to struct vnic_devcmd_fw_info */
CMD_MCPU_FW_INFO = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 1),
/* dev-specific block member:
* in: (u16)a0=offset,(u8)a1=size
* out: a0=value */
CMD_DEV_SPEC = _CMDC(_CMD_DIR_RW, _CMD_VTYPE_ALL, 2),
/* stats clear */
CMD_STATS_CLEAR = _CMDCNW(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 3),
/* stats dump in mem: (u64)a0=paddr to stats area,
* (u16)a1=sizeof stats area */
CMD_STATS_DUMP = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 4),
/* set Rx packet filter: (u32)a0=filters (see CMD_PFILTER_*) */
CMD_PACKET_FILTER = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 7),
/* hang detection notification */
CMD_HANG_NOTIFY = _CMDC(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 8),
/* MAC address in (u48)a0 */
CMD_MAC_ADDR = _CMDC(_CMD_DIR_READ,
_CMD_VTYPE_ENET | _CMD_VTYPE_FC, 9),
/* disable/enable promisc mode: (u8)a0=0/1 */
/***** XXX DEPRECATED *****/
CMD_PROMISC_MODE = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 10),
/* disable/enable all-multi mode: (u8)a0=0/1 */
/***** XXX DEPRECATED *****/
CMD_ALLMULTI_MODE = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 11),
/* add addr from (u48)a0 */
CMD_ADDR_ADD = _CMDCNW(_CMD_DIR_WRITE,
_CMD_VTYPE_ENET | _CMD_VTYPE_FC, 12),
/* del addr from (u48)a0 */
CMD_ADDR_DEL = _CMDCNW(_CMD_DIR_WRITE,
_CMD_VTYPE_ENET | _CMD_VTYPE_FC, 13),
/* add VLAN id in (u16)a0 */
CMD_VLAN_ADD = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 14),
/* del VLAN id in (u16)a0 */
CMD_VLAN_DEL = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 15),
/* nic_cfg in (u32)a0 */
CMD_NIC_CFG = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 16),
/* union vnic_rss_key in mem: (u64)a0=paddr, (u16)a1=len */
CMD_RSS_KEY = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 17),
/* union vnic_rss_cpu in mem: (u64)a0=paddr, (u16)a1=len */
CMD_RSS_CPU = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 18),
/* initiate softreset */
CMD_SOFT_RESET = _CMDCNW(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 19),
/* softreset status:
* out: a0=0 reset complete, a0=1 reset in progress */
CMD_SOFT_RESET_STATUS = _CMDC(_CMD_DIR_READ, _CMD_VTYPE_ALL, 20),
/* set struct vnic_devcmd_notify buffer in mem:
* in:
* (u64)a0=paddr to notify (set paddr=0 to unset)
* (u32)a1 & 0x00000000ffffffff=sizeof(struct vnic_devcmd_notify)
* (u16)a1 & 0x0000ffff00000000=intr num (-1 for no intr)
* out:
* (u32)a1 = effective size
*/
CMD_NOTIFY = _CMDC(_CMD_DIR_RW, _CMD_VTYPE_ALL, 21),
/* UNDI API: (u64)a0=paddr to s_PXENV_UNDI_ struct,
* (u8)a1=PXENV_UNDI_xxx */
CMD_UNDI = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 22),
/* initiate open sequence (u32)a0=flags (see CMD_OPENF_*) */
CMD_OPEN = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 23),
/* open status:
* out: a0=0 open complete, a0=1 open in progress */
CMD_OPEN_STATUS = _CMDC(_CMD_DIR_READ, _CMD_VTYPE_ALL, 24),
/* close vnic */
CMD_CLOSE = _CMDC(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 25),
/* initialize virtual link: (u32)a0=flags (see CMD_INITF_*) */
CMD_INIT = _CMDCNW(_CMD_DIR_READ, _CMD_VTYPE_ALL, 26),
/* variant of CMD_INIT, with provisioning info
* (u64)a0=paddr of vnic_devcmd_provinfo
* (u32)a1=sizeof provision info */
CMD_INIT_PROV_INFO = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 27),
/* enable virtual link */
CMD_ENABLE = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 28),
/* disable virtual link */
CMD_DISABLE = _CMDC(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 29),
/* stats dump all vnics on uplink in mem: (u64)a0=paddr (u32)a1=uif */
CMD_STATS_DUMP_ALL = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_ALL, 30),
/* init status:
* out: a0=0 init complete, a0=1 init in progress
* if a0=0, a1=errno */
CMD_INIT_STATUS = _CMDC(_CMD_DIR_READ, _CMD_VTYPE_ALL, 31),
/* INT13 API: (u64)a0=paddr to vnic_int13_params struct
* (u8)a1=INT13_CMD_xxx */
CMD_INT13 = _CMDC(_CMD_DIR_WRITE, _CMD_VTYPE_FC, 32),
/* logical uplink enable/disable: (u64)a0: 0/1=disable/enable */
CMD_LOGICAL_UPLINK = _CMDCNW(_CMD_DIR_WRITE, _CMD_VTYPE_ENET, 33),
/* undo initialize of virtual link */
CMD_DEINIT = _CMDCNW(_CMD_DIR_NONE, _CMD_VTYPE_ALL, 34),
};
/* flags for CMD_OPEN */
#define CMD_OPENF_OPROM 0x1 /* open coming from option rom */
/* flags for CMD_INIT */
#define CMD_INITF_DEFAULT_MAC 0x1 /* init with default mac addr */
/* flags for CMD_PACKET_FILTER */
#define CMD_PFILTER_DIRECTED 0x01
#define CMD_PFILTER_MULTICAST 0x02
#define CMD_PFILTER_BROADCAST 0x04
#define CMD_PFILTER_PROMISCUOUS 0x08
#define CMD_PFILTER_ALL_MULTICAST 0x10
enum vnic_devcmd_status {
STAT_NONE = 0,
STAT_BUSY = 1 << 0, /* cmd in progress */
STAT_ERROR = 1 << 1, /* last cmd caused error (code in a0) */
};
enum vnic_devcmd_error {
ERR_SUCCESS = 0,
ERR_EINVAL = 1,
ERR_EFAULT = 2,
ERR_EPERM = 3,
ERR_EBUSY = 4,
ERR_ECMDUNKNOWN = 5,
ERR_EBADSTATE = 6,
ERR_ENOMEM = 7,
ERR_ETIMEDOUT = 8,
ERR_ELINKDOWN = 9,
};
struct vnic_devcmd_fw_info {
char fw_version[32];
char fw_build[32];
char hw_version[32];
char hw_serial_number[32];
};
struct vnic_devcmd_notify {
u32 csum; /* checksum over following words */
u32 link_state; /* link up == 1 */
u32 port_speed; /* effective port speed (rate limit) */
u32 mtu; /* MTU */
u32 msglvl; /* requested driver msg lvl */
u32 uif; /* uplink interface */
u32 status; /* status bits (see VNIC_STF_*) */
u32 error; /* error code (see ERR_*) for first ERR */
};
#define VNIC_STF_FATAL_ERR 0x0001 /* fatal fw error */
struct vnic_devcmd_provinfo {
u8 oui[3];
u8 type;
u8 data[0];
};
/*
* Writing cmd register causes STAT_BUSY to get set in status register.
* When cmd completes, STAT_BUSY will be cleared.
*
* If cmd completed successfully STAT_ERROR will be clear
* and args registers contain cmd-specific results.
*
* If cmd error, STAT_ERROR will be set and args[0] contains error code.
*
* status register is read-only. While STAT_BUSY is set,
* all other register contents are read-only.
*/
/* Make sizeof(vnic_devcmd) a power-of-2 for I/O BAR. */
#define VNIC_DEVCMD_NARGS 15
struct vnic_devcmd {
u32 status; /* RO */
u32 cmd; /* RW */
u64 args[VNIC_DEVCMD_NARGS]; /* RW cmd args (little-endian) */
};
#endif /* _VNIC_DEVCMD_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_ENIC_H_
#define _VNIC_ENIC_H_
/* Device-specific region: enet configuration */
struct vnic_enet_config {
u32 flags;
u32 wq_desc_count;
u32 rq_desc_count;
u16 mtu;
u16 intr_timer;
u8 intr_timer_type;
u8 intr_mode;
char devname[16];
};
#define VENETF_TSO 0x1 /* TSO enabled */
#define VENETF_LRO 0x2 /* LRO enabled */
#define VENETF_RXCSUM 0x4 /* RX csum enabled */
#define VENETF_TXCSUM 0x8 /* TX csum enabled */
#define VENETF_RSS 0x10 /* RSS enabled */
#define VENETF_RSSHASH_IPV4 0x20 /* Hash on IPv4 fields */
#define VENETF_RSSHASH_TCPIPV4 0x40 /* Hash on TCP + IPv4 fields */
#define VENETF_RSSHASH_IPV6 0x80 /* Hash on IPv6 fields */
#define VENETF_RSSHASH_TCPIPV6 0x100 /* Hash on TCP + IPv6 fields */
#define VENETF_RSSHASH_IPV6_EX 0x200 /* Hash on IPv6 extended fields */
#define VENETF_RSSHASH_TCPIPV6_EX 0x400 /* Hash on TCP + IPv6 ext. fields */
#endif /* _VNIC_ENIC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "vnic_dev.h"
#include "vnic_intr.h"
void vnic_intr_free(struct vnic_intr *intr)
{
intr->ctrl = NULL;
}
int vnic_intr_alloc(struct vnic_dev *vdev, struct vnic_intr *intr,
unsigned int index)
{
intr->index = index;
intr->vdev = vdev;
intr->ctrl = vnic_dev_get_res(vdev, RES_TYPE_INTR_CTRL, index);
if (!intr->ctrl) {
printk(KERN_ERR "Failed to hook INTR[%d].ctrl resource\n",
index);
return -EINVAL;
}
return 0;
}
void vnic_intr_init(struct vnic_intr *intr, unsigned int coalescing_timer,
unsigned int coalescing_type, unsigned int mask_on_assertion)
{
iowrite32(coalescing_timer, &intr->ctrl->coalescing_timer);
iowrite32(coalescing_type, &intr->ctrl->coalescing_type);
iowrite32(mask_on_assertion, &intr->ctrl->mask_on_assertion);
iowrite32(0, &intr->ctrl->int_credits);
}
void vnic_intr_clean(struct vnic_intr *intr)
{
iowrite32(0, &intr->ctrl->int_credits);
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_INTR_H_
#define _VNIC_INTR_H_
#include <linux/pci.h>
#include "vnic_dev.h"
#define VNIC_INTR_TIMER_MAX 0xffff
#define VNIC_INTR_TIMER_TYPE_ABS 0
#define VNIC_INTR_TIMER_TYPE_QUIET 1
/* Interrupt control */
struct vnic_intr_ctrl {
u32 coalescing_timer; /* 0x00 */
u32 pad0;
u32 coalescing_value; /* 0x08 */
u32 pad1;
u32 coalescing_type; /* 0x10 */
u32 pad2;
u32 mask_on_assertion; /* 0x18 */
u32 pad3;
u32 mask; /* 0x20 */
u32 pad4;
u32 int_credits; /* 0x28 */
u32 pad5;
u32 int_credit_return; /* 0x30 */
u32 pad6;
};
struct vnic_intr {
unsigned int index;
struct vnic_dev *vdev;
struct vnic_intr_ctrl __iomem *ctrl; /* memory-mapped */
};
static inline void vnic_intr_unmask(struct vnic_intr *intr)
{
iowrite32(0, &intr->ctrl->mask);
}
static inline void vnic_intr_mask(struct vnic_intr *intr)
{
iowrite32(1, &intr->ctrl->mask);
}
static inline void vnic_intr_return_credits(struct vnic_intr *intr,
unsigned int credits, int unmask, int reset_timer)
{
#define VNIC_INTR_UNMASK_SHIFT 16
#define VNIC_INTR_RESET_TIMER_SHIFT 17
u32 int_credit_return = (credits & 0xffff) |
(unmask ? (1 << VNIC_INTR_UNMASK_SHIFT) : 0) |
(reset_timer ? (1 << VNIC_INTR_RESET_TIMER_SHIFT) : 0);
iowrite32(int_credit_return, &intr->ctrl->int_credit_return);
}
static inline u32 vnic_intr_legacy_pba(u32 __iomem *legacy_pba)
{
/* get and ack interrupt in one read (clear-and-ack-on-read) */
return ioread32(legacy_pba);
}
void vnic_intr_free(struct vnic_intr *intr);
int vnic_intr_alloc(struct vnic_dev *vdev, struct vnic_intr *intr,
unsigned int index);
void vnic_intr_init(struct vnic_intr *intr, unsigned int coalescing_timer,
unsigned int coalescing_type, unsigned int mask_on_assertion);
void vnic_intr_clean(struct vnic_intr *intr);
#endif /* _VNIC_INTR_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_NIC_H_
#define _VNIC_NIC_H_
#define NIC_CFG_RSS_DEFAULT_CPU_MASK_FIELD 0xffUL
#define NIC_CFG_RSS_DEFAULT_CPU_SHIFT 0
#define NIC_CFG_RSS_HASH_TYPE (0xffUL << 8)
#define NIC_CFG_RSS_HASH_TYPE_MASK_FIELD 0xffUL
#define NIC_CFG_RSS_HASH_TYPE_SHIFT 8
#define NIC_CFG_RSS_HASH_BITS (7UL << 16)
#define NIC_CFG_RSS_HASH_BITS_MASK_FIELD 7UL
#define NIC_CFG_RSS_HASH_BITS_SHIFT 16
#define NIC_CFG_RSS_BASE_CPU (7UL << 19)
#define NIC_CFG_RSS_BASE_CPU_MASK_FIELD 7UL
#define NIC_CFG_RSS_BASE_CPU_SHIFT 19
#define NIC_CFG_RSS_ENABLE (1UL << 22)
#define NIC_CFG_RSS_ENABLE_MASK_FIELD 1UL
#define NIC_CFG_RSS_ENABLE_SHIFT 22
#define NIC_CFG_TSO_IPID_SPLIT_EN (1UL << 23)
#define NIC_CFG_TSO_IPID_SPLIT_EN_MASK_FIELD 1UL
#define NIC_CFG_TSO_IPID_SPLIT_EN_SHIFT 23
#define NIC_CFG_IG_VLAN_STRIP_EN (1UL << 24)
#define NIC_CFG_IG_VLAN_STRIP_EN_MASK_FIELD 1UL
#define NIC_CFG_IG_VLAN_STRIP_EN_SHIFT 24
static inline void vnic_set_nic_cfg(u32 *nic_cfg,
u8 rss_default_cpu, u8 rss_hash_type,
u8 rss_hash_bits, u8 rss_base_cpu,
u8 rss_enable, u8 tso_ipid_split_en,
u8 ig_vlan_strip_en)
{
*nic_cfg = (rss_default_cpu & NIC_CFG_RSS_DEFAULT_CPU_MASK_FIELD) |
((rss_hash_type & NIC_CFG_RSS_HASH_TYPE_MASK_FIELD)
<< NIC_CFG_RSS_HASH_TYPE_SHIFT) |
((rss_hash_bits & NIC_CFG_RSS_HASH_BITS_MASK_FIELD)
<< NIC_CFG_RSS_HASH_BITS_SHIFT) |
((rss_base_cpu & NIC_CFG_RSS_BASE_CPU_MASK_FIELD)
<< NIC_CFG_RSS_BASE_CPU_SHIFT) |
((rss_enable & NIC_CFG_RSS_ENABLE_MASK_FIELD)
<< NIC_CFG_RSS_ENABLE_SHIFT) |
((tso_ipid_split_en & NIC_CFG_TSO_IPID_SPLIT_EN_MASK_FIELD)
<< NIC_CFG_TSO_IPID_SPLIT_EN_SHIFT) |
((ig_vlan_strip_en & NIC_CFG_IG_VLAN_STRIP_EN_MASK_FIELD)
<< NIC_CFG_IG_VLAN_STRIP_EN_SHIFT);
}
#endif /* _VNIC_NIC_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_RESOURCE_H_
#define _VNIC_RESOURCE_H_
#define VNIC_RES_MAGIC 0x766E6963L /* 'vnic' */
#define VNIC_RES_VERSION 0x00000000L
/* vNIC resource types */
enum vnic_res_type {
RES_TYPE_EOL, /* End-of-list */
RES_TYPE_WQ, /* Work queues */
RES_TYPE_RQ, /* Receive queues */
RES_TYPE_CQ, /* Completion queues */
RES_TYPE_RSVD1,
RES_TYPE_NIC_CFG, /* Enet NIC config registers */
RES_TYPE_RSVD2,
RES_TYPE_RSVD3,
RES_TYPE_RSVD4,
RES_TYPE_RSVD5,
RES_TYPE_INTR_CTRL, /* Interrupt ctrl table */
RES_TYPE_INTR_TABLE, /* MSI/MSI-X Interrupt table */
RES_TYPE_INTR_PBA, /* MSI/MSI-X PBA table */
RES_TYPE_INTR_PBA_LEGACY, /* Legacy intr status, r2c */
RES_TYPE_RSVD6,
RES_TYPE_RSVD7,
RES_TYPE_DEVCMD, /* Device command region */
RES_TYPE_PASS_THRU_PAGE, /* Pass-thru page */
RES_TYPE_MAX, /* Count of resource types */
};
struct vnic_resource_header {
u32 magic;
u32 version;
};
struct vnic_resource {
u8 type;
u8 bar;
u8 pad[2];
u32 bar_offset;
u32 count;
};
#endif /* _VNIC_RESOURCE_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "vnic_dev.h"
#include "vnic_rq.h"
static int vnic_rq_alloc_bufs(struct vnic_rq *rq)
{
struct vnic_rq_buf *buf;
struct vnic_dev *vdev;
unsigned int i, j, count = rq->ring.desc_count;
unsigned int blks = VNIC_RQ_BUF_BLKS_NEEDED(count);
vdev = rq->vdev;
for (i = 0; i < blks; i++) {
rq->bufs[i] = kzalloc(VNIC_RQ_BUF_BLK_SZ, GFP_ATOMIC);
if (!rq->bufs[i]) {
printk(KERN_ERR "Failed to alloc rq_bufs\n");
return -ENOMEM;
}
}
for (i = 0; i < blks; i++) {
buf = rq->bufs[i];
for (j = 0; j < VNIC_RQ_BUF_BLK_ENTRIES; j++) {
buf->index = i * VNIC_RQ_BUF_BLK_ENTRIES + j;
buf->desc = (u8 *)rq->ring.descs +
rq->ring.desc_size * buf->index;
if (buf->index + 1 == count) {
buf->next = rq->bufs[0];
break;
} else if (j + 1 == VNIC_RQ_BUF_BLK_ENTRIES) {
buf->next = rq->bufs[i + 1];
} else {
buf->next = buf + 1;
buf++;
}
}
}
rq->to_use = rq->to_clean = rq->bufs[0];
rq->buf_index = 0;
return 0;
}
void vnic_rq_free(struct vnic_rq *rq)
{
struct vnic_dev *vdev;
unsigned int i;
vdev = rq->vdev;
vnic_dev_free_desc_ring(vdev, &rq->ring);
for (i = 0; i < VNIC_RQ_BUF_BLKS_MAX; i++) {
kfree(rq->bufs[i]);
rq->bufs[i] = NULL;
}
rq->ctrl = NULL;
}
int vnic_rq_alloc(struct vnic_dev *vdev, struct vnic_rq *rq, unsigned int index,
unsigned int desc_count, unsigned int desc_size)
{
int err;
rq->index = index;
rq->vdev = vdev;
rq->ctrl = vnic_dev_get_res(vdev, RES_TYPE_RQ, index);
if (!rq->ctrl) {
printk(KERN_ERR "Failed to hook RQ[%d] resource\n", index);
return -EINVAL;
}
vnic_rq_disable(rq);
err = vnic_dev_alloc_desc_ring(vdev, &rq->ring, desc_count, desc_size);
if (err)
return err;
err = vnic_rq_alloc_bufs(rq);
if (err) {
vnic_rq_free(rq);
return err;
}
return 0;
}
void vnic_rq_init(struct vnic_rq *rq, unsigned int cq_index,
unsigned int error_interrupt_enable,
unsigned int error_interrupt_offset)
{
u64 paddr;
u32 fetch_index;
paddr = (u64)rq->ring.base_addr | VNIC_PADDR_TARGET;
writeq(paddr, &rq->ctrl->ring_base);
iowrite32(rq->ring.desc_count, &rq->ctrl->ring_size);
iowrite32(cq_index, &rq->ctrl->cq_index);
iowrite32(error_interrupt_enable, &rq->ctrl->error_interrupt_enable);
iowrite32(error_interrupt_offset, &rq->ctrl->error_interrupt_offset);
iowrite32(0, &rq->ctrl->dropped_packet_count);
iowrite32(0, &rq->ctrl->error_status);
/* Use current fetch_index as the ring starting point */
fetch_index = ioread32(&rq->ctrl->fetch_index);
rq->to_use = rq->to_clean =
&rq->bufs[fetch_index / VNIC_RQ_BUF_BLK_ENTRIES]
[fetch_index % VNIC_RQ_BUF_BLK_ENTRIES];
iowrite32(fetch_index, &rq->ctrl->posted_index);
rq->buf_index = 0;
}
unsigned int vnic_rq_error_status(struct vnic_rq *rq)
{
return ioread32(&rq->ctrl->error_status);
}
void vnic_rq_enable(struct vnic_rq *rq)
{
iowrite32(1, &rq->ctrl->enable);
}
int vnic_rq_disable(struct vnic_rq *rq)
{
unsigned int wait;
iowrite32(0, &rq->ctrl->enable);
/* Wait for HW to ACK disable request */
for (wait = 0; wait < 100; wait++) {
if (!(ioread32(&rq->ctrl->running)))
return 0;
udelay(1);
}
printk(KERN_ERR "Failed to disable RQ[%d]\n", rq->index);
return -ETIMEDOUT;
}
void vnic_rq_clean(struct vnic_rq *rq,
void (*buf_clean)(struct vnic_rq *rq, struct vnic_rq_buf *buf))
{
struct vnic_rq_buf *buf;
u32 fetch_index;
BUG_ON(ioread32(&rq->ctrl->enable));
buf = rq->to_clean;
while (vnic_rq_desc_used(rq) > 0) {
(*buf_clean)(rq, buf);
buf = rq->to_clean = buf->next;
rq->ring.desc_avail++;
}
/* Use current fetch_index as the ring starting point */
fetch_index = ioread32(&rq->ctrl->fetch_index);
rq->to_use = rq->to_clean =
&rq->bufs[fetch_index / VNIC_RQ_BUF_BLK_ENTRIES]
[fetch_index % VNIC_RQ_BUF_BLK_ENTRIES];
iowrite32(fetch_index, &rq->ctrl->posted_index);
rq->buf_index = 0;
vnic_dev_clear_desc_ring(&rq->ring);
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_RQ_H_
#define _VNIC_RQ_H_
#include <linux/pci.h>
#include "vnic_dev.h"
#include "vnic_cq.h"
/* Receive queue control */
struct vnic_rq_ctrl {
u64 ring_base; /* 0x00 */
u32 ring_size; /* 0x08 */
u32 pad0;
u32 posted_index; /* 0x10 */
u32 pad1;
u32 cq_index; /* 0x18 */
u32 pad2;
u32 enable; /* 0x20 */
u32 pad3;
u32 running; /* 0x28 */
u32 pad4;
u32 fetch_index; /* 0x30 */
u32 pad5;
u32 error_interrupt_enable; /* 0x38 */
u32 pad6;
u32 error_interrupt_offset; /* 0x40 */
u32 pad7;
u32 error_status; /* 0x48 */
u32 pad8;
u32 dropped_packet_count; /* 0x50 */
u32 pad9;
u32 dropped_packet_count_rc; /* 0x58 */
u32 pad10;
};
/* Break the vnic_rq_buf allocations into blocks of 64 entries */
#define VNIC_RQ_BUF_BLK_ENTRIES 64
#define VNIC_RQ_BUF_BLK_SZ \
(VNIC_RQ_BUF_BLK_ENTRIES * sizeof(struct vnic_rq_buf))
#define VNIC_RQ_BUF_BLKS_NEEDED(entries) \
DIV_ROUND_UP(entries, VNIC_RQ_BUF_BLK_ENTRIES)
#define VNIC_RQ_BUF_BLKS_MAX VNIC_RQ_BUF_BLKS_NEEDED(4096)
struct vnic_rq_buf {
struct vnic_rq_buf *next;
dma_addr_t dma_addr;
void *os_buf;
unsigned int os_buf_index;
unsigned int len;
unsigned int index;
void *desc;
};
struct vnic_rq {
unsigned int index;
struct vnic_dev *vdev;
struct vnic_rq_ctrl __iomem *ctrl; /* memory-mapped */
struct vnic_dev_ring ring;
struct vnic_rq_buf *bufs[VNIC_RQ_BUF_BLKS_MAX];
struct vnic_rq_buf *to_use;
struct vnic_rq_buf *to_clean;
void *os_buf_head;
unsigned int buf_index;
unsigned int pkts_outstanding;
};
static inline unsigned int vnic_rq_desc_avail(struct vnic_rq *rq)
{
/* how many does SW own? */
return rq->ring.desc_avail;
}
static inline unsigned int vnic_rq_desc_used(struct vnic_rq *rq)
{
/* how many does HW own? */
return rq->ring.desc_count - rq->ring.desc_avail - 1;
}
static inline void *vnic_rq_next_desc(struct vnic_rq *rq)
{
return rq->to_use->desc;
}
static inline unsigned int vnic_rq_next_index(struct vnic_rq *rq)
{
return rq->to_use->index;
}
static inline unsigned int vnic_rq_next_buf_index(struct vnic_rq *rq)
{
return rq->buf_index++;
}
static inline void vnic_rq_post(struct vnic_rq *rq,
void *os_buf, unsigned int os_buf_index,
dma_addr_t dma_addr, unsigned int len)
{
struct vnic_rq_buf *buf = rq->to_use;
buf->os_buf = os_buf;
buf->os_buf_index = os_buf_index;
buf->dma_addr = dma_addr;
buf->len = len;
buf = buf->next;
rq->to_use = buf;
rq->ring.desc_avail--;
/* Move the posted_index every nth descriptor
*/
#ifndef VNIC_RQ_RETURN_RATE
#define VNIC_RQ_RETURN_RATE 0xf /* keep 2^n - 1 */
#endif
if ((buf->index & VNIC_RQ_RETURN_RATE) == 0)
iowrite32(buf->index, &rq->ctrl->posted_index);
}
static inline void vnic_rq_return_descs(struct vnic_rq *rq, unsigned int count)
{
rq->ring.desc_avail += count;
}
enum desc_return_options {
VNIC_RQ_RETURN_DESC,
VNIC_RQ_DEFER_RETURN_DESC,
};
static inline void vnic_rq_service(struct vnic_rq *rq,
struct cq_desc *cq_desc, u16 completed_index,
int desc_return, void (*buf_service)(struct vnic_rq *rq,
struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
int skipped, void *opaque), void *opaque)
{
struct vnic_rq_buf *buf;
int skipped;
buf = rq->to_clean;
while (1) {
skipped = (buf->index != completed_index);
(*buf_service)(rq, cq_desc, buf, skipped, opaque);
if (desc_return == VNIC_RQ_RETURN_DESC)
rq->ring.desc_avail++;
rq->to_clean = buf->next;
if (!skipped)
break;
buf = rq->to_clean;
}
}
static inline int vnic_rq_fill(struct vnic_rq *rq,
int (*buf_fill)(struct vnic_rq *rq))
{
int err;
while (vnic_rq_desc_avail(rq) > 1) {
err = (*buf_fill)(rq);
if (err)
return err;
}
return 0;
}
void vnic_rq_free(struct vnic_rq *rq);
int vnic_rq_alloc(struct vnic_dev *vdev, struct vnic_rq *rq, unsigned int index,
unsigned int desc_count, unsigned int desc_size);
void vnic_rq_init(struct vnic_rq *rq, unsigned int cq_index,
unsigned int error_interrupt_enable,
unsigned int error_interrupt_offset);
unsigned int vnic_rq_error_status(struct vnic_rq *rq);
void vnic_rq_enable(struct vnic_rq *rq);
int vnic_rq_disable(struct vnic_rq *rq);
void vnic_rq_clean(struct vnic_rq *rq,
void (*buf_clean)(struct vnic_rq *rq, struct vnic_rq_buf *buf));
#endif /* _VNIC_RQ_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#ifndef _VNIC_RSS_H_
#define _VNIC_RSS_H_
/* RSS key array */
union vnic_rss_key {
struct {
u8 b[10];
u8 b_pad[6];
} key[4];
u64 raw[8];
};
/* RSS cpu array */
union vnic_rss_cpu {
struct {
u8 b[4] ;
u8 b_pad[4];
} cpu[32];
u64 raw[32];
};
void vnic_set_rss_key(union vnic_rss_key *rss_key, u8 *key);
void vnic_set_rss_cpu(union vnic_rss_cpu *rss_cpu, u8 *cpu);
void vnic_get_rss_key(union vnic_rss_key *rss_key, u8 *key);
void vnic_get_rss_cpu(union vnic_rss_cpu *rss_cpu, u8 *cpu);
#endif /* _VNIC_RSS_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_STATS_H_
#define _VNIC_STATS_H_
/* Tx statistics */
struct vnic_tx_stats {
u64 tx_frames_ok;
u64 tx_unicast_frames_ok;
u64 tx_multicast_frames_ok;
u64 tx_broadcast_frames_ok;
u64 tx_bytes_ok;
u64 tx_unicast_bytes_ok;
u64 tx_multicast_bytes_ok;
u64 tx_broadcast_bytes_ok;
u64 tx_drops;
u64 tx_errors;
u64 tx_tso;
u64 rsvd[16];
};
/* Rx statistics */
struct vnic_rx_stats {
u64 rx_frames_ok;
u64 rx_frames_total;
u64 rx_unicast_frames_ok;
u64 rx_multicast_frames_ok;
u64 rx_broadcast_frames_ok;
u64 rx_bytes_ok;
u64 rx_unicast_bytes_ok;
u64 rx_multicast_bytes_ok;
u64 rx_broadcast_bytes_ok;
u64 rx_drop;
u64 rx_no_bufs;
u64 rx_errors;
u64 rx_rss;
u64 rx_crc_errors;
u64 rx_frames_64;
u64 rx_frames_127;
u64 rx_frames_255;
u64 rx_frames_511;
u64 rx_frames_1023;
u64 rx_frames_1518;
u64 rx_frames_to_max;
u64 rsvd[16];
};
struct vnic_stats {
struct vnic_tx_stats tx;
struct vnic_rx_stats rx;
};
#endif /* _VNIC_STATS_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "vnic_dev.h"
#include "vnic_wq.h"
static int vnic_wq_alloc_bufs(struct vnic_wq *wq)
{
struct vnic_wq_buf *buf;
struct vnic_dev *vdev;
unsigned int i, j, count = wq->ring.desc_count;
unsigned int blks = VNIC_WQ_BUF_BLKS_NEEDED(count);
vdev = wq->vdev;
for (i = 0; i < blks; i++) {
wq->bufs[i] = kzalloc(VNIC_WQ_BUF_BLK_SZ, GFP_ATOMIC);
if (!wq->bufs[i]) {
printk(KERN_ERR "Failed to alloc wq_bufs\n");
return -ENOMEM;
}
}
for (i = 0; i < blks; i++) {
buf = wq->bufs[i];
for (j = 0; j < VNIC_WQ_BUF_BLK_ENTRIES; j++) {
buf->index = i * VNIC_WQ_BUF_BLK_ENTRIES + j;
buf->desc = (u8 *)wq->ring.descs +
wq->ring.desc_size * buf->index;
if (buf->index + 1 == count) {
buf->next = wq->bufs[0];
break;
} else if (j + 1 == VNIC_WQ_BUF_BLK_ENTRIES) {
buf->next = wq->bufs[i + 1];
} else {
buf->next = buf + 1;
buf++;
}
}
}
wq->to_use = wq->to_clean = wq->bufs[0];
return 0;
}
void vnic_wq_free(struct vnic_wq *wq)
{
struct vnic_dev *vdev;
unsigned int i;
vdev = wq->vdev;
vnic_dev_free_desc_ring(vdev, &wq->ring);
for (i = 0; i < VNIC_WQ_BUF_BLKS_MAX; i++) {
kfree(wq->bufs[i]);
wq->bufs[i] = NULL;
}
wq->ctrl = NULL;
}
int vnic_wq_alloc(struct vnic_dev *vdev, struct vnic_wq *wq, unsigned int index,
unsigned int desc_count, unsigned int desc_size)
{
int err;
wq->index = index;
wq->vdev = vdev;
wq->ctrl = vnic_dev_get_res(vdev, RES_TYPE_WQ, index);
if (!wq->ctrl) {
printk(KERN_ERR "Failed to hook WQ[%d] resource\n", index);
return -EINVAL;
}
vnic_wq_disable(wq);
err = vnic_dev_alloc_desc_ring(vdev, &wq->ring, desc_count, desc_size);
if (err)
return err;
err = vnic_wq_alloc_bufs(wq);
if (err) {
vnic_wq_free(wq);
return err;
}
return 0;
}
void vnic_wq_init(struct vnic_wq *wq, unsigned int cq_index,
unsigned int error_interrupt_enable,
unsigned int error_interrupt_offset)
{
u64 paddr;
paddr = (u64)wq->ring.base_addr | VNIC_PADDR_TARGET;
writeq(paddr, &wq->ctrl->ring_base);
iowrite32(wq->ring.desc_count, &wq->ctrl->ring_size);
iowrite32(0, &wq->ctrl->fetch_index);
iowrite32(0, &wq->ctrl->posted_index);
iowrite32(cq_index, &wq->ctrl->cq_index);
iowrite32(error_interrupt_enable, &wq->ctrl->error_interrupt_enable);
iowrite32(error_interrupt_offset, &wq->ctrl->error_interrupt_offset);
iowrite32(0, &wq->ctrl->error_status);
}
unsigned int vnic_wq_error_status(struct vnic_wq *wq)
{
return ioread32(&wq->ctrl->error_status);
}
void vnic_wq_enable(struct vnic_wq *wq)
{
iowrite32(1, &wq->ctrl->enable);
}
int vnic_wq_disable(struct vnic_wq *wq)
{
unsigned int wait;
iowrite32(0, &wq->ctrl->enable);
/* Wait for HW to ACK disable request */
for (wait = 0; wait < 100; wait++) {
if (!(ioread32(&wq->ctrl->running)))
return 0;
udelay(1);
}
printk(KERN_ERR "Failed to disable WQ[%d]\n", wq->index);
return -ETIMEDOUT;
}
void vnic_wq_clean(struct vnic_wq *wq,
void (*buf_clean)(struct vnic_wq *wq, struct vnic_wq_buf *buf))
{
struct vnic_wq_buf *buf;
BUG_ON(ioread32(&wq->ctrl->enable));
buf = wq->to_clean;
while (vnic_wq_desc_used(wq) > 0) {
(*buf_clean)(wq, buf);
buf = wq->to_clean = buf->next;
wq->ring.desc_avail++;
}
wq->to_use = wq->to_clean = wq->bufs[0];
iowrite32(0, &wq->ctrl->fetch_index);
iowrite32(0, &wq->ctrl->posted_index);
iowrite32(0, &wq->ctrl->error_status);
vnic_dev_clear_desc_ring(&wq->ring);
}
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _VNIC_WQ_H_
#define _VNIC_WQ_H_
#include <linux/pci.h>
#include "vnic_dev.h"
#include "vnic_cq.h"
/* Work queue control */
struct vnic_wq_ctrl {
u64 ring_base; /* 0x00 */
u32 ring_size; /* 0x08 */
u32 pad0;
u32 posted_index; /* 0x10 */
u32 pad1;
u32 cq_index; /* 0x18 */
u32 pad2;
u32 enable; /* 0x20 */
u32 pad3;
u32 running; /* 0x28 */
u32 pad4;
u32 fetch_index; /* 0x30 */
u32 pad5;
u32 dca_value; /* 0x38 */
u32 pad6;
u32 error_interrupt_enable; /* 0x40 */
u32 pad7;
u32 error_interrupt_offset; /* 0x48 */
u32 pad8;
u32 error_status; /* 0x50 */
u32 pad9;
};
struct vnic_wq_buf {
struct vnic_wq_buf *next;
dma_addr_t dma_addr;
void *os_buf;
unsigned int len;
unsigned int index;
int sop;
void *desc;
};
/* Break the vnic_wq_buf allocations into blocks of 64 entries */
#define VNIC_WQ_BUF_BLK_ENTRIES 64
#define VNIC_WQ_BUF_BLK_SZ \
(VNIC_WQ_BUF_BLK_ENTRIES * sizeof(struct vnic_wq_buf))
#define VNIC_WQ_BUF_BLKS_NEEDED(entries) \
DIV_ROUND_UP(entries, VNIC_WQ_BUF_BLK_ENTRIES)
#define VNIC_WQ_BUF_BLKS_MAX VNIC_WQ_BUF_BLKS_NEEDED(4096)
struct vnic_wq {
unsigned int index;
struct vnic_dev *vdev;
struct vnic_wq_ctrl __iomem *ctrl; /* memory-mapped */
struct vnic_dev_ring ring;
struct vnic_wq_buf *bufs[VNIC_WQ_BUF_BLKS_MAX];
struct vnic_wq_buf *to_use;
struct vnic_wq_buf *to_clean;
unsigned int pkts_outstanding;
};
static inline unsigned int vnic_wq_desc_avail(struct vnic_wq *wq)
{
/* how many does SW own? */
return wq->ring.desc_avail;
}
static inline unsigned int vnic_wq_desc_used(struct vnic_wq *wq)
{
/* how many does HW own? */
return wq->ring.desc_count - wq->ring.desc_avail - 1;
}
static inline void *vnic_wq_next_desc(struct vnic_wq *wq)
{
return wq->to_use->desc;
}
static inline void vnic_wq_post(struct vnic_wq *wq,
void *os_buf, dma_addr_t dma_addr,
unsigned int len, int sop, int eop)
{
struct vnic_wq_buf *buf = wq->to_use;
buf->sop = sop;
buf->os_buf = eop ? os_buf : NULL;
buf->dma_addr = dma_addr;
buf->len = len;
buf = buf->next;
if (eop)
iowrite32(buf->index, &wq->ctrl->posted_index);
wq->to_use = buf;
wq->ring.desc_avail--;
}
static inline void vnic_wq_service(struct vnic_wq *wq,
struct cq_desc *cq_desc, u16 completed_index,
void (*buf_service)(struct vnic_wq *wq,
struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque),
void *opaque)
{
struct vnic_wq_buf *buf;
buf = wq->to_clean;
while (1) {
(*buf_service)(wq, cq_desc, buf, opaque);
wq->ring.desc_avail++;
wq->to_clean = buf->next;
if (buf->index == completed_index)
break;
buf = wq->to_clean;
}
}
void vnic_wq_free(struct vnic_wq *wq);
int vnic_wq_alloc(struct vnic_dev *vdev, struct vnic_wq *wq, unsigned int index,
unsigned int desc_count, unsigned int desc_size);
void vnic_wq_init(struct vnic_wq *wq, unsigned int cq_index,
unsigned int error_interrupt_enable,
unsigned int error_interrupt_offset);
unsigned int vnic_wq_error_status(struct vnic_wq *wq);
void vnic_wq_enable(struct vnic_wq *wq);
int vnic_wq_disable(struct vnic_wq *wq);
void vnic_wq_clean(struct vnic_wq *wq,
void (*buf_clean)(struct vnic_wq *wq, struct vnic_wq_buf *buf));
#endif /* _VNIC_WQ_H_ */
/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _WQ_ENET_DESC_H_
#define _WQ_ENET_DESC_H_
/* Ethernet work queue descriptor: 16B */
struct wq_enet_desc {
__le64 address;
__le16 length;
__le16 mss_loopback;
__le16 header_length_flags;
__le16 vlan_tag;
};
#define WQ_ENET_ADDR_BITS 64
#define WQ_ENET_LEN_BITS 14
#define WQ_ENET_LEN_MASK ((1 << WQ_ENET_LEN_BITS) - 1)
#define WQ_ENET_MSS_BITS 14
#define WQ_ENET_MSS_MASK ((1 << WQ_ENET_MSS_BITS) - 1)
#define WQ_ENET_MSS_SHIFT 2
#define WQ_ENET_LOOPBACK_SHIFT 1
#define WQ_ENET_HDRLEN_BITS 10
#define WQ_ENET_HDRLEN_MASK ((1 << WQ_ENET_HDRLEN_BITS) - 1)
#define WQ_ENET_FLAGS_OM_BITS 2
#define WQ_ENET_FLAGS_OM_MASK ((1 << WQ_ENET_FLAGS_OM_BITS) - 1)
#define WQ_ENET_FLAGS_EOP_SHIFT 12
#define WQ_ENET_FLAGS_CQ_ENTRY_SHIFT 13
#define WQ_ENET_FLAGS_FCOE_ENCAP_SHIFT 14
#define WQ_ENET_FLAGS_VLAN_TAG_INSERT_SHIFT 15
#define WQ_ENET_OFFLOAD_MODE_CSUM 0
#define WQ_ENET_OFFLOAD_MODE_RESERVED 1
#define WQ_ENET_OFFLOAD_MODE_CSUM_L4 2
#define WQ_ENET_OFFLOAD_MODE_TSO 3
static inline void wq_enet_desc_enc(struct wq_enet_desc *desc,
u64 address, u16 length, u16 mss, u16 header_length,
u8 offload_mode, u8 eop, u8 cq_entry, u8 fcoe_encap,
u8 vlan_tag_insert, u16 vlan_tag, u8 loopback)
{
desc->address = cpu_to_le64(address);
desc->length = cpu_to_le16(length & WQ_ENET_LEN_MASK);
desc->mss_loopback = cpu_to_le16((mss & WQ_ENET_MSS_MASK) <<
WQ_ENET_MSS_SHIFT | (loopback & 1) << WQ_ENET_LOOPBACK_SHIFT);
desc->header_length_flags = cpu_to_le16(
(header_length & WQ_ENET_HDRLEN_MASK) |
(offload_mode & WQ_ENET_FLAGS_OM_MASK) << WQ_ENET_HDRLEN_BITS |
(eop & 1) << WQ_ENET_FLAGS_EOP_SHIFT |
(cq_entry & 1) << WQ_ENET_FLAGS_CQ_ENTRY_SHIFT |
(fcoe_encap & 1) << WQ_ENET_FLAGS_FCOE_ENCAP_SHIFT |
(vlan_tag_insert & 1) << WQ_ENET_FLAGS_VLAN_TAG_INSERT_SHIFT);
desc->vlan_tag = cpu_to_le16(vlan_tag);
}
static inline void wq_enet_desc_dec(struct wq_enet_desc *desc,
u64 *address, u16 *length, u16 *mss, u16 *header_length,
u8 *offload_mode, u8 *eop, u8 *cq_entry, u8 *fcoe_encap,
u8 *vlan_tag_insert, u16 *vlan_tag, u8 *loopback)
{
*address = le64_to_cpu(desc->address);
*length = le16_to_cpu(desc->length) & WQ_ENET_LEN_MASK;
*mss = (le16_to_cpu(desc->mss_loopback) >> WQ_ENET_MSS_SHIFT) &
WQ_ENET_MSS_MASK;
*loopback = (u8)((le16_to_cpu(desc->mss_loopback) >>
WQ_ENET_LOOPBACK_SHIFT) & 1);
*header_length = le16_to_cpu(desc->header_length_flags) &
WQ_ENET_HDRLEN_MASK;
*offload_mode = (u8)((le16_to_cpu(desc->header_length_flags) >>
WQ_ENET_HDRLEN_BITS) & WQ_ENET_FLAGS_OM_MASK);
*eop = (u8)((le16_to_cpu(desc->header_length_flags) >>
WQ_ENET_FLAGS_EOP_SHIFT) & 1);
*cq_entry = (u8)((le16_to_cpu(desc->header_length_flags) >>
WQ_ENET_FLAGS_CQ_ENTRY_SHIFT) & 1);
*fcoe_encap = (u8)((le16_to_cpu(desc->header_length_flags) >>
WQ_ENET_FLAGS_FCOE_ENCAP_SHIFT) & 1);
*vlan_tag_insert = (u8)((le16_to_cpu(desc->header_length_flags) >>
WQ_ENET_FLAGS_VLAN_TAG_INSERT_SHIFT) & 1);
*vlan_tag = le16_to_cpu(desc->vlan_tag);
}
#endif /* _WQ_ENET_DESC_H_ */
/*
* JMicron JMC2x0 series PCIe Ethernet Linux Device Driver
*
* Copyright 2008 JMicron Technology Corporation
* http://www.jmicron.com/
*
* Author: Guo-Fu Tseng <cooldavid@cooldavid.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_vlan.h>
#include "jme.h"
static int force_pseudohp = -1;
static int no_pseudohp = -1;
static int no_extplug = -1;
module_param(force_pseudohp, int, 0);
MODULE_PARM_DESC(force_pseudohp,
"Enable pseudo hot-plug feature manually by driver instead of BIOS.");
module_param(no_pseudohp, int, 0);
MODULE_PARM_DESC(no_pseudohp, "Disable pseudo hot-plug feature.");
module_param(no_extplug, int, 0);
MODULE_PARM_DESC(no_extplug,
"Do not use external plug signal for pseudo hot-plug.");
static int
jme_mdio_read(struct net_device *netdev, int phy, int reg)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, val, again = (reg == MII_BMSR) ? 1 : 0;
read_again:
jwrite32(jme, JME_SMI, SMI_OP_REQ |
smi_phy_addr(phy) |
smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
val = jread32(jme, JME_SMI);
if ((val & SMI_OP_REQ) == 0)
break;
}
if (i == 0) {
jeprintk(jme->pdev, "phy(%d) read timeout : %d\n", phy, reg);
return 0;
}
if (again--)
goto read_again;
return (val & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
}
static void
jme_mdio_write(struct net_device *netdev,
int phy, int reg, int val)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i;
jwrite32(jme, JME_SMI, SMI_OP_WRITE | SMI_OP_REQ |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
smi_phy_addr(phy) | smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
if ((jread32(jme, JME_SMI) & SMI_OP_REQ) == 0)
break;
}
if (i == 0)
jeprintk(jme->pdev, "phy(%d) write timeout : %d\n", phy, reg);
return;
}
static inline void
jme_reset_phy_processor(struct jme_adapter *jme)
{
u32 val;
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_CTRL1000,
ADVERTISE_1000FULL | ADVERTISE_1000HALF);
val = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_BMCR, val | BMCR_RESET);
return;
}
static void
jme_setup_wakeup_frame(struct jme_adapter *jme,
u32 *mask, u32 crc, int fnr)
{
int i;
/*
* Setup CRC pattern
*/
jwrite32(jme, JME_WFOI, WFOI_CRC_SEL | (fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, crc);
wmb();
/*
* Setup Mask
*/
for (i = 0 ; i < WAKEUP_FRAME_MASK_DWNR ; ++i) {
jwrite32(jme, JME_WFOI,
((i << WFOI_MASK_SHIFT) & WFOI_MASK_SEL) |
(fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, mask[i]);
wmb();
}
}
static inline void
jme_reset_mac_processor(struct jme_adapter *jme)
{
u32 mask[WAKEUP_FRAME_MASK_DWNR] = {0, 0, 0, 0};
u32 crc = 0xCDCDCDCD;
u32 gpreg0;
int i;
jwrite32(jme, JME_GHC, jme->reg_ghc | GHC_SWRST);
udelay(2);
jwrite32(jme, JME_GHC, jme->reg_ghc);
jwrite32(jme, JME_RXDBA_LO, 0x00000000);
jwrite32(jme, JME_RXDBA_HI, 0x00000000);
jwrite32(jme, JME_RXQDC, 0x00000000);
jwrite32(jme, JME_RXNDA, 0x00000000);
jwrite32(jme, JME_TXDBA_LO, 0x00000000);
jwrite32(jme, JME_TXDBA_HI, 0x00000000);
jwrite32(jme, JME_TXQDC, 0x00000000);
jwrite32(jme, JME_TXNDA, 0x00000000);
jwrite32(jme, JME_RXMCHT_LO, 0x00000000);
jwrite32(jme, JME_RXMCHT_HI, 0x00000000);
for (i = 0 ; i < WAKEUP_FRAME_NR ; ++i)
jme_setup_wakeup_frame(jme, mask, crc, i);
if (jme->fpgaver)
gpreg0 = GPREG0_DEFAULT | GPREG0_LNKINTPOLL;
else
gpreg0 = GPREG0_DEFAULT;
jwrite32(jme, JME_GPREG0, gpreg0);
jwrite32(jme, JME_GPREG1, 0);
}
static inline void
jme_reset_ghc_speed(struct jme_adapter *jme)
{
jme->reg_ghc &= ~(GHC_SPEED_1000M | GHC_DPX);
jwrite32(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_clear_pm(struct jme_adapter *jme)
{
jwrite32(jme, JME_PMCS, 0xFFFF0000 | jme->reg_pmcs);
pci_set_power_state(jme->pdev, PCI_D0);
pci_enable_wake(jme->pdev, PCI_D0, false);
}
static int
jme_reload_eeprom(struct jme_adapter *jme)
{
u32 val;
int i;
val = jread32(jme, JME_SMBCSR);
if (val & SMBCSR_EEPROMD) {
val |= SMBCSR_CNACK;
jwrite32(jme, JME_SMBCSR, val);
val |= SMBCSR_RELOAD;
jwrite32(jme, JME_SMBCSR, val);
mdelay(12);
for (i = JME_EEPROM_RELOAD_TIMEOUT; i > 0; --i) {
mdelay(1);
if ((jread32(jme, JME_SMBCSR) & SMBCSR_RELOAD) == 0)
break;
}
if (i == 0) {
jeprintk(jme->pdev, "eeprom reload timeout\n");
return -EIO;
}
}
return 0;
}
static void
jme_load_macaddr(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
unsigned char macaddr[6];
u32 val;
spin_lock_bh(&jme->macaddr_lock);
val = jread32(jme, JME_RXUMA_LO);
macaddr[0] = (val >> 0) & 0xFF;
macaddr[1] = (val >> 8) & 0xFF;
macaddr[2] = (val >> 16) & 0xFF;
macaddr[3] = (val >> 24) & 0xFF;
val = jread32(jme, JME_RXUMA_HI);
macaddr[4] = (val >> 0) & 0xFF;
macaddr[5] = (val >> 8) & 0xFF;
memcpy(netdev->dev_addr, macaddr, 6);
spin_unlock_bh(&jme->macaddr_lock);
}
static inline void
jme_set_rx_pcc(struct jme_adapter *jme, int p)
{
switch (p) {
case PCC_OFF:
jwrite32(jme, JME_PCCRX0,
((PCC_OFF_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_OFF_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P1:
jwrite32(jme, JME_PCCRX0,
((PCC_P1_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P1_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P2:
jwrite32(jme, JME_PCCRX0,
((PCC_P2_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P2_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P3:
jwrite32(jme, JME_PCCRX0,
((PCC_P3_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P3_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
default:
break;
}
wmb();
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
msg_rx_status(jme, "Switched to PCC_P%d\n", p);
}
static void
jme_start_irq(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
jme_set_rx_pcc(jme, PCC_P1);
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jwrite32(jme, JME_PCCTX,
((PCC_TX_TO << PCCTXTO_SHIFT) & PCCTXTO_MASK) |
((PCC_TX_CNT << PCCTX_SHIFT) & PCCTX_MASK) |
PCCTXQ0_EN
);
/*
* Enable Interrupts
*/
jwrite32(jme, JME_IENS, INTR_ENABLE);
}
static inline void
jme_stop_irq(struct jme_adapter *jme)
{
/*
* Disable Interrupts
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
}
static inline void
jme_enable_shadow(struct jme_adapter *jme)
{
jwrite32(jme,
JME_SHBA_LO,
((u32)jme->shadow_dma & ~((u32)0x1F)) | SHBA_POSTEN);
}
static inline void
jme_disable_shadow(struct jme_adapter *jme)
{
jwrite32(jme, JME_SHBA_LO, 0x0);
}
static u32
jme_linkstat_from_phy(struct jme_adapter *jme)
{
u32 phylink, bmsr;
phylink = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 17);
bmsr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMSR);
if (bmsr & BMSR_ANCOMP)
phylink |= PHY_LINK_AUTONEG_COMPLETE;
return phylink;
}
static inline void
jme_set_phyfifoa(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0004);
}
static inline void
jme_set_phyfifob(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0000);
}
static int
jme_check_link(struct net_device *netdev, int testonly)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 phylink, ghc, cnt = JME_SPDRSV_TIMEOUT, bmcr;
char linkmsg[64];
int rc = 0;
linkmsg[0] = '\0';
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
if (phylink & PHY_LINK_UP) {
if (!(phylink & PHY_LINK_AUTONEG_COMPLETE)) {
/*
* If we did not enable AN
* Speed/Duplex Info should be obtained from SMI
*/
phylink = PHY_LINK_UP;
bmcr = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
phylink |= ((bmcr & BMCR_SPEED1000) &&
(bmcr & BMCR_SPEED100) == 0) ?
PHY_LINK_SPEED_1000M :
(bmcr & BMCR_SPEED100) ?
PHY_LINK_SPEED_100M :
PHY_LINK_SPEED_10M;
phylink |= (bmcr & BMCR_FULLDPLX) ?
PHY_LINK_DUPLEX : 0;
strcat(linkmsg, "Forced: ");
} else {
/*
* Keep polling for speed/duplex resolve complete
*/
while (!(phylink & PHY_LINK_SPEEDDPU_RESOLVED) &&
--cnt) {
udelay(1);
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
}
if (!cnt)
jeprintk(jme->pdev,
"Waiting speed resolve timeout.\n");
strcat(linkmsg, "ANed: ");
}
if (jme->phylink == phylink) {
rc = 1;
goto out;
}
if (testonly)
goto out;
jme->phylink = phylink;
ghc = jme->reg_ghc & ~(GHC_SPEED_10M |
GHC_SPEED_100M |
GHC_SPEED_1000M |
GHC_DPX);
switch (phylink & PHY_LINK_SPEED_MASK) {
case PHY_LINK_SPEED_10M:
ghc |= GHC_SPEED_10M;
strcat(linkmsg, "10 Mbps, ");
if (is_buggy250(jme->pdev->device, jme->chiprev))
jme_set_phyfifoa(jme);
break;
case PHY_LINK_SPEED_100M:
ghc |= GHC_SPEED_100M;
strcat(linkmsg, "100 Mbps, ");
if (is_buggy250(jme->pdev->device, jme->chiprev))
jme_set_phyfifob(jme);
break;
case PHY_LINK_SPEED_1000M:
ghc |= GHC_SPEED_1000M;
strcat(linkmsg, "1000 Mbps, ");
if (is_buggy250(jme->pdev->device, jme->chiprev))
jme_set_phyfifoa(jme);
break;
default:
break;
}
ghc |= (phylink & PHY_LINK_DUPLEX) ? GHC_DPX : 0;
strcat(linkmsg, (phylink & PHY_LINK_DUPLEX) ?
"Full-Duplex, " :
"Half-Duplex, ");
if (phylink & PHY_LINK_MDI_STAT)
strcat(linkmsg, "MDI-X");
else
strcat(linkmsg, "MDI");
if (phylink & PHY_LINK_DUPLEX) {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT);
} else {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT |
TXMCS_BACKOFF |
TXMCS_CARRIERSENSE |
TXMCS_COLLISION);
jwrite32(jme, JME_TXTRHD, TXTRHD_TXPEN |
((0x2000 << TXTRHD_TXP_SHIFT) & TXTRHD_TXP) |
TXTRHD_TXREN |
((8 << TXTRHD_TXRL_SHIFT) & TXTRHD_TXRL));
}
jme->reg_ghc = ghc;
jwrite32(jme, JME_GHC, ghc);
msg_link(jme, "Link is up at %s.\n", linkmsg);
netif_carrier_on(netdev);
} else {
if (testonly)
goto out;
msg_link(jme, "Link is down.\n");
jme->phylink = 0;
netif_carrier_off(netdev);
}
out:
return rc;
}
static int
jme_setup_tx_resources(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
txring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
&(txring->dmaalloc),
GFP_ATOMIC);
if (!txring->alloc) {
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
return -ENOMEM;
}
/*
* 16 Bytes align
*/
txring->desc = (void *)ALIGN((unsigned long)(txring->alloc),
RING_DESC_ALIGN);
txring->dma = ALIGN(txring->dmaalloc, RING_DESC_ALIGN);
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, jme->tx_ring_size);
/*
* Initialize Transmit Descriptors
*/
memset(txring->alloc, 0, TX_RING_ALLOC_SIZE(jme->tx_ring_size));
memset(txring->bufinf, 0,
sizeof(struct jme_buffer_info) * jme->tx_ring_size);
return 0;
}
static void
jme_free_tx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi = txring->bufinf;
if (txring->alloc) {
for (i = 0 ; i < jme->tx_ring_size ; ++i) {
txbi = txring->bufinf + i;
if (txbi->skb) {
dev_kfree_skb(txbi->skb);
txbi->skb = NULL;
}
txbi->mapping = 0;
txbi->len = 0;
txbi->nr_desc = 0;
txbi->start_xmit = 0;
}
dma_free_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
txring->alloc,
txring->dmaalloc);
txring->alloc = NULL;
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
}
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, 0);
}
static inline void
jme_enable_tx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_TXCS, TXCS_DEFAULT | TXCS_SELECT_QUEUE0);
wmb();
/*
* Setup TX Queue 0 DMA Bass Address
*/
jwrite32(jme, JME_TXDBA_LO, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
jwrite32(jme, JME_TXDBA_HI, (__u64)(jme->txring[0].dma) >> 32);
jwrite32(jme, JME_TXNDA, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
/*
* Setup TX Descptor Count
*/
jwrite32(jme, JME_TXQDC, jme->tx_ring_size);
/*
* Enable TX Engine
*/
wmb();
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_ENABLE);
}
static inline void
jme_restart_tx_engine(struct jme_adapter *jme)
{
/*
* Restart TX Engine
*/
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_ENABLE);
}
static inline void
jme_disable_tx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable TX Engine
*/
jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0);
wmb();
val = jread32(jme, JME_TXCS);
for (i = JME_TX_DISABLE_TIMEOUT ; (val & TXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_TXCS);
rmb();
}
if (!i)
jeprintk(jme->pdev, "Disable TX engine timeout.\n");
}
static void
jme_set_clean_rxdesc(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = jme->rxring;
register struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
rxdesc += i;
rxbi += i;
rxdesc->dw[0] = 0;
rxdesc->dw[1] = 0;
rxdesc->desc1.bufaddrh = cpu_to_le32((__u64)rxbi->mapping >> 32);
rxdesc->desc1.bufaddrl = cpu_to_le32(
(__u64)rxbi->mapping & 0xFFFFFFFFUL);
rxdesc->desc1.datalen = cpu_to_le16(rxbi->len);
if (jme->dev->features & NETIF_F_HIGHDMA)
rxdesc->desc1.flags = RXFLAG_64BIT;
wmb();
rxdesc->desc1.flags |= RXFLAG_OWN | RXFLAG_INT;
}
static int
jme_make_new_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf + i;
struct sk_buff *skb;
skb = netdev_alloc_skb(jme->dev,
jme->dev->mtu + RX_EXTRA_LEN);
if (unlikely(!skb))
return -ENOMEM;
rxbi->skb = skb;
rxbi->len = skb_tailroom(skb);
rxbi->mapping = pci_map_page(jme->pdev,
virt_to_page(skb->data),
offset_in_page(skb->data),
rxbi->len,
PCI_DMA_FROMDEVICE);
return 0;
}
static void
jme_free_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf;
rxbi += i;
if (rxbi->skb) {
pci_unmap_page(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(rxbi->skb);
rxbi->skb = NULL;
rxbi->mapping = 0;
rxbi->len = 0;
}
}
static void
jme_free_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
if (rxring->alloc) {
for (i = 0 ; i < jme->rx_ring_size ; ++i)
jme_free_rx_buf(jme, i);
dma_free_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
rxring->alloc,
rxring->dmaalloc);
rxring->alloc = NULL;
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
}
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
}
static int
jme_setup_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
rxring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
&(rxring->dmaalloc),
GFP_ATOMIC);
if (!rxring->alloc) {
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
return -ENOMEM;
}
/*
* 16 Bytes align
*/
rxring->desc = (void *)ALIGN((unsigned long)(rxring->alloc),
RING_DESC_ALIGN);
rxring->dma = ALIGN(rxring->dmaalloc, RING_DESC_ALIGN);
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
/*
* Initiallize Receive Descriptors
*/
for (i = 0 ; i < jme->rx_ring_size ; ++i) {
if (unlikely(jme_make_new_rx_buf(jme, i))) {
jme_free_rx_resources(jme);
return -ENOMEM;
}
jme_set_clean_rxdesc(jme, i);
}
return 0;
}
static inline void
jme_enable_rx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0);
wmb();
/*
* Setup RX DMA Bass Address
*/
jwrite32(jme, JME_RXDBA_LO, (__u64)jme->rxring[0].dma & 0xFFFFFFFFUL);
jwrite32(jme, JME_RXDBA_HI, (__u64)(jme->rxring[0].dma) >> 32);
jwrite32(jme, JME_RXNDA, (__u64)jme->rxring[0].dma & 0xFFFFFFFFUL);
/*
* Setup RX Descriptor Count
*/
jwrite32(jme, JME_RXQDC, jme->rx_ring_size);
/*
* Setup Unicast Filter
*/
jme_set_multi(jme->dev);
/*
* Enable RX Engine
*/
wmb();
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
}
static inline void
jme_restart_rx_engine(struct jme_adapter *jme)
{
/*
* Start RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
}
static inline void
jme_disable_rx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs);
wmb();
val = jread32(jme, JME_RXCS);
for (i = JME_RX_DISABLE_TIMEOUT ; (val & RXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_RXCS);
rmb();
}
if (!i)
jeprintk(jme->pdev, "Disable RX engine timeout.\n");
}
static int
jme_rxsum_ok(struct jme_adapter *jme, u16 flags)
{
if (!(flags & (RXWBFLAG_TCPON | RXWBFLAG_UDPON | RXWBFLAG_IPV4)))
return false;
if (unlikely(!(flags & RXWBFLAG_MF) &&
(flags & RXWBFLAG_TCPON) && !(flags & RXWBFLAG_TCPCS))) {
msg_rx_err(jme, "TCP Checksum error.\n");
goto out_sumerr;
}
if (unlikely(!(flags & RXWBFLAG_MF) &&
(flags & RXWBFLAG_UDPON) && !(flags & RXWBFLAG_UDPCS))) {
msg_rx_err(jme, "UDP Checksum error.\n");
goto out_sumerr;
}
if (unlikely((flags & RXWBFLAG_IPV4) && !(flags & RXWBFLAG_IPCS))) {
msg_rx_err(jme, "IPv4 Checksum error.\n");
goto out_sumerr;
}
return true;
out_sumerr:
return false;
}
static void
jme_alloc_and_feed_skb(struct jme_adapter *jme, int idx)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
struct sk_buff *skb;
int framesize;
rxdesc += idx;
rxbi += idx;
skb = rxbi->skb;
pci_dma_sync_single_for_cpu(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
if (unlikely(jme_make_new_rx_buf(jme, idx))) {
pci_dma_sync_single_for_device(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
++(NET_STAT(jme).rx_dropped);
} else {
framesize = le16_to_cpu(rxdesc->descwb.framesize)
- RX_PREPAD_SIZE;
skb_reserve(skb, RX_PREPAD_SIZE);
skb_put(skb, framesize);
skb->protocol = eth_type_trans(skb, jme->dev);
if (jme_rxsum_ok(jme, rxdesc->descwb.flags))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
if (rxdesc->descwb.flags & RXWBFLAG_TAGON) {
if (jme->vlgrp) {
jme->jme_vlan_rx(skb, jme->vlgrp,
le32_to_cpu(rxdesc->descwb.vlan));
NET_STAT(jme).rx_bytes += 4;
}
} else {
jme->jme_rx(skb);
}
if ((le16_to_cpu(rxdesc->descwb.flags) & RXWBFLAG_DEST) ==
RXWBFLAG_DEST_MUL)
++(NET_STAT(jme).multicast);
jme->dev->last_rx = jiffies;
NET_STAT(jme).rx_bytes += framesize;
++(NET_STAT(jme).rx_packets);
}
jme_set_clean_rxdesc(jme, idx);
}
static int
jme_process_receive(struct jme_adapter *jme, int limit)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc = rxring->desc;
int i, j, ccnt, desccnt, mask = jme->rx_ring_mask;
if (unlikely(!atomic_dec_and_test(&jme->rx_cleaning)))
goto out_inc;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out_inc;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out_inc;
i = atomic_read(&rxring->next_to_clean);
while (limit-- > 0) {
rxdesc = rxring->desc;
rxdesc += i;
if ((rxdesc->descwb.flags & RXWBFLAG_OWN) ||
!(rxdesc->descwb.desccnt & RXWBDCNT_WBCPL))
goto out;
desccnt = rxdesc->descwb.desccnt & RXWBDCNT_DCNT;
if (unlikely(desccnt > 1 ||
rxdesc->descwb.errstat & RXWBERR_ALLERR)) {
if (rxdesc->descwb.errstat & RXWBERR_CRCERR)
++(NET_STAT(jme).rx_crc_errors);
else if (rxdesc->descwb.errstat & RXWBERR_OVERUN)
++(NET_STAT(jme).rx_fifo_errors);
else
++(NET_STAT(jme).rx_errors);
if (desccnt > 1)
limit -= desccnt - 1;
for (j = i, ccnt = desccnt ; ccnt-- ; ) {
jme_set_clean_rxdesc(jme, j);
j = (j + 1) & (mask);
}
} else {
jme_alloc_and_feed_skb(jme, i);
}
i = (i + desccnt) & (mask);
}
out:
atomic_set(&rxring->next_to_clean, i);
out_inc:
atomic_inc(&jme->rx_cleaning);
return limit > 0 ? limit : 0;
}
static void
jme_attempt_pcc(struct dynpcc_info *dpi, int atmp)
{
if (likely(atmp == dpi->cur)) {
dpi->cnt = 0;
return;
}
if (dpi->attempt == atmp) {
++(dpi->cnt);
} else {
dpi->attempt = atmp;
dpi->cnt = 0;
}
}
static void
jme_dynamic_pcc(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
if ((NET_STAT(jme).rx_bytes - dpi->last_bytes) > PCC_P3_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P3);
else if ((NET_STAT(jme).rx_packets - dpi->last_pkts) > PCC_P2_THRESHOLD
|| dpi->intr_cnt > PCC_INTR_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P2);
else
jme_attempt_pcc(dpi, PCC_P1);
if (unlikely(dpi->attempt != dpi->cur && dpi->cnt > 5)) {
if (dpi->attempt < dpi->cur)
tasklet_schedule(&jme->rxclean_task);
jme_set_rx_pcc(jme, dpi->attempt);
dpi->cur = dpi->attempt;
dpi->cnt = 0;
}
}
static void
jme_start_pcc_timer(struct jme_adapter *jme)
{
struct dynpcc_info *dpi = &(jme->dpi);
dpi->last_bytes = NET_STAT(jme).rx_bytes;
dpi->last_pkts = NET_STAT(jme).rx_packets;
dpi->intr_cnt = 0;
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - PCC_INTERVAL_US) & TMCSR_CNT));
}
static inline void
jme_stop_pcc_timer(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, 0);
}
static void
jme_shutdown_nic(struct jme_adapter *jme)
{
u32 phylink;
phylink = jme_linkstat_from_phy(jme);
if (!(phylink & PHY_LINK_UP)) {
/*
* Disable all interrupt before issue timer
*/
jme_stop_irq(jme);
jwrite32(jme, JME_TIMER2, TMCSR_EN | 0xFFFFFE);
}
}
static void
jme_pcc_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
if (unlikely(test_bit(JME_FLAG_SHUTDOWN, &jme->flags))) {
jme_shutdown_nic(jme);
return;
}
if (unlikely(!netif_carrier_ok(netdev) ||
(atomic_read(&jme->link_changing) != 1)
)) {
jme_stop_pcc_timer(jme);
return;
}
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
jme_dynamic_pcc(jme);
jme_start_pcc_timer(jme);
}
static inline void
jme_polling_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_OFF);
}
static inline void
jme_interrupt_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_P1);
}
static inline int
jme_pseudo_hotplug_enabled(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC);
return apmc & JME_APMC_PSEUDO_HP_EN;
}
static void
jme_start_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC) | JME_APMC_PCIE_SD_EN;
apmc &= ~JME_APMC_EPIEN_CTRL;
if (!no_extplug) {
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_EN);
wmb();
}
jwrite32f(jme, JME_APMC, apmc);
jwrite32f(jme, JME_TIMER2, 0);
set_bit(JME_FLAG_SHUTDOWN, &jme->flags);
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - APMC_PHP_SHUTDOWN_DELAY) & TMCSR_CNT));
}
static void
jme_stop_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
jwrite32f(jme, JME_TMCSR, 0);
jwrite32f(jme, JME_TIMER2, 0);
clear_bit(JME_FLAG_SHUTDOWN, &jme->flags);
apmc = jread32(jme, JME_APMC);
apmc &= ~(JME_APMC_PCIE_SD_EN | JME_APMC_EPIEN_CTRL);
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_DIS);
wmb();
jwrite32f(jme, JME_APMC, apmc);
}
static void
jme_link_change_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
int rc;
while (!atomic_dec_and_test(&jme->link_changing)) {
atomic_inc(&jme->link_changing);
msg_intr(jme, "Get link change lock failed.\n");
while (atomic_read(&jme->link_changing) != 1)
msg_intr(jme, "Waiting link change lock.\n");
}
if (jme_check_link(netdev, 1) && jme->old_mtu == netdev->mtu)
goto out;
jme->old_mtu = netdev->mtu;
netif_stop_queue(netdev);
if (jme_pseudo_hotplug_enabled(jme))
jme_stop_shutdown_timer(jme);
jme_stop_pcc_timer(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
if (netif_carrier_ok(netdev)) {
jme_reset_ghc_speed(jme);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
netif_carrier_off(netdev);
}
jme_check_link(netdev, 0);
if (netif_carrier_ok(netdev)) {
rc = jme_setup_rx_resources(jme);
if (rc) {
jeprintk(jme->pdev, "Allocating resources for RX error"
", Device STOPPED!\n");
goto out_enable_tasklet;
}
rc = jme_setup_tx_resources(jme);
if (rc) {
jeprintk(jme->pdev, "Allocating resources for TX error"
", Device STOPPED!\n");
goto err_out_free_rx_resources;
}
jme_enable_rx_engine(jme);
jme_enable_tx_engine(jme);
netif_start_queue(netdev);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_interrupt_mode(jme);
jme_start_pcc_timer(jme);
} else if (jme_pseudo_hotplug_enabled(jme)) {
jme_start_shutdown_timer(jme);
}
goto out_enable_tasklet;
err_out_free_rx_resources:
jme_free_rx_resources(jme);
out_enable_tasklet:
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
out:
atomic_inc(&jme->link_changing);
}
static void
jme_rx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct dynpcc_info *dpi = &(jme->dpi);
jme_process_receive(jme, jme->rx_ring_size);
++(dpi->intr_cnt);
}
static int
jme_poll(JME_NAPI_HOLDER(holder), JME_NAPI_WEIGHT(budget))
{
struct jme_adapter *jme = jme_napi_priv(holder);
struct net_device *netdev = jme->dev;
int rest;
rest = jme_process_receive(jme, JME_NAPI_WEIGHT_VAL(budget));
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
if (rest) {
JME_RX_COMPLETE(netdev, holder);
jme_interrupt_mode(jme);
}
JME_NAPI_WEIGHT_SET(budget, rest);
return JME_NAPI_WEIGHT_VAL(budget) - rest;
}
static void
jme_rx_empty_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
if (unlikely(atomic_read(&jme->link_changing) != 1))
return;
if (unlikely(!netif_carrier_ok(jme->dev)))
return;
msg_rx_status(jme, "RX Queue Full!\n");
jme_rx_clean_tasklet(arg);
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
}
static void
jme_wake_queue_if_stopped(struct jme_adapter *jme)
{
struct jme_ring *txring = jme->txring;
smp_wmb();
if (unlikely(netif_queue_stopped(jme->dev) &&
atomic_read(&txring->nr_free) >= (jme->tx_wake_threshold))) {
msg_tx_done(jme, "TX Queue Waked.\n");
netif_wake_queue(jme->dev);
}
}
static void
jme_tx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc = txring->desc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi, *ttxbi;
int i, j, cnt = 0, max, err, mask;
tx_dbg(jme, "Into txclean.\n");
if (unlikely(!atomic_dec_and_test(&jme->tx_cleaning)))
goto out;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out;
max = jme->tx_ring_size - atomic_read(&txring->nr_free);
mask = jme->tx_ring_mask;
for (i = atomic_read(&txring->next_to_clean) ; cnt < max ; ) {
ctxbi = txbi + i;
if (likely(ctxbi->skb &&
!(txdesc[i].descwb.flags & TXWBFLAG_OWN))) {
tx_dbg(jme, "txclean: %d+%d@%lu\n",
i, ctxbi->nr_desc, jiffies);
err = txdesc[i].descwb.flags & TXWBFLAG_ALLERR;
for (j = 1 ; j < ctxbi->nr_desc ; ++j) {
ttxbi = txbi + ((i + j) & (mask));
txdesc[(i + j) & (mask)].dw[0] = 0;
pci_unmap_page(jme->pdev,
ttxbi->mapping,
ttxbi->len,
PCI_DMA_TODEVICE);
ttxbi->mapping = 0;
ttxbi->len = 0;
}
dev_kfree_skb(ctxbi->skb);
cnt += ctxbi->nr_desc;
if (unlikely(err)) {
++(NET_STAT(jme).tx_carrier_errors);
} else {
++(NET_STAT(jme).tx_packets);
NET_STAT(jme).tx_bytes += ctxbi->len;
}
ctxbi->skb = NULL;
ctxbi->len = 0;
ctxbi->start_xmit = 0;
} else {
break;
}
i = (i + ctxbi->nr_desc) & mask;
ctxbi->nr_desc = 0;
}
tx_dbg(jme, "txclean: done %d@%lu.\n", i, jiffies);
atomic_set(&txring->next_to_clean, i);
atomic_add(cnt, &txring->nr_free);
jme_wake_queue_if_stopped(jme);
out:
atomic_inc(&jme->tx_cleaning);
}
static void
jme_intr_msi(struct jme_adapter *jme, u32 intrstat)
{
/*
* Disable interrupt
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
if (intrstat & (INTR_LINKCH | INTR_SWINTR)) {
/*
* Link change event is critical
* all other events are ignored
*/
jwrite32(jme, JME_IEVE, intrstat);
tasklet_schedule(&jme->linkch_task);
goto out_reenable;
}
if (intrstat & INTR_TMINTR) {
jwrite32(jme, JME_IEVE, INTR_TMINTR);
tasklet_schedule(&jme->pcc_task);
}
if (intrstat & (INTR_PCCTXTO | INTR_PCCTX)) {
jwrite32(jme, JME_IEVE, INTR_PCCTXTO | INTR_PCCTX | INTR_TX0);
tasklet_schedule(&jme->txclean_task);
}
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
jwrite32(jme, JME_IEVE, (intrstat & (INTR_PCCRX0TO |
INTR_PCCRX0 |
INTR_RX0EMP)) |
INTR_RX0);
}
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
if (intrstat & INTR_RX0EMP)
atomic_inc(&jme->rx_empty);
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
if (likely(JME_RX_SCHEDULE_PREP(jme))) {
jme_polling_mode(jme);
JME_RX_SCHEDULE(jme);
}
}
} else {
if (intrstat & INTR_RX0EMP) {
atomic_inc(&jme->rx_empty);
tasklet_hi_schedule(&jme->rxempty_task);
} else if (intrstat & (INTR_PCCRX0TO | INTR_PCCRX0)) {
tasklet_hi_schedule(&jme->rxclean_task);
}
}
out_reenable:
/*
* Re-enable interrupt
*/
jwrite32f(jme, JME_IENS, INTR_ENABLE);
}
static irqreturn_t
jme_intr(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
intrstat = jread32(jme, JME_IEVE);
/*
* Check if it's really an interrupt for us
*/
if (unlikely(intrstat == 0))
return IRQ_NONE;
/*
* Check if the device still exist
*/
if (unlikely(intrstat == ~((typeof(intrstat))0)))
return IRQ_NONE;
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static irqreturn_t
jme_msi(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
pci_dma_sync_single_for_cpu(jme->pdev,
jme->shadow_dma,
sizeof(u32) * SHADOW_REG_NR,
PCI_DMA_FROMDEVICE);
intrstat = jme->shadow_regs[SHADOW_IEVE];
jme->shadow_regs[SHADOW_IEVE] = 0;
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static void
jme_reset_link(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, TMCSR_SWIT);
}
static void
jme_restart_an(struct jme_adapter *jme)
{
u32 bmcr;
spin_lock_bh(&jme->phy_lock);
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
spin_unlock_bh(&jme->phy_lock);
}
static int
jme_request_irq(struct jme_adapter *jme)
{
int rc;
struct net_device *netdev = jme->dev;
irq_handler_t handler = jme_intr;
int irq_flags = IRQF_SHARED;
if (!pci_enable_msi(jme->pdev)) {
set_bit(JME_FLAG_MSI, &jme->flags);
handler = jme_msi;
irq_flags = 0;
}
rc = request_irq(jme->pdev->irq, handler, irq_flags, netdev->name,
netdev);
if (rc) {
jeprintk(jme->pdev,
"Unable to request %s interrupt (return: %d)\n",
test_bit(JME_FLAG_MSI, &jme->flags) ? "MSI" : "INTx",
rc);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
}
} else {
netdev->irq = jme->pdev->irq;
}
return rc;
}
static void
jme_free_irq(struct jme_adapter *jme)
{
free_irq(jme->pdev->irq, jme->dev);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
jme->dev->irq = jme->pdev->irq;
}
}
static int
jme_open(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc;
jme_clear_pm(jme);
JME_NAPI_ENABLE(jme);
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
rc = jme_request_irq(jme);
if (rc)
goto err_out;
jme_enable_shadow(jme);
jme_start_irq(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
else
jme_reset_phy_processor(jme);
jme_reset_link(jme);
return 0;
err_out:
netif_stop_queue(netdev);
netif_carrier_off(netdev);
return rc;
}
static void
jme_set_100m_half(struct jme_adapter *jme)
{
u32 bmcr, tmp;
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
tmp = bmcr & ~(BMCR_ANENABLE | BMCR_SPEED100 |
BMCR_SPEED1000 | BMCR_FULLDPLX);
tmp |= BMCR_SPEED100;
if (bmcr != tmp)
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, tmp);
if (jme->fpgaver)
jwrite32(jme, JME_GHC, GHC_SPEED_100M | GHC_LINK_POLL);
else
jwrite32(jme, JME_GHC, GHC_SPEED_100M);
}
#define JME_WAIT_LINK_TIME 2000 /* 2000ms */
static void
jme_wait_link(struct jme_adapter *jme)
{
u32 phylink, to = JME_WAIT_LINK_TIME;
mdelay(1000);
phylink = jme_linkstat_from_phy(jme);
while (!(phylink & PHY_LINK_UP) && (to -= 10) > 0) {
mdelay(10);
phylink = jme_linkstat_from_phy(jme);
}
}
static inline void
jme_phy_off(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, BMCR_PDOWN);
}
static int
jme_close(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
netif_stop_queue(netdev);
netif_carrier_off(netdev);
jme_stop_irq(jme);
jme_disable_shadow(jme);
jme_free_irq(jme);
JME_NAPI_DISABLE(jme);
tasklet_kill(&jme->linkch_task);
tasklet_kill(&jme->txclean_task);
tasklet_kill(&jme->rxclean_task);
tasklet_kill(&jme->rxempty_task);
jme_reset_ghc_speed(jme);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
jme->phylink = 0;
jme_phy_off(jme);
return 0;
}
static int
jme_alloc_txdesc(struct jme_adapter *jme,
struct sk_buff *skb)
{
struct jme_ring *txring = jme->txring;
int idx, nr_alloc, mask = jme->tx_ring_mask;
idx = txring->next_to_use;
nr_alloc = skb_shinfo(skb)->nr_frags + 2;
if (unlikely(atomic_read(&txring->nr_free) < nr_alloc))
return -1;
atomic_sub(nr_alloc, &txring->nr_free);
txring->next_to_use = (txring->next_to_use + nr_alloc) & mask;
return idx;
}
static void
jme_fill_tx_map(struct pci_dev *pdev,
struct txdesc *txdesc,
struct jme_buffer_info *txbi,
struct page *page,
u32 page_offset,
u32 len,
u8 hidma)
{
dma_addr_t dmaaddr;
dmaaddr = pci_map_page(pdev,
page,
page_offset,
len,
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_device(pdev,
dmaaddr,
len,
PCI_DMA_TODEVICE);
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->desc2.flags = TXFLAG_OWN;
txdesc->desc2.flags |= (hidma) ? TXFLAG_64BIT : 0;
txdesc->desc2.datalen = cpu_to_le16(len);
txdesc->desc2.bufaddrh = cpu_to_le32((__u64)dmaaddr >> 32);
txdesc->desc2.bufaddrl = cpu_to_le32(
(__u64)dmaaddr & 0xFFFFFFFFUL);
txbi->mapping = dmaaddr;
txbi->len = len;
}
static void
jme_map_tx_skb(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = jme->txring;
struct txdesc *txdesc = txring->desc, *ctxdesc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi;
u8 hidma = jme->dev->features & NETIF_F_HIGHDMA;
int i, nr_frags = skb_shinfo(skb)->nr_frags;
int mask = jme->tx_ring_mask;
struct skb_frag_struct *frag;
u32 len;
for (i = 0 ; i < nr_frags ; ++i) {
frag = &skb_shinfo(skb)->frags[i];
ctxdesc = txdesc + ((idx + i + 2) & (mask));
ctxbi = txbi + ((idx + i + 2) & (mask));
jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, frag->page,
frag->page_offset, frag->size, hidma);
}
len = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
ctxdesc = txdesc + ((idx + 1) & (mask));
ctxbi = txbi + ((idx + 1) & (mask));
jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, virt_to_page(skb->data),
offset_in_page(skb->data), len, hidma);
}
static int
jme_expand_header(struct jme_adapter *jme, struct sk_buff *skb)
{
if (unlikely(skb_shinfo(skb)->gso_size &&
skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) {
dev_kfree_skb(skb);
return -1;
}
return 0;
}
static int
jme_tx_tso(struct sk_buff *skb,
u16 *mss, u8 *flags)
{
*mss = skb_shinfo(skb)->gso_size << TXDESC_MSS_SHIFT;
if (*mss) {
*flags |= TXFLAG_LSEN;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ip6h->saddr,
&ip6h->daddr, 0,
IPPROTO_TCP,
0);
}
return 0;
}
return 1;
}
static void
jme_tx_csum(struct jme_adapter *jme, struct sk_buff *skb, u8 *flags)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_proto;
switch (skb->protocol) {
case htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_proto = 0;
break;
}
switch (ip_proto) {
case IPPROTO_TCP:
*flags |= TXFLAG_TCPCS;
break;
case IPPROTO_UDP:
*flags |= TXFLAG_UDPCS;
break;
default:
msg_tx_err(jme, "Error upper layer protocol.\n");
break;
}
}
}
static inline void
jme_tx_vlan(struct sk_buff *skb, u16 *vlan, u8 *flags)
{
if (vlan_tx_tag_present(skb)) {
*flags |= TXFLAG_TAGON;
*vlan = vlan_tx_tag_get(skb);
}
}
static int
jme_fill_first_tx_desc(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = jme->txring;
struct txdesc *txdesc;
struct jme_buffer_info *txbi;
u8 flags;
txdesc = (struct txdesc *)txring->desc + idx;
txbi = txring->bufinf + idx;
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->dw[2] = 0;
txdesc->dw[3] = 0;
txdesc->desc1.pktsize = cpu_to_le16(skb->len);
/*
* Set OWN bit at final.
* When kernel transmit faster than NIC.
* And NIC trying to send this descriptor before we tell
* it to start sending this TX queue.
* Other fields are already filled correctly.
*/
wmb();
flags = TXFLAG_OWN | TXFLAG_INT;
/*
* Set checksum flags while not tso
*/
if (jme_tx_tso(skb, &txdesc->desc1.mss, &flags))
jme_tx_csum(jme, skb, &flags);
jme_tx_vlan(skb, &txdesc->desc1.vlan, &flags);
txdesc->desc1.flags = flags;
/*
* Set tx buffer info after telling NIC to send
* For better tx_clean timing
*/
wmb();
txbi->nr_desc = skb_shinfo(skb)->nr_frags + 2;
txbi->skb = skb;
txbi->len = skb->len;
txbi->start_xmit = jiffies;
if (!txbi->start_xmit)
txbi->start_xmit = (0UL-1);
return 0;
}
static void
jme_stop_queue_if_full(struct jme_adapter *jme)
{
struct jme_ring *txring = jme->txring;
struct jme_buffer_info *txbi = txring->bufinf;
int idx = atomic_read(&txring->next_to_clean);
txbi += idx;
smp_wmb();
if (unlikely(atomic_read(&txring->nr_free) < (MAX_SKB_FRAGS+2))) {
netif_stop_queue(jme->dev);
msg_tx_queued(jme, "TX Queue Paused.\n");
smp_wmb();
if (atomic_read(&txring->nr_free)
>= (jme->tx_wake_threshold)) {
netif_wake_queue(jme->dev);
msg_tx_queued(jme, "TX Queue Fast Waked.\n");
}
}
if (unlikely(txbi->start_xmit &&
(jiffies - txbi->start_xmit) >= TX_TIMEOUT &&
txbi->skb)) {
netif_stop_queue(jme->dev);
msg_tx_queued(jme, "TX Queue Stopped %d@%lu.\n", idx, jiffies);
}
}
/*
* This function is already protected by netif_tx_lock()
*/
static int
jme_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int idx;
if (unlikely(jme_expand_header(jme, skb))) {
++(NET_STAT(jme).tx_dropped);
return NETDEV_TX_OK;
}
idx = jme_alloc_txdesc(jme, skb);
if (unlikely(idx < 0)) {
netif_stop_queue(netdev);
msg_tx_err(jme, "BUG! Tx ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
jme_map_tx_skb(jme, skb, idx);
jme_fill_first_tx_desc(jme, skb, idx);
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_QUEUE0S |
TXCS_ENABLE);
netdev->trans_start = jiffies;
tx_dbg(jme, "xmit: %d+%d@%lu\n", idx,
skb_shinfo(skb)->nr_frags + 2,
jiffies);
jme_stop_queue_if_full(jme);
return NETDEV_TX_OK;
}
static int
jme_set_macaddr(struct net_device *netdev, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct sockaddr *addr = p;
u32 val;
if (netif_running(netdev))
return -EBUSY;
spin_lock_bh(&jme->macaddr_lock);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
val = (addr->sa_data[3] & 0xff) << 24 |
(addr->sa_data[2] & 0xff) << 16 |
(addr->sa_data[1] & 0xff) << 8 |
(addr->sa_data[0] & 0xff);
jwrite32(jme, JME_RXUMA_LO, val);
val = (addr->sa_data[5] & 0xff) << 8 |
(addr->sa_data[4] & 0xff);
jwrite32(jme, JME_RXUMA_HI, val);
spin_unlock_bh(&jme->macaddr_lock);
return 0;
}
static void
jme_set_multi(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 mc_hash[2] = {};
int i;
spin_lock_bh(&jme->rxmcs_lock);
jme->reg_rxmcs |= RXMCS_BRDFRAME | RXMCS_UNIFRAME;
if (netdev->flags & IFF_PROMISC) {
jme->reg_rxmcs |= RXMCS_ALLFRAME;
} else if (netdev->flags & IFF_ALLMULTI) {
jme->reg_rxmcs |= RXMCS_ALLMULFRAME;
} else if (netdev->flags & IFF_MULTICAST) {
struct dev_mc_list *mclist;
int bit_nr;
jme->reg_rxmcs |= RXMCS_MULFRAME | RXMCS_MULFILTERED;
for (i = 0, mclist = netdev->mc_list;
mclist && i < netdev->mc_count;
++i, mclist = mclist->next) {
bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0x3F;
mc_hash[bit_nr >> 5] |= 1 << (bit_nr & 0x1F);
}
jwrite32(jme, JME_RXMCHT_LO, mc_hash[0]);
jwrite32(jme, JME_RXMCHT_HI, mc_hash[1]);
}
wmb();
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
}
static int
jme_change_mtu(struct net_device *netdev, int new_mtu)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (new_mtu == jme->old_mtu)
return 0;
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
((new_mtu) < IPV6_MIN_MTU))
return -EINVAL;
if (new_mtu > 4000) {
jme->reg_rxcs &= ~RXCS_FIFOTHNP;
jme->reg_rxcs |= RXCS_FIFOTHNP_64QW;
jme_restart_rx_engine(jme);
} else {
jme->reg_rxcs &= ~RXCS_FIFOTHNP;
jme->reg_rxcs |= RXCS_FIFOTHNP_128QW;
jme_restart_rx_engine(jme);
}
if (new_mtu > 1900) {
netdev->features &= ~(NETIF_F_HW_CSUM |
NETIF_F_TSO |
NETIF_F_TSO6);
} else {
if (test_bit(JME_FLAG_TXCSUM, &jme->flags))
netdev->features |= NETIF_F_HW_CSUM;
if (test_bit(JME_FLAG_TSO, &jme->flags))
netdev->features |= NETIF_F_TSO | NETIF_F_TSO6;
}
netdev->mtu = new_mtu;
jme_reset_link(jme);
return 0;
}
static void
jme_tx_timeout(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->phylink = 0;
jme_reset_phy_processor(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
/*
* Force to Reset the link again
*/
jme_reset_link(jme);
}
static void
jme_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->vlgrp = grp;
}
static void
jme_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct jme_adapter *jme = netdev_priv(netdev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(jme->pdev));
}
static int
jme_get_regs_len(struct net_device *netdev)
{
return JME_REG_LEN;
}
static void
mmapio_memcpy(struct jme_adapter *jme, u32 *p, u32 reg, int len)
{
int i;
for (i = 0 ; i < len ; i += 4)
p[i >> 2] = jread32(jme, reg + i);
}
static void
mdio_memcpy(struct jme_adapter *jme, u32 *p, int reg_nr)
{
int i;
u16 *p16 = (u16 *)p;
for (i = 0 ; i < reg_nr ; ++i)
p16[i] = jme_mdio_read(jme->dev, jme->mii_if.phy_id, i);
}
static void
jme_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 *p32 = (u32 *)p;
memset(p, 0xFF, JME_REG_LEN);
regs->version = 1;
mmapio_memcpy(jme, p32, JME_MAC, JME_MAC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_PHY, JME_PHY_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_MISC, JME_MISC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_RSS, JME_RSS_LEN);
p32 += 0x100 >> 2;
mdio_memcpy(jme, p32, JME_PHY_REG_NR);
}
static int
jme_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
ecmd->tx_coalesce_usecs = PCC_TX_TO;
ecmd->tx_max_coalesced_frames = PCC_TX_CNT;
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
ecmd->use_adaptive_rx_coalesce = false;
ecmd->rx_coalesce_usecs = 0;
ecmd->rx_max_coalesced_frames = 0;
return 0;
}
ecmd->use_adaptive_rx_coalesce = true;
switch (jme->dpi.cur) {
case PCC_P1:
ecmd->rx_coalesce_usecs = PCC_P1_TO;
ecmd->rx_max_coalesced_frames = PCC_P1_CNT;
break;
case PCC_P2:
ecmd->rx_coalesce_usecs = PCC_P2_TO;
ecmd->rx_max_coalesced_frames = PCC_P2_CNT;
break;
case PCC_P3:
ecmd->rx_coalesce_usecs = PCC_P3_TO;
ecmd->rx_max_coalesced_frames = PCC_P3_CNT;
break;
default:
break;
}
return 0;
}
static int
jme_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct dynpcc_info *dpi = &(jme->dpi);
if (netif_running(netdev))
return -EBUSY;
if (ecmd->use_adaptive_rx_coalesce
&& test_bit(JME_FLAG_POLL, &jme->flags)) {
clear_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_rx;
jme->jme_vlan_rx = vlan_hwaccel_rx;
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jme_set_rx_pcc(jme, PCC_P1);
jme_interrupt_mode(jme);
} else if (!(ecmd->use_adaptive_rx_coalesce)
&& !(test_bit(JME_FLAG_POLL, &jme->flags))) {
set_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_receive_skb;
jme->jme_vlan_rx = vlan_hwaccel_receive_skb;
jme_interrupt_mode(jme);
}
return 0;
}
static void
jme_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
ecmd->tx_pause = (jme->reg_txpfc & TXPFC_PF_EN) != 0;
ecmd->rx_pause = (jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0;
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
spin_unlock_bh(&jme->phy_lock);
ecmd->autoneg =
(val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0;
}
static int
jme_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
if (((jme->reg_txpfc & TXPFC_PF_EN) != 0) ^
(ecmd->tx_pause != 0)) {
if (ecmd->tx_pause)
jme->reg_txpfc |= TXPFC_PF_EN;
else
jme->reg_txpfc &= ~TXPFC_PF_EN;
jwrite32(jme, JME_TXPFC, jme->reg_txpfc);
}
spin_lock_bh(&jme->rxmcs_lock);
if (((jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0) ^
(ecmd->rx_pause != 0)) {
if (ecmd->rx_pause)
jme->reg_rxmcs |= RXMCS_FLOWCTRL;
else
jme->reg_rxmcs &= ~RXMCS_FLOWCTRL;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
}
spin_unlock_bh(&jme->rxmcs_lock);
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
if (((val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0) ^
(ecmd->autoneg != 0)) {
if (ecmd->autoneg)
val |= (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
else
val &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
jme_mdio_write(jme->dev, jme->mii_if.phy_id,
MII_ADVERTISE, val);
}
spin_unlock_bh(&jme->phy_lock);
return 0;
}
static void
jme_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
wol->wolopts |= WAKE_PHY;
if (jme->reg_pmcs & PMCS_MFEN)
wol->wolopts |= WAKE_MAGIC;
}
static int
jme_set_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (wol->wolopts & (WAKE_MAGICSECURE |
WAKE_UCAST |
WAKE_MCAST |
WAKE_BCAST |
WAKE_ARP))
return -EOPNOTSUPP;
jme->reg_pmcs = 0;
if (wol->wolopts & WAKE_PHY)
jme->reg_pmcs |= PMCS_LFEN | PMCS_LREN;
if (wol->wolopts & WAKE_MAGIC)
jme->reg_pmcs |= PMCS_MFEN;
jwrite32(jme, JME_PMCS, jme->reg_pmcs);
return 0;
}
static int
jme_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc;
spin_lock_bh(&jme->phy_lock);
rc = mii_ethtool_gset(&(jme->mii_if), ecmd);
spin_unlock_bh(&jme->phy_lock);
return rc;
}
static int
jme_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc, fdc = 0;
if (ecmd->speed == SPEED_1000 && ecmd->autoneg != AUTONEG_ENABLE)
return -EINVAL;
if (jme->mii_if.force_media &&
ecmd->autoneg != AUTONEG_ENABLE &&
(jme->mii_if.full_duplex != ecmd->duplex))
fdc = 1;
spin_lock_bh(&jme->phy_lock);
rc = mii_ethtool_sset(&(jme->mii_if), ecmd);
spin_unlock_bh(&jme->phy_lock);
if (!rc && fdc)
jme_reset_link(jme);
if (!rc) {
set_bit(JME_FLAG_SSET, &jme->flags);
jme->old_ecmd = *ecmd;
}
return rc;
}
static u32
jme_get_link(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jread32(jme, JME_PHY_LINK) & PHY_LINK_UP;
}
static u32
jme_get_msglevel(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jme->msg_enable;
}
static void
jme_set_msglevel(struct net_device *netdev, u32 value)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->msg_enable = value;
}
static u32
jme_get_rx_csum(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jme->reg_rxmcs & RXMCS_CHECKSUM;
}
static int
jme_set_rx_csum(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
spin_lock_bh(&jme->rxmcs_lock);
if (on)
jme->reg_rxmcs |= RXMCS_CHECKSUM;
else
jme->reg_rxmcs &= ~RXMCS_CHECKSUM;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
return 0;
}
static int
jme_set_tx_csum(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (on) {
set_bit(JME_FLAG_TXCSUM, &jme->flags);
if (netdev->mtu <= 1900)
netdev->features |= NETIF_F_HW_CSUM;
} else {
clear_bit(JME_FLAG_TXCSUM, &jme->flags);
netdev->features &= ~NETIF_F_HW_CSUM;
}
return 0;
}
static int
jme_set_tso(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (on) {
set_bit(JME_FLAG_TSO, &jme->flags);
if (netdev->mtu <= 1900)
netdev->features |= NETIF_F_TSO | NETIF_F_TSO6;
} else {
clear_bit(JME_FLAG_TSO, &jme->flags);
netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
}
return 0;
}
static int
jme_nway_reset(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme_restart_an(jme);
return 0;
}
static u8
jme_smb_read(struct jme_adapter *jme, unsigned int addr)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
msg_hw(jme, "SMB Bus Busy.\n");
return 0xFF;
}
jwrite32(jme, JME_SMBINTF,
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_READ |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
msg_hw(jme, "SMB Bus Busy.\n");
return 0xFF;
}
return (val & SMBINTF_HWDATR) >> SMBINTF_HWDATR_SHIFT;
}
static void
jme_smb_write(struct jme_adapter *jme, unsigned int addr, u8 data)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
msg_hw(jme, "SMB Bus Busy.\n");
return;
}
jwrite32(jme, JME_SMBINTF,
((data << SMBINTF_HWDATW_SHIFT) & SMBINTF_HWDATW) |
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_WRITE |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
msg_hw(jme, "SMB Bus Busy.\n");
return;
}
mdelay(2);
}
static int
jme_get_eeprom_len(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
val = jread32(jme, JME_SMBCSR);
return (val & SMBCSR_EEPROMD) ? JME_SMB_LEN : 0;
}
static int
jme_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
/*
* ethtool will check the boundary for us
*/
eeprom->magic = JME_EEPROM_MAGIC;
for (i = 0 ; i < len ; ++i)
data[i] = jme_smb_read(jme, i + offset);
return 0;
}
static int
jme_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
if (eeprom->magic != JME_EEPROM_MAGIC)
return -EINVAL;
/*
* ethtool will check the boundary for us
*/
for (i = 0 ; i < len ; ++i)
jme_smb_write(jme, i + offset, data[i]);
return 0;
}
static const struct ethtool_ops jme_ethtool_ops = {
.get_drvinfo = jme_get_drvinfo,
.get_regs_len = jme_get_regs_len,
.get_regs = jme_get_regs,
.get_coalesce = jme_get_coalesce,
.set_coalesce = jme_set_coalesce,
.get_pauseparam = jme_get_pauseparam,
.set_pauseparam = jme_set_pauseparam,
.get_wol = jme_get_wol,
.set_wol = jme_set_wol,
.get_settings = jme_get_settings,
.set_settings = jme_set_settings,
.get_link = jme_get_link,
.get_msglevel = jme_get_msglevel,
.set_msglevel = jme_set_msglevel,
.get_rx_csum = jme_get_rx_csum,
.set_rx_csum = jme_set_rx_csum,
.set_tx_csum = jme_set_tx_csum,
.set_tso = jme_set_tso,
.set_sg = ethtool_op_set_sg,
.nway_reset = jme_nway_reset,
.get_eeprom_len = jme_get_eeprom_len,
.get_eeprom = jme_get_eeprom,
.set_eeprom = jme_set_eeprom,
};
static int
jme_pci_dma64(struct pci_dev *pdev)
{
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
if (!pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))
return 1;
if (!pci_set_dma_mask(pdev, DMA_40BIT_MASK))
if (!pci_set_consistent_dma_mask(pdev, DMA_40BIT_MASK))
return 1;
if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
if (!pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))
return 0;
return -1;
}
static inline void
jme_phy_init(struct jme_adapter *jme)
{
u16 reg26;
reg26 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 26);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 26, reg26 | 0x1000);
}
static inline void
jme_check_hw_ver(struct jme_adapter *jme)
{
u32 chipmode;
chipmode = jread32(jme, JME_CHIPMODE);
jme->fpgaver = (chipmode & CM_FPGAVER_MASK) >> CM_FPGAVER_SHIFT;
jme->chiprev = (chipmode & CM_CHIPREV_MASK) >> CM_CHIPREV_SHIFT;
}
static int __devinit
jme_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rc = 0, using_dac, i;
struct net_device *netdev;
struct jme_adapter *jme;
u16 bmcr, bmsr;
u32 apmc;
/*
* set up PCI device basics
*/
rc = pci_enable_device(pdev);
if (rc) {
jeprintk(pdev, "Cannot enable PCI device.\n");
goto err_out;
}
using_dac = jme_pci_dma64(pdev);
if (using_dac < 0) {
jeprintk(pdev, "Cannot set PCI DMA Mask.\n");
rc = -EIO;
goto err_out_disable_pdev;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
jeprintk(pdev, "No PCI resource region found.\n");
rc = -ENOMEM;
goto err_out_disable_pdev;
}
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
jeprintk(pdev, "Cannot obtain PCI resource region.\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
/*
* alloc and init net device
*/
netdev = alloc_etherdev(sizeof(*jme));
if (!netdev) {
jeprintk(pdev, "Cannot allocate netdev structure.\n");
rc = -ENOMEM;
goto err_out_release_regions;
}
netdev->open = jme_open;
netdev->stop = jme_close;
netdev->hard_start_xmit = jme_start_xmit;
netdev->set_mac_address = jme_set_macaddr;
netdev->set_multicast_list = jme_set_multi;
netdev->change_mtu = jme_change_mtu;
netdev->ethtool_ops = &jme_ethtool_ops;
netdev->tx_timeout = jme_tx_timeout;
netdev->watchdog_timeo = TX_TIMEOUT;
netdev->vlan_rx_register = jme_vlan_rx_register;
NETDEV_GET_STATS(netdev, &jme_get_stats);
netdev->features = NETIF_F_HW_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
/*
* init adapter info
*/
jme = netdev_priv(netdev);
jme->pdev = pdev;
jme->dev = netdev;
jme->jme_rx = netif_rx;
jme->jme_vlan_rx = vlan_hwaccel_rx;
jme->old_mtu = netdev->mtu = 1500;
jme->phylink = 0;
jme->tx_ring_size = 1 << 10;
jme->tx_ring_mask = jme->tx_ring_size - 1;
jme->tx_wake_threshold = 1 << 9;
jme->rx_ring_size = 1 << 9;
jme->rx_ring_mask = jme->rx_ring_size - 1;
jme->msg_enable = JME_DEF_MSG_ENABLE;
jme->regs = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!(jme->regs)) {
jeprintk(pdev, "Mapping PCI resource region error.\n");
rc = -ENOMEM;
goto err_out_free_netdev;
}
jme->shadow_regs = pci_alloc_consistent(pdev,
sizeof(u32) * SHADOW_REG_NR,
&(jme->shadow_dma));
if (!(jme->shadow_regs)) {
jeprintk(pdev, "Allocating shadow register mapping error.\n");
rc = -ENOMEM;
goto err_out_unmap;
}
if (no_pseudohp) {
apmc = jread32(jme, JME_APMC) & ~JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
} else if (force_pseudohp) {
apmc = jread32(jme, JME_APMC) | JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
}
NETIF_NAPI_SET(netdev, &jme->napi, jme_poll, jme->rx_ring_size >> 2)
spin_lock_init(&jme->phy_lock);
spin_lock_init(&jme->macaddr_lock);
spin_lock_init(&jme->rxmcs_lock);
atomic_set(&jme->link_changing, 1);
atomic_set(&jme->rx_cleaning, 1);
atomic_set(&jme->tx_cleaning, 1);
atomic_set(&jme->rx_empty, 1);
tasklet_init(&jme->pcc_task,
&jme_pcc_tasklet,
(unsigned long) jme);
tasklet_init(&jme->linkch_task,
&jme_link_change_tasklet,
(unsigned long) jme);
tasklet_init(&jme->txclean_task,
&jme_tx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxclean_task,
&jme_rx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxempty_task,
&jme_rx_empty_tasklet,
(unsigned long) jme);
tasklet_disable_nosync(&jme->txclean_task);
tasklet_disable_nosync(&jme->rxclean_task);
tasklet_disable_nosync(&jme->rxempty_task);
jme->dpi.cur = PCC_P1;
jme->reg_ghc = 0;
jme->reg_rxcs = RXCS_DEFAULT;
jme->reg_rxmcs = RXMCS_DEFAULT;
jme->reg_txpfc = 0;
jme->reg_pmcs = PMCS_MFEN;
set_bit(JME_FLAG_TXCSUM, &jme->flags);
set_bit(JME_FLAG_TSO, &jme->flags);
/*
* Get Max Read Req Size from PCI Config Space
*/
pci_read_config_byte(pdev, PCI_DCSR_MRRS, &jme->mrrs);
jme->mrrs &= PCI_DCSR_MRRS_MASK;
switch (jme->mrrs) {
case MRRS_128B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_128B;
break;
case MRRS_256B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_256B;
break;
default:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_512B;
break;
};
/*
* Must check before reset_mac_processor
*/
jme_check_hw_ver(jme);
jme->mii_if.dev = netdev;
if (jme->fpgaver) {
jme->mii_if.phy_id = 0;
for (i = 1 ; i < 32 ; ++i) {
bmcr = jme_mdio_read(netdev, i, MII_BMCR);
bmsr = jme_mdio_read(netdev, i, MII_BMSR);
if (bmcr != 0xFFFFU && (bmcr != 0 || bmsr != 0)) {
jme->mii_if.phy_id = i;
break;
}
}
if (!jme->mii_if.phy_id) {
rc = -EIO;
jeprintk(pdev, "Can not find phy_id.\n");
goto err_out_free_shadow;
}
jme->reg_ghc |= GHC_LINK_POLL;
} else {
jme->mii_if.phy_id = 1;
}
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme->mii_if.supports_gmii = true;
else
jme->mii_if.supports_gmii = false;
jme->mii_if.mdio_read = jme_mdio_read;
jme->mii_if.mdio_write = jme_mdio_write;
jme_clear_pm(jme);
jme_set_phyfifoa(jme);
pci_read_config_byte(pdev, PCI_REVISION_ID, &jme->rev);
if (!jme->fpgaver)
jme_phy_init(jme);
jme_phy_off(jme);
/*
* Reset MAC processor and reload EEPROM for MAC Address
*/
jme_reset_mac_processor(jme);
rc = jme_reload_eeprom(jme);
if (rc) {
jeprintk(pdev,
"Reload eeprom for reading MAC Address error.\n");
goto err_out_free_shadow;
}
jme_load_macaddr(netdev);
/*
* Tell stack that we are not ready to work until open()
*/
netif_carrier_off(netdev);
netif_stop_queue(netdev);
/*
* Register netdev
*/
rc = register_netdev(netdev);
if (rc) {
jeprintk(pdev, "Cannot register net device.\n");
goto err_out_free_shadow;
}
msg_probe(jme,
"JMC250 gigabit%s ver:%x rev:%x "
"macaddr:%02x:%02x:%02x:%02x:%02x:%02x\n",
(jme->fpgaver != 0) ? " (FPGA)" : "",
(jme->fpgaver != 0) ? jme->fpgaver : jme->chiprev,
jme->rev,
netdev->dev_addr[0],
netdev->dev_addr[1],
netdev->dev_addr[2],
netdev->dev_addr[3],
netdev->dev_addr[4],
netdev->dev_addr[5]);
return 0;
err_out_free_shadow:
pci_free_consistent(pdev,
sizeof(u32) * SHADOW_REG_NR,
jme->shadow_regs,
jme->shadow_dma);
err_out_unmap:
iounmap(jme->regs);
err_out_free_netdev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out:
return rc;
}
static void __devexit
jme_remove_one(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
unregister_netdev(netdev);
pci_free_consistent(pdev,
sizeof(u32) * SHADOW_REG_NR,
jme->shadow_regs,
jme->shadow_dma);
iounmap(jme->regs);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int
jme_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
atomic_dec(&jme->link_changing);
netif_device_detach(netdev);
netif_stop_queue(netdev);
jme_stop_irq(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
jme_disable_shadow(jme);
if (netif_carrier_ok(netdev)) {
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
jme_stop_pcc_timer(jme);
jme_reset_ghc_speed(jme);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
netif_carrier_off(netdev);
jme->phylink = 0;
}
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
pci_save_state(pdev);
if (jme->reg_pmcs) {
jme_set_100m_half(jme);
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
jme_wait_link(jme);
jwrite32(jme, JME_PMCS, jme->reg_pmcs);
pci_enable_wake(pdev, PCI_D3cold, true);
} else {
jme_phy_off(jme);
}
pci_set_power_state(pdev, PCI_D3cold);
return 0;
}
static int
jme_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
jme_clear_pm(jme);
pci_restore_state(pdev);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
else
jme_reset_phy_processor(jme);
jme_enable_shadow(jme);
jme_start_irq(jme);
netif_device_attach(netdev);
atomic_inc(&jme->link_changing);
jme_reset_link(jme);
return 0;
}
static struct pci_device_id jme_pci_tbl[] = {
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC250) },
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC260) },
{ }
};
static struct pci_driver jme_driver = {
.name = DRV_NAME,
.id_table = jme_pci_tbl,
.probe = jme_init_one,
.remove = __devexit_p(jme_remove_one),
#ifdef CONFIG_PM
.suspend = jme_suspend,
.resume = jme_resume,
#endif /* CONFIG_PM */
};
static int __init
jme_init_module(void)
{
printk(KERN_INFO PFX "JMicron JMC250 gigabit ethernet "
"driver version %s\n", DRV_VERSION);
return pci_register_driver(&jme_driver);
}
static void __exit
jme_cleanup_module(void)
{
pci_unregister_driver(&jme_driver);
}
module_init(jme_init_module);
module_exit(jme_cleanup_module);
MODULE_AUTHOR("Guo-Fu Tseng <cooldavid@cooldavid.org>");
MODULE_DESCRIPTION("JMicron JMC2x0 PCI Express Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, jme_pci_tbl);
/*
* JMicron JMC2x0 series PCIe Ethernet Linux Device Driver
*
* Copyright 2008 JMicron Technology Corporation
* http://www.jmicron.com/
*
* Author: Guo-Fu Tseng <cooldavid@cooldavid.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#ifndef __JME_H_INCLUDED__
#define __JME_H_INCLUDEE__
#define DRV_NAME "jme"
#define DRV_VERSION "1.0.2"
#define PFX DRV_NAME ": "
#define PCI_DEVICE_ID_JMICRON_JMC250 0x0250
#define PCI_DEVICE_ID_JMICRON_JMC260 0x0260
/*
* Message related definitions
*/
#define JME_DEF_MSG_ENABLE \
(NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR | \
NETIF_MSG_HW)
#define jeprintk(pdev, fmt, args...) \
printk(KERN_ERR PFX fmt, ## args)
#ifdef TX_DEBUG
#define tx_dbg(priv, fmt, args...) \
printk(KERN_DEBUG "%s: " fmt, (priv)->dev->name, ## args)
#else
#define tx_dbg(priv, fmt, args...)
#endif
#define jme_msg(msglvl, type, priv, fmt, args...) \
if (netif_msg_##type(priv)) \
printk(msglvl "%s: " fmt, (priv)->dev->name, ## args)
#define msg_probe(priv, fmt, args...) \
jme_msg(KERN_INFO, probe, priv, fmt, ## args)
#define msg_link(priv, fmt, args...) \
jme_msg(KERN_INFO, link, priv, fmt, ## args)
#define msg_intr(priv, fmt, args...) \
jme_msg(KERN_INFO, intr, priv, fmt, ## args)
#define msg_rx_err(priv, fmt, args...) \
jme_msg(KERN_ERR, rx_err, priv, fmt, ## args)
#define msg_rx_status(priv, fmt, args...) \
jme_msg(KERN_INFO, rx_status, priv, fmt, ## args)
#define msg_tx_err(priv, fmt, args...) \
jme_msg(KERN_ERR, tx_err, priv, fmt, ## args)
#define msg_tx_done(priv, fmt, args...) \
jme_msg(KERN_INFO, tx_done, priv, fmt, ## args)
#define msg_tx_queued(priv, fmt, args...) \
jme_msg(KERN_INFO, tx_queued, priv, fmt, ## args)
#define msg_hw(priv, fmt, args...) \
jme_msg(KERN_ERR, hw, priv, fmt, ## args)
/*
* Extra PCI Configuration space interface
*/
#define PCI_DCSR_MRRS 0x59
#define PCI_DCSR_MRRS_MASK 0x70
enum pci_dcsr_mrrs_vals {
MRRS_128B = 0x00,
MRRS_256B = 0x10,
MRRS_512B = 0x20,
MRRS_1024B = 0x30,
MRRS_2048B = 0x40,
MRRS_4096B = 0x50,
};
#define PCI_SPI 0xB0
enum pci_spi_bits {
SPI_EN = 0x10,
SPI_MISO = 0x08,
SPI_MOSI = 0x04,
SPI_SCLK = 0x02,
SPI_CS = 0x01,
};
struct jme_spi_op {
void __user *uwbuf;
void __user *urbuf;
__u8 wn; /* Number of write actions */
__u8 rn; /* Number of read actions */
__u8 bitn; /* Number of bits per action */
__u8 spd; /* The maxim acceptable speed of controller, in MHz.*/
__u8 mode; /* CPOL, CPHA, and Duplex mode of SPI */
/* Internal use only */
u8 *kwbuf;
u8 *krbuf;
u8 sr;
u16 halfclk; /* Half of clock cycle calculated from spd, in ns */
};
enum jme_spi_op_bits {
SPI_MODE_CPHA = 0x01,
SPI_MODE_CPOL = 0x02,
SPI_MODE_DUP = 0x80,
};
#define HALF_US 500 /* 500 ns */
#define JMESPIIOCTL SIOCDEVPRIVATE
/*
* Dynamic(adaptive)/Static PCC values
*/
enum dynamic_pcc_values {
PCC_OFF = 0,
PCC_P1 = 1,
PCC_P2 = 2,
PCC_P3 = 3,
PCC_OFF_TO = 0,
PCC_P1_TO = 1,
PCC_P2_TO = 64,
PCC_P3_TO = 128,
PCC_OFF_CNT = 0,
PCC_P1_CNT = 1,
PCC_P2_CNT = 16,
PCC_P3_CNT = 32,
};
struct dynpcc_info {
unsigned long last_bytes;
unsigned long last_pkts;
unsigned long intr_cnt;
unsigned char cur;
unsigned char attempt;
unsigned char cnt;
};
#define PCC_INTERVAL_US 100000
#define PCC_INTERVAL (HZ / (1000000 / PCC_INTERVAL_US))
#define PCC_P3_THRESHOLD (2 * 1024 * 1024)
#define PCC_P2_THRESHOLD 800
#define PCC_INTR_THRESHOLD 800
#define PCC_TX_TO 1000
#define PCC_TX_CNT 8
/*
* TX/RX Descriptors
*
* TX/RX Ring DESC Count Must be multiple of 16 and <= 1024
*/
#define RING_DESC_ALIGN 16 /* Descriptor alignment */
#define TX_DESC_SIZE 16
#define TX_RING_NR 8
#define TX_RING_ALLOC_SIZE(s) ((s * TX_DESC_SIZE) + RING_DESC_ALIGN)
struct txdesc {
union {
__u8 all[16];
__le32 dw[4];
struct {
/* DW0 */
__le16 vlan;
__u8 rsv1;
__u8 flags;
/* DW1 */
__le16 datalen;
__le16 mss;
/* DW2 */
__le16 pktsize;
__le16 rsv2;
/* DW3 */
__le32 bufaddr;
} desc1;
struct {
/* DW0 */
__le16 rsv1;
__u8 rsv2;
__u8 flags;
/* DW1 */
__le16 datalen;
__le16 rsv3;
/* DW2 */
__le32 bufaddrh;
/* DW3 */
__le32 bufaddrl;
} desc2;
struct {
/* DW0 */
__u8 ehdrsz;
__u8 rsv1;
__u8 rsv2;
__u8 flags;
/* DW1 */
__le16 trycnt;
__le16 segcnt;
/* DW2 */
__le16 pktsz;
__le16 rsv3;
/* DW3 */
__le32 bufaddrl;
} descwb;
};
};
enum jme_txdesc_flags_bits {
TXFLAG_OWN = 0x80,
TXFLAG_INT = 0x40,
TXFLAG_64BIT = 0x20,
TXFLAG_TCPCS = 0x10,
TXFLAG_UDPCS = 0x08,
TXFLAG_IPCS = 0x04,
TXFLAG_LSEN = 0x02,
TXFLAG_TAGON = 0x01,
};
#define TXDESC_MSS_SHIFT 2
enum jme_rxdescwb_flags_bits {
TXWBFLAG_OWN = 0x80,
TXWBFLAG_INT = 0x40,
TXWBFLAG_TMOUT = 0x20,
TXWBFLAG_TRYOUT = 0x10,
TXWBFLAG_COL = 0x08,
TXWBFLAG_ALLERR = TXWBFLAG_TMOUT |
TXWBFLAG_TRYOUT |
TXWBFLAG_COL,
};
#define RX_DESC_SIZE 16
#define RX_RING_NR 4
#define RX_RING_ALLOC_SIZE(s) ((s * RX_DESC_SIZE) + RING_DESC_ALIGN)
#define RX_BUF_DMA_ALIGN 8
#define RX_PREPAD_SIZE 10
#define ETH_CRC_LEN 2
#define RX_VLANHDR_LEN 2
#define RX_EXTRA_LEN (RX_PREPAD_SIZE + \
ETH_HLEN + \
ETH_CRC_LEN + \
RX_VLANHDR_LEN + \
RX_BUF_DMA_ALIGN)
struct rxdesc {
union {
__u8 all[16];
__le32 dw[4];
struct {
/* DW0 */
__le16 rsv2;
__u8 rsv1;
__u8 flags;
/* DW1 */
__le16 datalen;
__le16 wbcpl;
/* DW2 */
__le32 bufaddrh;
/* DW3 */
__le32 bufaddrl;
} desc1;
struct {
/* DW0 */
__le16 vlan;
__le16 flags;
/* DW1 */
__le16 framesize;
__u8 errstat;
__u8 desccnt;
/* DW2 */
__le32 rsshash;
/* DW3 */
__u8 hashfun;
__u8 hashtype;
__le16 resrv;
} descwb;
};
};
enum jme_rxdesc_flags_bits {
RXFLAG_OWN = 0x80,
RXFLAG_INT = 0x40,
RXFLAG_64BIT = 0x20,
};
enum jme_rxwbdesc_flags_bits {
RXWBFLAG_OWN = 0x8000,
RXWBFLAG_INT = 0x4000,
RXWBFLAG_MF = 0x2000,
RXWBFLAG_64BIT = 0x2000,
RXWBFLAG_TCPON = 0x1000,
RXWBFLAG_UDPON = 0x0800,
RXWBFLAG_IPCS = 0x0400,
RXWBFLAG_TCPCS = 0x0200,
RXWBFLAG_UDPCS = 0x0100,
RXWBFLAG_TAGON = 0x0080,
RXWBFLAG_IPV4 = 0x0040,
RXWBFLAG_IPV6 = 0x0020,
RXWBFLAG_PAUSE = 0x0010,
RXWBFLAG_MAGIC = 0x0008,
RXWBFLAG_WAKEUP = 0x0004,
RXWBFLAG_DEST = 0x0003,
RXWBFLAG_DEST_UNI = 0x0001,
RXWBFLAG_DEST_MUL = 0x0002,
RXWBFLAG_DEST_BRO = 0x0003,
};
enum jme_rxwbdesc_desccnt_mask {
RXWBDCNT_WBCPL = 0x80,
RXWBDCNT_DCNT = 0x7F,
};
enum jme_rxwbdesc_errstat_bits {
RXWBERR_LIMIT = 0x80,
RXWBERR_MIIER = 0x40,
RXWBERR_NIBON = 0x20,
RXWBERR_COLON = 0x10,
RXWBERR_ABORT = 0x08,
RXWBERR_SHORT = 0x04,
RXWBERR_OVERUN = 0x02,
RXWBERR_CRCERR = 0x01,
RXWBERR_ALLERR = 0xFF,
};
/*
* Buffer information corresponding to ring descriptors.
*/
struct jme_buffer_info {
struct sk_buff *skb;
dma_addr_t mapping;
int len;
int nr_desc;
unsigned long start_xmit;
};
/*
* The structure holding buffer information and ring descriptors all together.
*/
#define MAX_RING_DESC_NR 1024
struct jme_ring {
void *alloc; /* pointer to allocated memory */
void *desc; /* pointer to ring memory */
dma_addr_t dmaalloc; /* phys address of ring alloc */
dma_addr_t dma; /* phys address for ring dma */
/* Buffer information corresponding to each descriptor */
struct jme_buffer_info bufinf[MAX_RING_DESC_NR];
int next_to_use;
atomic_t next_to_clean;
atomic_t nr_free;
};
#define NET_STAT(priv) (priv->dev->stats)
#define NETDEV_GET_STATS(netdev, fun_ptr)
#define DECLARE_NET_DEVICE_STATS
#define DECLARE_NAPI_STRUCT struct napi_struct napi;
#define NETIF_NAPI_SET(dev, napis, pollfn, q) \
netif_napi_add(dev, napis, pollfn, q);
#define JME_NAPI_HOLDER(holder) struct napi_struct *holder
#define JME_NAPI_WEIGHT(w) int w
#define JME_NAPI_WEIGHT_VAL(w) w
#define JME_NAPI_WEIGHT_SET(w, r)
#define JME_RX_COMPLETE(dev, napis) netif_rx_complete(dev, napis)
#define JME_NAPI_ENABLE(priv) napi_enable(&priv->napi);
#define JME_NAPI_DISABLE(priv) \
if (!napi_disable_pending(&priv->napi)) \
napi_disable(&priv->napi);
#define JME_RX_SCHEDULE_PREP(priv) \
netif_rx_schedule_prep(priv->dev, &priv->napi)
#define JME_RX_SCHEDULE(priv) \
__netif_rx_schedule(priv->dev, &priv->napi);
/*
* Jmac Adapter Private data
*/
#define SHADOW_REG_NR 8
struct jme_adapter {
struct pci_dev *pdev;
struct net_device *dev;
void __iomem *regs;
dma_addr_t shadow_dma;
u32 *shadow_regs;
struct mii_if_info mii_if;
struct jme_ring rxring[RX_RING_NR];
struct jme_ring txring[TX_RING_NR];
spinlock_t phy_lock;
spinlock_t macaddr_lock;
spinlock_t rxmcs_lock;
struct tasklet_struct rxempty_task;
struct tasklet_struct rxclean_task;
struct tasklet_struct txclean_task;
struct tasklet_struct linkch_task;
struct tasklet_struct pcc_task;
unsigned long flags;
u32 reg_txcs;
u32 reg_txpfc;
u32 reg_rxcs;
u32 reg_rxmcs;
u32 reg_ghc;
u32 reg_pmcs;
u32 phylink;
u32 tx_ring_size;
u32 tx_ring_mask;
u32 tx_wake_threshold;
u32 rx_ring_size;
u32 rx_ring_mask;
u8 mrrs;
unsigned int fpgaver;
unsigned int chiprev;
u8 rev;
u32 msg_enable;
struct ethtool_cmd old_ecmd;
unsigned int old_mtu;
struct vlan_group *vlgrp;
struct dynpcc_info dpi;
atomic_t intr_sem;
atomic_t link_changing;
atomic_t tx_cleaning;
atomic_t rx_cleaning;
atomic_t rx_empty;
int (*jme_rx)(struct sk_buff *skb);
int (*jme_vlan_rx)(struct sk_buff *skb,
struct vlan_group *grp,
unsigned short vlan_tag);
DECLARE_NAPI_STRUCT
DECLARE_NET_DEVICE_STATS
};
enum shadow_reg_val {
SHADOW_IEVE = 0,
};
enum jme_flags_bits {
JME_FLAG_MSI = 1,
JME_FLAG_SSET = 2,
JME_FLAG_TXCSUM = 3,
JME_FLAG_TSO = 4,
JME_FLAG_POLL = 5,
JME_FLAG_SHUTDOWN = 6,
};
#define TX_TIMEOUT (5 * HZ)
#define JME_REG_LEN 0x500
#define MAX_ETHERNET_JUMBO_PACKET_SIZE 9216
static inline struct jme_adapter*
jme_napi_priv(struct napi_struct *napi)
{
struct jme_adapter *jme;
jme = container_of(napi, struct jme_adapter, napi);
return jme;
}
/*
* MMaped I/O Resters
*/
enum jme_iomap_offsets {
JME_MAC = 0x0000,
JME_PHY = 0x0400,
JME_MISC = 0x0800,
JME_RSS = 0x0C00,
};
enum jme_iomap_lens {
JME_MAC_LEN = 0x80,
JME_PHY_LEN = 0x58,
JME_MISC_LEN = 0x98,
JME_RSS_LEN = 0xFF,
};
enum jme_iomap_regs {
JME_TXCS = JME_MAC | 0x00, /* Transmit Control and Status */
JME_TXDBA_LO = JME_MAC | 0x04, /* Transmit Queue Desc Base Addr */
JME_TXDBA_HI = JME_MAC | 0x08, /* Transmit Queue Desc Base Addr */
JME_TXQDC = JME_MAC | 0x0C, /* Transmit Queue Desc Count */
JME_TXNDA = JME_MAC | 0x10, /* Transmit Queue Next Desc Addr */
JME_TXMCS = JME_MAC | 0x14, /* Transmit MAC Control Status */
JME_TXPFC = JME_MAC | 0x18, /* Transmit Pause Frame Control */
JME_TXTRHD = JME_MAC | 0x1C, /* Transmit Timer/Retry@Half-Dup */
JME_RXCS = JME_MAC | 0x20, /* Receive Control and Status */
JME_RXDBA_LO = JME_MAC | 0x24, /* Receive Queue Desc Base Addr */
JME_RXDBA_HI = JME_MAC | 0x28, /* Receive Queue Desc Base Addr */
JME_RXQDC = JME_MAC | 0x2C, /* Receive Queue Desc Count */
JME_RXNDA = JME_MAC | 0x30, /* Receive Queue Next Desc Addr */
JME_RXMCS = JME_MAC | 0x34, /* Receive MAC Control Status */
JME_RXUMA_LO = JME_MAC | 0x38, /* Receive Unicast MAC Address */
JME_RXUMA_HI = JME_MAC | 0x3C, /* Receive Unicast MAC Address */
JME_RXMCHT_LO = JME_MAC | 0x40, /* Recv Multicast Addr HashTable */
JME_RXMCHT_HI = JME_MAC | 0x44, /* Recv Multicast Addr HashTable */
JME_WFODP = JME_MAC | 0x48, /* Wakeup Frame Output Data Port */
JME_WFOI = JME_MAC | 0x4C, /* Wakeup Frame Output Interface */
JME_SMI = JME_MAC | 0x50, /* Station Management Interface */
JME_GHC = JME_MAC | 0x54, /* Global Host Control */
JME_PMCS = JME_MAC | 0x60, /* Power Management Control/Stat */
JME_PHY_CS = JME_PHY | 0x28, /* PHY Ctrl and Status Register */
JME_PHY_LINK = JME_PHY | 0x30, /* PHY Link Status Register */
JME_SMBCSR = JME_PHY | 0x40, /* SMB Control and Status */
JME_SMBINTF = JME_PHY | 0x44, /* SMB Interface */
JME_TMCSR = JME_MISC | 0x00, /* Timer Control/Status Register */
JME_GPREG0 = JME_MISC | 0x08, /* General purpose REG-0 */
JME_GPREG1 = JME_MISC | 0x0C, /* General purpose REG-1 */
JME_IEVE = JME_MISC | 0x20, /* Interrupt Event Status */
JME_IREQ = JME_MISC | 0x24, /* Intr Req Status(For Debug) */
JME_IENS = JME_MISC | 0x28, /* Intr Enable - Setting Port */
JME_IENC = JME_MISC | 0x2C, /* Interrupt Enable - Clear Port */
JME_PCCRX0 = JME_MISC | 0x30, /* PCC Control for RX Queue 0 */
JME_PCCTX = JME_MISC | 0x40, /* PCC Control for TX Queues */
JME_CHIPMODE = JME_MISC | 0x44, /* Identify FPGA Version */
JME_SHBA_HI = JME_MISC | 0x48, /* Shadow Register Base HI */
JME_SHBA_LO = JME_MISC | 0x4C, /* Shadow Register Base LO */
JME_TIMER1 = JME_MISC | 0x70, /* Timer1 */
JME_TIMER2 = JME_MISC | 0x74, /* Timer2 */
JME_APMC = JME_MISC | 0x7C, /* Aggressive Power Mode Control */
JME_PCCSRX0 = JME_MISC | 0x80, /* PCC Status of RX0 */
};
/*
* TX Control/Status Bits
*/
enum jme_txcs_bits {
TXCS_QUEUE7S = 0x00008000,
TXCS_QUEUE6S = 0x00004000,
TXCS_QUEUE5S = 0x00002000,
TXCS_QUEUE4S = 0x00001000,
TXCS_QUEUE3S = 0x00000800,
TXCS_QUEUE2S = 0x00000400,
TXCS_QUEUE1S = 0x00000200,
TXCS_QUEUE0S = 0x00000100,
TXCS_FIFOTH = 0x000000C0,
TXCS_DMASIZE = 0x00000030,
TXCS_BURST = 0x00000004,
TXCS_ENABLE = 0x00000001,
};
enum jme_txcs_value {
TXCS_FIFOTH_16QW = 0x000000C0,
TXCS_FIFOTH_12QW = 0x00000080,
TXCS_FIFOTH_8QW = 0x00000040,
TXCS_FIFOTH_4QW = 0x00000000,
TXCS_DMASIZE_64B = 0x00000000,
TXCS_DMASIZE_128B = 0x00000010,
TXCS_DMASIZE_256B = 0x00000020,
TXCS_DMASIZE_512B = 0x00000030,
TXCS_SELECT_QUEUE0 = 0x00000000,
TXCS_SELECT_QUEUE1 = 0x00010000,
TXCS_SELECT_QUEUE2 = 0x00020000,
TXCS_SELECT_QUEUE3 = 0x00030000,
TXCS_SELECT_QUEUE4 = 0x00040000,
TXCS_SELECT_QUEUE5 = 0x00050000,
TXCS_SELECT_QUEUE6 = 0x00060000,
TXCS_SELECT_QUEUE7 = 0x00070000,
TXCS_DEFAULT = TXCS_FIFOTH_4QW |
TXCS_BURST,
};
#define JME_TX_DISABLE_TIMEOUT 10 /* 10 msec */
/*
* TX MAC Control/Status Bits
*/
enum jme_txmcs_bit_masks {
TXMCS_IFG2 = 0xC0000000,
TXMCS_IFG1 = 0x30000000,
TXMCS_TTHOLD = 0x00000300,
TXMCS_FBURST = 0x00000080,
TXMCS_CARRIEREXT = 0x00000040,
TXMCS_DEFER = 0x00000020,
TXMCS_BACKOFF = 0x00000010,
TXMCS_CARRIERSENSE = 0x00000008,
TXMCS_COLLISION = 0x00000004,
TXMCS_CRC = 0x00000002,
TXMCS_PADDING = 0x00000001,
};
enum jme_txmcs_values {
TXMCS_IFG2_6_4 = 0x00000000,
TXMCS_IFG2_8_5 = 0x40000000,
TXMCS_IFG2_10_6 = 0x80000000,
TXMCS_IFG2_12_7 = 0xC0000000,
TXMCS_IFG1_8_4 = 0x00000000,
TXMCS_IFG1_12_6 = 0x10000000,
TXMCS_IFG1_16_8 = 0x20000000,
TXMCS_IFG1_20_10 = 0x30000000,
TXMCS_TTHOLD_1_8 = 0x00000000,
TXMCS_TTHOLD_1_4 = 0x00000100,
TXMCS_TTHOLD_1_2 = 0x00000200,
TXMCS_TTHOLD_FULL = 0x00000300,
TXMCS_DEFAULT = TXMCS_IFG2_8_5 |
TXMCS_IFG1_16_8 |
TXMCS_TTHOLD_FULL |
TXMCS_DEFER |
TXMCS_CRC |
TXMCS_PADDING,
};
enum jme_txpfc_bits_masks {
TXPFC_VLAN_TAG = 0xFFFF0000,
TXPFC_VLAN_EN = 0x00008000,
TXPFC_PF_EN = 0x00000001,
};
enum jme_txtrhd_bits_masks {
TXTRHD_TXPEN = 0x80000000,
TXTRHD_TXP = 0x7FFFFF00,
TXTRHD_TXREN = 0x00000080,
TXTRHD_TXRL = 0x0000007F,
};
enum jme_txtrhd_shifts {
TXTRHD_TXP_SHIFT = 8,
TXTRHD_TXRL_SHIFT = 0,
};
/*
* RX Control/Status Bits
*/
enum jme_rxcs_bit_masks {
/* FIFO full threshold for transmitting Tx Pause Packet */
RXCS_FIFOTHTP = 0x30000000,
/* FIFO threshold for processing next packet */
RXCS_FIFOTHNP = 0x0C000000,
RXCS_DMAREQSZ = 0x03000000, /* DMA Request Size */
RXCS_QUEUESEL = 0x00030000, /* Queue selection */
RXCS_RETRYGAP = 0x0000F000, /* RX Desc full retry gap */
RXCS_RETRYCNT = 0x00000F00, /* RX Desc full retry counter */
RXCS_WAKEUP = 0x00000040, /* Enable receive wakeup packet */
RXCS_MAGIC = 0x00000020, /* Enable receive magic packet */
RXCS_SHORT = 0x00000010, /* Enable receive short packet */
RXCS_ABORT = 0x00000008, /* Enable receive errorr packet */
RXCS_QST = 0x00000004, /* Receive queue start */
RXCS_SUSPEND = 0x00000002,
RXCS_ENABLE = 0x00000001,
};
enum jme_rxcs_values {
RXCS_FIFOTHTP_16T = 0x00000000,
RXCS_FIFOTHTP_32T = 0x10000000,
RXCS_FIFOTHTP_64T = 0x20000000,
RXCS_FIFOTHTP_128T = 0x30000000,
RXCS_FIFOTHNP_16QW = 0x00000000,
RXCS_FIFOTHNP_32QW = 0x04000000,
RXCS_FIFOTHNP_64QW = 0x08000000,
RXCS_FIFOTHNP_128QW = 0x0C000000,
RXCS_DMAREQSZ_16B = 0x00000000,
RXCS_DMAREQSZ_32B = 0x01000000,
RXCS_DMAREQSZ_64B = 0x02000000,
RXCS_DMAREQSZ_128B = 0x03000000,
RXCS_QUEUESEL_Q0 = 0x00000000,
RXCS_QUEUESEL_Q1 = 0x00010000,
RXCS_QUEUESEL_Q2 = 0x00020000,
RXCS_QUEUESEL_Q3 = 0x00030000,
RXCS_RETRYGAP_256ns = 0x00000000,
RXCS_RETRYGAP_512ns = 0x00001000,
RXCS_RETRYGAP_1024ns = 0x00002000,
RXCS_RETRYGAP_2048ns = 0x00003000,
RXCS_RETRYGAP_4096ns = 0x00004000,
RXCS_RETRYGAP_8192ns = 0x00005000,
RXCS_RETRYGAP_16384ns = 0x00006000,
RXCS_RETRYGAP_32768ns = 0x00007000,
RXCS_RETRYCNT_0 = 0x00000000,
RXCS_RETRYCNT_4 = 0x00000100,
RXCS_RETRYCNT_8 = 0x00000200,
RXCS_RETRYCNT_12 = 0x00000300,
RXCS_RETRYCNT_16 = 0x00000400,
RXCS_RETRYCNT_20 = 0x00000500,
RXCS_RETRYCNT_24 = 0x00000600,
RXCS_RETRYCNT_28 = 0x00000700,
RXCS_RETRYCNT_32 = 0x00000800,
RXCS_RETRYCNT_36 = 0x00000900,
RXCS_RETRYCNT_40 = 0x00000A00,
RXCS_RETRYCNT_44 = 0x00000B00,
RXCS_RETRYCNT_48 = 0x00000C00,
RXCS_RETRYCNT_52 = 0x00000D00,
RXCS_RETRYCNT_56 = 0x00000E00,
RXCS_RETRYCNT_60 = 0x00000F00,
RXCS_DEFAULT = RXCS_FIFOTHTP_128T |
RXCS_FIFOTHNP_128QW |
RXCS_DMAREQSZ_128B |
RXCS_RETRYGAP_256ns |
RXCS_RETRYCNT_32,
};
#define JME_RX_DISABLE_TIMEOUT 10 /* 10 msec */
/*
* RX MAC Control/Status Bits
*/
enum jme_rxmcs_bits {
RXMCS_ALLFRAME = 0x00000800,
RXMCS_BRDFRAME = 0x00000400,
RXMCS_MULFRAME = 0x00000200,
RXMCS_UNIFRAME = 0x00000100,
RXMCS_ALLMULFRAME = 0x00000080,
RXMCS_MULFILTERED = 0x00000040,
RXMCS_RXCOLLDEC = 0x00000020,
RXMCS_FLOWCTRL = 0x00000008,
RXMCS_VTAGRM = 0x00000004,
RXMCS_PREPAD = 0x00000002,
RXMCS_CHECKSUM = 0x00000001,
RXMCS_DEFAULT = RXMCS_VTAGRM |
RXMCS_PREPAD |
RXMCS_FLOWCTRL |
RXMCS_CHECKSUM,
};
/*
* Wakeup Frame setup interface registers
*/
#define WAKEUP_FRAME_NR 8
#define WAKEUP_FRAME_MASK_DWNR 4
enum jme_wfoi_bit_masks {
WFOI_MASK_SEL = 0x00000070,
WFOI_CRC_SEL = 0x00000008,
WFOI_FRAME_SEL = 0x00000007,
};
enum jme_wfoi_shifts {
WFOI_MASK_SHIFT = 4,
};
/*
* SMI Related definitions
*/
enum jme_smi_bit_mask {
SMI_DATA_MASK = 0xFFFF0000,
SMI_REG_ADDR_MASK = 0x0000F800,
SMI_PHY_ADDR_MASK = 0x000007C0,
SMI_OP_WRITE = 0x00000020,
/* Set to 1, after req done it'll be cleared to 0 */
SMI_OP_REQ = 0x00000010,
SMI_OP_MDIO = 0x00000008, /* Software assess In/Out */
SMI_OP_MDOE = 0x00000004, /* Software Output Enable */
SMI_OP_MDC = 0x00000002, /* Software CLK Control */
SMI_OP_MDEN = 0x00000001, /* Software access Enable */
};
enum jme_smi_bit_shift {
SMI_DATA_SHIFT = 16,
SMI_REG_ADDR_SHIFT = 11,
SMI_PHY_ADDR_SHIFT = 6,
};
static inline u32 smi_reg_addr(int x)
{
return (x << SMI_REG_ADDR_SHIFT) & SMI_REG_ADDR_MASK;
}
static inline u32 smi_phy_addr(int x)
{
return (x << SMI_PHY_ADDR_SHIFT) & SMI_PHY_ADDR_MASK;
}
#define JME_PHY_TIMEOUT 100 /* 100 msec */
#define JME_PHY_REG_NR 32
/*
* Global Host Control
*/
enum jme_ghc_bit_mask {
GHC_SWRST = 0x40000000,
GHC_DPX = 0x00000040,
GHC_SPEED = 0x00000030,
GHC_LINK_POLL = 0x00000001,
};
enum jme_ghc_speed_val {
GHC_SPEED_10M = 0x00000010,
GHC_SPEED_100M = 0x00000020,
GHC_SPEED_1000M = 0x00000030,
};
/*
* Power management control and status register
*/
enum jme_pmcs_bit_masks {
PMCS_WF7DET = 0x80000000,
PMCS_WF6DET = 0x40000000,
PMCS_WF5DET = 0x20000000,
PMCS_WF4DET = 0x10000000,
PMCS_WF3DET = 0x08000000,
PMCS_WF2DET = 0x04000000,
PMCS_WF1DET = 0x02000000,
PMCS_WF0DET = 0x01000000,
PMCS_LFDET = 0x00040000,
PMCS_LRDET = 0x00020000,
PMCS_MFDET = 0x00010000,
PMCS_WF7EN = 0x00008000,
PMCS_WF6EN = 0x00004000,
PMCS_WF5EN = 0x00002000,
PMCS_WF4EN = 0x00001000,
PMCS_WF3EN = 0x00000800,
PMCS_WF2EN = 0x00000400,
PMCS_WF1EN = 0x00000200,
PMCS_WF0EN = 0x00000100,
PMCS_LFEN = 0x00000004,
PMCS_LREN = 0x00000002,
PMCS_MFEN = 0x00000001,
};
/*
* Giga PHY Status Registers
*/
enum jme_phy_link_bit_mask {
PHY_LINK_SPEED_MASK = 0x0000C000,
PHY_LINK_DUPLEX = 0x00002000,
PHY_LINK_SPEEDDPU_RESOLVED = 0x00000800,
PHY_LINK_UP = 0x00000400,
PHY_LINK_AUTONEG_COMPLETE = 0x00000200,
PHY_LINK_MDI_STAT = 0x00000040,
};
enum jme_phy_link_speed_val {
PHY_LINK_SPEED_10M = 0x00000000,
PHY_LINK_SPEED_100M = 0x00004000,
PHY_LINK_SPEED_1000M = 0x00008000,
};
#define JME_SPDRSV_TIMEOUT 500 /* 500 us */
/*
* SMB Control and Status
*/
enum jme_smbcsr_bit_mask {
SMBCSR_CNACK = 0x00020000,
SMBCSR_RELOAD = 0x00010000,
SMBCSR_EEPROMD = 0x00000020,
SMBCSR_INITDONE = 0x00000010,
SMBCSR_BUSY = 0x0000000F,
};
enum jme_smbintf_bit_mask {
SMBINTF_HWDATR = 0xFF000000,
SMBINTF_HWDATW = 0x00FF0000,
SMBINTF_HWADDR = 0x0000FF00,
SMBINTF_HWRWN = 0x00000020,
SMBINTF_HWCMD = 0x00000010,
SMBINTF_FASTM = 0x00000008,
SMBINTF_GPIOSCL = 0x00000004,
SMBINTF_GPIOSDA = 0x00000002,
SMBINTF_GPIOEN = 0x00000001,
};
enum jme_smbintf_vals {
SMBINTF_HWRWN_READ = 0x00000020,
SMBINTF_HWRWN_WRITE = 0x00000000,
};
enum jme_smbintf_shifts {
SMBINTF_HWDATR_SHIFT = 24,
SMBINTF_HWDATW_SHIFT = 16,
SMBINTF_HWADDR_SHIFT = 8,
};
#define JME_EEPROM_RELOAD_TIMEOUT 2000 /* 2000 msec */
#define JME_SMB_BUSY_TIMEOUT 20 /* 20 msec */
#define JME_SMB_LEN 256
#define JME_EEPROM_MAGIC 0x250
/*
* Timer Control/Status Register
*/
enum jme_tmcsr_bit_masks {
TMCSR_SWIT = 0x80000000,
TMCSR_EN = 0x01000000,
TMCSR_CNT = 0x00FFFFFF,
};
/*
* General Purpose REG-0
*/
enum jme_gpreg0_masks {
GPREG0_DISSH = 0xFF000000,
GPREG0_PCIRLMT = 0x00300000,
GPREG0_PCCNOMUTCLR = 0x00040000,
GPREG0_LNKINTPOLL = 0x00001000,
GPREG0_PCCTMR = 0x00000300,
GPREG0_PHYADDR = 0x0000001F,
};
enum jme_gpreg0_vals {
GPREG0_DISSH_DW7 = 0x80000000,
GPREG0_DISSH_DW6 = 0x40000000,
GPREG0_DISSH_DW5 = 0x20000000,
GPREG0_DISSH_DW4 = 0x10000000,
GPREG0_DISSH_DW3 = 0x08000000,
GPREG0_DISSH_DW2 = 0x04000000,
GPREG0_DISSH_DW1 = 0x02000000,
GPREG0_DISSH_DW0 = 0x01000000,
GPREG0_DISSH_ALL = 0xFF000000,
GPREG0_PCIRLMT_8 = 0x00000000,
GPREG0_PCIRLMT_6 = 0x00100000,
GPREG0_PCIRLMT_5 = 0x00200000,
GPREG0_PCIRLMT_4 = 0x00300000,
GPREG0_PCCTMR_16ns = 0x00000000,
GPREG0_PCCTMR_256ns = 0x00000100,
GPREG0_PCCTMR_1us = 0x00000200,
GPREG0_PCCTMR_1ms = 0x00000300,
GPREG0_PHYADDR_1 = 0x00000001,
GPREG0_DEFAULT = GPREG0_PCIRLMT_4 |
GPREG0_PCCTMR_1us |
GPREG0_PHYADDR_1,
};
/*
* Interrupt Status Bits
*/
enum jme_interrupt_bits {
INTR_SWINTR = 0x80000000,
INTR_TMINTR = 0x40000000,
INTR_LINKCH = 0x20000000,
INTR_PAUSERCV = 0x10000000,
INTR_MAGICRCV = 0x08000000,
INTR_WAKERCV = 0x04000000,
INTR_PCCRX0TO = 0x02000000,
INTR_PCCRX1TO = 0x01000000,
INTR_PCCRX2TO = 0x00800000,
INTR_PCCRX3TO = 0x00400000,
INTR_PCCTXTO = 0x00200000,
INTR_PCCRX0 = 0x00100000,
INTR_PCCRX1 = 0x00080000,
INTR_PCCRX2 = 0x00040000,
INTR_PCCRX3 = 0x00020000,
INTR_PCCTX = 0x00010000,
INTR_RX3EMP = 0x00008000,
INTR_RX2EMP = 0x00004000,
INTR_RX1EMP = 0x00002000,
INTR_RX0EMP = 0x00001000,
INTR_RX3 = 0x00000800,
INTR_RX2 = 0x00000400,
INTR_RX1 = 0x00000200,
INTR_RX0 = 0x00000100,
INTR_TX7 = 0x00000080,
INTR_TX6 = 0x00000040,
INTR_TX5 = 0x00000020,
INTR_TX4 = 0x00000010,
INTR_TX3 = 0x00000008,
INTR_TX2 = 0x00000004,
INTR_TX1 = 0x00000002,
INTR_TX0 = 0x00000001,
};
static const u32 INTR_ENABLE = INTR_SWINTR |
INTR_TMINTR |
INTR_LINKCH |
INTR_PCCRX0TO |
INTR_PCCRX0 |
INTR_PCCTXTO |
INTR_PCCTX |
INTR_RX0EMP;
/*
* PCC Control Registers
*/
enum jme_pccrx_masks {
PCCRXTO_MASK = 0xFFFF0000,
PCCRX_MASK = 0x0000FF00,
};
enum jme_pcctx_masks {
PCCTXTO_MASK = 0xFFFF0000,
PCCTX_MASK = 0x0000FF00,
PCCTX_QS_MASK = 0x000000FF,
};
enum jme_pccrx_shifts {
PCCRXTO_SHIFT = 16,
PCCRX_SHIFT = 8,
};
enum jme_pcctx_shifts {
PCCTXTO_SHIFT = 16,
PCCTX_SHIFT = 8,
};
enum jme_pcctx_bits {
PCCTXQ0_EN = 0x00000001,
PCCTXQ1_EN = 0x00000002,
PCCTXQ2_EN = 0x00000004,
PCCTXQ3_EN = 0x00000008,
PCCTXQ4_EN = 0x00000010,
PCCTXQ5_EN = 0x00000020,
PCCTXQ6_EN = 0x00000040,
PCCTXQ7_EN = 0x00000080,
};
/*
* Chip Mode Register
*/
enum jme_chipmode_bit_masks {
CM_FPGAVER_MASK = 0xFFFF0000,
CM_CHIPREV_MASK = 0x0000FF00,
CM_CHIPMODE_MASK = 0x0000000F,
};
enum jme_chipmode_shifts {
CM_FPGAVER_SHIFT = 16,
CM_CHIPREV_SHIFT = 8,
};
/*
* Shadow base address register bits
*/
enum jme_shadow_base_address_bits {
SHBA_POSTEN = 0x1,
};
/*
* Aggressive Power Mode Control
*/
enum jme_apmc_bits {
JME_APMC_PCIE_SD_EN = 0x40000000,
JME_APMC_PSEUDO_HP_EN = 0x20000000,
JME_APMC_EPIEN = 0x04000000,
JME_APMC_EPIEN_CTRL = 0x03000000,
};
enum jme_apmc_values {
JME_APMC_EPIEN_CTRL_EN = 0x02000000,
JME_APMC_EPIEN_CTRL_DIS = 0x01000000,
};
#define APMC_PHP_SHUTDOWN_DELAY (10 * 1000 * 1000)
#ifdef REG_DEBUG
static char *MAC_REG_NAME[] = {
"JME_TXCS", "JME_TXDBA_LO", "JME_TXDBA_HI", "JME_TXQDC",
"JME_TXNDA", "JME_TXMCS", "JME_TXPFC", "JME_TXTRHD",
"JME_RXCS", "JME_RXDBA_LO", "JME_RXDBA_HI", "JME_RXQDC",
"JME_RXNDA", "JME_RXMCS", "JME_RXUMA_LO", "JME_RXUMA_HI",
"JME_RXMCHT_LO", "JME_RXMCHT_HI", "JME_WFODP", "JME_WFOI",
"JME_SMI", "JME_GHC", "UNKNOWN", "UNKNOWN",
"JME_PMCS"};
static char *PE_REG_NAME[] = {
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"UNKNOWN", "UNKNOWN", "JME_PHY_CS", "UNKNOWN",
"JME_PHY_LINK", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"JME_SMBCSR", "JME_SMBINTF"};
static char *MISC_REG_NAME[] = {
"JME_TMCSR", "JME_GPIO", "JME_GPREG0", "JME_GPREG1",
"JME_IEVE", "JME_IREQ", "JME_IENS", "JME_IENC",
"JME_PCCRX0", "JME_PCCRX1", "JME_PCCRX2", "JME_PCCRX3",
"JME_PCCTX0", "JME_CHIPMODE", "JME_SHBA_HI", "JME_SHBA_LO",
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
"JME_TIMER1", "JME_TIMER2", "UNKNOWN", "JME_APMC",
"JME_PCCSRX0"};
static inline void reg_dbg(const struct jme_adapter *jme,
const char *msg, u32 val, u32 reg)
{
const char *regname;
switch (reg & 0xF00) {
case 0x000:
regname = MAC_REG_NAME[(reg & 0xFF) >> 2];
break;
case 0x400:
regname = PE_REG_NAME[(reg & 0xFF) >> 2];
break;
case 0x800:
regname = MISC_REG_NAME[(reg & 0xFF) >> 2];
break;
default:
regname = PE_REG_NAME[0];
}
printk(KERN_DEBUG "%s: %-20s %08x@%s\n", jme->dev->name,
msg, val, regname);
}
#else
static inline void reg_dbg(const struct jme_adapter *jme,
const char *msg, u32 val, u32 reg) {}
#endif
/*
* Read/Write MMaped I/O Registers
*/
static inline u32 jread32(struct jme_adapter *jme, u32 reg)
{
return readl(jme->regs + reg);
}
static inline void jwrite32(struct jme_adapter *jme, u32 reg, u32 val)
{
reg_dbg(jme, "REG WRITE", val, reg);
writel(val, jme->regs + reg);
reg_dbg(jme, "VAL AFTER WRITE", readl(jme->regs + reg), reg);
}
static inline void jwrite32f(struct jme_adapter *jme, u32 reg, u32 val)
{
/*
* Read after write should cause flush
*/
reg_dbg(jme, "REG WRITE FLUSH", val, reg);
writel(val, jme->regs + reg);
readl(jme->regs + reg);
reg_dbg(jme, "VAL AFTER WRITE", readl(jme->regs + reg), reg);
}
/*
* PHY Regs
*/
enum jme_phy_reg17_bit_masks {
PREG17_SPEED = 0xC000,
PREG17_DUPLEX = 0x2000,
PREG17_SPDRSV = 0x0800,
PREG17_LNKUP = 0x0400,
PREG17_MDI = 0x0040,
};
enum jme_phy_reg17_vals {
PREG17_SPEED_10M = 0x0000,
PREG17_SPEED_100M = 0x4000,
PREG17_SPEED_1000M = 0x8000,
};
#define BMSR_ANCOMP 0x0020
/*
* Workaround
*/
static inline int is_buggy250(unsigned short device, unsigned int chiprev)
{
return device == PCI_DEVICE_ID_JMICRON_JMC250 && chiprev == 0x11;
}
/*
* Function prototypes
*/
static int jme_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd);
static void jme_set_multi(struct net_device *netdev);
#endif
#
# Makefile for the Qlogic 10GbE PCI Express ethernet driver
#
obj-$(CONFIG_QLGE) += qlge.o
qlge-objs := qlge_main.o qlge_dbg.o qlge_mpi.o qlge_ethtool.o
/*
* QLogic QLA41xx NIC HBA Driver
* Copyright (c) 2003-2006 QLogic Corporation
*
* See LICENSE.qlge for copyright and licensing details.
*/
#ifndef _QLGE_H_
#define _QLGE_H_
#include <linux/pci.h>
#include <linux/netdevice.h>
/*
* General definitions...
*/
#define DRV_NAME "qlge"
#define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver "
#define DRV_VERSION "v1.00.00-b3"
#define PFX "qlge: "
#define QPRINTK(qdev, nlevel, klevel, fmt, args...) \
do { \
if (!((qdev)->msg_enable & NETIF_MSG_##nlevel)) \
; \
else \
dev_printk(KERN_##klevel, &((qdev)->pdev->dev), \
"%s: " fmt, __func__, ##args); \
} while (0)
#define QLGE_VENDOR_ID 0x1077
#define QLGE_DEVICE_ID1 0x8012
#define QLGE_DEVICE_ID 0x8000
#define MAX_RX_RINGS 128
#define MAX_TX_RINGS 128
#define NUM_TX_RING_ENTRIES 256
#define NUM_RX_RING_ENTRIES 256
#define NUM_SMALL_BUFFERS 512
#define NUM_LARGE_BUFFERS 512
#define SMALL_BUFFER_SIZE 256
#define LARGE_BUFFER_SIZE PAGE_SIZE
#define MAX_SPLIT_SIZE 1023
#define QLGE_SB_PAD 32
#define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */
#define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */
#define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2)
#define UDELAY_COUNT 3
#define UDELAY_DELAY 10
#define TX_DESC_PER_IOCB 8
/* The maximum number of frags we handle is based
* on PAGE_SIZE...
*/
#if (PAGE_SHIFT == 12) || (PAGE_SHIFT == 13) /* 4k & 8k pages */
#define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
#elif (PAGE_SHIFT == 16) /* 64k pages */
#define TX_DESC_PER_OAL 0
#endif
#define DB_PAGE_SIZE 4096
/*
* Processor Address Register (PROC_ADDR) bit definitions.
*/
enum {
/* Misc. stuff */
MAILBOX_COUNT = 16,
PROC_ADDR_RDY = (1 << 31),
PROC_ADDR_R = (1 << 30),
PROC_ADDR_ERR = (1 << 29),
PROC_ADDR_DA = (1 << 28),
PROC_ADDR_FUNC0_MBI = 0x00001180,
PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
PROC_ADDR_FUNC0_CTL = 0x000011a1,
PROC_ADDR_FUNC2_MBI = 0x00001280,
PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
PROC_ADDR_FUNC2_CTL = 0x000012a1,
PROC_ADDR_MPI_RISC = 0x00000000,
PROC_ADDR_MDE = 0x00010000,
PROC_ADDR_REGBLOCK = 0x00020000,
PROC_ADDR_RISC_REG = 0x00030000,
};
/*
* System Register (SYS) bit definitions.
*/
enum {
SYS_EFE = (1 << 0),
SYS_FAE = (1 << 1),
SYS_MDC = (1 << 2),
SYS_DST = (1 << 3),
SYS_DWC = (1 << 4),
SYS_EVW = (1 << 5),
SYS_OMP_DLY_MASK = 0x3f000000,
/*
* There are no values defined as of edit #15.
*/
SYS_ODI = (1 << 14),
};
/*
* Reset/Failover Register (RST_FO) bit definitions.
*/
enum {
RST_FO_TFO = (1 << 0),
RST_FO_RR_MASK = 0x00060000,
RST_FO_RR_CQ_CAM = 0x00000000,
RST_FO_RR_DROP = 0x00000001,
RST_FO_RR_DQ = 0x00000002,
RST_FO_RR_RCV_FUNC_CQ = 0x00000003,
RST_FO_FRB = (1 << 12),
RST_FO_MOP = (1 << 13),
RST_FO_REG = (1 << 14),
RST_FO_FR = (1 << 15),
};
/*
* Function Specific Control Register (FSC) bit definitions.
*/
enum {
FSC_DBRST_MASK = 0x00070000,
FSC_DBRST_256 = 0x00000000,
FSC_DBRST_512 = 0x00000001,
FSC_DBRST_768 = 0x00000002,
FSC_DBRST_1024 = 0x00000003,
FSC_DBL_MASK = 0x00180000,
FSC_DBL_DBRST = 0x00000000,
FSC_DBL_MAX_PLD = 0x00000008,
FSC_DBL_MAX_BRST = 0x00000010,
FSC_DBL_128_BYTES = 0x00000018,
FSC_EC = (1 << 5),
FSC_EPC_MASK = 0x00c00000,
FSC_EPC_INBOUND = (1 << 6),
FSC_EPC_OUTBOUND = (1 << 7),
FSC_VM_PAGESIZE_MASK = 0x07000000,
FSC_VM_PAGE_2K = 0x00000100,
FSC_VM_PAGE_4K = 0x00000200,
FSC_VM_PAGE_8K = 0x00000300,
FSC_VM_PAGE_64K = 0x00000600,
FSC_SH = (1 << 11),
FSC_DSB = (1 << 12),
FSC_STE = (1 << 13),
FSC_FE = (1 << 15),
};
/*
* Host Command Status Register (CSR) bit definitions.
*/
enum {
CSR_ERR_STS_MASK = 0x0000003f,
/*
* There are no valued defined as of edit #15.
*/
CSR_RR = (1 << 8),
CSR_HRI = (1 << 9),
CSR_RP = (1 << 10),
CSR_CMD_PARM_SHIFT = 22,
CSR_CMD_NOP = 0x00000000,
CSR_CMD_SET_RST = 0x1000000,
CSR_CMD_CLR_RST = 0x20000000,
CSR_CMD_SET_PAUSE = 0x30000000,
CSR_CMD_CLR_PAUSE = 0x40000000,
CSR_CMD_SET_H2R_INT = 0x50000000,
CSR_CMD_CLR_H2R_INT = 0x60000000,
CSR_CMD_PAR_EN = 0x70000000,
CSR_CMD_SET_BAD_PAR = 0x80000000,
CSR_CMD_CLR_BAD_PAR = 0x90000000,
CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
};
/*
* Configuration Register (CFG) bit definitions.
*/
enum {
CFG_LRQ = (1 << 0),
CFG_DRQ = (1 << 1),
CFG_LR = (1 << 2),
CFG_DR = (1 << 3),
CFG_LE = (1 << 5),
CFG_LCQ = (1 << 6),
CFG_DCQ = (1 << 7),
CFG_Q_SHIFT = 8,
CFG_Q_MASK = 0x7f000000,
};
/*
* Status Register (STS) bit definitions.
*/
enum {
STS_FE = (1 << 0),
STS_PI = (1 << 1),
STS_PL0 = (1 << 2),
STS_PL1 = (1 << 3),
STS_PI0 = (1 << 4),
STS_PI1 = (1 << 5),
STS_FUNC_ID_MASK = 0x000000c0,
STS_FUNC_ID_SHIFT = 6,
STS_F0E = (1 << 8),
STS_F1E = (1 << 9),
STS_F2E = (1 << 10),
STS_F3E = (1 << 11),
STS_NFE = (1 << 12),
};
/*
* Interrupt Enable Register (INTR_EN) bit definitions.
*/
enum {
INTR_EN_INTR_MASK = 0x007f0000,
INTR_EN_TYPE_MASK = 0x03000000,
INTR_EN_TYPE_ENABLE = 0x00000100,
INTR_EN_TYPE_DISABLE = 0x00000200,
INTR_EN_TYPE_READ = 0x00000300,
INTR_EN_IHD = (1 << 13),
INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
INTR_EN_EI = (1 << 14),
INTR_EN_EN = (1 << 15),
};
/*
* Interrupt Mask Register (INTR_MASK) bit definitions.
*/
enum {
INTR_MASK_PI = (1 << 0),
INTR_MASK_HL0 = (1 << 1),
INTR_MASK_LH0 = (1 << 2),
INTR_MASK_HL1 = (1 << 3),
INTR_MASK_LH1 = (1 << 4),
INTR_MASK_SE = (1 << 5),
INTR_MASK_LSC = (1 << 6),
INTR_MASK_MC = (1 << 7),
INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
};
/*
* Register (REV_ID) bit definitions.
*/
enum {
REV_ID_MASK = 0x0000000f,
REV_ID_NICROLL_SHIFT = 0,
REV_ID_NICREV_SHIFT = 4,
REV_ID_XGROLL_SHIFT = 8,
REV_ID_XGREV_SHIFT = 12,
REV_ID_CHIPREV_SHIFT = 28,
};
/*
* Force ECC Error Register (FRC_ECC_ERR) bit definitions.
*/
enum {
FRC_ECC_ERR_VW = (1 << 12),
FRC_ECC_ERR_VB = (1 << 13),
FRC_ECC_ERR_NI = (1 << 14),
FRC_ECC_ERR_NO = (1 << 15),
FRC_ECC_PFE_SHIFT = 16,
FRC_ECC_ERR_DO = (1 << 18),
FRC_ECC_P14 = (1 << 19),
};
/*
* Error Status Register (ERR_STS) bit definitions.
*/
enum {
ERR_STS_NOF = (1 << 0),
ERR_STS_NIF = (1 << 1),
ERR_STS_DRP = (1 << 2),
ERR_STS_XGP = (1 << 3),
ERR_STS_FOU = (1 << 4),
ERR_STS_FOC = (1 << 5),
ERR_STS_FOF = (1 << 6),
ERR_STS_FIU = (1 << 7),
ERR_STS_FIC = (1 << 8),
ERR_STS_FIF = (1 << 9),
ERR_STS_MOF = (1 << 10),
ERR_STS_TA = (1 << 11),
ERR_STS_MA = (1 << 12),
ERR_STS_MPE = (1 << 13),
ERR_STS_SCE = (1 << 14),
ERR_STS_STE = (1 << 15),
ERR_STS_FOW = (1 << 16),
ERR_STS_UE = (1 << 17),
ERR_STS_MCH = (1 << 26),
ERR_STS_LOC_SHIFT = 27,
};
/*
* RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
*/
enum {
RAM_DBG_ADDR_FW = (1 << 30),
RAM_DBG_ADDR_FR = (1 << 31),
};
/*
* Semaphore Register (SEM) bit definitions.
*/
enum {
/*
* Example:
* reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
*/
SEM_CLEAR = 0,
SEM_SET = 1,
SEM_FORCE = 3,
SEM_XGMAC0_SHIFT = 0,
SEM_XGMAC1_SHIFT = 2,
SEM_ICB_SHIFT = 4,
SEM_MAC_ADDR_SHIFT = 6,
SEM_FLASH_SHIFT = 8,
SEM_PROBE_SHIFT = 10,
SEM_RT_IDX_SHIFT = 12,
SEM_PROC_REG_SHIFT = 14,
SEM_XGMAC0_MASK = 0x00030000,
SEM_XGMAC1_MASK = 0x000c0000,
SEM_ICB_MASK = 0x00300000,
SEM_MAC_ADDR_MASK = 0x00c00000,
SEM_FLASH_MASK = 0x03000000,
SEM_PROBE_MASK = 0x0c000000,
SEM_RT_IDX_MASK = 0x30000000,
SEM_PROC_REG_MASK = 0xc0000000,
};
/*
* 10G MAC Address Register (XGMAC_ADDR) bit definitions.
*/
enum {
XGMAC_ADDR_RDY = (1 << 31),
XGMAC_ADDR_R = (1 << 30),
XGMAC_ADDR_XME = (1 << 29),
/* XGMAC control registers */
PAUSE_SRC_LO = 0x00000100,
PAUSE_SRC_HI = 0x00000104,
GLOBAL_CFG = 0x00000108,
GLOBAL_CFG_RESET = (1 << 0),
GLOBAL_CFG_JUMBO = (1 << 6),
GLOBAL_CFG_TX_STAT_EN = (1 << 10),
GLOBAL_CFG_RX_STAT_EN = (1 << 11),
TX_CFG = 0x0000010c,
TX_CFG_RESET = (1 << 0),
TX_CFG_EN = (1 << 1),
TX_CFG_PREAM = (1 << 2),
RX_CFG = 0x00000110,
RX_CFG_RESET = (1 << 0),
RX_CFG_EN = (1 << 1),
RX_CFG_PREAM = (1 << 2),
FLOW_CTL = 0x0000011c,
PAUSE_OPCODE = 0x00000120,
PAUSE_TIMER = 0x00000124,
PAUSE_FRM_DEST_LO = 0x00000128,
PAUSE_FRM_DEST_HI = 0x0000012c,
MAC_TX_PARAMS = 0x00000134,
MAC_TX_PARAMS_JUMBO = (1 << 31),
MAC_TX_PARAMS_SIZE_SHIFT = 16,
MAC_RX_PARAMS = 0x00000138,
MAC_SYS_INT = 0x00000144,
MAC_SYS_INT_MASK = 0x00000148,
MAC_MGMT_INT = 0x0000014c,
MAC_MGMT_IN_MASK = 0x00000150,
EXT_ARB_MODE = 0x000001fc,
/* XGMAC TX statistics registers */
TX_PKTS = 0x00000200,
TX_BYTES = 0x00000208,
TX_MCAST_PKTS = 0x00000210,
TX_BCAST_PKTS = 0x00000218,
TX_UCAST_PKTS = 0x00000220,
TX_CTL_PKTS = 0x00000228,
TX_PAUSE_PKTS = 0x00000230,
TX_64_PKT = 0x00000238,
TX_65_TO_127_PKT = 0x00000240,
TX_128_TO_255_PKT = 0x00000248,
TX_256_511_PKT = 0x00000250,
TX_512_TO_1023_PKT = 0x00000258,
TX_1024_TO_1518_PKT = 0x00000260,
TX_1519_TO_MAX_PKT = 0x00000268,
TX_UNDERSIZE_PKT = 0x00000270,
TX_OVERSIZE_PKT = 0x00000278,
/* XGMAC statistics control registers */
RX_HALF_FULL_DET = 0x000002a0,
TX_HALF_FULL_DET = 0x000002a4,
RX_OVERFLOW_DET = 0x000002a8,
TX_OVERFLOW_DET = 0x000002ac,
RX_HALF_FULL_MASK = 0x000002b0,
TX_HALF_FULL_MASK = 0x000002b4,
RX_OVERFLOW_MASK = 0x000002b8,
TX_OVERFLOW_MASK = 0x000002bc,
STAT_CNT_CTL = 0x000002c0,
STAT_CNT_CTL_CLEAR_TX = (1 << 0),
STAT_CNT_CTL_CLEAR_RX = (1 << 1),
AUX_RX_HALF_FULL_DET = 0x000002d0,
AUX_TX_HALF_FULL_DET = 0x000002d4,
AUX_RX_OVERFLOW_DET = 0x000002d8,
AUX_TX_OVERFLOW_DET = 0x000002dc,
AUX_RX_HALF_FULL_MASK = 0x000002f0,
AUX_TX_HALF_FULL_MASK = 0x000002f4,
AUX_RX_OVERFLOW_MASK = 0x000002f8,
AUX_TX_OVERFLOW_MASK = 0x000002fc,
/* XGMAC RX statistics registers */
RX_BYTES = 0x00000300,
RX_BYTES_OK = 0x00000308,
RX_PKTS = 0x00000310,
RX_PKTS_OK = 0x00000318,
RX_BCAST_PKTS = 0x00000320,
RX_MCAST_PKTS = 0x00000328,
RX_UCAST_PKTS = 0x00000330,
RX_UNDERSIZE_PKTS = 0x00000338,
RX_OVERSIZE_PKTS = 0x00000340,
RX_JABBER_PKTS = 0x00000348,
RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
RX_DROP_EVENTS = 0x00000358,
RX_FCERR_PKTS = 0x00000360,
RX_ALIGN_ERR = 0x00000368,
RX_SYMBOL_ERR = 0x00000370,
RX_MAC_ERR = 0x00000378,
RX_CTL_PKTS = 0x00000380,
RX_PAUSE_PKTS = 0x00000384,
RX_64_PKTS = 0x00000390,
RX_65_TO_127_PKTS = 0x00000398,
RX_128_255_PKTS = 0x000003a0,
RX_256_511_PKTS = 0x000003a8,
RX_512_TO_1023_PKTS = 0x000003b0,
RX_1024_TO_1518_PKTS = 0x000003b8,
RX_1519_TO_MAX_PKTS = 0x000003c0,
RX_LEN_ERR_PKTS = 0x000003c8,
/* XGMAC MDIO control registers */
MDIO_TX_DATA = 0x00000400,
MDIO_RX_DATA = 0x00000410,
MDIO_CMD = 0x00000420,
MDIO_PHY_ADDR = 0x00000430,
MDIO_PORT = 0x00000440,
MDIO_STATUS = 0x00000450,
/* XGMAC AUX statistics registers */
};
/*
* Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
*/
enum {
ETS_QUEUE_SHIFT = 29,
ETS_REF = (1 << 26),
ETS_RS = (1 << 27),
ETS_P = (1 << 28),
ETS_FC_COS_SHIFT = 23,
};
/*
* Flash Address Register (FLASH_ADDR) bit definitions.
*/
enum {
FLASH_ADDR_RDY = (1 << 31),
FLASH_ADDR_R = (1 << 30),
FLASH_ADDR_ERR = (1 << 29),
};
/*
* Stop CQ Processing Register (CQ_STOP) bit definitions.
*/
enum {
CQ_STOP_QUEUE_MASK = (0x007f0000),
CQ_STOP_TYPE_MASK = (0x03000000),
CQ_STOP_TYPE_START = 0x00000100,
CQ_STOP_TYPE_STOP = 0x00000200,
CQ_STOP_TYPE_READ = 0x00000300,
CQ_STOP_EN = (1 << 15),
};
/*
* MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
*/
enum {
MAC_ADDR_IDX_SHIFT = 4,
MAC_ADDR_TYPE_SHIFT = 16,
MAC_ADDR_TYPE_MASK = 0x000f0000,
MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
MAC_ADDR_TYPE_VLAN = 0x00020000,
MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
MAC_ADDR_TYPE_FC_MAC = 0x00040000,
MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
MAC_ADDR_ADR = (1 << 25),
MAC_ADDR_RS = (1 << 26),
MAC_ADDR_E = (1 << 27),
MAC_ADDR_MR = (1 << 30),
MAC_ADDR_MW = (1 << 31),
MAX_MULTICAST_ENTRIES = 32,
};
/*
* MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
*/
enum {
SPLT_HDR_EP = (1 << 31),
};
/*
* FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
*/
enum {
FC_RCV_CFG_ECT = (1 << 15),
FC_RCV_CFG_DFH = (1 << 20),
FC_RCV_CFG_DVF = (1 << 21),
FC_RCV_CFG_RCE = (1 << 27),
FC_RCV_CFG_RFE = (1 << 28),
FC_RCV_CFG_TEE = (1 << 29),
FC_RCV_CFG_TCE = (1 << 30),
FC_RCV_CFG_TFE = (1 << 31),
};
/*
* NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
*/
enum {
NIC_RCV_CFG_PPE = (1 << 0),
NIC_RCV_CFG_VLAN_MASK = 0x00060000,
NIC_RCV_CFG_VLAN_ALL = 0x00000000,
NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
NIC_RCV_CFG_RV = (1 << 3),
NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
NIC_RCV_CFG_DFQ_SHIFT = 8,
NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */
};
/*
* Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
*/
enum {
MGMT_RCV_CFG_ARP = (1 << 0),
MGMT_RCV_CFG_DHC = (1 << 1),
MGMT_RCV_CFG_DHS = (1 << 2),
MGMT_RCV_CFG_NP = (1 << 3),
MGMT_RCV_CFG_I6N = (1 << 4),
MGMT_RCV_CFG_I6R = (1 << 5),
MGMT_RCV_CFG_DH6 = (1 << 6),
MGMT_RCV_CFG_UD1 = (1 << 7),
MGMT_RCV_CFG_UD0 = (1 << 8),
MGMT_RCV_CFG_BCT = (1 << 9),
MGMT_RCV_CFG_MCT = (1 << 10),
MGMT_RCV_CFG_DM = (1 << 11),
MGMT_RCV_CFG_RM = (1 << 12),
MGMT_RCV_CFG_STL = (1 << 13),
MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
};
/*
* Routing Index Register (RT_IDX) bit definitions.
*/
enum {
RT_IDX_IDX_SHIFT = 8,
RT_IDX_TYPE_MASK = 0x000f0000,
RT_IDX_TYPE_RT = 0x00000000,
RT_IDX_TYPE_RT_INV = 0x00010000,
RT_IDX_TYPE_NICQ = 0x00020000,
RT_IDX_TYPE_NICQ_INV = 0x00030000,
RT_IDX_DST_MASK = 0x00700000,
RT_IDX_DST_RSS = 0x00000000,
RT_IDX_DST_CAM_Q = 0x00100000,
RT_IDX_DST_COS_Q = 0x00200000,
RT_IDX_DST_DFLT_Q = 0x00300000,
RT_IDX_DST_DEST_Q = 0x00400000,
RT_IDX_RS = (1 << 26),
RT_IDX_E = (1 << 27),
RT_IDX_MR = (1 << 30),
RT_IDX_MW = (1 << 31),
/* Nic Queue format - type 2 bits */
RT_IDX_BCAST = (1 << 0),
RT_IDX_MCAST = (1 << 1),
RT_IDX_MCAST_MATCH = (1 << 2),
RT_IDX_MCAST_REG_MATCH = (1 << 3),
RT_IDX_MCAST_HASH_MATCH = (1 << 4),
RT_IDX_FC_MACH = (1 << 5),
RT_IDX_ETH_FCOE = (1 << 6),
RT_IDX_CAM_HIT = (1 << 7),
RT_IDX_CAM_BIT0 = (1 << 8),
RT_IDX_CAM_BIT1 = (1 << 9),
RT_IDX_VLAN_TAG = (1 << 10),
RT_IDX_VLAN_MATCH = (1 << 11),
RT_IDX_VLAN_FILTER = (1 << 12),
RT_IDX_ETH_SKIP1 = (1 << 13),
RT_IDX_ETH_SKIP2 = (1 << 14),
RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
RT_IDX_802_3 = (1 << 16),
RT_IDX_LLDP = (1 << 17),
RT_IDX_UNUSED018 = (1 << 18),
RT_IDX_UNUSED019 = (1 << 19),
RT_IDX_UNUSED20 = (1 << 20),
RT_IDX_UNUSED21 = (1 << 21),
RT_IDX_ERR = (1 << 22),
RT_IDX_VALID = (1 << 23),
RT_IDX_TU_CSUM_ERR = (1 << 24),
RT_IDX_IP_CSUM_ERR = (1 << 25),
RT_IDX_MAC_ERR = (1 << 26),
RT_IDX_RSS_TCP6 = (1 << 27),
RT_IDX_RSS_TCP4 = (1 << 28),
RT_IDX_RSS_IPV6 = (1 << 29),
RT_IDX_RSS_IPV4 = (1 << 30),
RT_IDX_RSS_MATCH = (1 << 31),
/* Hierarchy for the NIC Queue Mask */
RT_IDX_ALL_ERR_SLOT = 0,
RT_IDX_MAC_ERR_SLOT = 0,
RT_IDX_IP_CSUM_ERR_SLOT = 1,
RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
RT_IDX_BCAST_SLOT = 3,
RT_IDX_MCAST_MATCH_SLOT = 4,
RT_IDX_ALLMULTI_SLOT = 5,
RT_IDX_UNUSED6_SLOT = 6,
RT_IDX_UNUSED7_SLOT = 7,
RT_IDX_RSS_MATCH_SLOT = 8,
RT_IDX_RSS_IPV4_SLOT = 8,
RT_IDX_RSS_IPV6_SLOT = 9,
RT_IDX_RSS_TCP4_SLOT = 10,
RT_IDX_RSS_TCP6_SLOT = 11,
RT_IDX_CAM_HIT_SLOT = 12,
RT_IDX_UNUSED013 = 13,
RT_IDX_UNUSED014 = 14,
RT_IDX_PROMISCUOUS_SLOT = 15,
RT_IDX_MAX_SLOTS = 16,
};
/*
* Control Register Set Map
*/
enum {
PROC_ADDR = 0, /* Use semaphore */
PROC_DATA = 0x04, /* Use semaphore */
SYS = 0x08,
RST_FO = 0x0c,
FSC = 0x10,
CSR = 0x14,
LED = 0x18,
ICB_RID = 0x1c, /* Use semaphore */
ICB_L = 0x20, /* Use semaphore */
ICB_H = 0x24, /* Use semaphore */
CFG = 0x28,
BIOS_ADDR = 0x2c,
STS = 0x30,
INTR_EN = 0x34,
INTR_MASK = 0x38,
ISR1 = 0x3c,
ISR2 = 0x40,
ISR3 = 0x44,
ISR4 = 0x48,
REV_ID = 0x4c,
FRC_ECC_ERR = 0x50,
ERR_STS = 0x54,
RAM_DBG_ADDR = 0x58,
RAM_DBG_DATA = 0x5c,
ECC_ERR_CNT = 0x60,
SEM = 0x64,
GPIO_1 = 0x68, /* Use semaphore */
GPIO_2 = 0x6c, /* Use semaphore */
GPIO_3 = 0x70, /* Use semaphore */
RSVD2 = 0x74,
XGMAC_ADDR = 0x78, /* Use semaphore */
XGMAC_DATA = 0x7c, /* Use semaphore */
NIC_ETS = 0x80,
CNA_ETS = 0x84,
FLASH_ADDR = 0x88, /* Use semaphore */
FLASH_DATA = 0x8c, /* Use semaphore */
CQ_STOP = 0x90,
PAGE_TBL_RID = 0x94,
WQ_PAGE_TBL_LO = 0x98,
WQ_PAGE_TBL_HI = 0x9c,
CQ_PAGE_TBL_LO = 0xa0,
CQ_PAGE_TBL_HI = 0xa4,
MAC_ADDR_IDX = 0xa8, /* Use semaphore */
MAC_ADDR_DATA = 0xac, /* Use semaphore */
COS_DFLT_CQ1 = 0xb0,
COS_DFLT_CQ2 = 0xb4,
ETYPE_SKIP1 = 0xb8,
ETYPE_SKIP2 = 0xbc,
SPLT_HDR = 0xc0,
FC_PAUSE_THRES = 0xc4,
NIC_PAUSE_THRES = 0xc8,
FC_ETHERTYPE = 0xcc,
FC_RCV_CFG = 0xd0,
NIC_RCV_CFG = 0xd4,
FC_COS_TAGS = 0xd8,
NIC_COS_TAGS = 0xdc,
MGMT_RCV_CFG = 0xe0,
RT_IDX = 0xe4,
RT_DATA = 0xe8,
RSVD7 = 0xec,
XG_SERDES_ADDR = 0xf0,
XG_SERDES_DATA = 0xf4,
PRB_MX_ADDR = 0xf8, /* Use semaphore */
PRB_MX_DATA = 0xfc, /* Use semaphore */
};
/*
* CAM output format.
*/
enum {
CAM_OUT_ROUTE_FC = 0,
CAM_OUT_ROUTE_NIC = 1,
CAM_OUT_FUNC_SHIFT = 2,
CAM_OUT_RV = (1 << 4),
CAM_OUT_SH = (1 << 15),
CAM_OUT_CQ_ID_SHIFT = 5,
};
/*
* Mailbox definitions
*/
enum {
/* Asynchronous Event Notifications */
AEN_SYS_ERR = 0x00008002,
AEN_LINK_UP = 0x00008011,
AEN_LINK_DOWN = 0x00008012,
AEN_IDC_CMPLT = 0x00008100,
AEN_IDC_REQ = 0x00008101,
AEN_FW_INIT_DONE = 0x00008400,
AEN_FW_INIT_FAIL = 0x00008401,
/* Mailbox Command Opcodes. */
MB_CMD_NOP = 0x00000000,
MB_CMD_EX_FW = 0x00000002,
MB_CMD_MB_TEST = 0x00000006,
MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */
MB_CMD_ABOUT_FW = 0x00000008,
MB_CMD_LOAD_RISC_RAM = 0x0000000b,
MB_CMD_DUMP_RISC_RAM = 0x0000000c,
MB_CMD_WRITE_RAM = 0x0000000d,
MB_CMD_READ_RAM = 0x0000000f,
MB_CMD_STOP_FW = 0x00000014,
MB_CMD_MAKE_SYS_ERR = 0x0000002a,
MB_CMD_INIT_FW = 0x00000060,
MB_CMD_GET_INIT_CB = 0x00000061,
MB_CMD_GET_FW_STATE = 0x00000069,
MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */
MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */
MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */
MB_WOL_DISABLE = 0x00000000,
MB_WOL_MAGIC_PKT = 0x00000001,
MB_WOL_FLTR = 0x00000002,
MB_WOL_UCAST = 0x00000004,
MB_WOL_MCAST = 0x00000008,
MB_WOL_BCAST = 0x00000010,
MB_WOL_LINK_UP = 0x00000020,
MB_WOL_LINK_DOWN = 0x00000040,
MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */
MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */
MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */
MB_CMD_CLEAR_WOL_MAGIC = 0x00000114, /* Wake On Lan Magic Packet */
MB_CMD_PORT_RESET = 0x00000120,
MB_CMD_SET_PORT_CFG = 0x00000122,
MB_CMD_GET_PORT_CFG = 0x00000123,
MB_CMD_SET_ASIC_VOLTS = 0x00000130,
MB_CMD_GET_SNS_DATA = 0x00000131, /* Temp and Volt Sense data. */
/* Mailbox Command Status. */
MB_CMD_STS_GOOD = 0x00004000, /* Success. */
MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */
MB_CMD_STS_ERR = 0x00004005, /* Error. */
};
struct mbox_params {
u32 mbox_in[MAILBOX_COUNT];
u32 mbox_out[MAILBOX_COUNT];
int in_count;
int out_count;
};
struct flash_params {
u8 dev_id_str[4];
u16 size;
u16 csum;
u16 ver;
u16 sub_dev_id;
u8 mac_addr[6];
u16 res;
};
/*
* doorbell space for the rx ring context
*/
struct rx_doorbell_context {
u32 cnsmr_idx; /* 0x00 */
u32 valid; /* 0x04 */
u32 reserved[4]; /* 0x08-0x14 */
u32 lbq_prod_idx; /* 0x18 */
u32 sbq_prod_idx; /* 0x1c */
};
/*
* doorbell space for the tx ring context
*/
struct tx_doorbell_context {
u32 prod_idx; /* 0x00 */
u32 valid; /* 0x04 */
u32 reserved[4]; /* 0x08-0x14 */
u32 lbq_prod_idx; /* 0x18 */
u32 sbq_prod_idx; /* 0x1c */
};
/* DATA STRUCTURES SHARED WITH HARDWARE. */
struct bq_element {
u32 addr_lo;
#define BQ_END 0x00000001
#define BQ_CONT 0x00000002
#define BQ_MASK 0x00000003
u32 addr_hi;
} __attribute((packed));
struct tx_buf_desc {
__le64 addr;
__le32 len;
#define TX_DESC_LEN_MASK 0x000fffff
#define TX_DESC_C 0x40000000
#define TX_DESC_E 0x80000000
} __attribute((packed));
/*
* IOCB Definitions...
*/
#define OPCODE_OB_MAC_IOCB 0x01
#define OPCODE_OB_MAC_TSO_IOCB 0x02
#define OPCODE_IB_MAC_IOCB 0x20
#define OPCODE_IB_MPI_IOCB 0x21
#define OPCODE_IB_AE_IOCB 0x3f
struct ob_mac_iocb_req {
u8 opcode;
u8 flags1;
#define OB_MAC_IOCB_REQ_OI 0x01
#define OB_MAC_IOCB_REQ_I 0x02
#define OB_MAC_IOCB_REQ_D 0x08
#define OB_MAC_IOCB_REQ_F 0x10
u8 flags2;
u8 flags3;
#define OB_MAC_IOCB_DFP 0x02
#define OB_MAC_IOCB_V 0x04
__le32 reserved1[2];
__le16 frame_len;
#define OB_MAC_IOCB_LEN_MASK 0x3ffff
__le16 reserved2;
__le32 tid;
__le32 txq_idx;
__le32 reserved3;
__le16 vlan_tci;
__le16 reserved4;
struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
} __attribute((packed));
struct ob_mac_iocb_rsp {
u8 opcode; /* */
u8 flags1; /* */
#define OB_MAC_IOCB_RSP_OI 0x01 /* */
#define OB_MAC_IOCB_RSP_I 0x02 /* */
#define OB_MAC_IOCB_RSP_E 0x08 /* */
#define OB_MAC_IOCB_RSP_S 0x10 /* too Short */
#define OB_MAC_IOCB_RSP_L 0x20 /* too Large */
#define OB_MAC_IOCB_RSP_P 0x40 /* Padded */
u8 flags2; /* */
u8 flags3; /* */
#define OB_MAC_IOCB_RSP_B 0x80 /* */
__le32 tid;
__le32 txq_idx;
__le32 reserved[13];
} __attribute((packed));
struct ob_mac_tso_iocb_req {
u8 opcode;
u8 flags1;
#define OB_MAC_TSO_IOCB_OI 0x01
#define OB_MAC_TSO_IOCB_I 0x02
#define OB_MAC_TSO_IOCB_D 0x08
#define OB_MAC_TSO_IOCB_IP4 0x40
#define OB_MAC_TSO_IOCB_IP6 0x80
u8 flags2;
#define OB_MAC_TSO_IOCB_LSO 0x20
#define OB_MAC_TSO_IOCB_UC 0x40
#define OB_MAC_TSO_IOCB_TC 0x80
u8 flags3;
#define OB_MAC_TSO_IOCB_IC 0x01
#define OB_MAC_TSO_IOCB_DFP 0x02
#define OB_MAC_TSO_IOCB_V 0x04
__le32 reserved1[2];
__le32 frame_len;
__le32 tid;
__le32 txq_idx;
__le16 total_hdrs_len;
__le16 net_trans_offset;
#define OB_MAC_TRANSPORT_HDR_SHIFT 6
__le16 vlan_tci;
__le16 mss;
struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
} __attribute((packed));
struct ob_mac_tso_iocb_rsp {
u8 opcode;
u8 flags1;
#define OB_MAC_TSO_IOCB_RSP_OI 0x01
#define OB_MAC_TSO_IOCB_RSP_I 0x02
#define OB_MAC_TSO_IOCB_RSP_E 0x08
#define OB_MAC_TSO_IOCB_RSP_S 0x10
#define OB_MAC_TSO_IOCB_RSP_L 0x20
#define OB_MAC_TSO_IOCB_RSP_P 0x40
u8 flags2; /* */
u8 flags3; /* */
#define OB_MAC_TSO_IOCB_RSP_B 0x8000
__le32 tid;
__le32 txq_idx;
__le32 reserved2[13];
} __attribute((packed));
struct ib_mac_iocb_rsp {
u8 opcode; /* 0x20 */
u8 flags1;
#define IB_MAC_IOCB_RSP_OI 0x01 /* Overide intr delay */
#define IB_MAC_IOCB_RSP_I 0x02 /* Disble Intr Generation */
#define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */
#define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */
#define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */
#define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */
#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */
#define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */
#define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */
#define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */
#define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */
u8 flags2;
#define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */
#define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */
#define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */
#define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04
#define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08
#define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10
#define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14
#define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18
#define IB_MAC_IOCB_RSP_ERR_CRC 0x1c
#define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */
#define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */
#define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */
u8 flags3;
#define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */
#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */
#define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */
#define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */
#define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */
#define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */
#define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */
#define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */
#define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */
#define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */
#define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */
__le32 data_len; /* */
__le32 data_addr_lo; /* */
__le32 data_addr_hi; /* */
__le32 rss; /* */
__le16 vlan_id; /* 12 bits */
#define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */
#define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */
__le16 reserved1;
__le32 reserved2[6];
__le32 flags4;
#define IB_MAC_IOCB_RSP_HV 0x20000000 /* */
#define IB_MAC_IOCB_RSP_HS 0x40000000 /* */
#define IB_MAC_IOCB_RSP_HL 0x80000000 /* */
__le32 hdr_len; /* */
__le32 hdr_addr_lo; /* */
__le32 hdr_addr_hi; /* */
} __attribute((packed));
struct ib_ae_iocb_rsp {
u8 opcode;
u8 flags1;
#define IB_AE_IOCB_RSP_OI 0x01
#define IB_AE_IOCB_RSP_I 0x02
u8 event;
#define LINK_UP_EVENT 0x00
#define LINK_DOWN_EVENT 0x01
#define CAM_LOOKUP_ERR_EVENT 0x06
#define SOFT_ECC_ERROR_EVENT 0x07
#define MGMT_ERR_EVENT 0x08
#define TEN_GIG_MAC_EVENT 0x09
#define GPI0_H2L_EVENT 0x10
#define GPI0_L2H_EVENT 0x20
#define GPI1_H2L_EVENT 0x11
#define GPI1_L2H_EVENT 0x21
#define PCI_ERR_ANON_BUF_RD 0x40
u8 q_id;
__le32 reserved[15];
} __attribute((packed));
/*
* These three structures are for generic
* handling of ib and ob iocbs.
*/
struct ql_net_rsp_iocb {
u8 opcode;
u8 flags0;
__le16 length;
__le32 tid;
__le32 reserved[14];
} __attribute((packed));
struct net_req_iocb {
u8 opcode;
u8 flags0;
__le16 flags1;
__le32 tid;
__le32 reserved1[30];
} __attribute((packed));
/*
* tx ring initialization control block for chip.
* It is defined as:
* "Work Queue Initialization Control Block"
*/
struct wqicb {
__le16 len;
#define Q_LEN_V (1 << 4)
#define Q_LEN_CPP_CONT 0x0000
#define Q_LEN_CPP_16 0x0001
#define Q_LEN_CPP_32 0x0002
#define Q_LEN_CPP_64 0x0003
__le16 flags;
#define Q_PRI_SHIFT 1
#define Q_FLAGS_LC 0x1000
#define Q_FLAGS_LB 0x2000
#define Q_FLAGS_LI 0x4000
#define Q_FLAGS_LO 0x8000
__le16 cq_id_rss;
#define Q_CQ_ID_RSS_RV 0x8000
__le16 rid;
__le32 addr_lo;
__le32 addr_hi;
__le32 cnsmr_idx_addr_lo;
__le32 cnsmr_idx_addr_hi;
} __attribute((packed));
/*
* rx ring initialization control block for chip.
* It is defined as:
* "Completion Queue Initialization Control Block"
*/
struct cqicb {
u8 msix_vect;
u8 reserved1;
u8 reserved2;
u8 flags;
#define FLAGS_LV 0x08
#define FLAGS_LS 0x10
#define FLAGS_LL 0x20
#define FLAGS_LI 0x40
#define FLAGS_LC 0x80
__le16 len;
#define LEN_V (1 << 4)
#define LEN_CPP_CONT 0x0000
#define LEN_CPP_32 0x0001
#define LEN_CPP_64 0x0002
#define LEN_CPP_128 0x0003
__le16 rid;
__le32 addr_lo;
__le32 addr_hi;
__le32 prod_idx_addr_lo;
__le32 prod_idx_addr_hi;
__le16 pkt_delay;
__le16 irq_delay;
__le32 lbq_addr_lo;
__le32 lbq_addr_hi;
__le16 lbq_buf_size;
__le16 lbq_len; /* entry count */
__le32 sbq_addr_lo;
__le32 sbq_addr_hi;
__le16 sbq_buf_size;
__le16 sbq_len; /* entry count */
} __attribute((packed));
struct ricb {
u8 base_cq;
#define RSS_L4K 0x80
u8 flags;
#define RSS_L6K 0x01
#define RSS_LI 0x02
#define RSS_LB 0x04
#define RSS_LM 0x08
#define RSS_RI4 0x10
#define RSS_RT4 0x20
#define RSS_RI6 0x40
#define RSS_RT6 0x80
__le16 mask;
__le32 hash_cq_id[256];
__le32 ipv6_hash_key[10];
__le32 ipv4_hash_key[4];
} __attribute((packed));
/* SOFTWARE/DRIVER DATA STRUCTURES. */
struct oal {
struct tx_buf_desc oal[TX_DESC_PER_OAL];
};
struct map_list {
DECLARE_PCI_UNMAP_ADDR(mapaddr);
DECLARE_PCI_UNMAP_LEN(maplen);
};
struct tx_ring_desc {
struct sk_buff *skb;
struct ob_mac_iocb_req *queue_entry;
int index;
struct oal oal;
struct map_list map[MAX_SKB_FRAGS + 1];
int map_cnt;
struct tx_ring_desc *next;
};
struct bq_desc {
union {
struct page *lbq_page;
struct sk_buff *skb;
} p;
struct bq_element *bq;
int index;
DECLARE_PCI_UNMAP_ADDR(mapaddr);
DECLARE_PCI_UNMAP_LEN(maplen);
};
#define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count))
struct tx_ring {
/*
* queue info.
*/
struct wqicb wqicb; /* structure used to inform chip of new queue */
void *wq_base; /* pci_alloc:virtual addr for tx */
dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */
u32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */
dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */
u32 wq_size; /* size in bytes of queue area */
u32 wq_len; /* number of entries in queue */
void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */
void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */
u16 prod_idx; /* current value for prod idx */
u16 cq_id; /* completion (rx) queue for tx completions */
u8 wq_id; /* queue id for this entry */
u8 reserved1[3];
struct tx_ring_desc *q; /* descriptor list for the queue */
spinlock_t lock;
atomic_t tx_count; /* counts down for every outstanding IO */
atomic_t queue_stopped; /* Turns queue off when full. */
struct delayed_work tx_work;
struct ql_adapter *qdev;
};
/*
* Type of inbound queue.
*/
enum {
DEFAULT_Q = 2, /* Handles slow queue and chip/MPI events. */
TX_Q = 3, /* Handles outbound completions. */
RX_Q = 4, /* Handles inbound completions. */
};
struct rx_ring {
struct cqicb cqicb; /* The chip's completion queue init control block. */
/* Completion queue elements. */
void *cq_base;
dma_addr_t cq_base_dma;
u32 cq_size;
u32 cq_len;
u16 cq_id;
u32 *prod_idx_sh_reg; /* Shadowed producer register. */
dma_addr_t prod_idx_sh_reg_dma;
void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */
u32 cnsmr_idx; /* current sw idx */
struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */
void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */
/* Large buffer queue elements. */
u32 lbq_len; /* entry count */
u32 lbq_size; /* size in bytes of queue */
u32 lbq_buf_size;
void *lbq_base;
dma_addr_t lbq_base_dma;
void *lbq_base_indirect;
dma_addr_t lbq_base_indirect_dma;
struct bq_desc *lbq; /* array of control blocks */
void __iomem *lbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x18 */
u32 lbq_prod_idx; /* current sw prod idx */
u32 lbq_curr_idx; /* next entry we expect */
u32 lbq_clean_idx; /* beginning of new descs */
u32 lbq_free_cnt; /* free buffer desc cnt */
/* Small buffer queue elements. */
u32 sbq_len; /* entry count */
u32 sbq_size; /* size in bytes of queue */
u32 sbq_buf_size;
void *sbq_base;
dma_addr_t sbq_base_dma;
void *sbq_base_indirect;
dma_addr_t sbq_base_indirect_dma;
struct bq_desc *sbq; /* array of control blocks */
void __iomem *sbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x1c */
u32 sbq_prod_idx; /* current sw prod idx */
u32 sbq_curr_idx; /* next entry we expect */
u32 sbq_clean_idx; /* beginning of new descs */
u32 sbq_free_cnt; /* free buffer desc cnt */
/* Misc. handler elements. */
u32 type; /* Type of queue, tx, rx, or default. */
u32 irq; /* Which vector this ring is assigned. */
u32 cpu; /* Which CPU this should run on. */
char name[IFNAMSIZ + 5];
struct napi_struct napi;
struct delayed_work rx_work;
u8 reserved;
struct ql_adapter *qdev;
};
/*
* RSS Initialization Control Block
*/
struct hash_id {
u8 value[4];
};
struct nic_stats {
/*
* These stats come from offset 200h to 278h
* in the XGMAC register.
*/
u64 tx_pkts;
u64 tx_bytes;
u64 tx_mcast_pkts;
u64 tx_bcast_pkts;
u64 tx_ucast_pkts;
u64 tx_ctl_pkts;
u64 tx_pause_pkts;
u64 tx_64_pkt;
u64 tx_65_to_127_pkt;
u64 tx_128_to_255_pkt;
u64 tx_256_511_pkt;
u64 tx_512_to_1023_pkt;
u64 tx_1024_to_1518_pkt;
u64 tx_1519_to_max_pkt;
u64 tx_undersize_pkt;
u64 tx_oversize_pkt;
/*
* These stats come from offset 300h to 3C8h
* in the XGMAC register.
*/
u64 rx_bytes;
u64 rx_bytes_ok;
u64 rx_pkts;
u64 rx_pkts_ok;
u64 rx_bcast_pkts;
u64 rx_mcast_pkts;
u64 rx_ucast_pkts;
u64 rx_undersize_pkts;
u64 rx_oversize_pkts;
u64 rx_jabber_pkts;
u64 rx_undersize_fcerr_pkts;
u64 rx_drop_events;
u64 rx_fcerr_pkts;
u64 rx_align_err;
u64 rx_symbol_err;
u64 rx_mac_err;
u64 rx_ctl_pkts;
u64 rx_pause_pkts;
u64 rx_64_pkts;
u64 rx_65_to_127_pkts;
u64 rx_128_255_pkts;
u64 rx_256_511_pkts;
u64 rx_512_to_1023_pkts;
u64 rx_1024_to_1518_pkts;
u64 rx_1519_to_max_pkts;
u64 rx_len_err_pkts;
};
/*
* intr_context structure is used during initialization
* to hook the interrupts. It is also used in a single
* irq environment as a context to the ISR.
*/
struct intr_context {
struct ql_adapter *qdev;
u32 intr;
u32 hooked;
u32 intr_en_mask; /* value/mask used to enable this intr */
u32 intr_dis_mask; /* value/mask used to disable this intr */
u32 intr_read_mask; /* value/mask used to read this intr */
char name[IFNAMSIZ * 2];
atomic_t irq_cnt; /* irq_cnt is used in single vector
* environment. It's incremented for each
* irq handler that is scheduled. When each
* handler finishes it decrements irq_cnt and
* enables interrupts if it's zero. */
irq_handler_t handler;
};
/* adapter flags definitions. */
enum {
QL_ADAPTER_UP = (1 << 0), /* Adapter has been brought up. */
QL_LEGACY_ENABLED = (1 << 3),
QL_MSI_ENABLED = (1 << 3),
QL_MSIX_ENABLED = (1 << 4),
QL_DMA64 = (1 << 5),
QL_PROMISCUOUS = (1 << 6),
QL_ALLMULTI = (1 << 7),
};
/* link_status bit definitions */
enum {
LOOPBACK_MASK = 0x00000700,
LOOPBACK_PCS = 0x00000100,
LOOPBACK_HSS = 0x00000200,
LOOPBACK_EXT = 0x00000300,
PAUSE_MASK = 0x000000c0,
PAUSE_STD = 0x00000040,
PAUSE_PRI = 0x00000080,
SPEED_MASK = 0x00000038,
SPEED_100Mb = 0x00000000,
SPEED_1Gb = 0x00000008,
SPEED_10Gb = 0x00000010,
LINK_TYPE_MASK = 0x00000007,
LINK_TYPE_XFI = 0x00000001,
LINK_TYPE_XAUI = 0x00000002,
LINK_TYPE_XFI_BP = 0x00000003,
LINK_TYPE_XAUI_BP = 0x00000004,
LINK_TYPE_10GBASET = 0x00000005,
};
/*
* The main Adapter structure definition.
* This structure has all fields relevant to the hardware.
*/
struct ql_adapter {
struct ricb ricb;
unsigned long flags;
u32 wol;
struct nic_stats nic_stats;
struct vlan_group *vlgrp;
/* PCI Configuration information for this device */
struct pci_dev *pdev;
struct net_device *ndev; /* Parent NET device */
/* Hardware information */
u32 chip_rev_id;
u32 func; /* PCI function for this adapter */
spinlock_t adapter_lock;
spinlock_t hw_lock;
spinlock_t stats_lock;
spinlock_t legacy_lock; /* used for maintaining legacy intr sync */
/* PCI Bus Relative Register Addresses */
void __iomem *reg_base;
void __iomem *doorbell_area;
u32 doorbell_area_size;
u32 msg_enable;
/* Page for Shadow Registers */
void *rx_ring_shadow_reg_area;
dma_addr_t rx_ring_shadow_reg_dma;
void *tx_ring_shadow_reg_area;
dma_addr_t tx_ring_shadow_reg_dma;
u32 mailbox_in;
u32 mailbox_out;
int tx_ring_size;
int rx_ring_size;
u32 intr_count;
struct msix_entry *msi_x_entry;
struct intr_context intr_context[MAX_RX_RINGS];
int (*legacy_check) (struct ql_adapter *);
int tx_ring_count; /* One per online CPU. */
u32 rss_ring_first_cq_id;/* index of first inbound (rss) rx_ring */
u32 rss_ring_count; /* One per online CPU. */
/*
* rx_ring_count =
* one default queue +
* (CPU count * outbound completion rx_ring) +
* (CPU count * inbound (RSS) completion rx_ring)
*/
int rx_ring_count;
int ring_mem_size;
void *ring_mem;
struct rx_ring *rx_ring;
int rx_csum;
struct tx_ring *tx_ring;
u32 default_rx_queue;
u16 rx_coalesce_usecs; /* cqicb->int_delay */
u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */
u16 tx_coalesce_usecs; /* cqicb->int_delay */
u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */
u32 xg_sem_mask;
u32 port_link_up;
u32 port_init;
u32 link_status;
struct flash_params flash;
struct net_device_stats stats;
struct workqueue_struct *q_workqueue;
struct workqueue_struct *workqueue;
struct delayed_work asic_reset_work;
struct delayed_work mpi_reset_work;
struct delayed_work mpi_work;
};
/*
* Typical Register accessor for memory mapped device.
*/
static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
{
return readl(qdev->reg_base + reg);
}
/*
* Typical Register accessor for memory mapped device.
*/
static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
{
writel(val, qdev->reg_base + reg);
}
/*
* Doorbell Registers:
* Doorbell registers are virtual registers in the PCI memory space.
* The space is allocated by the chip during PCI initialization. The
* device driver finds the doorbell address in BAR 3 in PCI config space.
* The registers are used to control outbound and inbound queues. For
* example, the producer index for an outbound queue. Each queue uses
* 1 4k chunk of memory. The lower half of the space is for outbound
* queues. The upper half is for inbound queues.
*/
static inline void ql_write_db_reg(u32 val, void __iomem *addr)
{
writel(val, addr);
mmiowb();
}
/*
* Shadow Registers:
* Outbound queues have a consumer index that is maintained by the chip.
* Inbound queues have a producer index that is maintained by the chip.
* For lower overhead, these registers are "shadowed" to host memory
* which allows the device driver to track the queue progress without
* PCI reads. When an entry is placed on an inbound queue, the chip will
* update the relevant index register and then copy the value to the
* shadow register in host memory.
*/
static inline unsigned int ql_read_sh_reg(const volatile void *addr)
{
return *(volatile unsigned int __force *)addr;
}
extern char qlge_driver_name[];
extern const char qlge_driver_version[];
extern const struct ethtool_ops qlge_ethtool_ops;
extern int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
extern void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
extern int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
extern int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value);
extern int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
extern int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id);
void ql_queue_fw_error(struct ql_adapter *qdev);
void ql_mpi_work(struct work_struct *work);
void ql_mpi_reset_work(struct work_struct *work);
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
void ql_queue_asic_error(struct ql_adapter *qdev);
void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr);
void ql_set_ethtool_ops(struct net_device *ndev);
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
#if 1
#define QL_ALL_DUMP
#define QL_REG_DUMP
#define QL_DEV_DUMP
#define QL_CB_DUMP
/* #define QL_IB_DUMP */
/* #define QL_OB_DUMP */
#endif
#ifdef QL_REG_DUMP
extern void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
extern void ql_dump_routing_entries(struct ql_adapter *qdev);
extern void ql_dump_regs(struct ql_adapter *qdev);
#define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
#define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
#define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
#else
#define QL_DUMP_REGS(qdev)
#define QL_DUMP_ROUTE(qdev)
#define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
#endif
#ifdef QL_STAT_DUMP
extern void ql_dump_stat(struct ql_adapter *qdev);
#define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
#else
#define QL_DUMP_STAT(qdev)
#endif
#ifdef QL_DEV_DUMP
extern void ql_dump_qdev(struct ql_adapter *qdev);
#define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
#else
#define QL_DUMP_QDEV(qdev)
#endif
#ifdef QL_CB_DUMP
extern void ql_dump_wqicb(struct wqicb *wqicb);
extern void ql_dump_tx_ring(struct tx_ring *tx_ring);
extern void ql_dump_ricb(struct ricb *ricb);
extern void ql_dump_cqicb(struct cqicb *cqicb);
extern void ql_dump_rx_ring(struct rx_ring *rx_ring);
extern void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
#define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
#define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
#define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
#define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
#define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
#define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
ql_dump_hw_cb(qdev, size, bit, q_id)
#else
#define QL_DUMP_RICB(ricb)
#define QL_DUMP_WQICB(wqicb)
#define QL_DUMP_TX_RING(tx_ring)
#define QL_DUMP_CQICB(cqicb)
#define QL_DUMP_RX_RING(rx_ring)
#define QL_DUMP_HW_CB(qdev, size, bit, q_id)
#endif
#ifdef QL_OB_DUMP
extern void ql_dump_tx_desc(struct tx_buf_desc *tbd);
extern void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb);
extern void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp);
#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb)
#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp)
#else
#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb)
#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp)
#endif
#ifdef QL_IB_DUMP
extern void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp);
#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp)
#else
#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp)
#endif
#ifdef QL_ALL_DUMP
extern void ql_dump_all(struct ql_adapter *qdev);
#define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
#else
#define QL_DUMP_ALL(qdev)
#endif
#endif /* _QLGE_H_ */
#include "qlge.h"
#ifdef QL_REG_DUMP
static void ql_dump_intr_states(struct ql_adapter *qdev)
{
int i;
u32 value;
for (i = 0; i < qdev->intr_count; i++) {
ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
value = ql_read32(qdev, INTR_EN);
printk(KERN_ERR PFX
"%s: Interrupt %d is %s.\n",
qdev->ndev->name, i,
(value & INTR_EN_EN ? "enabled" : "disabled"));
}
}
void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
{
u32 data;
if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
return;
}
ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, TX_CFG, &data);
printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, RX_CFG, &data);
printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
data);
ql_sem_unlock(qdev, qdev->xg_sem_mask);
}
static void ql_dump_ets_regs(struct ql_adapter *qdev)
{
}
static void ql_dump_cam_entries(struct ql_adapter *qdev)
{
int i;
u32 value[3];
for (i = 0; i < 4; i++) {
if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
printk(KERN_ERR PFX
"%s: Failed read of mac index register.\n",
__func__);
return;
} else {
if (value[0])
printk(KERN_ERR PFX
"%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
qdev->ndev->name, i, value[1], value[0],
value[2]);
}
}
for (i = 0; i < 32; i++) {
if (ql_get_mac_addr_reg
(qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
printk(KERN_ERR PFX
"%s: Failed read of mac index register.\n",
__func__);
return;
} else {
if (value[0])
printk(KERN_ERR PFX
"%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
qdev->ndev->name, i, value[1], value[0]);
}
}
}
void ql_dump_routing_entries(struct ql_adapter *qdev)
{
int i;
u32 value;
for (i = 0; i < 16; i++) {
value = 0;
if (ql_get_routing_reg(qdev, i, &value)) {
printk(KERN_ERR PFX
"%s: Failed read of routing index register.\n",
__func__);
return;
} else {
if (value)
printk(KERN_ERR PFX
"%s: Routing Mask %d = 0x%.08x.\n",
qdev->ndev->name, i, value);
}
}
}
void ql_dump_regs(struct ql_adapter *qdev)
{
printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
printk(KERN_ERR PFX "SYS = 0x%x.\n",
ql_read32(qdev, SYS));
printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
ql_read32(qdev, RST_FO));
printk(KERN_ERR PFX "FSC = 0x%x.\n",
ql_read32(qdev, FSC));
printk(KERN_ERR PFX "CSR = 0x%x.\n",
ql_read32(qdev, CSR));
printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
ql_read32(qdev, ICB_RID));
printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
ql_read32(qdev, ICB_L));
printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
ql_read32(qdev, ICB_H));
printk(KERN_ERR PFX "CFG = 0x%x.\n",
ql_read32(qdev, CFG));
printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
ql_read32(qdev, BIOS_ADDR));
printk(KERN_ERR PFX "STS = 0x%x.\n",
ql_read32(qdev, STS));
printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
ql_read32(qdev, INTR_EN));
printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
ql_read32(qdev, INTR_MASK));
printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
ql_read32(qdev, ISR1));
printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
ql_read32(qdev, ISR2));
printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
ql_read32(qdev, ISR3));
printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
ql_read32(qdev, ISR4));
printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
ql_read32(qdev, REV_ID));
printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
ql_read32(qdev, FRC_ECC_ERR));
printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
ql_read32(qdev, ERR_STS));
printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
ql_read32(qdev, RAM_DBG_ADDR));
printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
ql_read32(qdev, RAM_DBG_DATA));
printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
ql_read32(qdev, ECC_ERR_CNT));
printk(KERN_ERR PFX "SEM = 0x%x.\n",
ql_read32(qdev, SEM));
printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
ql_read32(qdev, GPIO_1));
printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
ql_read32(qdev, GPIO_2));
printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
ql_read32(qdev, GPIO_3));
printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
ql_read32(qdev, XGMAC_ADDR));
printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
ql_read32(qdev, XGMAC_DATA));
printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
ql_read32(qdev, NIC_ETS));
printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
ql_read32(qdev, CNA_ETS));
printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
ql_read32(qdev, FLASH_ADDR));
printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
ql_read32(qdev, FLASH_DATA));
printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
ql_read32(qdev, CQ_STOP));
printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
ql_read32(qdev, PAGE_TBL_RID));
printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
ql_read32(qdev, WQ_PAGE_TBL_LO));
printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
ql_read32(qdev, WQ_PAGE_TBL_HI));
printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
ql_read32(qdev, CQ_PAGE_TBL_LO));
printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
ql_read32(qdev, CQ_PAGE_TBL_HI));
printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
ql_read32(qdev, COS_DFLT_CQ1));
printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
ql_read32(qdev, COS_DFLT_CQ2));
printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
ql_read32(qdev, SPLT_HDR));
printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
ql_read32(qdev, FC_PAUSE_THRES));
printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
ql_read32(qdev, NIC_PAUSE_THRES));
printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
ql_read32(qdev, FC_ETHERTYPE));
printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
ql_read32(qdev, FC_RCV_CFG));
printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
ql_read32(qdev, NIC_RCV_CFG));
printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
ql_read32(qdev, FC_COS_TAGS));
printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
ql_read32(qdev, NIC_COS_TAGS));
printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
ql_read32(qdev, MGMT_RCV_CFG));
printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
ql_read32(qdev, XG_SERDES_ADDR));
printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
ql_read32(qdev, XG_SERDES_DATA));
printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
ql_read32(qdev, PRB_MX_ADDR));
printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
ql_read32(qdev, PRB_MX_DATA));
ql_dump_intr_states(qdev);
ql_dump_xgmac_control_regs(qdev);
ql_dump_ets_regs(qdev);
ql_dump_cam_entries(qdev);
ql_dump_routing_entries(qdev);
}
#endif
#ifdef QL_STAT_DUMP
void ql_dump_stat(struct ql_adapter *qdev)
{
printk(KERN_ERR "%s: Enter.\n", __func__);
printk(KERN_ERR "tx_pkts = %ld\n",
(unsigned long)qdev->nic_stats.tx_pkts);
printk(KERN_ERR "tx_bytes = %ld\n",
(unsigned long)qdev->nic_stats.tx_bytes);
printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_mcast_pkts);
printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_bcast_pkts);
printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_ucast_pkts);
printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_ctl_pkts);
printk(KERN_ERR "tx_pause_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_pause_pkts);
printk(KERN_ERR "tx_64_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_64_pkt);
printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_256_511_pkt);
printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_undersize_pkt);
printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_oversize_pkt);
printk(KERN_ERR "rx_bytes = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bytes);
printk(KERN_ERR "rx_bytes_ok = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bytes_ok);
printk(KERN_ERR "rx_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pkts);
printk(KERN_ERR "rx_pkts_ok = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pkts_ok);
printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bcast_pkts);
printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_mcast_pkts);
printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_ucast_pkts);
printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_undersize_pkts);
printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_oversize_pkts);
printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_jabber_pkts);
printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
printk(KERN_ERR "rx_drop_events = %ld.\n",
(unsigned long)qdev->nic_stats.rx_drop_events);
printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_fcerr_pkts);
printk(KERN_ERR "rx_align_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_align_err);
printk(KERN_ERR "rx_symbol_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_symbol_err);
printk(KERN_ERR "rx_mac_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_mac_err);
printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_ctl_pkts);
printk(KERN_ERR "rx_pause_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pause_pkts);
printk(KERN_ERR "rx_64_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_64_pkts);
printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_128_255_pkts);
printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_256_511_pkts);
printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_len_err_pkts);
};
#endif
#ifdef QL_DEV_DUMP
void ql_dump_qdev(struct ql_adapter *qdev)
{
int i;
printk(KERN_ERR PFX "qdev->flags = %lx.\n",
qdev->flags);
printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
qdev->vlgrp);
printk(KERN_ERR PFX "qdev->pdev = %p.\n",
qdev->pdev);
printk(KERN_ERR PFX "qdev->ndev = %p.\n",
qdev->ndev);
printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
qdev->chip_rev_id);
printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
qdev->reg_base);
printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
qdev->doorbell_area);
printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
qdev->doorbell_area_size);
printk(KERN_ERR PFX "msg_enable = %x.\n",
qdev->msg_enable);
printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
qdev->rx_ring_shadow_reg_area);
printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %p.\n",
(void *)qdev->rx_ring_shadow_reg_dma);
printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
qdev->tx_ring_shadow_reg_area);
printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %p.\n",
(void *)qdev->tx_ring_shadow_reg_dma);
printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
qdev->intr_count);
if (qdev->msi_x_entry)
for (i = 0; i < qdev->intr_count; i++) {
printk(KERN_ERR PFX
"msi_x_entry.[%d]vector = %d.\n", i,
qdev->msi_x_entry[i].vector);
printk(KERN_ERR PFX
"msi_x_entry.[%d]entry = %d.\n", i,
qdev->msi_x_entry[i].entry);
}
for (i = 0; i < qdev->intr_count; i++) {
printk(KERN_ERR PFX
"intr_context[%d].qdev = %p.\n", i,
qdev->intr_context[i].qdev);
printk(KERN_ERR PFX
"intr_context[%d].intr = %d.\n", i,
qdev->intr_context[i].intr);
printk(KERN_ERR PFX
"intr_context[%d].hooked = %d.\n", i,
qdev->intr_context[i].hooked);
printk(KERN_ERR PFX
"intr_context[%d].intr_en_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_en_mask);
printk(KERN_ERR PFX
"intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_dis_mask);
printk(KERN_ERR PFX
"intr_context[%d].intr_read_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_read_mask);
}
printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
qdev->tx_ring);
printk(KERN_ERR PFX "qdev->rss_ring_first_cq_id = %d.\n",
qdev->rss_ring_first_cq_id);
printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
qdev->rss_ring_count);
printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
qdev->default_rx_queue);
printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
qdev->xg_sem_mask);
printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
qdev->port_link_up);
printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
qdev->port_init);
}
#endif
#ifdef QL_CB_DUMP
void ql_dump_wqicb(struct wqicb *wqicb)
{
printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
le16_to_cpu(wqicb->cq_id_rss));
printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
printk(KERN_ERR PFX "wqicb->wq_addr_lo = 0x%.08x.\n",
le32_to_cpu(wqicb->addr_lo));
printk(KERN_ERR PFX "wqicb->wq_addr_hi = 0x%.08x.\n",
le32_to_cpu(wqicb->addr_hi));
printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_lo = 0x%.08x.\n",
le32_to_cpu(wqicb->cnsmr_idx_addr_lo));
printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_hi = 0x%.08x.\n",
le32_to_cpu(wqicb->cnsmr_idx_addr_hi));
}
void ql_dump_tx_ring(struct tx_ring *tx_ring)
{
if (tx_ring == NULL)
return;
printk(KERN_ERR PFX
"===================== Dumping tx_ring %d ===============.\n",
tx_ring->wq_id);
printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
(u64) tx_ring->wq_base_dma);
printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg = %p.\n",
tx_ring->cnsmr_idx_sh_reg);
printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg_dma = 0x%llx.\n",
(u64) tx_ring->cnsmr_idx_sh_reg_dma);
printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
tx_ring->prod_idx_db_reg);
printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
tx_ring->valid_db_reg);
printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
atomic_read(&tx_ring->tx_count));
}
void ql_dump_ricb(struct ricb *ricb)
{
int i;
printk(KERN_ERR PFX
"===================== Dumping ricb ===============.\n");
printk(KERN_ERR PFX "Dumping ricb stuff...\n");
printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
ricb->flags & RSS_L6K ? "RSS_L6K " : "",
ricb->flags & RSS_LI ? "RSS_LI " : "",
ricb->flags & RSS_LB ? "RSS_LB " : "",
ricb->flags & RSS_LM ? "RSS_LM " : "",
ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
for (i = 0; i < 16; i++)
printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->hash_cq_id[i]));
for (i = 0; i < 10; i++)
printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->ipv6_hash_key[i]));
for (i = 0; i < 4; i++)
printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->ipv4_hash_key[i]));
}
void ql_dump_cqicb(struct cqicb *cqicb)
{
printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
printk(KERN_ERR PFX "cqicb->addr_lo = %x.\n",
le32_to_cpu(cqicb->addr_lo));
printk(KERN_ERR PFX "cqicb->addr_hi = %x.\n",
le32_to_cpu(cqicb->addr_hi));
printk(KERN_ERR PFX "cqicb->prod_idx_addr_lo = %x.\n",
le32_to_cpu(cqicb->prod_idx_addr_lo));
printk(KERN_ERR PFX "cqicb->prod_idx_addr_hi = %x.\n",
le32_to_cpu(cqicb->prod_idx_addr_hi));
printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
le16_to_cpu(cqicb->pkt_delay));
printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
le16_to_cpu(cqicb->irq_delay));
printk(KERN_ERR PFX "cqicb->lbq_addr_lo = %x.\n",
le32_to_cpu(cqicb->lbq_addr_lo));
printk(KERN_ERR PFX "cqicb->lbq_addr_hi = %x.\n",
le32_to_cpu(cqicb->lbq_addr_hi));
printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
le16_to_cpu(cqicb->lbq_buf_size));
printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
le16_to_cpu(cqicb->lbq_len));
printk(KERN_ERR PFX "cqicb->sbq_addr_lo = %x.\n",
le32_to_cpu(cqicb->sbq_addr_lo));
printk(KERN_ERR PFX "cqicb->sbq_addr_hi = %x.\n",
le32_to_cpu(cqicb->sbq_addr_hi));
printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
le16_to_cpu(cqicb->sbq_buf_size));
printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
le16_to_cpu(cqicb->sbq_len));
}
void ql_dump_rx_ring(struct rx_ring *rx_ring)
{
if (rx_ring == NULL)
return;
printk(KERN_ERR PFX
"===================== Dumping rx_ring %d ===============.\n",
rx_ring->cq_id);
printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
(u64) rx_ring->cq_base_dma);
printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
printk(KERN_ERR PFX
"rx_ring->prod_idx_sh_reg, addr = %p, value = %d.\n",
rx_ring->prod_idx_sh_reg,
rx_ring->prod_idx_sh_reg ? *(rx_ring->prod_idx_sh_reg) : 0);
printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
(u64) rx_ring->prod_idx_sh_reg_dma);
printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
rx_ring->cnsmr_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
rx_ring->valid_db_reg);
printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
(u64) rx_ring->lbq_base_dma);
printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
rx_ring->lbq_base_indirect);
printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
(u64) rx_ring->lbq_base_indirect_dma);
printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
rx_ring->lbq_prod_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
rx_ring->lbq_prod_idx);
printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
rx_ring->lbq_curr_idx);
printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
rx_ring->lbq_clean_idx);
printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
rx_ring->lbq_free_cnt);
printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
rx_ring->lbq_buf_size);
printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
(u64) rx_ring->sbq_base_dma);
printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
rx_ring->sbq_base_indirect);
printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
(u64) rx_ring->sbq_base_indirect_dma);
printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
rx_ring->sbq_prod_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
rx_ring->sbq_prod_idx);
printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
rx_ring->sbq_curr_idx);
printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
rx_ring->sbq_clean_idx);
printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
rx_ring->sbq_free_cnt);
printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
rx_ring->sbq_buf_size);
printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
}
void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
{
void *ptr;
printk(KERN_ERR PFX "%s: Enter.\n", __func__);
ptr = kmalloc(size, GFP_ATOMIC);
if (ptr == NULL) {
printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
__func__);
return;
}
if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
printk(KERN_ERR "%s: Failed to upload control block!\n",
__func__);
goto fail_it;
}
switch (bit) {
case CFG_DRQ:
ql_dump_wqicb((struct wqicb *)ptr);
break;
case CFG_DCQ:
ql_dump_cqicb((struct cqicb *)ptr);
break;
case CFG_DR:
ql_dump_ricb((struct ricb *)ptr);
break;
default:
printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
__func__, bit);
break;
}
fail_it:
kfree(ptr);
}
#endif
#ifdef QL_OB_DUMP
void ql_dump_tx_desc(struct tx_buf_desc *tbd)
{
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
}
void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
{
struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
(struct ob_mac_tso_iocb_req *)ob_mac_iocb;
struct tx_buf_desc *tbd;
u16 frame_len;
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = %s\n",
(ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
printk(KERN_ERR PFX "flags2 = %s %s %s\n",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
printk(KERN_ERR PFX "flags3 = %s %s %s \n",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
printk(KERN_ERR PFX "frame_len = %d\n",
le32_to_cpu(ob_mac_tso_iocb->frame_len));
printk(KERN_ERR PFX "mss = %d\n",
le16_to_cpu(ob_mac_tso_iocb->mss));
printk(KERN_ERR PFX "prot_hdr_len = %d\n",
le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
} else {
printk(KERN_ERR PFX "frame_len = %d\n",
le16_to_cpu(ob_mac_iocb->frame_len));
frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
}
tbd = &ob_mac_iocb->tbd[0];
ql_dump_tx_desc(tbd);
}
void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
{
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
}
#endif
#ifdef QL_IB_DUMP
void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
{
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
printk(KERN_ERR PFX "%s%s%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
printk(KERN_ERR PFX "flags3 = %s%s.\n",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
printk(KERN_ERR PFX "data_len = %d\n",
le32_to_cpu(ib_mac_rsp->data_len));
printk(KERN_ERR PFX "data_addr_hi = 0x%x\n",
le32_to_cpu(ib_mac_rsp->data_addr_hi));
printk(KERN_ERR PFX "data_addr_lo = 0x%x\n",
le32_to_cpu(ib_mac_rsp->data_addr_lo));
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
printk(KERN_ERR PFX "rss = %x\n",
le32_to_cpu(ib_mac_rsp->rss));
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
printk(KERN_ERR PFX "vlan_id = %x\n",
le16_to_cpu(ib_mac_rsp->vlan_id));
printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
le32_to_cpu(ib_mac_rsp->
flags4) & IB_MAC_IOCB_RSP_HV ? "HV " : "",
le32_to_cpu(ib_mac_rsp->
flags4) & IB_MAC_IOCB_RSP_HS ? "HS " : "",
le32_to_cpu(ib_mac_rsp->
flags4) & IB_MAC_IOCB_RSP_HL ? "HL " : "");
if (le32_to_cpu(ib_mac_rsp->flags4) & IB_MAC_IOCB_RSP_HV) {
printk(KERN_ERR PFX "hdr length = %d.\n",
le32_to_cpu(ib_mac_rsp->hdr_len));
printk(KERN_ERR PFX "hdr addr_hi = 0x%x.\n",
le32_to_cpu(ib_mac_rsp->hdr_addr_hi));
printk(KERN_ERR PFX "hdr addr_lo = 0x%x.\n",
le32_to_cpu(ib_mac_rsp->hdr_addr_lo));
}
}
#endif
#ifdef QL_ALL_DUMP
void ql_dump_all(struct ql_adapter *qdev)
{
int i;
QL_DUMP_REGS(qdev);
QL_DUMP_QDEV(qdev);
for (i = 0; i < qdev->tx_ring_count; i++) {
QL_DUMP_TX_RING(&qdev->tx_ring[i]);
QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
}
for (i = 0; i < qdev->rx_ring_count; i++) {
QL_DUMP_RX_RING(&qdev->rx_ring[i]);
QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
}
}
#endif
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/version.h>
#include "qlge.h"
static int ql_update_ring_coalescing(struct ql_adapter *qdev)
{
int i, status = 0;
struct rx_ring *rx_ring;
struct cqicb *cqicb;
if (!netif_running(qdev->ndev))
return status;
spin_lock(&qdev->hw_lock);
/* Skip the default queue, and update the outbound handler
* queues if they changed.
*/
cqicb = (struct cqicb *)&qdev->rx_ring[1];
if (le16_to_cpu(cqicb->irq_delay) != qdev->tx_coalesce_usecs ||
le16_to_cpu(cqicb->pkt_delay) != qdev->tx_max_coalesced_frames) {
for (i = 1; i < qdev->rss_ring_first_cq_id; i++, rx_ring++) {
rx_ring = &qdev->rx_ring[i];
cqicb = (struct cqicb *)rx_ring;
cqicb->irq_delay = le16_to_cpu(qdev->tx_coalesce_usecs);
cqicb->pkt_delay =
le16_to_cpu(qdev->tx_max_coalesced_frames);
cqicb->flags = FLAGS_LI;
status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
CFG_LCQ, rx_ring->cq_id);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to load CQICB.\n");
goto exit;
}
}
}
/* Update the inbound (RSS) handler queues if they changed. */
cqicb = (struct cqicb *)&qdev->rx_ring[qdev->rss_ring_first_cq_id];
if (le16_to_cpu(cqicb->irq_delay) != qdev->rx_coalesce_usecs ||
le16_to_cpu(cqicb->pkt_delay) != qdev->rx_max_coalesced_frames) {
for (i = qdev->rss_ring_first_cq_id;
i <= qdev->rss_ring_first_cq_id + qdev->rss_ring_count;
i++) {
rx_ring = &qdev->rx_ring[i];
cqicb = (struct cqicb *)rx_ring;
cqicb->irq_delay = le16_to_cpu(qdev->rx_coalesce_usecs);
cqicb->pkt_delay =
le16_to_cpu(qdev->rx_max_coalesced_frames);
cqicb->flags = FLAGS_LI;
status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
CFG_LCQ, rx_ring->cq_id);
if (status) {
QPRINTK(qdev, IFUP, ERR,
"Failed to load CQICB.\n");
goto exit;
}
}
}
exit:
spin_unlock(&qdev->hw_lock);
return status;
}
void ql_update_stats(struct ql_adapter *qdev)
{
u32 i;
u64 data;
u64 *iter = &qdev->nic_stats.tx_pkts;
spin_lock(&qdev->stats_lock);
if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
QPRINTK(qdev, DRV, ERR,
"Couldn't get xgmac sem.\n");
goto quit;
}
/*
* Get TX statistics.
*/
for (i = 0x200; i < 0x280; i += 8) {
if (ql_read_xgmac_reg64(qdev, i, &data)) {
QPRINTK(qdev, DRV, ERR,
"Error reading status register 0x%.04x.\n", i);
goto end;
} else
*iter = data;
iter++;
}
/*
* Get RX statistics.
*/
for (i = 0x300; i < 0x3d0; i += 8) {
if (ql_read_xgmac_reg64(qdev, i, &data)) {
QPRINTK(qdev, DRV, ERR,
"Error reading status register 0x%.04x.\n", i);
goto end;
} else
*iter = data;
iter++;
}
end:
ql_sem_unlock(qdev, qdev->xg_sem_mask);
quit:
spin_unlock(&qdev->stats_lock);
QL_DUMP_STAT(qdev);
return;
}
static char ql_stats_str_arr[][ETH_GSTRING_LEN] = {
{"tx_pkts"},
{"tx_bytes"},
{"tx_mcast_pkts"},
{"tx_bcast_pkts"},
{"tx_ucast_pkts"},
{"tx_ctl_pkts"},
{"tx_pause_pkts"},
{"tx_64_pkts"},
{"tx_65_to_127_pkts"},
{"tx_128_to_255_pkts"},
{"tx_256_511_pkts"},
{"tx_512_to_1023_pkts"},
{"tx_1024_to_1518_pkts"},
{"tx_1519_to_max_pkts"},
{"tx_undersize_pkts"},
{"tx_oversize_pkts"},
{"rx_bytes"},
{"rx_bytes_ok"},
{"rx_pkts"},
{"rx_pkts_ok"},
{"rx_bcast_pkts"},
{"rx_mcast_pkts"},
{"rx_ucast_pkts"},
{"rx_undersize_pkts"},
{"rx_oversize_pkts"},
{"rx_jabber_pkts"},
{"rx_undersize_fcerr_pkts"},
{"rx_drop_events"},
{"rx_fcerr_pkts"},
{"rx_align_err"},
{"rx_symbol_err"},
{"rx_mac_err"},
{"rx_ctl_pkts"},
{"rx_pause_pkts"},
{"rx_64_pkts"},
{"rx_65_to_127_pkts"},
{"rx_128_255_pkts"},
{"rx_256_511_pkts"},
{"rx_512_to_1023_pkts"},
{"rx_1024_to_1518_pkts"},
{"rx_1519_to_max_pkts"},
{"rx_len_err_pkts"},
};
static void ql_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, ql_stats_str_arr, sizeof(ql_stats_str_arr));
break;
}
}
static int ql_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(ql_stats_str_arr);
default:
return -EOPNOTSUPP;
}
}
static void
ql_get_ethtool_stats(struct net_device *ndev,
struct ethtool_stats *stats, u64 *data)
{
struct ql_adapter *qdev = netdev_priv(ndev);
struct nic_stats *s = &qdev->nic_stats;
ql_update_stats(qdev);
*data++ = s->tx_pkts;
*data++ = s->tx_bytes;
*data++ = s->tx_mcast_pkts;
*data++ = s->tx_bcast_pkts;
*data++ = s->tx_ucast_pkts;
*data++ = s->tx_ctl_pkts;
*data++ = s->tx_pause_pkts;
*data++ = s->tx_64_pkt;
*data++ = s->tx_65_to_127_pkt;
*data++ = s->tx_128_to_255_pkt;
*data++ = s->tx_256_511_pkt;
*data++ = s->tx_512_to_1023_pkt;
*data++ = s->tx_1024_to_1518_pkt;
*data++ = s->tx_1519_to_max_pkt;
*data++ = s->tx_undersize_pkt;
*data++ = s->tx_oversize_pkt;
*data++ = s->rx_bytes;
*data++ = s->rx_bytes_ok;
*data++ = s->rx_pkts;
*data++ = s->rx_pkts_ok;
*data++ = s->rx_bcast_pkts;
*data++ = s->rx_mcast_pkts;
*data++ = s->rx_ucast_pkts;
*data++ = s->rx_undersize_pkts;
*data++ = s->rx_oversize_pkts;
*data++ = s->rx_jabber_pkts;
*data++ = s->rx_undersize_fcerr_pkts;
*data++ = s->rx_drop_events;
*data++ = s->rx_fcerr_pkts;
*data++ = s->rx_align_err;
*data++ = s->rx_symbol_err;
*data++ = s->rx_mac_err;
*data++ = s->rx_ctl_pkts;
*data++ = s->rx_pause_pkts;
*data++ = s->rx_64_pkts;
*data++ = s->rx_65_to_127_pkts;
*data++ = s->rx_128_255_pkts;
*data++ = s->rx_256_511_pkts;
*data++ = s->rx_512_to_1023_pkts;
*data++ = s->rx_1024_to_1518_pkts;
*data++ = s->rx_1519_to_max_pkts;
*data++ = s->rx_len_err_pkts;
}
static int ql_get_settings(struct net_device *ndev,
struct ethtool_cmd *ecmd)
{
struct ql_adapter *qdev = netdev_priv(ndev);
ecmd->supported = SUPPORTED_10000baseT_Full;
ecmd->advertising = ADVERTISED_10000baseT_Full;
ecmd->autoneg = AUTONEG_ENABLE;
ecmd->transceiver = XCVR_EXTERNAL;
if ((qdev->link_status & LINK_TYPE_MASK) == LINK_TYPE_10GBASET) {
ecmd->supported |= (SUPPORTED_TP | SUPPORTED_Autoneg);
ecmd->advertising |= (ADVERTISED_TP | ADVERTISED_Autoneg);
ecmd->port = PORT_TP;
} else {
ecmd->supported |= SUPPORTED_FIBRE;
ecmd->advertising |= ADVERTISED_FIBRE;
ecmd->port = PORT_FIBRE;
}
ecmd->speed = SPEED_10000;
ecmd->duplex = DUPLEX_FULL;
return 0;
}
static void ql_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *drvinfo)
{
struct ql_adapter *qdev = netdev_priv(ndev);
strncpy(drvinfo->driver, qlge_driver_name, 32);
strncpy(drvinfo->version, qlge_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 32);
strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = 0;
drvinfo->eedump_len = 0;
}
static int ql_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
struct ql_adapter *qdev = netdev_priv(dev);
c->rx_coalesce_usecs = qdev->rx_coalesce_usecs;
c->tx_coalesce_usecs = qdev->tx_coalesce_usecs;
/* This chip coalesces as follows:
* If a packet arrives, hold off interrupts until
* cqicb->int_delay expires, but if no other packets arrive don't
* wait longer than cqicb->pkt_int_delay. But ethtool doesn't use a
* timer to coalesce on a frame basis. So, we have to take ethtool's
* max_coalesced_frames value and convert it to a delay in microseconds.
* We do this by using a basic thoughput of 1,000,000 frames per
* second @ (1024 bytes). This means one frame per usec. So it's a
* simple one to one ratio.
*/
c->rx_max_coalesced_frames = qdev->rx_max_coalesced_frames;
c->tx_max_coalesced_frames = qdev->tx_max_coalesced_frames;
return 0;
}
static int ql_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *c)
{
struct ql_adapter *qdev = netdev_priv(ndev);
/* Validate user parameters. */
if (c->rx_coalesce_usecs > qdev->rx_ring_size / 2)
return -EINVAL;
/* Don't wait more than 10 usec. */
if (c->rx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
return -EINVAL;
if (c->tx_coalesce_usecs > qdev->tx_ring_size / 2)
return -EINVAL;
if (c->tx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
return -EINVAL;
/* Verify a change took place before updating the hardware. */
if (qdev->rx_coalesce_usecs == c->rx_coalesce_usecs &&
qdev->tx_coalesce_usecs == c->tx_coalesce_usecs &&
qdev->rx_max_coalesced_frames == c->rx_max_coalesced_frames &&
qdev->tx_max_coalesced_frames == c->tx_max_coalesced_frames)
return 0;
qdev->rx_coalesce_usecs = c->rx_coalesce_usecs;
qdev->tx_coalesce_usecs = c->tx_coalesce_usecs;
qdev->rx_max_coalesced_frames = c->rx_max_coalesced_frames;
qdev->tx_max_coalesced_frames = c->tx_max_coalesced_frames;
return ql_update_ring_coalescing(qdev);
}
static u32 ql_get_rx_csum(struct net_device *netdev)
{
struct ql_adapter *qdev = netdev_priv(netdev);
return qdev->rx_csum;
}
static int ql_set_rx_csum(struct net_device *netdev, uint32_t data)
{
struct ql_adapter *qdev = netdev_priv(netdev);
qdev->rx_csum = data;
return 0;
}
static int ql_set_tso(struct net_device *ndev, uint32_t data)
{
if (data) {
ndev->features |= NETIF_F_TSO;
ndev->features |= NETIF_F_TSO6;
} else {
ndev->features &= ~NETIF_F_TSO;
ndev->features &= ~NETIF_F_TSO6;
}
return 0;
}
static u32 ql_get_msglevel(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
return qdev->msg_enable;
}
static void ql_set_msglevel(struct net_device *ndev, u32 value)
{
struct ql_adapter *qdev = netdev_priv(ndev);
qdev->msg_enable = value;
}
const struct ethtool_ops qlge_ethtool_ops = {
.get_settings = ql_get_settings,
.get_drvinfo = ql_get_drvinfo,
.get_msglevel = ql_get_msglevel,
.set_msglevel = ql_set_msglevel,
.get_link = ethtool_op_get_link,
.get_rx_csum = ql_get_rx_csum,
.set_rx_csum = ql_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tso = ethtool_op_get_tso,
.set_tso = ql_set_tso,
.get_coalesce = ql_get_coalesce,
.set_coalesce = ql_set_coalesce,
.get_sset_count = ql_get_sset_count,
.get_strings = ql_get_strings,
.get_ethtool_stats = ql_get_ethtool_stats,
};
This source diff could not be displayed because it is too large. You can view the blob instead.
#include "qlge.h"
static int ql_read_mbox_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, PROC_ADDR, reg | PROC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, PROC_DATA);
exit:
return status;
}
int ql_get_mb_sts(struct ql_adapter *qdev, struct mbox_params *mbcp)
{
int i, status;
status = ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
if (status)
return -EBUSY;
for (i = 0; i < mbcp->out_count; i++) {
status =
ql_read_mbox_reg(qdev, qdev->mailbox_out + i,
&mbcp->mbox_out[i]);
if (status) {
QPRINTK(qdev, DRV, ERR, "Failed mailbox read.\n");
break;
}
}
ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
return status;
}
static void ql_link_up(struct ql_adapter *qdev, struct mbox_params *mbcp)
{
mbcp->out_count = 2;
if (ql_get_mb_sts(qdev, mbcp))
goto exit;
qdev->link_status = mbcp->mbox_out[1];
QPRINTK(qdev, DRV, ERR, "Link Up.\n");
QPRINTK(qdev, DRV, INFO, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
if (!netif_carrier_ok(qdev->ndev)) {
QPRINTK(qdev, LINK, INFO, "Link is Up.\n");
netif_carrier_on(qdev->ndev);
netif_wake_queue(qdev->ndev);
}
exit:
/* Clear the MPI firmware status. */
ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
}
static void ql_link_down(struct ql_adapter *qdev, struct mbox_params *mbcp)
{
mbcp->out_count = 3;
if (ql_get_mb_sts(qdev, mbcp)) {
QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
goto exit;
}
if (netif_carrier_ok(qdev->ndev)) {
QPRINTK(qdev, LINK, INFO, "Link is Down.\n");
netif_carrier_off(qdev->ndev);
netif_stop_queue(qdev->ndev);
}
QPRINTK(qdev, DRV, ERR, "Link Down.\n");
QPRINTK(qdev, DRV, ERR, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
exit:
/* Clear the MPI firmware status. */
ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
}
static void ql_init_fw_done(struct ql_adapter *qdev, struct mbox_params *mbcp)
{
mbcp->out_count = 2;
if (ql_get_mb_sts(qdev, mbcp)) {
QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
goto exit;
}
QPRINTK(qdev, DRV, ERR, "Firmware initialized!\n");
QPRINTK(qdev, DRV, ERR, "Firmware status = 0x%.08x.\n",
mbcp->mbox_out[0]);
QPRINTK(qdev, DRV, ERR, "Firmware Revision = 0x%.08x.\n",
mbcp->mbox_out[1]);
exit:
/* Clear the MPI firmware status. */
ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
}
void ql_mpi_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, mpi_work.work);
struct mbox_params mbc;
struct mbox_params *mbcp = &mbc;
mbcp->out_count = 1;
while (ql_read32(qdev, STS) & STS_PI) {
if (ql_get_mb_sts(qdev, mbcp)) {
QPRINTK(qdev, DRV, ERR,
"Could not read MPI, resetting ASIC!\n");
ql_queue_asic_error(qdev);
}
switch (mbcp->mbox_out[0]) {
case AEN_LINK_UP:
ql_link_up(qdev, mbcp);
break;
case AEN_LINK_DOWN:
ql_link_down(qdev, mbcp);
break;
case AEN_FW_INIT_DONE:
ql_init_fw_done(qdev, mbcp);
break;
case MB_CMD_STS_GOOD:
break;
case AEN_FW_INIT_FAIL:
case AEN_SYS_ERR:
case MB_CMD_STS_ERR:
ql_queue_fw_error(qdev);
default:
/* Clear the MPI firmware status. */
ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
break;
}
}
ql_enable_completion_interrupt(qdev, 0);
}
void ql_mpi_reset_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, mpi_reset_work.work);
QPRINTK(qdev, DRV, ERR,
"Enter, qdev = %p..\n", qdev);
ql_write32(qdev, CSR, CSR_CMD_SET_RST);
msleep(50);
ql_write32(qdev, CSR, CSR_CMD_CLR_RST);
}
...@@ -1411,6 +1411,8 @@ ...@@ -1411,6 +1411,8 @@
#define PCI_DEVICE_ID_EICON_MAESTRAQ_U 0xe013 #define PCI_DEVICE_ID_EICON_MAESTRAQ_U 0xe013
#define PCI_DEVICE_ID_EICON_MAESTRAP 0xe014 #define PCI_DEVICE_ID_EICON_MAESTRAP 0xe014
#define PCI_VENDOR_ID_CISCO 0x1137
#define PCI_VENDOR_ID_ZIATECH 0x1138 #define PCI_VENDOR_ID_ZIATECH 0x1138
#define PCI_DEVICE_ID_ZIATECH_5550_HC 0x5550 #define PCI_DEVICE_ID_ZIATECH_5550_HC 0x5550
...@@ -2213,6 +2215,7 @@ ...@@ -2213,6 +2215,7 @@
#define PCI_VENDOR_ID_ATTANSIC 0x1969 #define PCI_VENDOR_ID_ATTANSIC 0x1969
#define PCI_DEVICE_ID_ATTANSIC_L1 0x1048 #define PCI_DEVICE_ID_ATTANSIC_L1 0x1048
#define PCI_DEVICE_ID_ATTANSIC_L2 0x2048
#define PCI_VENDOR_ID_JMICRON 0x197B #define PCI_VENDOR_ID_JMICRON 0x197B
#define PCI_DEVICE_ID_JMICRON_JMB360 0x2360 #define PCI_DEVICE_ID_JMICRON_JMB360 0x2360
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment