Commit 7b53a16a authored by NeilBrown's avatar NeilBrown Committed by Greg Kroah-Hartman

staging: remove mt7621-eth

driver/net/ethernet/mediatek/ now supports this hardware,
so we don't need a separate driver.
Signed-off-by: default avatarNeilBrown <neil@brown.name>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 6d49a15e
......@@ -114,8 +114,6 @@ source "drivers/staging/ralink-gdma/Kconfig"
source "drivers/staging/mt7621-mmc/Kconfig"
source "drivers/staging/mt7621-eth/Kconfig"
source "drivers/staging/mt7621-dts/Kconfig"
source "drivers/staging/gasket/Kconfig"
......
......@@ -47,7 +47,6 @@ obj-$(CONFIG_SPI_MT7621) += mt7621-spi/
obj-$(CONFIG_SOC_MT7621) += mt7621-dma/
obj-$(CONFIG_DMA_RALINK) += ralink-gdma/
obj-$(CONFIG_MTK_MMC) += mt7621-mmc/
obj-$(CONFIG_NET_MEDIATEK_SOC_STAGING) += mt7621-eth/
obj-$(CONFIG_SOC_MT7621) += mt7621-dts/
obj-$(CONFIG_STAGING_GASKET_FRAMEWORK) += gasket/
obj-$(CONFIG_XIL_AXIS_FIFO) += axis-fifo/
......
Mediatek Gigabit Switch
=======================
The mediatek gigabit switch can be found on Mediatek SoCs.
Required properties:
- compatible: Should be "mediatek,mt7620-gsw", "mediatek,mt7621-gsw",
"mediatek,mt7623-gsw"
- reg: Address and length of the register set for the device
- interrupts: Should contain the gigabit switches interrupt
Additional required properties for ARM based SoCs:
- mediatek,reset-pin: phandle describing the reset GPIO
- clocks: the clocks used by the switch
- clock-names: the names of the clocks listed in the clocks property
these should be "trgpll", "esw", "gp2", "gp1"
- mt7530-supply: the phandle of the regulator used to power the switch
- mediatek,pctl-regmap: phandle to the port control regmap. this is used to
setup the drive current
Optional properties:
- interrupt-parent: Should be the phandle for the interrupt controller
that services interrupts for this device
Example:
gsw: switch@1b100000 {
compatible = "mediatek,mt7623-gsw";
reg = <0 0x1b110000 0 0x300000>;
interrupt-parent = <&pio>;
interrupts = <168 IRQ_TYPE_EDGE_RISING>;
clocks = <&apmixedsys CLK_APMIXED_TRGPLL>,
<&ethsys CLK_ETHSYS_ESW>,
<&ethsys CLK_ETHSYS_GP2>,
<&ethsys CLK_ETHSYS_GP1>;
clock-names = "trgpll", "esw", "gp2", "gp1";
mt7530-supply = <&mt6323_vpa_reg>;
mediatek,pctl-regmap = <&syscfg_pctl_a>;
mediatek,reset-pin = <&pio 15 0>;
status = "okay";
};
config NET_VENDOR_MEDIATEK_STAGING
bool "MediaTek ethernet driver - staging version"
depends on RALINK
---help---
If you have an MT7621 Mediatek SoC with ethernet, say Y.
if NET_VENDOR_MEDIATEK_STAGING
choice
prompt "MAC type"
config NET_MEDIATEK_MT7621
bool "MT7621"
depends on MIPS && SOC_MT7621
endchoice
config NET_MEDIATEK_SOC_STAGING
tristate "MediaTek SoC Gigabit Ethernet support"
depends on NET_VENDOR_MEDIATEK_STAGING
select PHYLIB
---help---
This driver supports the gigabit ethernet MACs in the
MediaTek SoC family.
config NET_MEDIATEK_MDIO
def_bool NET_MEDIATEK_SOC_STAGING
depends on NET_MEDIATEK_MT7621
select PHYLIB
config NET_MEDIATEK_MDIO_MT7620
def_bool NET_MEDIATEK_SOC_STAGING
depends on NET_MEDIATEK_MT7621
select NET_MEDIATEK_MDIO
config NET_MEDIATEK_GSW_MT7621
def_tristate NET_MEDIATEK_SOC_STAGING
depends on NET_MEDIATEK_MT7621
endif #NET_VENDOR_MEDIATEK_STAGING
#
# Makefile for the Ralink SoCs built-in ethernet macs
#
mtk-eth-soc-y += mtk_eth_soc.o ethtool.o
mtk-eth-soc-$(CONFIG_NET_MEDIATEK_MDIO) += mdio.o
mtk-eth-soc-$(CONFIG_NET_MEDIATEK_MDIO_MT7620) += mdio_mt7620.o
mtk-eth-soc-$(CONFIG_NET_MEDIATEK_MT7621) += soc_mt7621.o
obj-$(CONFIG_NET_MEDIATEK_GSW_MT7621) += gsw_mt7621.o
obj-$(CONFIG_NET_MEDIATEK_SOC_STAGING) += mtk-eth-soc.o
- verify devicetree documentation is consistent with code
- fix ethtool - currently doesn't return valid data.
- general code review and clean up
- add support for second MAC on mt7621
- convert gsw code to use switchdev interfaces
- md7620_mmi_write etc should probably be wrapped
in a regmap abstraction.
- Get soc_mt7621 to work with QDMA TX if possible.
- Ensure phys are correctly configured when a cable
is plugged in.
Cc: NeilBrown <neil@brown.name>
// SPDX-License-Identifier: GPL-2.0
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include "mtk_eth_soc.h"
#include "ethtool.h"
struct mtk_stat {
char name[ETH_GSTRING_LEN];
unsigned int idx;
};
#define MTK_HW_STAT(stat) { \
.name = #stat, \
.idx = offsetof(struct mtk_hw_stats, stat) / sizeof(u64) \
}
static const struct mtk_stat mtk_ethtool_hw_stats[] = {
MTK_HW_STAT(tx_bytes),
MTK_HW_STAT(tx_packets),
MTK_HW_STAT(tx_skip),
MTK_HW_STAT(tx_collisions),
MTK_HW_STAT(rx_bytes),
MTK_HW_STAT(rx_packets),
MTK_HW_STAT(rx_overflow),
MTK_HW_STAT(rx_fcs_errors),
MTK_HW_STAT(rx_short_errors),
MTK_HW_STAT(rx_long_errors),
MTK_HW_STAT(rx_checksum_errors),
MTK_HW_STAT(rx_flow_control_packets),
};
#define MTK_HW_STATS_LEN ARRAY_SIZE(mtk_ethtool_hw_stats)
static int mtk_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
if (!mac->phy_dev)
return -ENODEV;
if (mac->phy_flags == MTK_PHY_FLAG_ATTACH) {
err = phy_read_status(mac->phy_dev);
if (err)
return -ENODEV;
}
phy_ethtool_ksettings_get(mac->phy_dev, cmd);
return 0;
}
static int mtk_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
if (!mac->phy_dev)
return -ENODEV;
if (cmd->base.phy_address != mac->phy_dev->mdio.addr) {
if (mac->hw->phy->phy_node[cmd->base.phy_address]) {
mac->phy_dev = mac->hw->phy->phy[cmd->base.phy_address];
mac->phy_flags = MTK_PHY_FLAG_PORT;
} else if (mac->hw->mii_bus) {
mac->phy_dev = mdiobus_get_phy(mac->hw->mii_bus,
cmd->base.phy_address);
if (!mac->phy_dev)
return -ENODEV;
mac->phy_flags = MTK_PHY_FLAG_ATTACH;
} else {
return -ENODEV;
}
}
return phy_ethtool_ksettings_set(mac->phy_dev, cmd);
}
static void mtk_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_soc_data *soc = mac->hw->soc;
strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
if (soc->reg_table[MTK_REG_MTK_COUNTER_BASE])
info->n_stats = MTK_HW_STATS_LEN;
}
static u32 mtk_get_msglevel(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return mac->hw->msg_enable;
}
static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
struct mtk_mac *mac = netdev_priv(dev);
mac->hw->msg_enable = value;
}
static int mtk_nway_reset(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
if (!mac->phy_dev)
return -EOPNOTSUPP;
return genphy_restart_aneg(mac->phy_dev);
}
static u32 mtk_get_link(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
if (!mac->phy_dev)
goto out_get_link;
if (mac->phy_flags == MTK_PHY_FLAG_ATTACH) {
err = genphy_update_link(mac->phy_dev);
if (err)
goto out_get_link;
}
return mac->phy_dev->link;
out_get_link:
return ethtool_op_get_link(dev);
}
static int mtk_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct mtk_mac *mac = netdev_priv(dev);
if ((ring->tx_pending < 2) ||
(ring->rx_pending < 2) ||
(ring->rx_pending > mac->hw->soc->dma_ring_size) ||
(ring->tx_pending > mac->hw->soc->dma_ring_size))
return -EINVAL;
dev->netdev_ops->ndo_stop(dev);
mac->hw->tx_ring.tx_ring_size = BIT(fls(ring->tx_pending) - 1);
mac->hw->rx_ring[0].rx_ring_size = BIT(fls(ring->rx_pending) - 1);
return dev->netdev_ops->ndo_open(dev);
}
static void mtk_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct mtk_mac *mac = netdev_priv(dev);
ring->rx_max_pending = mac->hw->soc->dma_ring_size;
ring->tx_max_pending = mac->hw->soc->dma_ring_size;
ring->rx_pending = mac->hw->rx_ring[0].rx_ring_size;
ring->tx_pending = mac->hw->tx_ring.tx_ring_size;
}
static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < MTK_HW_STATS_LEN; i++) {
memcpy(data, mtk_ethtool_hw_stats[i].name,
ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int mtk_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return MTK_HW_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void mtk_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hwstats = mac->hw_stats;
unsigned int start;
int i;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hwstats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hwstats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
for (i = 0; i < MTK_HW_STATS_LEN; i++)
data[i] = ((u64 *)hwstats)[mtk_ethtool_hw_stats[i].idx];
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}
static struct ethtool_ops mtk_ethtool_ops = {
.get_link_ksettings = mtk_get_link_ksettings,
.set_link_ksettings = mtk_set_link_ksettings,
.get_drvinfo = mtk_get_drvinfo,
.get_msglevel = mtk_get_msglevel,
.set_msglevel = mtk_set_msglevel,
.nway_reset = mtk_nway_reset,
.get_link = mtk_get_link,
.set_ringparam = mtk_set_ringparam,
.get_ringparam = mtk_get_ringparam,
};
void mtk_set_ethtool_ops(struct net_device *netdev)
{
struct mtk_mac *mac = netdev_priv(netdev);
struct mtk_soc_data *soc = mac->hw->soc;
if (soc->reg_table[MTK_REG_MTK_COUNTER_BASE]) {
mtk_ethtool_ops.get_strings = mtk_get_strings;
mtk_ethtool_ops.get_sset_count = mtk_get_sset_count;
mtk_ethtool_ops.get_ethtool_stats = mtk_get_ethtool_stats;
}
netdev->ethtool_ops = &mtk_ethtool_ops;
}
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#ifndef MTK_ETHTOOL_H
#define MTK_ETHTOOL_H
#include <linux/ethtool.h>
void mtk_set_ethtool_ops(struct net_device *netdev);
#endif /* MTK_ETHTOOL_H */
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#ifndef _RALINK_GSW_MT7620_H__
#define _RALINK_GSW_MT7620_H__
#define GSW_REG_PHY_TIMEOUT (5 * HZ)
#define MT7620_GSW_REG_PIAC 0x0004
#define GSW_NUM_VLANS 16
#define GSW_NUM_VIDS 4096
#define GSW_NUM_PORTS 7
#define GSW_PORT6 6
#define GSW_MDIO_ACCESS BIT(31)
#define GSW_MDIO_READ BIT(19)
#define GSW_MDIO_WRITE BIT(18)
#define GSW_MDIO_START BIT(16)
#define GSW_MDIO_ADDR_SHIFT 20
#define GSW_MDIO_REG_SHIFT 25
#define GSW_REG_PORT_PMCR(x) (0x3000 + (x * 0x100))
#define GSW_REG_PORT_STATUS(x) (0x3008 + (x * 0x100))
#define GSW_REG_SMACCR0 0x3fE4
#define GSW_REG_SMACCR1 0x3fE8
#define GSW_REG_CKGCR 0x3ff0
#define GSW_REG_IMR 0x7008
#define GSW_REG_ISR 0x700c
#define GSW_REG_GPC1 0x7014
#define SYSC_REG_CHIP_REV_ID 0x0c
#define SYSC_REG_CFG 0x10
#define SYSC_REG_CFG1 0x14
#define RST_CTRL_MCM BIT(2)
#define SYSC_PAD_RGMII2_MDIO 0x58
#define SYSC_GPIO_MODE 0x60
#define PORT_IRQ_ST_CHG 0x7f
#define MT7621_ESW_PHY_POLLING 0x0000
#define MT7620_ESW_PHY_POLLING 0x7000
#define PMCR_IPG BIT(18)
#define PMCR_MAC_MODE BIT(16)
#define PMCR_FORCE BIT(15)
#define PMCR_TX_EN BIT(14)
#define PMCR_RX_EN BIT(13)
#define PMCR_BACKOFF BIT(9)
#define PMCR_BACKPRES BIT(8)
#define PMCR_RX_FC BIT(5)
#define PMCR_TX_FC BIT(4)
#define PMCR_SPEED(_x) (_x << 2)
#define PMCR_DUPLEX BIT(1)
#define PMCR_LINK BIT(0)
#define PHY_AN_EN BIT(31)
#define PHY_PRE_EN BIT(30)
#define PMY_MDC_CONF(_x) ((_x & 0x3f) << 24)
/* ethernet subsystem config register */
#define ETHSYS_SYSCFG0 0x14
/* ethernet subsystem clock register */
#define ETHSYS_CLKCFG0 0x2c
#define ETHSYS_TRGMII_CLK_SEL362_5 BIT(11)
/* p5 RGMII wrapper TX clock control register */
#define MT7530_P5RGMIITXCR 0x7b04
/* p5 RGMII wrapper RX clock control register */
#define MT7530_P5RGMIIRXCR 0x7b00
/* TRGMII TDX ODT registers */
#define MT7530_TRGMII_TD0_ODT 0x7a54
#define MT7530_TRGMII_TD1_ODT 0x7a5c
#define MT7530_TRGMII_TD2_ODT 0x7a64
#define MT7530_TRGMII_TD3_ODT 0x7a6c
#define MT7530_TRGMII_TD4_ODT 0x7a74
#define MT7530_TRGMII_TD5_ODT 0x7a7c
/* TRGMII TCK ctrl register */
#define MT7530_TRGMII_TCK_CTRL 0x7a78
/* TRGMII Tx ctrl register */
#define MT7530_TRGMII_TXCTRL 0x7a40
/* port 6 extended control register */
#define MT7530_P6ECR 0x7830
/* IO driver control register */
#define MT7530_IO_DRV_CR 0x7810
/* top signal control register */
#define MT7530_TOP_SIG_CTRL 0x7808
/* modified hwtrap register */
#define MT7530_MHWTRAP 0x7804
/* hwtrap status register */
#define MT7530_HWTRAP 0x7800
/* status interrupt register */
#define MT7530_SYS_INT_STS 0x700c
/* system nterrupt register */
#define MT7530_SYS_INT_EN 0x7008
/* system control register */
#define MT7530_SYS_CTRL 0x7000
/* port MAC status register */
#define MT7530_PMSR_P(x) (0x3008 + (x * 0x100))
/* port MAC control register */
#define MT7530_PMCR_P(x) (0x3000 + (x * 0x100))
#define MT7621_XTAL_SHIFT 6
#define MT7621_XTAL_MASK 0x7
#define MT7621_XTAL_25 6
#define MT7621_XTAL_40 3
#define MT7621_MDIO_DRV_MASK (3 << 4)
#define MT7621_GE1_MODE_MASK (3 << 12)
#define TRGMII_TXCTRL_TXC_INV BIT(30)
#define P6ECR_INTF_MODE_RGMII BIT(1)
#define P5RGMIIRXCR_C_ALIGN BIT(8)
#define P5RGMIIRXCR_DELAY_2 BIT(1)
#define P5RGMIITXCR_DELAY_2 (BIT(8) | BIT(2))
/* TOP_SIG_CTRL bits */
#define TOP_SIG_CTRL_NORMAL (BIT(17) | BIT(16))
/* MHWTRAP bits */
#define MHWTRAP_MANUAL BIT(16)
#define MHWTRAP_P5_MAC_SEL BIT(13)
#define MHWTRAP_P6_DIS BIT(8)
#define MHWTRAP_P5_RGMII_MODE BIT(7)
#define MHWTRAP_P5_DIS BIT(6)
#define MHWTRAP_PHY_ACCESS BIT(5)
/* HWTRAP bits */
#define HWTRAP_XTAL_SHIFT 9
#define HWTRAP_XTAL_MASK 0x3
/* SYS_CTRL bits */
#define SYS_CTRL_SW_RST BIT(1)
#define SYS_CTRL_REG_RST BIT(0)
/* PMCR bits */
#define PMCR_IFG_XMIT_96 BIT(18)
#define PMCR_MAC_MODE BIT(16)
#define PMCR_FORCE_MODE BIT(15)
#define PMCR_TX_EN BIT(14)
#define PMCR_RX_EN BIT(13)
#define PMCR_BACK_PRES_EN BIT(9)
#define PMCR_BACKOFF_EN BIT(8)
#define PMCR_TX_FC_EN BIT(5)
#define PMCR_RX_FC_EN BIT(4)
#define PMCR_FORCE_SPEED_1000 BIT(3)
#define PMCR_FORCE_FDX BIT(1)
#define PMCR_FORCE_LNK BIT(0)
#define PMCR_FIXED_LINK (PMCR_IFG_XMIT_96 | PMCR_MAC_MODE | \
PMCR_FORCE_MODE | PMCR_TX_EN | PMCR_RX_EN | \
PMCR_BACK_PRES_EN | PMCR_BACKOFF_EN | \
PMCR_FORCE_SPEED_1000 | PMCR_FORCE_FDX | \
PMCR_FORCE_LNK)
#define PMCR_FIXED_LINK_FC (PMCR_FIXED_LINK | \
PMCR_TX_FC_EN | PMCR_RX_FC_EN)
/* TRGMII control registers */
#define GSW_INTF_MODE 0x390
#define GSW_TRGMII_TD0_ODT 0x354
#define GSW_TRGMII_TD1_ODT 0x35c
#define GSW_TRGMII_TD2_ODT 0x364
#define GSW_TRGMII_TD3_ODT 0x36c
#define GSW_TRGMII_TXCTL_ODT 0x374
#define GSW_TRGMII_TCK_ODT 0x37c
#define GSW_TRGMII_RCK_CTRL 0x300
#define INTF_MODE_TRGMII BIT(1)
#define TRGMII_RCK_CTRL_RX_RST BIT(31)
/* Mac control registers */
#define MTK_MAC_P2_MCR 0x200
#define MTK_MAC_P1_MCR 0x100
#define MAC_MCR_MAX_RX_2K BIT(29)
#define MAC_MCR_IPG_CFG (BIT(18) | BIT(16))
#define MAC_MCR_FORCE_MODE BIT(15)
#define MAC_MCR_TX_EN BIT(14)
#define MAC_MCR_RX_EN BIT(13)
#define MAC_MCR_BACKOFF_EN BIT(9)
#define MAC_MCR_BACKPR_EN BIT(8)
#define MAC_MCR_FORCE_RX_FC BIT(5)
#define MAC_MCR_FORCE_TX_FC BIT(4)
#define MAC_MCR_SPEED_1000 BIT(3)
#define MAC_MCR_FORCE_DPX BIT(1)
#define MAC_MCR_FORCE_LINK BIT(0)
#define MAC_MCR_FIXED_LINK (MAC_MCR_MAX_RX_2K | MAC_MCR_IPG_CFG | \
MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN | \
MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN | \
MAC_MCR_BACKPR_EN | MAC_MCR_FORCE_RX_FC | \
MAC_MCR_FORCE_TX_FC | MAC_MCR_SPEED_1000 | \
MAC_MCR_FORCE_DPX | MAC_MCR_FORCE_LINK)
#define MAC_MCR_FIXED_LINK_FC (MAC_MCR_MAX_RX_2K | MAC_MCR_IPG_CFG | \
MAC_MCR_FIXED_LINK)
/* possible XTAL speed */
#define MT7623_XTAL_40 0
#define MT7623_XTAL_20 1
#define MT7623_XTAL_25 3
/* GPIO port control registers */
#define GPIO_OD33_CTRL8 0x4c0
#define GPIO_BIAS_CTRL 0xed0
#define GPIO_DRV_SEL10 0xf00
/* on MT7620 the functio of port 4 can be software configured */
enum {
PORT4_EPHY = 0,
PORT4_EXT,
};
/* struct mt7620_gsw - the structure that holds the SoC specific data
* @dev: The Device struct
* @base: The base address
* @piac_offset: The PIAC base may change depending on SoC
* @irq: The IRQ we are using
* @port4: The port4 mode on MT7620
* @autopoll: Is MDIO autopolling enabled
* @ethsys: The ethsys register map
* @pctl: The pin control register map
* @clk_gsw: The switch clock
* @clk_gp1: The gmac1 clock
* @clk_gp2: The gmac2 clock
* @clk_trgpll: The trgmii pll clock
*/
struct mt7620_gsw {
struct device *dev;
void __iomem *base;
u32 piac_offset;
int irq;
int port4;
unsigned long int autopoll;
struct regmap *ethsys;
struct regmap *pctl;
struct clk *clk_gsw;
struct clk *clk_gp1;
struct clk *clk_gp2;
struct clk *clk_trgpll;
};
/* switch register I/O wrappers */
void mtk_switch_w32(struct mt7620_gsw *gsw, u32 val, unsigned int reg);
u32 mtk_switch_r32(struct mt7620_gsw *gsw, unsigned int reg);
/* the callback used by the driver core to bringup the switch */
int mtk_gsw_init(struct mtk_eth *eth);
/* MDIO access wrappers */
int mt7620_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val);
int mt7620_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg);
void mt7620_mdio_link_adjust(struct mtk_eth *eth, int port);
int mt7620_has_carrier(struct mtk_eth *eth);
void mt7620_print_link_state(struct mtk_eth *eth, int port, int link,
int speed, int duplex);
void mt7530_mdio_w32(struct mt7620_gsw *gsw, u32 reg, u32 val);
u32 mt7530_mdio_r32(struct mt7620_gsw *gsw, u32 reg);
void mt7530_mdio_m32(struct mt7620_gsw *gsw, u32 mask, u32 set, u32 reg);
u32 _mt7620_mii_write(struct mt7620_gsw *gsw, u32 phy_addr,
u32 phy_register, u32 write_data);
u32 _mt7620_mii_read(struct mt7620_gsw *gsw, int phy_addr, int phy_reg);
void mt7620_handle_carrier(struct mtk_eth *eth);
#endif
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <ralink_regs.h>
#include "mtk_eth_soc.h"
#include "gsw_mt7620.h"
void mtk_switch_w32(struct mt7620_gsw *gsw, u32 val, unsigned int reg)
{
iowrite32(val, gsw->base + reg);
}
EXPORT_SYMBOL_GPL(mtk_switch_w32);
u32 mtk_switch_r32(struct mt7620_gsw *gsw, unsigned int reg)
{
return ioread32(gsw->base + reg);
}
EXPORT_SYMBOL_GPL(mtk_switch_r32);
static irqreturn_t gsw_interrupt_mt7621(int irq, void *_eth)
{
struct mtk_eth *eth = (struct mtk_eth *)_eth;
struct mt7620_gsw *gsw = (struct mt7620_gsw *)eth->sw_priv;
u32 reg, i;
reg = mt7530_mdio_r32(gsw, MT7530_SYS_INT_STS);
for (i = 0; i < 5; i++) {
unsigned int link;
if ((reg & BIT(i)) == 0)
continue;
link = mt7530_mdio_r32(gsw, MT7530_PMSR_P(i)) & 0x1;
if (link == eth->link[i])
continue;
eth->link[i] = link;
if (link)
netdev_info(*eth->netdev,
"port %d link up\n", i);
else
netdev_info(*eth->netdev,
"port %d link down\n", i);
}
mt7530_mdio_w32(gsw, MT7530_SYS_INT_STS, 0x1f);
return IRQ_HANDLED;
}
static void mt7621_hw_init(struct mtk_eth *eth, struct mt7620_gsw *gsw,
struct device_node *np)
{
u32 i;
u32 val;
/* hardware reset the switch */
mtk_reset(eth, RST_CTRL_MCM);
mdelay(10);
/* reduce RGMII2 PAD driving strength */
rt_sysc_m32(MT7621_MDIO_DRV_MASK, 0, SYSC_PAD_RGMII2_MDIO);
/* gpio mux - RGMII1=Normal mode */
rt_sysc_m32(BIT(14), 0, SYSC_GPIO_MODE);
/* set GMAC1 RGMII mode */
rt_sysc_m32(MT7621_GE1_MODE_MASK, 0, SYSC_REG_CFG1);
/* enable MDIO to control MT7530 */
rt_sysc_m32(3 << 12, 0, SYSC_GPIO_MODE);
/* turn off all PHYs */
for (i = 0; i <= 4; i++) {
val = _mt7620_mii_read(gsw, i, 0x0);
val |= BIT(11);
_mt7620_mii_write(gsw, i, 0x0, val);
}
/* reset the switch */
mt7530_mdio_w32(gsw, MT7530_SYS_CTRL,
SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
usleep_range(10, 20);
if ((rt_sysc_r32(SYSC_REG_CHIP_REV_ID) & 0xFFFF) == 0x0101) {
/* GE1, Force 1000M/FD, FC ON, MAX_RX_LENGTH 1536 */
mtk_switch_w32(gsw, MAC_MCR_FIXED_LINK, MTK_MAC_P2_MCR);
mt7530_mdio_w32(gsw, MT7530_PMCR_P(6), PMCR_FIXED_LINK);
} else {
/* GE1, Force 1000M/FD, FC ON, MAX_RX_LENGTH 1536 */
mtk_switch_w32(gsw, MAC_MCR_FIXED_LINK_FC, MTK_MAC_P1_MCR);
mt7530_mdio_w32(gsw, MT7530_PMCR_P(6), PMCR_FIXED_LINK_FC);
}
/* GE2, Link down */
mtk_switch_w32(gsw, MAC_MCR_FORCE_MODE, MTK_MAC_P2_MCR);
/* Enable Port 6, P5 as GMAC5, P5 disable */
val = mt7530_mdio_r32(gsw, MT7530_MHWTRAP);
/* Enable Port 6 */
val &= ~MHWTRAP_P6_DIS;
/* Disable Port 5 */
val |= MHWTRAP_P5_DIS;
/* manual override of HW-Trap */
val |= MHWTRAP_MANUAL;
mt7530_mdio_w32(gsw, MT7530_MHWTRAP, val);
val = rt_sysc_r32(SYSC_REG_CFG);
val = (val >> MT7621_XTAL_SHIFT) & MT7621_XTAL_MASK;
if (val < MT7621_XTAL_25 && val >= MT7621_XTAL_40) {
/* 40Mhz */
/* disable MT7530 core clock */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x410);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x0);
/* disable MT7530 PLL */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40d);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x2020);
/* for MT7530 core clock = 500Mhz */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40e);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x119);
/* enable MT7530 PLL */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x40d);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
_mt7620_mii_write(gsw, 0, 14, 0x2820);
usleep_range(20, 40);
/* enable MT7530 core clock */
_mt7620_mii_write(gsw, 0, 13, 0x1f);
_mt7620_mii_write(gsw, 0, 14, 0x410);
_mt7620_mii_write(gsw, 0, 13, 0x401f);
}
/* RGMII */
_mt7620_mii_write(gsw, 0, 14, 0x1);
/* set MT7530 central align */
mt7530_mdio_m32(gsw, BIT(0), P6ECR_INTF_MODE_RGMII, MT7530_P6ECR);
mt7530_mdio_m32(gsw, TRGMII_TXCTRL_TXC_INV, 0,
MT7530_TRGMII_TXCTRL);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TCK_CTRL, 0x855);
/* delay setting for 10/1000M */
mt7530_mdio_w32(gsw, MT7530_P5RGMIIRXCR,
P5RGMIIRXCR_C_ALIGN | P5RGMIIRXCR_DELAY_2);
mt7530_mdio_w32(gsw, MT7530_P5RGMIITXCR, 0x14);
/* lower Tx Driving*/
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD0_ODT, 0x44);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD1_ODT, 0x44);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD2_ODT, 0x44);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD3_ODT, 0x44);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD4_ODT, 0x44);
mt7530_mdio_w32(gsw, MT7530_TRGMII_TD5_ODT, 0x44);
/* turn on all PHYs */
for (i = 0; i <= 4; i++) {
val = _mt7620_mii_read(gsw, i, 0);
val &= ~BIT(11);
_mt7620_mii_write(gsw, i, 0, val);
}
#define MT7530_NUM_PORTS 8
#define REG_ESW_PORT_PCR(x) (0x2004 | ((x) << 8))
#define REG_ESW_PORT_PVC(x) (0x2010 | ((x) << 8))
#define REG_ESW_PORT_PPBV1(x) (0x2014 | ((x) << 8))
#define MT7530_CPU_PORT 6
/* This is copied from mt7530_apply_config in libreCMC driver */
{
int i;
for (i = 0; i < MT7530_NUM_PORTS; i++)
mt7530_mdio_w32(gsw, REG_ESW_PORT_PCR(i), 0x00400000);
mt7530_mdio_w32(gsw, REG_ESW_PORT_PCR(MT7530_CPU_PORT),
0x00ff0000);
for (i = 0; i < MT7530_NUM_PORTS; i++)
mt7530_mdio_w32(gsw, REG_ESW_PORT_PVC(i), 0x810000c0);
}
/* enable irq */
mt7530_mdio_m32(gsw, 0, 3 << 16, MT7530_TOP_SIG_CTRL);
mt7530_mdio_w32(gsw, MT7530_SYS_INT_EN, 0x1f);
}
static const struct of_device_id mediatek_gsw_match[] = {
{ .compatible = "mediatek,mt7621-gsw" },
{},
};
MODULE_DEVICE_TABLE(of, mediatek_gsw_match);
int mtk_gsw_init(struct mtk_eth *eth)
{
struct device_node *np = eth->switch_np;
struct platform_device *pdev = of_find_device_by_node(np);
struct mt7620_gsw *gsw;
if (!pdev)
return -ENODEV;
if (!of_device_is_compatible(np, mediatek_gsw_match->compatible))
return -EINVAL;
gsw = platform_get_drvdata(pdev);
eth->sw_priv = gsw;
if (!gsw->irq)
return -EINVAL;
request_irq(gsw->irq, gsw_interrupt_mt7621, 0,
"gsw", eth);
disable_irq(gsw->irq);
mt7621_hw_init(eth, gsw, np);
enable_irq(gsw->irq);
return 0;
}
EXPORT_SYMBOL_GPL(mtk_gsw_init);
static int mt7621_gsw_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct mt7620_gsw *gsw;
gsw = devm_kzalloc(&pdev->dev, sizeof(struct mt7620_gsw), GFP_KERNEL);
if (!gsw)
return -ENOMEM;
gsw->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(gsw->base))
return PTR_ERR(gsw->base);
gsw->dev = &pdev->dev;
gsw->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
platform_set_drvdata(pdev, gsw);
return 0;
}
static int mt7621_gsw_remove(struct platform_device *pdev)
{
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver gsw_driver = {
.probe = mt7621_gsw_probe,
.remove = mt7621_gsw_remove,
.driver = {
.name = "mt7621-gsw",
.of_match_table = mediatek_gsw_match,
},
};
module_platform_driver(gsw_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("GBit switch driver for Mediatek MT7621 SoC");
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/phy.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include "mtk_eth_soc.h"
#include "mdio.h"
static int mtk_mdio_reset(struct mii_bus *bus)
{
/* TODO */
return 0;
}
static void mtk_phy_link_adjust(struct net_device *dev)
{
struct mtk_eth *eth = netdev_priv(dev);
unsigned long flags;
int i;
spin_lock_irqsave(&eth->phy->lock, flags);
for (i = 0; i < 8; i++) {
if (eth->phy->phy_node[i]) {
struct phy_device *phydev = eth->phy->phy[i];
int status_change = 0;
if (phydev->link)
if (eth->phy->duplex[i] != phydev->duplex ||
eth->phy->speed[i] != phydev->speed)
status_change = 1;
if (phydev->link != eth->link[i])
status_change = 1;
switch (phydev->speed) {
case SPEED_1000:
case SPEED_100:
case SPEED_10:
eth->link[i] = phydev->link;
eth->phy->duplex[i] = phydev->duplex;
eth->phy->speed[i] = phydev->speed;
if (status_change &&
eth->soc->mdio_adjust_link)
eth->soc->mdio_adjust_link(eth, i);
break;
}
}
}
spin_unlock_irqrestore(&eth->phy->lock, flags);
}
int mtk_connect_phy_node(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *phy_node)
{
const __be32 *_port = NULL;
struct phy_device *phydev;
int phy_mode, port;
_port = of_get_property(phy_node, "reg", NULL);
if (!_port || (be32_to_cpu(*_port) >= 0x20)) {
pr_err("%pOFn: invalid port id\n", phy_node);
return -EINVAL;
}
port = be32_to_cpu(*_port);
phy_mode = of_get_phy_mode(phy_node);
if (phy_mode < 0) {
dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode);
eth->phy->phy_node[port] = NULL;
return -EINVAL;
}
phydev = of_phy_connect(eth->netdev[mac->id], phy_node,
mtk_phy_link_adjust, 0, phy_mode);
if (!phydev) {
dev_err(eth->dev, "could not connect to PHY\n");
eth->phy->phy_node[port] = NULL;
return -ENODEV;
}
phydev->supported &= PHY_1000BT_FEATURES;
phydev->advertising = phydev->supported;
dev_info(eth->dev,
"connected port %d to PHY at %s [uid=%08x, driver=%s]\n",
port, phydev_name(phydev), phydev->phy_id,
phydev->drv->name);
eth->phy->phy[port] = phydev;
eth->link[port] = 0;
return 0;
}
static void phy_init(struct mtk_eth *eth, struct mtk_mac *mac,
struct phy_device *phy)
{
phy_attach(eth->netdev[mac->id], phydev_name(phy),
PHY_INTERFACE_MODE_MII);
phy->autoneg = AUTONEG_ENABLE;
phy->speed = 0;
phy->duplex = 0;
phy_set_max_speed(phy, SPEED_100);
phy->advertising = phy->supported | ADVERTISED_Autoneg;
phy_start_aneg(phy);
}
static int mtk_phy_connect(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
int i;
for (i = 0; i < 8; i++) {
if (eth->phy->phy_node[i]) {
if (!mac->phy_dev) {
mac->phy_dev = eth->phy->phy[i];
mac->phy_flags = MTK_PHY_FLAG_PORT;
}
} else if (eth->mii_bus) {
struct phy_device *phy;
phy = mdiobus_get_phy(eth->mii_bus, i);
if (phy) {
phy_init(eth, mac, phy);
if (!mac->phy_dev) {
mac->phy_dev = phy;
mac->phy_flags = MTK_PHY_FLAG_ATTACH;
}
}
}
}
return 0;
}
static void mtk_phy_disconnect(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
unsigned long flags;
int i;
for (i = 0; i < 8; i++)
if (eth->phy->phy_fixed[i]) {
spin_lock_irqsave(&eth->phy->lock, flags);
eth->link[i] = 0;
if (eth->soc->mdio_adjust_link)
eth->soc->mdio_adjust_link(eth, i);
spin_unlock_irqrestore(&eth->phy->lock, flags);
} else if (eth->phy->phy[i]) {
phy_disconnect(eth->phy->phy[i]);
} else if (eth->mii_bus) {
struct phy_device *phy =
mdiobus_get_phy(eth->mii_bus, i);
if (phy)
phy_detach(phy);
}
}
static void mtk_phy_start(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
unsigned long flags;
int i;
for (i = 0; i < 8; i++) {
if (eth->phy->phy_fixed[i]) {
spin_lock_irqsave(&eth->phy->lock, flags);
eth->link[i] = 1;
if (eth->soc->mdio_adjust_link)
eth->soc->mdio_adjust_link(eth, i);
spin_unlock_irqrestore(&eth->phy->lock, flags);
} else if (eth->phy->phy[i]) {
phy_start(eth->phy->phy[i]);
}
}
}
static void mtk_phy_stop(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
unsigned long flags;
int i;
for (i = 0; i < 8; i++)
if (eth->phy->phy_fixed[i]) {
spin_lock_irqsave(&eth->phy->lock, flags);
eth->link[i] = 0;
if (eth->soc->mdio_adjust_link)
eth->soc->mdio_adjust_link(eth, i);
spin_unlock_irqrestore(&eth->phy->lock, flags);
} else if (eth->phy->phy[i]) {
phy_stop(eth->phy->phy[i]);
}
}
static struct mtk_phy phy_ralink = {
.connect = mtk_phy_connect,
.disconnect = mtk_phy_disconnect,
.start = mtk_phy_start,
.stop = mtk_phy_stop,
};
int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int err;
if (!eth->soc->mdio_read || !eth->soc->mdio_write)
return 0;
spin_lock_init(&phy_ralink.lock);
eth->phy = &phy_ralink;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
err = 0;
goto err_put_node;
}
eth->mii_bus = mdiobus_alloc();
if (!eth->mii_bus) {
err = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = eth->soc->mdio_read;
eth->mii_bus->write = eth->soc->mdio_write;
eth->mii_bus->reset = mtk_mdio_reset;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np);
err = of_mdiobus_register(eth->mii_bus, mii_np);
if (err)
goto err_free_bus;
return 0;
err_free_bus:
kfree(eth->mii_bus);
err_put_node:
of_node_put(mii_np);
eth->mii_bus = NULL;
return err;
}
void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
of_node_put(eth->mii_bus->dev.of_node);
kfree(eth->mii_bus);
}
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#ifndef _RALINK_MDIO_H__
#define _RALINK_MDIO_H__
#ifdef CONFIG_NET_MEDIATEK_MDIO
int mtk_mdio_init(struct mtk_eth *eth);
void mtk_mdio_cleanup(struct mtk_eth *eth);
int mtk_connect_phy_node(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *phy_node);
#else
static inline int mtk_mdio_init(struct mtk_eth *eth) { return 0; }
static inline void mtk_mdio_cleanup(struct mtk_eth *eth) {}
#endif
#endif
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include "mtk_eth_soc.h"
#include "gsw_mt7620.h"
#include "mdio.h"
static int mt7620_mii_busy_wait(struct mt7620_gsw *gsw)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_switch_r32(gsw,
gsw->piac_offset + MT7620_GSW_REG_PIAC) &
GSW_MDIO_ACCESS))
return 0;
if (time_after(jiffies, t_start + GSW_REG_PHY_TIMEOUT))
break;
}
dev_err(gsw->dev, "mdio: MDIO timeout\n");
return -1;
}
u32 _mt7620_mii_write(struct mt7620_gsw *gsw, u32 phy_addr,
u32 phy_register, u32 write_data)
{
if (mt7620_mii_busy_wait(gsw))
return -1;
write_data &= 0xffff;
mtk_switch_w32(gsw, GSW_MDIO_ACCESS | GSW_MDIO_START | GSW_MDIO_WRITE |
(phy_register << GSW_MDIO_REG_SHIFT) |
(phy_addr << GSW_MDIO_ADDR_SHIFT) | write_data,
MT7620_GSW_REG_PIAC);
if (mt7620_mii_busy_wait(gsw))
return -1;
return 0;
}
EXPORT_SYMBOL_GPL(_mt7620_mii_write);
u32 _mt7620_mii_read(struct mt7620_gsw *gsw, int phy_addr, int phy_reg)
{
u32 d;
if (mt7620_mii_busy_wait(gsw))
return 0xffff;
mtk_switch_w32(gsw, GSW_MDIO_ACCESS | GSW_MDIO_START | GSW_MDIO_READ |
(phy_reg << GSW_MDIO_REG_SHIFT) |
(phy_addr << GSW_MDIO_ADDR_SHIFT),
MT7620_GSW_REG_PIAC);
if (mt7620_mii_busy_wait(gsw))
return 0xffff;
d = mtk_switch_r32(gsw, MT7620_GSW_REG_PIAC) & 0xffff;
return d;
}
EXPORT_SYMBOL_GPL(_mt7620_mii_read);
int mt7620_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
struct mt7620_gsw *gsw = (struct mt7620_gsw *)eth->sw_priv;
return _mt7620_mii_write(gsw, phy_addr, phy_reg, val);
}
int mt7620_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
struct mt7620_gsw *gsw = (struct mt7620_gsw *)eth->sw_priv;
return _mt7620_mii_read(gsw, phy_addr, phy_reg);
}
void mt7530_mdio_w32(struct mt7620_gsw *gsw, u32 reg, u32 val)
{
_mt7620_mii_write(gsw, 0x1f, 0x1f, (reg >> 6) & 0x3ff);
_mt7620_mii_write(gsw, 0x1f, (reg >> 2) & 0xf, val & 0xffff);
_mt7620_mii_write(gsw, 0x1f, 0x10, val >> 16);
}
EXPORT_SYMBOL_GPL(mt7530_mdio_w32);
u32 mt7530_mdio_r32(struct mt7620_gsw *gsw, u32 reg)
{
u16 high, low;
_mt7620_mii_write(gsw, 0x1f, 0x1f, (reg >> 6) & 0x3ff);
low = _mt7620_mii_read(gsw, 0x1f, (reg >> 2) & 0xf);
high = _mt7620_mii_read(gsw, 0x1f, 0x10);
return (high << 16) | (low & 0xffff);
}
EXPORT_SYMBOL_GPL(mt7530_mdio_r32);
void mt7530_mdio_m32(struct mt7620_gsw *gsw, u32 mask, u32 set, u32 reg)
{
u32 val = mt7530_mdio_r32(gsw, reg);
val &= ~mask;
val |= set;
mt7530_mdio_w32(gsw, reg, val);
}
EXPORT_SYMBOL_GPL(mt7530_mdio_m32);
static unsigned char *mtk_speed_str(int speed)
{
switch (speed) {
case 2:
case SPEED_1000:
return "1000";
case 1:
case SPEED_100:
return "100";
case 0:
case SPEED_10:
return "10";
}
return "? ";
}
int mt7620_has_carrier(struct mtk_eth *eth)
{
struct mt7620_gsw *gsw = (struct mt7620_gsw *)eth->sw_priv;
int i;
for (i = 0; i < GSW_PORT6; i++)
if (mt7530_mdio_r32(gsw, GSW_REG_PORT_STATUS(i)) & 0x1)
return 1;
return 0;
}
void mt7620_print_link_state(struct mtk_eth *eth, int port, int link,
int speed, int duplex)
{
struct mt7620_gsw *gsw = eth->sw_priv;
if (link)
dev_info(gsw->dev, "port %d link up (%sMbps/%s duplex)\n",
port, mtk_speed_str(speed),
(duplex) ? "Full" : "Half");
else
dev_info(gsw->dev, "port %d link down\n", port);
}
void mt7620_mdio_link_adjust(struct mtk_eth *eth, int port)
{
mt7620_print_link_state(eth, port, eth->link[port],
eth->phy->speed[port],
(eth->phy->duplex[port] == DUPLEX_FULL));
}
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/mfd/syscon.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/regmap.h>
#include "mtk_eth_soc.h"
#include "mdio.h"
#include "ethtool.h"
#define MAX_RX_LENGTH 1536
#define MTK_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
#define MTK_RX_HLEN (NET_SKB_PAD + MTK_RX_ETH_HLEN + NET_IP_ALIGN)
#define DMA_DUMMY_DESC 0xffffffff
#define MTK_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
#define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
#define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
#define SYSC_REG_RSTCTRL 0x34
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
static const u16 mtk_reg_table_default[MTK_REG_COUNT] = {
[MTK_REG_PDMA_GLO_CFG] = MTK_PDMA_GLO_CFG,
[MTK_REG_PDMA_RST_CFG] = MTK_PDMA_RST_CFG,
[MTK_REG_DLY_INT_CFG] = MTK_DLY_INT_CFG,
[MTK_REG_TX_BASE_PTR0] = MTK_TX_BASE_PTR0,
[MTK_REG_TX_MAX_CNT0] = MTK_TX_MAX_CNT0,
[MTK_REG_TX_CTX_IDX0] = MTK_TX_CTX_IDX0,
[MTK_REG_TX_DTX_IDX0] = MTK_TX_DTX_IDX0,
[MTK_REG_RX_BASE_PTR0] = MTK_RX_BASE_PTR0,
[MTK_REG_RX_MAX_CNT0] = MTK_RX_MAX_CNT0,
[MTK_REG_RX_CALC_IDX0] = MTK_RX_CALC_IDX0,
[MTK_REG_RX_DRX_IDX0] = MTK_RX_DRX_IDX0,
[MTK_REG_MTK_INT_ENABLE] = MTK_INT_ENABLE,
[MTK_REG_MTK_INT_STATUS] = MTK_INT_STATUS,
[MTK_REG_MTK_DMA_VID_BASE] = MTK_DMA_VID0,
[MTK_REG_MTK_COUNTER_BASE] = MTK_GDMA1_TX_GBCNT,
[MTK_REG_MTK_RST_GL] = MTK_RST_GL,
};
static const u16 *mtk_reg_table = mtk_reg_table_default;
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned int reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned int reg)
{
return __raw_readl(eth->base + reg);
}
static void mtk_reg_w32(struct mtk_eth *eth, u32 val, enum mtk_reg reg)
{
mtk_w32(eth, val, mtk_reg_table[reg]);
}
static u32 mtk_reg_r32(struct mtk_eth *eth, enum mtk_reg reg)
{
return mtk_r32(eth, mtk_reg_table[reg]);
}
/* these bits are also exposed via the reset-controller API. however the switch
* and FE need to be brought out of reset in the exakt same moemtn and the
* reset-controller api does not provide this feature yet. Do the reset manually
* until we fixed the reset-controller api to be able to do this
*/
void mtk_reset(struct mtk_eth *eth, u32 reset_bits)
{
u32 val;
regmap_read(eth->ethsys, SYSC_REG_RSTCTRL, &val);
val |= reset_bits;
regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
usleep_range(10, 20);
val &= ~reset_bits;
regmap_write(eth->ethsys, SYSC_REG_RSTCTRL, val);
usleep_range(10, 20);
}
EXPORT_SYMBOL(mtk_reset);
static inline void mtk_irq_ack(struct mtk_eth *eth, u32 mask)
{
if (eth->soc->dma_type & MTK_PDMA)
mtk_reg_w32(eth, mask, MTK_REG_MTK_INT_STATUS);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, mask, MTK_QMTK_INT_STATUS);
}
static inline u32 mtk_irq_pending(struct mtk_eth *eth)
{
u32 status = 0;
if (eth->soc->dma_type & MTK_PDMA)
status |= mtk_reg_r32(eth, MTK_REG_MTK_INT_STATUS);
if (eth->soc->dma_type & MTK_QDMA)
status |= mtk_r32(eth, MTK_QMTK_INT_STATUS);
return status;
}
static void mtk_irq_ack_status(struct mtk_eth *eth, u32 mask)
{
u32 status_reg = MTK_REG_MTK_INT_STATUS;
if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
status_reg = MTK_REG_MTK_INT_STATUS2;
mtk_reg_w32(eth, mask, status_reg);
}
static u32 mtk_irq_pending_status(struct mtk_eth *eth)
{
u32 status_reg = MTK_REG_MTK_INT_STATUS;
if (mtk_reg_table[MTK_REG_MTK_INT_STATUS2])
status_reg = MTK_REG_MTK_INT_STATUS2;
return mtk_reg_r32(eth, status_reg);
}
static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask)
{
u32 val;
if (eth->soc->dma_type & MTK_PDMA) {
val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
mtk_reg_w32(eth, val & ~mask, MTK_REG_MTK_INT_ENABLE);
/* flush write */
mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
}
if (eth->soc->dma_type & MTK_QDMA) {
val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
mtk_w32(eth, val & ~mask, MTK_QMTK_INT_ENABLE);
/* flush write */
mtk_r32(eth, MTK_QMTK_INT_ENABLE);
}
}
static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask)
{
u32 val;
if (eth->soc->dma_type & MTK_PDMA) {
val = mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
mtk_reg_w32(eth, val | mask, MTK_REG_MTK_INT_ENABLE);
/* flush write */
mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
}
if (eth->soc->dma_type & MTK_QDMA) {
val = mtk_r32(eth, MTK_QMTK_INT_ENABLE);
mtk_w32(eth, val | mask, MTK_QMTK_INT_ENABLE);
/* flush write */
mtk_r32(eth, MTK_QMTK_INT_ENABLE);
}
}
static inline u32 mtk_irq_enabled(struct mtk_eth *eth)
{
u32 enabled = 0;
if (eth->soc->dma_type & MTK_PDMA)
enabled |= mtk_reg_r32(eth, MTK_REG_MTK_INT_ENABLE);
if (eth->soc->dma_type & MTK_QDMA)
enabled |= mtk_r32(eth, MTK_QMTK_INT_ENABLE);
return enabled;
}
static inline void mtk_hw_set_macaddr(struct mtk_mac *mac,
unsigned char *macaddr)
{
unsigned long flags;
spin_lock_irqsave(&mac->hw->page_lock, flags);
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA1_MAC_ADRH);
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&mac->hw->page_lock, flags);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (ret)
return ret;
if (eth->soc->set_mac)
eth->soc->set_mac(mac, dev->dev_addr);
else
mtk_hw_set_macaddr(mac, p);
return 0;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MAX_RX_LENGTH)
mtu = MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MAX_RX_LENGTH);
return buf_size;
}
static inline void mtk_get_rxd(struct mtk_rx_dma *rxd,
struct mtk_rx_dma *dma_rxd)
{
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}
static inline void mtk_set_txd_pdma(struct mtk_tx_dma *txd,
struct mtk_tx_dma *dma_txd)
{
WRITE_ONCE(dma_txd->txd1, txd->txd1);
WRITE_ONCE(dma_txd->txd3, txd->txd3);
WRITE_ONCE(dma_txd->txd4, txd->txd4);
/* clean dma done flag last */
WRITE_ONCE(dma_txd->txd2, txd->txd2);
}
static void mtk_clean_rx(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i;
if (ring->rx_data && ring->rx_dma) {
for (i = 0; i < ring->rx_ring_size; i++) {
if (!ring->rx_data[i])
continue;
if (!ring->rx_dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
ring->rx_dma[i].rxd1,
ring->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->rx_data[i]);
}
kfree(ring->rx_data);
ring->rx_data = NULL;
}
if (ring->rx_dma) {
dma_free_coherent(eth->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
ring->rx_dma,
ring->rx_phys);
ring->rx_dma = NULL;
}
}
static int mtk_dma_rx_alloc(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i, pad = 0;
ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
ring->rx_buf_size = mtk_max_buf_size(ring->frag_size);
ring->rx_ring_size = eth->soc->dma_ring_size;
ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
GFP_KERNEL);
if (!ring->rx_data)
goto no_rx_mem;
for (i = 0; i < ring->rx_ring_size; i++) {
ring->rx_data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->rx_data[i])
goto no_rx_mem;
}
ring->rx_dma =
dma_alloc_coherent(eth->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
&ring->rx_phys, GFP_ATOMIC | __GFP_ZERO);
if (!ring->rx_dma)
goto no_rx_mem;
if (!eth->soc->rx_2b_offset)
pad = NET_IP_ALIGN;
for (i = 0; i < ring->rx_ring_size; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
ring->rx_data[i] + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
goto no_rx_mem;
ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
if (eth->soc->rx_sg_dma)
ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
ring->rx_dma[i].rxd2 = RX_DMA_LSO;
}
ring->rx_calc_idx = ring->rx_ring_size - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
return 0;
no_rx_mem:
return -ENOMEM;
}
static void mtk_txd_unmap(struct device *dev, struct mtk_tx_buf *tx_buf)
{
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
if (tx_buf->flags & MTK_TX_FLAGS_PAGE1)
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
tx_buf->flags = 0;
if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static void mtk_pdma_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
}
static void mtk_qdma_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
mtk_txd_unmap(eth->dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
u64 stats;
base += hw_stats->reg_offset;
u64_stats_update_begin(&hw_stats->syncp);
if (mac->hw->soc->new_stats) {
hw_stats->rx_bytes += mtk_r32(mac->hw, base);
stats = mtk_r32(mac->hw, base + 0x04);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x24);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
stats = mtk_r32(mac->hw, base + 0x34);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
} else {
hw_stats->tx_bytes += mtk_r32(mac->hw, base);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x04);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x08);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x0c);
hw_stats->rx_bytes += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x24);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x28);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x2c);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x30);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x34);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x38);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x3c);
}
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = mtk_reg_table[MTK_REG_MTK_COUNTER_BASE];
unsigned int start;
if (!base) {
netdev_stats_to_stats64(storage, &dev->stats);
return;
}
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
}
static int mtk_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 idx = (vid & 0xf);
u32 vlan_cfg;
if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
if (test_bit(idx, &eth->vlan_map)) {
netdev_warn(dev, "disable tx vlan offload\n");
dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
netdev_update_features(dev);
} else {
vlan_cfg = mtk_r32(eth,
mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
((idx >> 1) << 2));
if (idx & 0x1) {
vlan_cfg &= 0xffff;
vlan_cfg |= (vid << 16);
} else {
vlan_cfg &= 0xffff0000;
vlan_cfg |= vid;
}
mtk_w32(eth,
vlan_cfg, mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
((idx >> 1) << 2));
set_bit(idx, &eth->vlan_map);
}
return 0;
}
static int mtk_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 idx = (vid & 0xf);
if (!((mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
clear_bit(idx, &eth->vlan_map);
return 0;
}
static inline u32 mtk_pdma_empty_txd(struct mtk_tx_ring *ring)
{
barrier();
return (u32)(ring->tx_ring_size -
((ring->tx_next_idx - ring->tx_free_idx) &
(ring->tx_ring_size - 1)));
}
static int mtk_skb_padto(struct sk_buff *skb, struct mtk_eth *eth)
{
unsigned int len;
int ret;
if (unlikely(skb->len >= VLAN_ETH_ZLEN))
return 0;
if (eth->soc->padding_64b && !eth->soc->padding_bug)
return 0;
if (skb_vlan_tag_present(skb))
len = ETH_ZLEN;
else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
len = VLAN_ETH_ZLEN;
else if (!eth->soc->padding_64b)
len = ETH_ZLEN;
else
return 0;
if (skb->len >= len)
return 0;
ret = skb_pad(skb, len - skb->len);
if (ret < 0)
return ret;
skb->len = len;
skb_set_tail_pointer(skb, len);
return ret;
}
static int mtk_pdma_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct skb_frag_struct *frag;
struct mtk_tx_dma txd, *ptxd;
struct mtk_tx_buf *tx_buf;
int i, j, k, frag_size, frag_map_size, offset;
dma_addr_t mapped_addr;
unsigned int nr_frags;
u32 def_txd4;
if (mtk_skb_padto(skb, eth)) {
netif_warn(eth, tx_err, dev, "tx padding failed!\n");
return -1;
}
tx_buf = &ring->tx_buf[ring->tx_next_idx];
memset(tx_buf, 0, sizeof(*tx_buf));
memset(&txd, 0, sizeof(txd));
nr_frags = skb_shinfo(skb)->nr_frags;
/* init tx descriptor */
def_txd4 = eth->soc->txd4;
txd.txd4 = def_txd4;
if (eth->soc->mac_count > 1)
txd.txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
if (gso)
txd.txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd.txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb)) {
u16 tag = skb_vlan_tag_get(skb);
txd.txd4 |= TX_DMA_INS_VLAN |
((tag >> VLAN_PRIO_SHIFT) << 4) |
(tag & 0xF);
}
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -1;
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
j = ring->tx_next_idx;
k = 0;
for (i = 0; i < nr_frags; i++) {
offset = 0;
frag = &skb_shinfo(skb)->frags[i];
frag_size = skb_frag_size(frag);
while (frag_size > 0) {
frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (k & 0x1) {
j = NEXT_TX_DESP_IDX(j);
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(frag_map_size);
txd.txd4 = def_txd4;
tx_buf = &ring->tx_buf[j];
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0,
frag_map_size);
} else {
txd.txd3 = mapped_addr;
txd.txd2 |= TX_DMA_PLEN1(frag_map_size);
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
tx_buf->flags |= MTK_TX_FLAGS_PAGE1;
dma_unmap_addr_set(tx_buf, dma_addr1,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1,
frag_map_size);
if (!((i == (nr_frags - 1)) &&
(frag_map_size == frag_size))) {
mtk_set_txd_pdma(&txd,
&ring->tx_dma[j]);
memset(&txd, 0, sizeof(txd));
}
}
frag_size -= frag_map_size;
offset += frag_map_size;
k++;
}
}
/* set last segment */
if (k & 0x1)
txd.txd2 |= TX_DMA_LS1;
else
txd.txd2 |= TX_DMA_LS0;
mtk_set_txd_pdma(&txd, &ring->tx_dma[j]);
/* store skb to cleanup */
tx_buf->skb = skb;
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->tx_next_idx = NEXT_TX_DESP_IDX(j);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_reg_w32(eth, ring->tx_next_idx, MTK_REG_TX_CTX_IDX0);
return 0;
err_dma:
j = ring->tx_next_idx;
for (i = 0; i < tx_num; i++) {
ptxd = &ring->tx_dma[j];
tx_buf = &ring->tx_buf[j];
/* unmap dma */
mtk_txd_unmap(&dev->dev, tx_buf);
ptxd->txd2 = TX_DMA_DESP2_DEF;
j = NEXT_TX_DESP_IDX(j);
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
return -1;
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
dma_addr_t dma_addr, phy_ring_head, phy_ring_tail;
int cnt = eth->soc->dma_ring_size;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
cnt * sizeof(struct mtk_tx_dma),
&phy_ring_head,
GFP_ATOMIC | __GFP_ZERO);
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, QDMA_PAGE_SIZE,
GFP_KERNEL);
dma_addr = dma_map_single(eth->dev,
eth->scratch_head, cnt * QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
phy_ring_tail = phy_ring_head + (sizeof(struct mtk_tx_dma) * (cnt - 1));
for (i = 0; i < cnt; i++) {
eth->scratch_ring[i].txd1 = (dma_addr + (i * QDMA_PAGE_SIZE));
if (i < cnt - 1)
eth->scratch_ring[i].txd2 = (phy_ring_head +
((i + 1) * sizeof(struct mtk_tx_dma)));
eth->scratch_ring[i].txd3 = TX_QDMA_SDL(QDMA_PAGE_SIZE);
}
mtk_w32(eth, phy_ring_head, MTK_QDMA_FQ_HEAD);
mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
mtk_w32(eth, QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
return 0;
}
static void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
void *ret = ring->tx_dma;
return ret + (desc - ring->tx_phys);
}
static struct mtk_tx_dma *mtk_tx_next_qdma(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
return mtk_qdma_phys_to_virt(ring, txd->txd2);
}
static struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
int idx = txd - ring->tx_dma;
return &ring->tx_buf[idx];
}
static int mtk_qdma_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_buf *tx_buf;
dma_addr_t mapped_addr;
unsigned int nr_frags;
int i, n_desc = 1;
u32 txd4 = eth->soc->txd4;
itxd = ring->tx_next_free;
if (itxd == ring->tx_last_free)
return -ENOMEM;
if (eth->soc->mac_count > 1)
txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
memset(tx_buf, 0, sizeof(*tx_buf));
if (gso)
txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN_MT7621 | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -ENOMEM;
WRITE_ONCE(itxd->txd1, mapped_addr);
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
txd = itxd;
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool last_frag = false;
unsigned int frag_map_size;
txd = mtk_tx_next_qdma(ring, txd);
if (txd == ring->tx_last_free)
goto err_dma;
n_desc++;
frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
(frag_size - frag_map_size) == 0)
last_frag = true;
WRITE_ONCE(txd->txd1, mapped_addr);
WRITE_ONCE(txd->txd3, (QDMA_TX_SWC |
TX_DMA_PLEN0(frag_map_size) |
last_frag * TX_DMA_LS0) |
mac->id);
WRITE_ONCE(txd->txd4, 0);
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
tx_buf = mtk_desc_to_tx_buf(ring, txd);
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
frag_size -= frag_map_size;
offset += frag_map_size;
}
}
/* store skb to cleanup */
tx_buf->skb = skb;
WRITE_ONCE(itxd->txd4, txd4);
WRITE_ONCE(itxd->txd3, (QDMA_TX_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
(!nr_frags * TX_DMA_LS0)));
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->tx_next_free = mtk_tx_next_qdma(ring, txd);
atomic_sub(n_desc, &ring->tx_free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, txd);
/* unmap dma */
mtk_txd_unmap(&dev->dev, tx_buf);
itxd->txd3 = TX_DMA_DESP2_DEF;
itxd = mtk_tx_next_qdma(ring, itxd);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
struct skb_frag_struct *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return DIV_ROUND_UP(nfrags, 2);
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
int tx_num;
int len = skb->len;
bool gso = false;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->tx_free_count) <= tx_num)) {
netif_stop_queue(dev);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (ring->tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
stats->tx_packets++;
stats->tx_bytes += len;
if (unlikely(atomic_read(&ring->tx_free_count) <= ring->tx_thresh)) {
netif_stop_queue(dev);
smp_mb();
if (unlikely(atomic_read(&ring->tx_free_count) >
ring->tx_thresh))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
drop:
stats->tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth, u32 rx_intr)
{
struct mtk_soc_data *soc = eth->soc;
struct mtk_rx_ring *ring = &eth->rx_ring[0];
int idx = ring->rx_calc_idx;
u32 checksum_bit;
struct sk_buff *skb;
u8 *data, *new_data;
struct mtk_rx_dma *rxd, trxd;
int done = 0, pad;
if (eth->soc->hw_features & NETIF_F_RXCSUM)
checksum_bit = soc->checksum_bit;
else
checksum_bit = 0;
if (eth->soc->rx_2b_offset)
pad = 0;
else
pad = NET_IP_ALIGN;
while (done < budget) {
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
int mac = 0;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->rx_dma[idx];
data = ring->rx_data[idx];
mtk_get_rxd(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* find out which mac the packet come from. values start at 1 */
if (eth->soc->mac_count > 1) {
mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
RX_DMA_FPORT_MASK;
mac--;
if (mac < 0 || mac >= eth->soc->mac_count)
goto release_desc;
}
netdev = eth->netdev[mac];
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data || !netdev)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&netdev->dev,
new_data + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
skb_free_frag(new_data);
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
put_page(virt_to_head_page(new_data));
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(&netdev->dev, trxd.rxd1,
ring->rx_buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & checksum_bit)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += pktlen;
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
napi_gro_receive(napi, skb);
ring->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
if (eth->soc->rx_sg_dma)
rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
rxd->rxd2 = RX_DMA_LSO;
ring->rx_calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
if (eth->soc->dma_type == MTK_QDMA)
mtk_w32(eth, ring->rx_calc_idx, MTK_QRX_CRX_IDX0);
else
mtk_reg_w32(eth, ring->rx_calc_idx,
MTK_REG_RX_CALC_IDX0);
done++;
}
if (done < budget)
mtk_irq_ack(eth, rx_intr);
return done;
}
static int mtk_pdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int done = 0;
u32 idx, hwidx;
struct mtk_tx_ring *ring = &eth->tx_ring;
unsigned int bytes = 0;
idx = ring->tx_free_idx;
hwidx = mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0);
while ((idx != hwidx) && budget) {
tx_buf = &ring->tx_buf[idx];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes += skb->len;
done++;
budget--;
}
mtk_txd_unmap(eth->dev, tx_buf);
idx = NEXT_TX_DESP_IDX(idx);
}
ring->tx_free_idx = idx;
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
/* read hw index again make sure no new tx packet */
if (idx != hwidx || idx != mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0))
*tx_again = 1;
if (done)
netdev_completed_queue(*eth->netdev, done, bytes);
return done;
}
static int mtk_qdma_tx_poll(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int total = 0, done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
u32 cpu, dma;
int i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac;
desc = mtk_tx_next_qdma(ring, desc);
if ((desc->txd3 & QDMA_TX_OWNER_CPU) == 0)
break;
mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
TX_DMA_FPORT_MASK;
mac--;
tx_buf = mtk_desc_to_tx_buf(ring, desc);
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_txd_unmap(eth->dev, tx_buf);
ring->tx_last_free->txd2 = next_cpu;
ring->tx_last_free = desc;
atomic_inc(&ring->tx_free_count);
cpu = next_cpu;
}
mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
/* read hw index again make sure no new tx packet */
if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR))
*tx_again = true;
for (i = 0; i < eth->soc->mac_count; i++) {
if (!done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
return total;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget, u32 tx_intr,
bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device *netdev = eth->netdev[0];
int done;
done = eth->tx_ring.tx_poll(eth, budget, tx_again);
if (!*tx_again)
mtk_irq_ack(eth, tx_intr);
if (!done)
return 0;
smp_mb();
if (unlikely(!netif_queue_stopped(netdev)))
return done;
if (atomic_read(&ring->tx_free_count) > ring->tx_thresh)
netif_wake_queue(netdev);
return done;
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static int mtk_poll(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
u32 status, mtk_status, mask, tx_intr, rx_intr, status_intr;
int tx_done, rx_done;
bool tx_again = false;
status = mtk_irq_pending(eth);
mtk_status = mtk_irq_pending_status(eth);
tx_intr = eth->soc->tx_int;
rx_intr = eth->soc->rx_int;
status_intr = eth->soc->status_int;
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (status & tx_intr)
tx_done = mtk_poll_tx(eth, budget, tx_intr, &tx_again);
if (status & rx_intr)
rx_done = mtk_poll_rx(napi, budget, eth, rx_intr);
if (unlikely(mtk_status & status_intr)) {
mtk_stats_update(eth);
mtk_irq_ack_status(eth, status_intr);
}
if (unlikely(netif_msg_intr(eth))) {
mask = mtk_irq_enabled(eth);
netdev_info(eth->netdev[0],
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (tx_again || rx_done == budget)
return budget;
status = mtk_irq_pending(eth);
if (status & (tx_intr | rx_intr))
return budget;
napi_complete(napi);
mtk_irq_enable(eth, tx_intr | rx_intr);
return rx_done;
}
static int mtk_pdma_tx_alloc(struct mtk_eth *eth)
{
int i;
struct mtk_tx_ring *ring = &eth->tx_ring;
ring->tx_ring_size = eth->soc->dma_ring_size;
ring->tx_free_idx = 0;
ring->tx_next_idx = 0;
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma =
dma_alloc_coherent(eth->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
&ring->tx_phys, GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
ring->tx_dma[i].txd4 = eth->soc->txd4;
}
atomic_set(&ring->tx_free_count, mtk_pdma_empty_txd(ring));
ring->tx_map = mtk_pdma_tx_map;
ring->tx_poll = mtk_pdma_tx_poll;
ring->tx_clean = mtk_pdma_tx_clean;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_reg_w32(eth, ring->tx_phys, MTK_REG_TX_BASE_PTR0);
mtk_reg_w32(eth, ring->tx_ring_size, MTK_REG_TX_MAX_CNT0);
mtk_reg_w32(eth, 0, MTK_REG_TX_CTX_IDX0);
mtk_reg_w32(eth, MTK_PST_DTX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int mtk_qdma_tx_alloc_tx(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = sizeof(*ring->tx_dma);
ring->tx_ring_size = eth->soc->dma_ring_size;
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma = dma_alloc_coherent(eth->dev, ring->tx_ring_size * sz,
&ring->tx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
int next = (i + 1) % ring->tx_ring_size;
u32 next_ptr = ring->tx_phys + next * sz;
ring->tx_dma[i].txd2 = next_ptr;
ring->tx_dma[i].txd3 = TX_DMA_DESP2_DEF;
}
atomic_set(&ring->tx_free_count, ring->tx_ring_size - 2);
ring->tx_next_free = &ring->tx_dma[0];
ring->tx_last_free = &ring->tx_dma[ring->tx_ring_size - 2];
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_map = mtk_qdma_tx_map;
ring->tx_poll = mtk_qdma_tx_poll;
ring->tx_clean = mtk_qdma_tx_clean;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->tx_phys, MTK_QTX_CTX_PTR);
mtk_w32(eth, ring->tx_phys, MTK_QTX_DTX_PTR);
mtk_w32(eth,
ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
MTK_QTX_CRX_PTR);
mtk_w32(eth,
ring->tx_phys + ((ring->tx_ring_size - 1) * sz),
MTK_QTX_DRX_PTR);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int mtk_qdma_init(struct mtk_eth *eth, int ring)
{
int err;
err = mtk_init_fq_dma(eth);
if (err)
return err;
err = mtk_qdma_tx_alloc_tx(eth);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, &eth->rx_ring[ring]);
if (err)
return err;
mtk_w32(eth, eth->rx_ring[ring].rx_phys, MTK_QRX_BASE_PTR0);
mtk_w32(eth, eth->rx_ring[ring].rx_ring_size, MTK_QRX_MAX_CNT0);
mtk_w32(eth, eth->rx_ring[ring].rx_calc_idx, MTK_QRX_CRX_IDX0);
mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
/* Enable random early drop and set drop threshold automatically */
mtk_w32(eth, 0x174444, MTK_QDMA_FC_THRES);
mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
return 0;
}
static int mtk_pdma_qdma_init(struct mtk_eth *eth)
{
int err = mtk_qdma_init(eth, 1);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, &eth->rx_ring[0]);
if (err)
return err;
mtk_reg_w32(eth, eth->rx_ring[0].rx_phys, MTK_REG_RX_BASE_PTR0);
mtk_reg_w32(eth, eth->rx_ring[0].rx_ring_size, MTK_REG_RX_MAX_CNT0);
mtk_reg_w32(eth, eth->rx_ring[0].rx_calc_idx, MTK_REG_RX_CALC_IDX0);
mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
}
static int mtk_pdma_init(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring[0];
int err;
err = mtk_pdma_tx_alloc(eth);
if (err)
return err;
err = mtk_dma_rx_alloc(eth, ring);
if (err)
return err;
mtk_reg_w32(eth, ring->rx_phys, MTK_REG_RX_BASE_PTR0);
mtk_reg_w32(eth, ring->rx_ring_size, MTK_REG_RX_MAX_CNT0);
mtk_reg_w32(eth, ring->rx_calc_idx, MTK_REG_RX_CALC_IDX0);
mtk_reg_w32(eth, MTK_PST_DRX_IDX0, MTK_REG_PDMA_RST_CFG);
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
eth->tx_ring.tx_clean(eth);
mtk_clean_rx(eth, &eth->rx_ring[0]);
mtk_clean_rx(eth, &eth->rx_ring[1]);
kfree(eth->scratch_head);
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
if (eth->soc->dma_type & MTK_PDMA) {
netif_info(eth, drv, dev, "pdma_cfg:%08x\n",
mtk_reg_r32(eth, MTK_REG_PDMA_GLO_CFG));
netif_info(eth, drv, dev,
"tx_ring=%d, base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
0, mtk_reg_r32(eth, MTK_REG_TX_BASE_PTR0),
mtk_reg_r32(eth, MTK_REG_TX_MAX_CNT0),
mtk_reg_r32(eth, MTK_REG_TX_CTX_IDX0),
mtk_reg_r32(eth, MTK_REG_TX_DTX_IDX0),
ring->tx_free_idx,
ring->tx_next_idx);
}
if (eth->soc->dma_type & MTK_QDMA) {
netif_info(eth, drv, dev, "qdma_cfg:%08x\n",
mtk_r32(eth, MTK_QDMA_GLO_CFG));
netif_info(eth, drv, dev,
"tx_ring=%d, ctx=%08x, dtx=%08x, crx=%08x, drx=%08x, free=%hu\n",
0, mtk_r32(eth, MTK_QTX_CTX_PTR),
mtk_r32(eth, MTK_QTX_DTX_PTR),
mtk_r32(eth, MTK_QTX_CRX_PTR),
mtk_r32(eth, MTK_QTX_DRX_PTR),
atomic_read(&ring->tx_free_count));
}
netif_info(eth, drv, dev,
"rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
0, mtk_reg_r32(eth, MTK_REG_RX_BASE_PTR0),
mtk_reg_r32(eth, MTK_REG_RX_MAX_CNT0),
mtk_reg_r32(eth, MTK_REG_RX_CALC_IDX0),
mtk_reg_r32(eth, MTK_REG_RX_DRX_IDX0));
schedule_work(&mac->pending_work);
}
static irqreturn_t mtk_handle_irq(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
u32 status, int_mask;
status = mtk_irq_pending(eth);
if (unlikely(!status))
return IRQ_NONE;
int_mask = (eth->soc->rx_int | eth->soc->tx_int);
if (likely(status & int_mask)) {
if (likely(napi_schedule_prep(&eth->rx_napi)))
__napi_schedule(&eth->rx_napi);
} else {
mtk_irq_ack(eth, status);
}
mtk_irq_disable(eth, int_mask);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 int_mask = eth->soc->tx_int | eth->soc->rx_int;
mtk_irq_disable(eth, int_mask);
mtk_handle_irq(dev->irq, dev);
mtk_irq_enable(eth, int_mask);
}
#endif
int mtk_set_clock_cycle(struct mtk_eth *eth)
{
unsigned long sysclk = eth->sysclk;
sysclk /= MTK_US_CYC_CNT_DIVISOR;
sysclk <<= MTK_US_CYC_CNT_SHIFT;
mtk_w32(eth, (mtk_r32(eth, MTK_GLO_CFG) &
~(MTK_US_CYC_CNT_MASK << MTK_US_CYC_CNT_SHIFT)) |
sysclk,
MTK_GLO_CFG);
return 0;
}
void mtk_fwd_config(struct mtk_eth *eth)
{
u32 fwd_cfg;
fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
/* disable jumbo frame */
if (eth->soc->jumbo_frame)
fwd_cfg &= ~MTK_GDM1_JMB_EN;
/* set unicast/multicast/broadcast frame to cpu */
fwd_cfg &= ~0xffff;
mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
}
void mtk_csum_config(struct mtk_eth *eth)
{
if (eth->soc->hw_features & NETIF_F_RXCSUM)
mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) |
(MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
MTK_GDMA1_FWD_CFG);
else
mtk_w32(eth, mtk_r32(eth, MTK_GDMA1_FWD_CFG) &
~(MTK_GDM1_ICS_EN | MTK_GDM1_TCS_EN | MTK_GDM1_UCS_EN),
MTK_GDMA1_FWD_CFG);
if (eth->soc->hw_features & NETIF_F_IP_CSUM)
mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) |
(MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
MTK_CDMA_CSG_CFG);
else
mtk_w32(eth, mtk_r32(eth, MTK_CDMA_CSG_CFG) &
~(MTK_ICS_GEN_EN | MTK_TCS_GEN_EN | MTK_UCS_GEN_EN),
MTK_CDMA_CSG_CFG);
}
static int mtk_start_dma(struct mtk_eth *eth)
{
unsigned long flags;
u32 val;
int err;
if (eth->soc->dma_type == MTK_PDMA)
err = mtk_pdma_init(eth);
else if (eth->soc->dma_type == MTK_QDMA)
err = mtk_qdma_init(eth, 0);
else
err = mtk_pdma_qdma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
spin_lock_irqsave(&eth->page_lock, flags);
val = MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN;
if (eth->soc->rx_2b_offset)
val |= MTK_RX_2B_OFFSET;
val |= eth->soc->pdma_glo_cfg;
if (eth->soc->dma_type & MTK_PDMA)
mtk_reg_w32(eth, val, MTK_REG_PDMA_GLO_CFG);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, val, MTK_QDMA_GLO_CFG);
spin_unlock_irqrestore(&eth->page_lock, flags);
return 0;
}
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
dma_coerce_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32));
if (!atomic_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
napi_enable(&eth->rx_napi);
mtk_irq_enable(eth, eth->soc->tx_int | eth->soc->rx_int);
}
atomic_inc(&eth->dma_refcnt);
if (eth->phy)
eth->phy->start(mac);
if (eth->soc->has_carrier && eth->soc->has_carrier(eth))
netif_carrier_on(dev);
netif_start_queue(dev);
eth->soc->fwd_config(eth);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
unsigned long flags;
u32 val;
int i;
/* stop the dma enfine */
spin_lock_irqsave(&eth->page_lock, flags);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_irqrestore(&eth->page_lock, flags);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
netif_tx_disable(dev);
if (eth->phy)
eth->phy->stop(mac);
if (!atomic_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
napi_disable(&eth->rx_napi);
if (eth->soc->dma_type & MTK_PDMA)
mtk_stop_dma(eth, mtk_reg_table[MTK_REG_PDMA_GLO_CFG]);
if (eth->soc->dma_type & MTK_QDMA)
mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
mtk_dma_free(eth);
return 0;
}
static int __init mtk_init_hw(struct mtk_eth *eth)
{
int i, err;
eth->soc->reset_fe(eth);
if (eth->soc->switch_init)
if (eth->soc->switch_init(eth)) {
dev_err(eth->dev, "failed to initialize switch core\n");
return -ENODEV;
}
err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0,
dev_name(eth->dev), eth);
if (err)
return err;
err = mtk_mdio_init(eth);
if (err)
return err;
/* disable delay and normal interrupt */
mtk_reg_w32(eth, 0, MTK_REG_DLY_INT_CFG);
if (eth->soc->dma_type & MTK_QDMA)
mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
mtk_irq_disable(eth, eth->soc->tx_int | eth->soc->rx_int);
/* frame engine will push VLAN tag regarding to VIDX field in Tx desc */
if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
for (i = 0; i < 16; i += 2)
mtk_w32(eth, ((i + 1) << 16) + i,
mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE] +
(i * 2));
if (eth->soc->fwd_config(eth))
dev_err(eth->dev, "unable to get clock\n");
if (mtk_reg_table[MTK_REG_MTK_RST_GL]) {
mtk_reg_w32(eth, 1, MTK_REG_MTK_RST_GL);
mtk_reg_w32(eth, 0, MTK_REG_MTK_RST_GL);
}
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct device_node *port;
const char *mac_addr;
int err;
mac_addr = of_get_mac_address(mac->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
mac->hw->soc->set_mac(mac, dev->dev_addr);
if (eth->soc->port_init)
for_each_child_of_node(mac->of_node, port)
if (of_device_is_compatible(port,
"mediatek,eth-port") &&
of_device_is_available(port))
eth->soc->port_init(eth, mac, port);
if (eth->phy) {
err = eth->phy->connect(mac);
if (err)
return err;
}
return 0;
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (eth->phy)
eth->phy->disconnect(mac);
mtk_mdio_cleanup(eth);
mtk_irq_disable(eth, ~0);
free_irq(dev->irq, dev);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
if (!mac->phy_dev)
return -ENODEV;
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static int mtk_change_mtu(struct net_device *dev, int new_mtu)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int frag_size, old_mtu;
u32 fwd_cfg;
if (!eth->soc->jumbo_frame)
return eth_change_mtu(dev, new_mtu);
frag_size = mtk_max_frag_size(new_mtu);
if (new_mtu < 68 || frag_size > PAGE_SIZE)
return -EINVAL;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
return 0;
if (new_mtu <= ETH_DATA_LEN)
eth->rx_ring[0].frag_size = mtk_max_frag_size(ETH_DATA_LEN);
else
eth->rx_ring[0].frag_size = PAGE_SIZE;
eth->rx_ring[0].rx_buf_size =
mtk_max_buf_size(eth->rx_ring[0].frag_size);
if (!netif_running(dev))
return 0;
mtk_stop(dev);
fwd_cfg = mtk_r32(eth, MTK_GDMA1_FWD_CFG);
if (new_mtu <= ETH_DATA_LEN) {
fwd_cfg &= ~MTK_GDM1_JMB_EN;
} else {
fwd_cfg &= ~(MTK_GDM1_JMB_LEN_MASK << MTK_GDM1_JMB_LEN_SHIFT);
fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
MTK_GDM1_JMB_LEN_SHIFT) | MTK_GDM1_JMB_EN;
}
mtk_w32(eth, fwd_cfg, MTK_GDMA1_FWD_CFG);
return mtk_open(dev);
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_mac *mac = container_of(work, struct mtk_mac, pending_work);
struct mtk_eth *eth = mac->hw;
struct net_device *dev = eth->netdev[mac->id];
int err;
rtnl_lock();
mtk_stop(dev);
err = mtk_open(dev);
if (err) {
netif_alert(eth, ifup, dev,
"Driver up/down cycle failed, closing device.\n");
dev_close(dev);
}
rtnl_unlock();
}
static int mtk_cleanup(struct mtk_eth *eth)
{
int i;
for (i = 0; i < eth->soc->mac_count; i++) {
struct mtk_mac *mac = netdev_priv(eth->netdev[i]);
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
free_netdev(eth->netdev[i]);
cancel_work_sync(&mac->pending_work);
}
return 0;
}
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_change_mtu = mtk_change_mtu,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
.ndo_vlan_rx_add_vid = mtk_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = mtk_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
struct mtk_mac *mac;
const __be32 *_id = of_get_property(np, "reg", NULL);
int id, err;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id >= eth->soc->mac_count || eth->netdev[id]) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
INIT_WORK(&mac->pending_work, mtk_pending_work);
if (mtk_reg_table[MTK_REG_MTK_COUNTER_BASE]) {
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
}
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
if (eth->soc->init_data)
eth->soc->init_data(eth->soc, eth->netdev[id]);
eth->netdev[id]->vlan_features = eth->soc->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= eth->soc->hw_features;
if (mtk_reg_table[MTK_REG_MTK_DMA_VID_BASE])
eth->netdev[id]->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
mtk_set_ethtool_ops(eth->netdev[id]);
err = register_netdev(eth->netdev[id]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
err = -ENOMEM;
goto free_netdev;
}
eth->netdev[id]->irq = eth->irq;
netif_info(eth, probe, eth->netdev[id],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[id]->base_addr, eth->netdev[id]->irq);
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
static int mtk_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
const struct of_device_id *match;
struct device_node *mac_np;
struct mtk_soc_data *soc;
struct mtk_eth *eth;
struct clk *sysclk;
int err;
device_reset(&pdev->dev);
match = of_match_device(of_mtk_match, &pdev->dev);
soc = (struct mtk_soc_data *)match->data;
if (soc->reg_table)
mtk_reg_table = soc->reg_table;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
spin_lock_init(&eth->page_lock);
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys))
return PTR_ERR(eth->ethsys);
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
return -ENXIO;
}
sysclk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sysclk)) {
dev_err(&pdev->dev,
"the clock is not defined in the devicetree\n");
return -ENXIO;
}
eth->sysclk = clk_get_rate(sysclk);
eth->switch_np = of_parse_phandle(pdev->dev.of_node,
"mediatek,switch", 0);
if (soc->has_switch && !eth->switch_np) {
dev_err(&pdev->dev, "failed to read switch phandle\n");
return -ENODEV;
}
eth->dev = &pdev->dev;
eth->soc = soc;
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
err = mtk_init_hw(eth);
if (err)
return err;
if (eth->soc->mac_count > 1) {
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err)
goto err_free_dev;
}
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_poll,
soc->napi_weight);
} else {
err = mtk_add_mac(eth, pdev->dev.of_node);
if (err)
goto err_free_dev;
netif_napi_add(eth->netdev[0], &eth->rx_napi, mtk_poll,
soc->napi_weight);
}
platform_set_drvdata(pdev, eth);
return 0;
err_free_dev:
mtk_cleanup(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
netif_napi_del(&eth->rx_napi);
mtk_cleanup(eth);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#ifndef MTK_ETH_H
#define MTK_ETH_H
#include <linux/mii.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/phy.h>
#include <linux/ethtool.h>
#include <linux/version.h>
#include <linux/atomic.h>
/* these registers have different offsets depending on the SoC. we use a lookup
* table for these
*/
enum mtk_reg {
MTK_REG_PDMA_GLO_CFG = 0,
MTK_REG_PDMA_RST_CFG,
MTK_REG_DLY_INT_CFG,
MTK_REG_TX_BASE_PTR0,
MTK_REG_TX_MAX_CNT0,
MTK_REG_TX_CTX_IDX0,
MTK_REG_TX_DTX_IDX0,
MTK_REG_RX_BASE_PTR0,
MTK_REG_RX_MAX_CNT0,
MTK_REG_RX_CALC_IDX0,
MTK_REG_RX_DRX_IDX0,
MTK_REG_MTK_INT_ENABLE,
MTK_REG_MTK_INT_STATUS,
MTK_REG_MTK_DMA_VID_BASE,
MTK_REG_MTK_COUNTER_BASE,
MTK_REG_MTK_RST_GL,
MTK_REG_MTK_INT_STATUS2,
MTK_REG_COUNT
};
/* delayed interrupt bits */
#define MTK_DELAY_EN_INT 0x80
#define MTK_DELAY_MAX_INT 0x04
#define MTK_DELAY_MAX_TOUT 0x04
#define MTK_DELAY_TIME 20
#define MTK_DELAY_CHAN (((MTK_DELAY_EN_INT | MTK_DELAY_MAX_INT) << 8) \
| MTK_DELAY_MAX_TOUT)
#define MTK_DELAY_INIT ((MTK_DELAY_CHAN << 16) | MTK_DELAY_CHAN)
#define MTK_PSE_FQFC_CFG_INIT 0x80504000
#define MTK_PSE_FQFC_CFG_256Q 0xff908000
/* interrupt bits */
#define MTK_CNT_PPE_AF BIT(31)
#define MTK_CNT_GDM_AF BIT(29)
#define MTK_PSE_P2_FC BIT(26)
#define MTK_PSE_BUF_DROP BIT(24)
#define MTK_GDM_OTHER_DROP BIT(23)
#define MTK_PSE_P1_FC BIT(22)
#define MTK_PSE_P0_FC BIT(21)
#define MTK_PSE_FQ_EMPTY BIT(20)
#define MTK_GE1_STA_CHG BIT(18)
#define MTK_TX_COHERENT BIT(17)
#define MTK_RX_COHERENT BIT(16)
#define MTK_TX_DONE_INT3 BIT(11)
#define MTK_TX_DONE_INT2 BIT(10)
#define MTK_TX_DONE_INT1 BIT(9)
#define MTK_TX_DONE_INT0 BIT(8)
#define MTK_RX_DONE_INT0 BIT(2)
#define MTK_TX_DLY_INT BIT(1)
#define MTK_RX_DLY_INT BIT(0)
#define MTK_RX_DONE_INT MTK_RX_DONE_INT0
#define MTK_TX_DONE_INT (MTK_TX_DONE_INT0 | MTK_TX_DONE_INT1 | \
MTK_TX_DONE_INT2 | MTK_TX_DONE_INT3)
#define RT5350_RX_DLY_INT BIT(30)
#define RT5350_TX_DLY_INT BIT(28)
#define RT5350_RX_DONE_INT1 BIT(17)
#define RT5350_RX_DONE_INT0 BIT(16)
#define RT5350_TX_DONE_INT3 BIT(3)
#define RT5350_TX_DONE_INT2 BIT(2)
#define RT5350_TX_DONE_INT1 BIT(1)
#define RT5350_TX_DONE_INT0 BIT(0)
#define RT5350_RX_DONE_INT (RT5350_RX_DONE_INT0 | RT5350_RX_DONE_INT1)
#define RT5350_TX_DONE_INT (RT5350_TX_DONE_INT0 | RT5350_TX_DONE_INT1 | \
RT5350_TX_DONE_INT2 | RT5350_TX_DONE_INT3)
/* registers */
#define MTK_GDMA_OFFSET 0x0020
#define MTK_PSE_OFFSET 0x0040
#define MTK_GDMA2_OFFSET 0x0060
#define MTK_CDMA_OFFSET 0x0080
#define MTK_DMA_VID0 0x00a8
#define MTK_PDMA_OFFSET 0x0100
#define MTK_PPE_OFFSET 0x0200
#define MTK_CMTABLE_OFFSET 0x0400
#define MTK_POLICYTABLE_OFFSET 0x1000
#define MT7621_GDMA_OFFSET 0x0500
#define MT7620_GDMA_OFFSET 0x0600
#define RT5350_PDMA_OFFSET 0x0800
#define RT5350_SDM_OFFSET 0x0c00
#define MTK_MDIO_ACCESS 0x00
#define MTK_MDIO_CFG 0x04
#define MTK_GLO_CFG 0x08
#define MTK_RST_GL 0x0C
#define MTK_INT_STATUS 0x10
#define MTK_INT_ENABLE 0x14
#define MTK_MDIO_CFG2 0x18
#define MTK_FOC_TS_T 0x1C
#define MTK_GDMA1_FWD_CFG (MTK_GDMA_OFFSET + 0x00)
#define MTK_GDMA1_SCH_CFG (MTK_GDMA_OFFSET + 0x04)
#define MTK_GDMA1_SHPR_CFG (MTK_GDMA_OFFSET + 0x08)
#define MTK_GDMA1_MAC_ADRL (MTK_GDMA_OFFSET + 0x0C)
#define MTK_GDMA1_MAC_ADRH (MTK_GDMA_OFFSET + 0x10)
#define MTK_GDMA2_FWD_CFG (MTK_GDMA2_OFFSET + 0x00)
#define MTK_GDMA2_SCH_CFG (MTK_GDMA2_OFFSET + 0x04)
#define MTK_GDMA2_SHPR_CFG (MTK_GDMA2_OFFSET + 0x08)
#define MTK_GDMA2_MAC_ADRL (MTK_GDMA2_OFFSET + 0x0C)
#define MTK_GDMA2_MAC_ADRH (MTK_GDMA2_OFFSET + 0x10)
#define MTK_PSE_FQ_CFG (MTK_PSE_OFFSET + 0x00)
#define MTK_CDMA_FC_CFG (MTK_PSE_OFFSET + 0x04)
#define MTK_GDMA1_FC_CFG (MTK_PSE_OFFSET + 0x08)
#define MTK_GDMA2_FC_CFG (MTK_PSE_OFFSET + 0x0C)
#define MTK_CDMA_CSG_CFG (MTK_CDMA_OFFSET + 0x00)
#define MTK_CDMA_SCH_CFG (MTK_CDMA_OFFSET + 0x04)
#define MT7621_GDMA_FWD_CFG(x) (MT7621_GDMA_OFFSET + (x * 0x1000))
/* FIXME this might be different for different SOCs */
#define MT7620_GDMA1_FWD_CFG (MT7621_GDMA_OFFSET + 0x00)
#define RT5350_TX_BASE_PTR0 (RT5350_PDMA_OFFSET + 0x00)
#define RT5350_TX_MAX_CNT0 (RT5350_PDMA_OFFSET + 0x04)
#define RT5350_TX_CTX_IDX0 (RT5350_PDMA_OFFSET + 0x08)
#define RT5350_TX_DTX_IDX0 (RT5350_PDMA_OFFSET + 0x0C)
#define RT5350_TX_BASE_PTR1 (RT5350_PDMA_OFFSET + 0x10)
#define RT5350_TX_MAX_CNT1 (RT5350_PDMA_OFFSET + 0x14)
#define RT5350_TX_CTX_IDX1 (RT5350_PDMA_OFFSET + 0x18)
#define RT5350_TX_DTX_IDX1 (RT5350_PDMA_OFFSET + 0x1C)
#define RT5350_TX_BASE_PTR2 (RT5350_PDMA_OFFSET + 0x20)
#define RT5350_TX_MAX_CNT2 (RT5350_PDMA_OFFSET + 0x24)
#define RT5350_TX_CTX_IDX2 (RT5350_PDMA_OFFSET + 0x28)
#define RT5350_TX_DTX_IDX2 (RT5350_PDMA_OFFSET + 0x2C)
#define RT5350_TX_BASE_PTR3 (RT5350_PDMA_OFFSET + 0x30)
#define RT5350_TX_MAX_CNT3 (RT5350_PDMA_OFFSET + 0x34)
#define RT5350_TX_CTX_IDX3 (RT5350_PDMA_OFFSET + 0x38)
#define RT5350_TX_DTX_IDX3 (RT5350_PDMA_OFFSET + 0x3C)
#define RT5350_RX_BASE_PTR0 (RT5350_PDMA_OFFSET + 0x100)
#define RT5350_RX_MAX_CNT0 (RT5350_PDMA_OFFSET + 0x104)
#define RT5350_RX_CALC_IDX0 (RT5350_PDMA_OFFSET + 0x108)
#define RT5350_RX_DRX_IDX0 (RT5350_PDMA_OFFSET + 0x10C)
#define RT5350_RX_BASE_PTR1 (RT5350_PDMA_OFFSET + 0x110)
#define RT5350_RX_MAX_CNT1 (RT5350_PDMA_OFFSET + 0x114)
#define RT5350_RX_CALC_IDX1 (RT5350_PDMA_OFFSET + 0x118)
#define RT5350_RX_DRX_IDX1 (RT5350_PDMA_OFFSET + 0x11C)
#define RT5350_PDMA_GLO_CFG (RT5350_PDMA_OFFSET + 0x204)
#define RT5350_PDMA_RST_CFG (RT5350_PDMA_OFFSET + 0x208)
#define RT5350_DLY_INT_CFG (RT5350_PDMA_OFFSET + 0x20c)
#define RT5350_MTK_INT_STATUS (RT5350_PDMA_OFFSET + 0x220)
#define RT5350_MTK_INT_ENABLE (RT5350_PDMA_OFFSET + 0x228)
#define RT5350_PDMA_SCH_CFG (RT5350_PDMA_OFFSET + 0x280)
#define MTK_PDMA_GLO_CFG (MTK_PDMA_OFFSET + 0x00)
#define MTK_PDMA_RST_CFG (MTK_PDMA_OFFSET + 0x04)
#define MTK_PDMA_SCH_CFG (MTK_PDMA_OFFSET + 0x08)
#define MTK_DLY_INT_CFG (MTK_PDMA_OFFSET + 0x0C)
#define MTK_TX_BASE_PTR0 (MTK_PDMA_OFFSET + 0x10)
#define MTK_TX_MAX_CNT0 (MTK_PDMA_OFFSET + 0x14)
#define MTK_TX_CTX_IDX0 (MTK_PDMA_OFFSET + 0x18)
#define MTK_TX_DTX_IDX0 (MTK_PDMA_OFFSET + 0x1C)
#define MTK_TX_BASE_PTR1 (MTK_PDMA_OFFSET + 0x20)
#define MTK_TX_MAX_CNT1 (MTK_PDMA_OFFSET + 0x24)
#define MTK_TX_CTX_IDX1 (MTK_PDMA_OFFSET + 0x28)
#define MTK_TX_DTX_IDX1 (MTK_PDMA_OFFSET + 0x2C)
#define MTK_RX_BASE_PTR0 (MTK_PDMA_OFFSET + 0x30)
#define MTK_RX_MAX_CNT0 (MTK_PDMA_OFFSET + 0x34)
#define MTK_RX_CALC_IDX0 (MTK_PDMA_OFFSET + 0x38)
#define MTK_RX_DRX_IDX0 (MTK_PDMA_OFFSET + 0x3C)
#define MTK_TX_BASE_PTR2 (MTK_PDMA_OFFSET + 0x40)
#define MTK_TX_MAX_CNT2 (MTK_PDMA_OFFSET + 0x44)
#define MTK_TX_CTX_IDX2 (MTK_PDMA_OFFSET + 0x48)
#define MTK_TX_DTX_IDX2 (MTK_PDMA_OFFSET + 0x4C)
#define MTK_TX_BASE_PTR3 (MTK_PDMA_OFFSET + 0x50)
#define MTK_TX_MAX_CNT3 (MTK_PDMA_OFFSET + 0x54)
#define MTK_TX_CTX_IDX3 (MTK_PDMA_OFFSET + 0x58)
#define MTK_TX_DTX_IDX3 (MTK_PDMA_OFFSET + 0x5C)
#define MTK_RX_BASE_PTR1 (MTK_PDMA_OFFSET + 0x60)
#define MTK_RX_MAX_CNT1 (MTK_PDMA_OFFSET + 0x64)
#define MTK_RX_CALC_IDX1 (MTK_PDMA_OFFSET + 0x68)
#define MTK_RX_DRX_IDX1 (MTK_PDMA_OFFSET + 0x6C)
/* Switch DMA configuration */
#define RT5350_SDM_CFG (RT5350_SDM_OFFSET + 0x00)
#define RT5350_SDM_RRING (RT5350_SDM_OFFSET + 0x04)
#define RT5350_SDM_TRING (RT5350_SDM_OFFSET + 0x08)
#define RT5350_SDM_MAC_ADRL (RT5350_SDM_OFFSET + 0x0C)
#define RT5350_SDM_MAC_ADRH (RT5350_SDM_OFFSET + 0x10)
#define RT5350_SDM_TPCNT (RT5350_SDM_OFFSET + 0x100)
#define RT5350_SDM_TBCNT (RT5350_SDM_OFFSET + 0x104)
#define RT5350_SDM_RPCNT (RT5350_SDM_OFFSET + 0x108)
#define RT5350_SDM_RBCNT (RT5350_SDM_OFFSET + 0x10C)
#define RT5350_SDM_CS_ERR (RT5350_SDM_OFFSET + 0x110)
#define RT5350_SDM_ICS_EN BIT(16)
#define RT5350_SDM_TCS_EN BIT(17)
#define RT5350_SDM_UCS_EN BIT(18)
/* QDMA registers */
#define MTK_QTX_CFG(x) (0x1800 + (x * 0x10))
#define MTK_QTX_SCH(x) (0x1804 + (x * 0x10))
#define MTK_QRX_BASE_PTR0 0x1900
#define MTK_QRX_MAX_CNT0 0x1904
#define MTK_QRX_CRX_IDX0 0x1908
#define MTK_QRX_DRX_IDX0 0x190C
#define MTK_QDMA_GLO_CFG 0x1A04
#define MTK_QDMA_RST_IDX 0x1A08
#define MTK_QDMA_DELAY_INT 0x1A0C
#define MTK_QDMA_FC_THRES 0x1A10
#define MTK_QMTK_INT_STATUS 0x1A18
#define MTK_QMTK_INT_ENABLE 0x1A1C
#define MTK_QDMA_HRED2 0x1A44
#define MTK_QTX_CTX_PTR 0x1B00
#define MTK_QTX_DTX_PTR 0x1B04
#define MTK_QTX_CRX_PTR 0x1B10
#define MTK_QTX_DRX_PTR 0x1B14
#define MTK_QDMA_FQ_HEAD 0x1B20
#define MTK_QDMA_FQ_TAIL 0x1B24
#define MTK_QDMA_FQ_CNT 0x1B28
#define MTK_QDMA_FQ_BLEN 0x1B2C
#define QDMA_PAGE_SIZE 2048
#define QDMA_TX_OWNER_CPU BIT(31)
#define QDMA_TX_SWC BIT(14)
#define TX_QDMA_SDL(_x) (((_x) & 0x3fff) << 16)
#define QDMA_RES_THRES 4
/* MDIO_CFG register bits */
#define MTK_MDIO_CFG_AUTO_POLL_EN BIT(29)
#define MTK_MDIO_CFG_GP1_BP_EN BIT(16)
#define MTK_MDIO_CFG_GP1_FRC_EN BIT(15)
#define MTK_MDIO_CFG_GP1_SPEED_10 (0 << 13)
#define MTK_MDIO_CFG_GP1_SPEED_100 (1 << 13)
#define MTK_MDIO_CFG_GP1_SPEED_1000 (2 << 13)
#define MTK_MDIO_CFG_GP1_DUPLEX BIT(12)
#define MTK_MDIO_CFG_GP1_FC_TX BIT(11)
#define MTK_MDIO_CFG_GP1_FC_RX BIT(10)
#define MTK_MDIO_CFG_GP1_LNK_DWN BIT(9)
#define MTK_MDIO_CFG_GP1_AN_FAIL BIT(8)
#define MTK_MDIO_CFG_MDC_CLK_DIV_1 (0 << 6)
#define MTK_MDIO_CFG_MDC_CLK_DIV_2 (1 << 6)
#define MTK_MDIO_CFG_MDC_CLK_DIV_4 (2 << 6)
#define MTK_MDIO_CFG_MDC_CLK_DIV_8 (3 << 6)
#define MTK_MDIO_CFG_TURBO_MII_FREQ BIT(5)
#define MTK_MDIO_CFG_TURBO_MII_MODE BIT(4)
#define MTK_MDIO_CFG_RX_CLK_SKEW_0 (0 << 2)
#define MTK_MDIO_CFG_RX_CLK_SKEW_200 (1 << 2)
#define MTK_MDIO_CFG_RX_CLK_SKEW_400 (2 << 2)
#define MTK_MDIO_CFG_RX_CLK_SKEW_INV (3 << 2)
#define MTK_MDIO_CFG_TX_CLK_SKEW_0 0
#define MTK_MDIO_CFG_TX_CLK_SKEW_200 1
#define MTK_MDIO_CFG_TX_CLK_SKEW_400 2
#define MTK_MDIO_CFG_TX_CLK_SKEW_INV 3
/* uni-cast port */
#define MTK_GDM1_JMB_LEN_MASK 0xf
#define MTK_GDM1_JMB_LEN_SHIFT 28
#define MTK_GDM1_ICS_EN BIT(22)
#define MTK_GDM1_TCS_EN BIT(21)
#define MTK_GDM1_UCS_EN BIT(20)
#define MTK_GDM1_JMB_EN BIT(19)
#define MTK_GDM1_STRPCRC BIT(16)
#define MTK_GDM1_UFRC_P_CPU (0 << 12)
#define MTK_GDM1_UFRC_P_GDMA1 (1 << 12)
#define MTK_GDM1_UFRC_P_PPE (6 << 12)
/* checksums */
#define MTK_ICS_GEN_EN BIT(2)
#define MTK_UCS_GEN_EN BIT(1)
#define MTK_TCS_GEN_EN BIT(0)
/* dma mode */
#define MTK_PDMA BIT(0)
#define MTK_QDMA BIT(1)
#define MTK_PDMA_RX_QDMA_TX (MTK_PDMA | MTK_QDMA)
/* dma ring */
#define MTK_PST_DRX_IDX0 BIT(16)
#define MTK_PST_DTX_IDX3 BIT(3)
#define MTK_PST_DTX_IDX2 BIT(2)
#define MTK_PST_DTX_IDX1 BIT(1)
#define MTK_PST_DTX_IDX0 BIT(0)
#define MTK_RX_2B_OFFSET BIT(31)
#define MTK_TX_WB_DDONE BIT(6)
#define MTK_RX_DMA_BUSY BIT(3)
#define MTK_TX_DMA_BUSY BIT(1)
#define MTK_RX_DMA_EN BIT(2)
#define MTK_TX_DMA_EN BIT(0)
#define MTK_PDMA_SIZE_4DWORDS (0 << 4)
#define MTK_PDMA_SIZE_8DWORDS (1 << 4)
#define MTK_PDMA_SIZE_16DWORDS (2 << 4)
#define MTK_US_CYC_CNT_MASK 0xff
#define MTK_US_CYC_CNT_SHIFT 0x8
#define MTK_US_CYC_CNT_DIVISOR 1000000
/* PDMA descriptor rxd2 */
#define RX_DMA_DONE BIT(31)
#define RX_DMA_LSO BIT(30)
#define RX_DMA_PLEN0(_x) (((_x) & 0x3fff) << 16)
#define RX_DMA_GET_PLEN0(_x) (((_x) >> 16) & 0x3fff)
#define RX_DMA_TAG BIT(15)
/* PDMA descriptor rxd3 */
#define RX_DMA_TPID(_x) (((_x) >> 16) & 0xffff)
#define RX_DMA_VID(_x) ((_x) & 0xfff)
/* PDMA descriptor rxd4 */
#define RX_DMA_L4VALID BIT(30)
#define RX_DMA_FPORT_SHIFT 19
#define RX_DMA_FPORT_MASK 0x7
struct mtk_rx_dma {
unsigned int rxd1;
unsigned int rxd2;
unsigned int rxd3;
unsigned int rxd4;
} __packed __aligned(4);
/* PDMA tx descriptor bits */
#define TX_DMA_BUF_LEN 0x3fff
#define TX_DMA_PLEN0_MASK (TX_DMA_BUF_LEN << 16)
#define TX_DMA_PLEN0(_x) (((_x) & TX_DMA_BUF_LEN) << 16)
#define TX_DMA_PLEN1(_x) ((_x) & TX_DMA_BUF_LEN)
#define TX_DMA_GET_PLEN0(_x) (((_x) >> 16) & TX_DMA_BUF_LEN)
#define TX_DMA_GET_PLEN1(_x) ((_x) & TX_DMA_BUF_LEN)
#define TX_DMA_LS1 BIT(14)
#define TX_DMA_LS0 BIT(30)
#define TX_DMA_DONE BIT(31)
#define TX_DMA_FPORT_SHIFT 25
#define TX_DMA_FPORT_MASK 0x7
#define TX_DMA_INS_VLAN_MT7621 BIT(16)
#define TX_DMA_INS_VLAN BIT(7)
#define TX_DMA_INS_PPPOE BIT(12)
#define TX_DMA_TAG BIT(15)
#define TX_DMA_TAG_MASK BIT(15)
#define TX_DMA_QN(_x) ((_x) << 16)
#define TX_DMA_PN(_x) ((_x) << 24)
#define TX_DMA_QN_MASK TX_DMA_QN(0x7)
#define TX_DMA_PN_MASK TX_DMA_PN(0x7)
#define TX_DMA_UDF BIT(20)
#define TX_DMA_CHKSUM (0x7 << 29)
#define TX_DMA_TSO BIT(28)
#define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
/* frame engine counters */
#define MTK_PPE_AC_BCNT0 (MTK_CMTABLE_OFFSET + 0x00)
#define MTK_GDMA1_TX_GBCNT (MTK_CMTABLE_OFFSET + 0x300)
#define MTK_GDMA2_TX_GBCNT (MTK_GDMA1_TX_GBCNT + 0x40)
/* phy device flags */
#define MTK_PHY_FLAG_PORT BIT(0)
#define MTK_PHY_FLAG_ATTACH BIT(1)
struct mtk_tx_dma {
unsigned int txd1;
unsigned int txd2;
unsigned int txd3;
unsigned int txd4;
} __packed __aligned(4);
struct mtk_eth;
struct mtk_mac;
/* manage the attached phys */
struct mtk_phy {
spinlock_t lock;
struct phy_device *phy[8];
struct device_node *phy_node[8];
const __be32 *phy_fixed[8];
int duplex[8];
int speed[8];
int tx_fc[8];
int rx_fc[8];
int (*connect)(struct mtk_mac *mac);
void (*disconnect)(struct mtk_mac *mac);
void (*start)(struct mtk_mac *mac);
void (*stop)(struct mtk_mac *mac);
};
/* struct mtk_soc_data - the structure that holds the SoC specific data
* @reg_table: Some of the legacy registers changed their location
* over time. Their offsets are stored in this table
*
* @init_data: Some features depend on the silicon revision. This
* callback allows runtime modification of the content of
* this struct
* @reset_fe: This callback is used to trigger the reset of the frame
* engine
* @set_mac: This callback is used to set the unicast mac address
* filter
* @fwd_config: This callback is used to setup the forward config
* register of the MAC
* @switch_init: This callback is used to bring up the switch core
* @port_init: Some SoCs have ports that can be router to a switch port
* or an external PHY. This callback is used to setup these
* ports.
* @has_carrier: This callback allows driver to check if there is a cable
* attached.
* @mdio_init: This callbck is used to setup the MDIO bus if one is
* present
* @mdio_cleanup: This callback is used to cleanup the MDIO state.
* @mdio_write: This callback is used to write data to the MDIO bus.
* @mdio_read: This callback is used to write data to the MDIO bus.
* @mdio_adjust_link: This callback is used to apply the PHY settings.
* @piac_offset: the PIAC register has a different different base offset
* @hw_features: feature set depends on the SoC type
* @dma_ring_size: allow GBit SoCs to set bigger rings than FE SoCs
* @napi_weight: allow GBit SoCs to set bigger napi weight than FE SoCs
* @dma_type: SoCs is PDMA, QDMA or a mix of the 2
* @pdma_glo_cfg: the default DMA configuration
* @rx_int: the TX interrupt bits used by the SoC
* @tx_int: the TX interrupt bits used by the SoC
* @status_int: the Status interrupt bits used by the SoC
* @checksum_bit: the bits used to turn on HW checksumming
* @txd4: default value of the TXD4 descriptor
* @mac_count: the number of MACs that the SoC has
* @new_stats: there is a old and new way to read hardware stats
* registers
* @jumbo_frame: does the SoC support jumbo frames ?
* @rx_2b_offset: tell the rx dma to offset the data by 2 bytes
* @rx_sg_dma: scatter gather support
* @padding_64b enable 64 bit padding
* @padding_bug: rt2880 has a padding bug
* @has_switch: does the SoC have a built-in switch
*
* Although all of the supported SoCs share the same basic functionality, there
* are several SoC specific functions and features that we need to support. This
* struct holds the SoC specific data so that the common core can figure out
* how to setup and use these differences.
*/
struct mtk_soc_data {
const u16 *reg_table;
void (*init_data)(struct mtk_soc_data *data, struct net_device *netdev);
void (*reset_fe)(struct mtk_eth *eth);
void (*set_mac)(struct mtk_mac *mac, unsigned char *macaddr);
int (*fwd_config)(struct mtk_eth *eth);
int (*switch_init)(struct mtk_eth *eth);
void (*port_init)(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *port);
int (*has_carrier)(struct mtk_eth *eth);
int (*mdio_init)(struct mtk_eth *eth);
void (*mdio_cleanup)(struct mtk_eth *eth);
int (*mdio_write)(struct mii_bus *bus, int phy_addr, int phy_reg,
u16 val);
int (*mdio_read)(struct mii_bus *bus, int phy_addr, int phy_reg);
void (*mdio_adjust_link)(struct mtk_eth *eth, int port);
u32 piac_offset;
netdev_features_t hw_features;
u32 dma_ring_size;
u32 napi_weight;
u32 dma_type;
u32 pdma_glo_cfg;
u32 rx_int;
u32 tx_int;
u32 status_int;
u32 checksum_bit;
u32 txd4;
u32 mac_count;
u32 new_stats:1;
u32 jumbo_frame:1;
u32 rx_2b_offset:1;
u32 rx_sg_dma:1;
u32 padding_64b:1;
u32 padding_bug:1;
u32 has_switch:1;
};
#define MTK_STAT_OFFSET 0x40
/* struct mtk_hw_stats - the structure that holds the traffic statistics.
* @stats_lock: make sure that stats operations are atomic
* @reg_offset: the status register offset of the SoC
* @syncp: the refcount
*
* All of the supported SoCs have hardware counters for traffic statstics.
* Whenever the status IRQ triggers we can read the latest stats from these
* counters and store them in this struct.
*/
struct mtk_hw_stats {
spinlock_t stats_lock;
u32 reg_offset;
struct u64_stats_sync syncp;
u64 tx_bytes;
u64 tx_packets;
u64 tx_skip;
u64 tx_collisions;
u64 rx_bytes;
u64 rx_packets;
u64 rx_overflow;
u64 rx_fcs_errors;
u64 rx_short_errors;
u64 rx_long_errors;
u64 rx_checksum_errors;
u64 rx_flow_control_packets;
};
/* PDMA descriptor can point at 1-2 segments. This enum allows us to track how
* memory was allocated so that it can be freed properly
*/
enum mtk_tx_flags {
MTK_TX_FLAGS_SINGLE0 = 0x01,
MTK_TX_FLAGS_PAGE0 = 0x02,
MTK_TX_FLAGS_PAGE1 = 0x04,
};
/* struct mtk_tx_buf - This struct holds the pointers to the memory pointed at
* by the TX descriptor s
* @skb: The SKB pointer of the packet being sent
* @dma_addr0: The base addr of the first segment
* @dma_len0: The length of the first segment
* @dma_addr1: The base addr of the second segment
* @dma_len1: The length of the second segment
*/
struct mtk_tx_buf {
struct sk_buff *skb;
u32 flags;
DEFINE_DMA_UNMAP_ADDR(dma_addr0);
DEFINE_DMA_UNMAP_LEN(dma_len0);
DEFINE_DMA_UNMAP_ADDR(dma_addr1);
DEFINE_DMA_UNMAP_LEN(dma_len1);
};
/* struct mtk_tx_ring - This struct holds info describing a TX ring
* @tx_dma: The descriptor ring
* @tx_buf: The memory pointed at by the ring
* @tx_phys: The physical addr of tx_buf
* @tx_next_free: Pointer to the next free descriptor
* @tx_last_free: Pointer to the last free descriptor
* @tx_thresh: The threshold of minimum amount of free descriptors
* @tx_map: Callback to map a new packet into the ring
* @tx_poll: Callback for the housekeeping function
* @tx_clean: Callback for the cleanup function
* @tx_ring_size: How many descriptors are in the ring
* @tx_free_idx: The index of th next free descriptor
* @tx_next_idx: QDMA uses a linked list. This element points to the next
* free descriptor in the list
* @tx_free_count: QDMA uses a linked list. Track how many free descriptors
* are present
*/
struct mtk_tx_ring {
struct mtk_tx_dma *tx_dma;
struct mtk_tx_buf *tx_buf;
dma_addr_t tx_phys;
struct mtk_tx_dma *tx_next_free;
struct mtk_tx_dma *tx_last_free;
u16 tx_thresh;
int (*tx_map)(struct sk_buff *skb, struct net_device *dev, int tx_num,
struct mtk_tx_ring *ring, bool gso);
int (*tx_poll)(struct mtk_eth *eth, int budget, bool *tx_again);
void (*tx_clean)(struct mtk_eth *eth);
/* PDMA only */
u16 tx_ring_size;
u16 tx_free_idx;
/* QDMA only */
u16 tx_next_idx;
atomic_t tx_free_count;
};
/* struct mtk_rx_ring - This struct holds info describing a RX ring
* @rx_dma: The descriptor ring
* @rx_data: The memory pointed at by the ring
* @trx_phys: The physical addr of rx_buf
* @rx_ring_size: How many descriptors are in the ring
* @rx_buf_size: The size of each packet buffer
* @rx_calc_idx: The current head of ring
*/
struct mtk_rx_ring {
struct mtk_rx_dma *rx_dma;
u8 **rx_data;
dma_addr_t rx_phys;
u16 rx_ring_size;
u16 frag_size;
u16 rx_buf_size;
u16 rx_calc_idx;
};
/* currently no SoC has more than 2 macs */
#define MTK_MAX_DEVS 2
/* struct mtk_eth - This is the main datasructure for holding the state
* of the driver
* @dev: The device pointer
* @base: The mapped register i/o base
* @page_lock: Make sure that register operations are atomic
* @soc: pointer to our SoC specific data
* @dummy_dev: we run 2 netdevs on 1 physical DMA ring and need a
* dummy for NAPI to work
* @netdev: The netdev instances
* @mac: Each netdev is linked to a physical MAC
* @switch_np: The phandle for the switch
* @irq: The IRQ that we are using
* @msg_enable: Ethtool msg level
* @ysclk: The sysclk rate - neeed for calibration
* @ethsys: The register map pointing at the range used to setup
* MII modes
* @dma_refcnt: track how many netdevs are using the DMA engine
* @tx_ring: Pointer to the memore holding info about the TX ring
* @rx_ring: Pointer to the memore holding info about the RX ring
* @rx_napi: The NAPI struct
* @scratch_ring: Newer SoCs need memory for a second HW managed TX ring
* @scratch_head: The scratch memory that scratch_ring points to.
* @phy: Info about the attached PHYs
* @mii_bus: If there is a bus we need to create an instance for it
* @link: Track if the ports have a physical link
* @sw_priv: Pointer to the switches private data
* @vlan_map: RX VID tracking
*/
struct mtk_eth {
struct device *dev;
void __iomem *base;
spinlock_t page_lock;
struct mtk_soc_data *soc;
struct net_device dummy_dev;
struct net_device *netdev[MTK_MAX_DEVS];
struct mtk_mac *mac[MTK_MAX_DEVS];
struct device_node *switch_np;
int irq;
u32 msg_enable;
unsigned long sysclk;
struct regmap *ethsys;
atomic_t dma_refcnt;
struct mtk_tx_ring tx_ring;
struct mtk_rx_ring rx_ring[2];
struct napi_struct rx_napi;
struct mtk_tx_dma *scratch_ring;
void *scratch_head;
struct mtk_phy *phy;
struct mii_bus *mii_bus;
int link[8];
void *sw_priv;
unsigned long vlan_map;
};
/* struct mtk_mac - the structure that holds the info about the MACs of the
* SoC
* @id: The number of the MAC
* @of_node: Our devicetree node
* @hw: Backpointer to our main datastruture
* @hw_stats: Packet statistics counter
* @phy_dev: The attached PHY if available
* @phy_flags: The PHYs flags
* @pending_work: The workqueue used to reset the dma ring
*/
struct mtk_mac {
int id;
struct device_node *of_node;
struct mtk_eth *hw;
struct mtk_hw_stats *hw_stats;
struct phy_device *phy_dev;
u32 phy_flags;
struct work_struct pending_work;
};
/* the struct describing the SoC. these are declared in the soc_xyz.c files */
extern const struct of_device_id of_mtk_match[];
/* read the hardware status register */
void mtk_stats_update_mac(struct mtk_mac *mac);
/* default checksum setup handler */
void mtk_reset(struct mtk_eth *eth, u32 reset_bits);
/* register i/o wrappers */
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned int reg);
u32 mtk_r32(struct mtk_eth *eth, unsigned int reg);
/* default clock calibration handler */
int mtk_set_clock_cycle(struct mtk_eth *eth);
/* default checksum setup handler */
void mtk_csum_config(struct mtk_eth *eth);
/* default forward config handler */
void mtk_fwd_config(struct mtk_eth *eth);
#endif /* MTK_ETH_H */
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/if_vlan.h>
#include <linux/of_net.h>
#include <asm/mach-ralink/ralink_regs.h>
#include "mtk_eth_soc.h"
#include "gsw_mt7620.h"
#include "mdio.h"
#define MT7620_CDMA_CSG_CFG 0x400
#define MT7621_CDMP_IG_CTRL (MT7620_CDMA_CSG_CFG + 0x00)
#define MT7621_CDMP_EG_CTRL (MT7620_CDMA_CSG_CFG + 0x04)
#define MT7621_RESET_FE BIT(6)
#define MT7621_L4_VALID BIT(24)
#define MT7621_TX_DMA_UDF BIT(19)
#define CDMA_ICS_EN BIT(2)
#define CDMA_UCS_EN BIT(1)
#define CDMA_TCS_EN BIT(0)
#define GDMA_ICS_EN BIT(22)
#define GDMA_TCS_EN BIT(21)
#define GDMA_UCS_EN BIT(20)
/* frame engine counters */
#define MT7621_REG_MIB_OFFSET 0x2000
#define MT7621_PPE_AC_BCNT0 (MT7621_REG_MIB_OFFSET + 0x00)
#define MT7621_GDM1_TX_GBCNT (MT7621_REG_MIB_OFFSET + 0x400)
#define MT7621_GDM2_TX_GBCNT (MT7621_GDM1_TX_GBCNT + 0x40)
#define GSW_REG_GDMA1_MAC_ADRL 0x508
#define GSW_REG_GDMA1_MAC_ADRH 0x50C
#define GSW_REG_GDMA2_MAC_ADRL 0x1508
#define GSW_REG_GDMA2_MAC_ADRH 0x150C
#define MT7621_MTK_RST_GL 0x04
#define MT7620_MTK_INT_STATUS2 0x08
/* MTK_INT_STATUS reg on mt7620 define CNT_GDM1_AF at BIT(29)
* but after test it should be BIT(13).
*/
#define MT7621_MTK_GDM1_AF BIT(28)
#define MT7621_MTK_GDM2_AF BIT(29)
static const u16 mt7621_reg_table[MTK_REG_COUNT] = {
[MTK_REG_PDMA_GLO_CFG] = RT5350_PDMA_GLO_CFG,
[MTK_REG_PDMA_RST_CFG] = RT5350_PDMA_RST_CFG,
[MTK_REG_DLY_INT_CFG] = RT5350_DLY_INT_CFG,
[MTK_REG_TX_BASE_PTR0] = RT5350_TX_BASE_PTR0,
[MTK_REG_TX_MAX_CNT0] = RT5350_TX_MAX_CNT0,
[MTK_REG_TX_CTX_IDX0] = RT5350_TX_CTX_IDX0,
[MTK_REG_TX_DTX_IDX0] = RT5350_TX_DTX_IDX0,
[MTK_REG_RX_BASE_PTR0] = RT5350_RX_BASE_PTR0,
[MTK_REG_RX_MAX_CNT0] = RT5350_RX_MAX_CNT0,
[MTK_REG_RX_CALC_IDX0] = RT5350_RX_CALC_IDX0,
[MTK_REG_RX_DRX_IDX0] = RT5350_RX_DRX_IDX0,
[MTK_REG_MTK_INT_ENABLE] = RT5350_MTK_INT_ENABLE,
[MTK_REG_MTK_INT_STATUS] = RT5350_MTK_INT_STATUS,
[MTK_REG_MTK_DMA_VID_BASE] = 0,
[MTK_REG_MTK_COUNTER_BASE] = MT7621_GDM1_TX_GBCNT,
[MTK_REG_MTK_RST_GL] = MT7621_MTK_RST_GL,
[MTK_REG_MTK_INT_STATUS2] = MT7620_MTK_INT_STATUS2,
};
static void mt7621_mtk_reset(struct mtk_eth *eth)
{
mtk_reset(eth, MT7621_RESET_FE);
}
static int mt7621_fwd_config(struct mtk_eth *eth)
{
/* Setup GMAC1 only, there is no support for GMAC2 yet */
mtk_w32(eth, mtk_r32(eth, MT7620_GDMA1_FWD_CFG) & ~0xffff,
MT7620_GDMA1_FWD_CFG);
/* Enable RX checksum */
mtk_w32(eth, mtk_r32(eth, MT7620_GDMA1_FWD_CFG) | (GDMA_ICS_EN |
GDMA_TCS_EN | GDMA_UCS_EN),
MT7620_GDMA1_FWD_CFG);
/* Enable RX VLan Offloading */
mtk_w32(eth, 0, MT7621_CDMP_EG_CTRL);
return 0;
}
static void mt7621_set_mac(struct mtk_mac *mac, unsigned char *hwaddr)
{
unsigned long flags;
spin_lock_irqsave(&mac->hw->page_lock, flags);
if (mac->id == 0) {
mtk_w32(mac->hw, (hwaddr[0] << 8) | hwaddr[1],
GSW_REG_GDMA1_MAC_ADRH);
mtk_w32(mac->hw, (hwaddr[2] << 24) | (hwaddr[3] << 16) |
(hwaddr[4] << 8) | hwaddr[5],
GSW_REG_GDMA1_MAC_ADRL);
}
if (mac->id == 1) {
mtk_w32(mac->hw, (hwaddr[0] << 8) | hwaddr[1],
GSW_REG_GDMA2_MAC_ADRH);
mtk_w32(mac->hw, (hwaddr[2] << 24) | (hwaddr[3] << 16) |
(hwaddr[4] << 8) | hwaddr[5],
GSW_REG_GDMA2_MAC_ADRL);
}
spin_unlock_irqrestore(&mac->hw->page_lock, flags);
}
static struct mtk_soc_data mt7621_data = {
.hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_IPV6_CSUM,
.dma_type = MTK_PDMA,
.dma_ring_size = 256,
.napi_weight = 64,
.new_stats = 1,
.padding_64b = 1,
.rx_2b_offset = 1,
.rx_sg_dma = 1,
.has_switch = 1,
.mac_count = 2,
.reset_fe = mt7621_mtk_reset,
.set_mac = mt7621_set_mac,
.fwd_config = mt7621_fwd_config,
.switch_init = mtk_gsw_init,
.reg_table = mt7621_reg_table,
.pdma_glo_cfg = MTK_PDMA_SIZE_16DWORDS,
.rx_int = RT5350_RX_DONE_INT,
.tx_int = RT5350_TX_DONE_INT,
.status_int = MT7621_MTK_GDM1_AF | MT7621_MTK_GDM2_AF,
.checksum_bit = MT7621_L4_VALID,
.has_carrier = mt7620_has_carrier,
.mdio_read = mt7620_mdio_read,
.mdio_write = mt7620_mdio_write,
.mdio_adjust_link = mt7620_mdio_link_adjust,
};
const struct of_device_id of_mtk_match[] = {
{ .compatible = "mediatek,mt7621-eth", .data = &mt7621_data },
{},
};
MODULE_DEVICE_TABLE(of, of_mtk_match);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment