Commit 7cab5377 authored by Cristian Marussi's avatar Cristian Marussi Committed by Sudeep Holla

firmware: arm_scmi: Use common iterators in the sensor protocol

Make SCMI sensor protocol use the common iterator protocol helpers
for issuing the multi-part commands.

Link: https://lore.kernel.org/r/20220330150551.2573938-15-cristian.marussi@arm.comSigned-off-by: default avatarCristian Marussi <cristian.marussi@arm.com>
Signed-off-by: default avatarSudeep Holla <sudeep.holla@arm.com>
parent 36b6ea0f
...@@ -64,6 +64,10 @@ struct scmi_msg_resp_attrs { ...@@ -64,6 +64,10 @@ struct scmi_msg_resp_attrs {
__le32 max_range_high; __le32 max_range_high;
}; };
struct scmi_msg_sensor_description {
__le32 desc_index;
};
struct scmi_msg_resp_sensor_description { struct scmi_msg_resp_sensor_description {
__le16 num_returned; __le16 num_returned;
__le16 num_remaining; __le16 num_remaining;
...@@ -233,346 +237,354 @@ static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph, ...@@ -233,346 +237,354 @@ static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
} }
static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out, static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
struct scmi_msg_resp_attrs *in) const struct scmi_msg_resp_attrs *in)
{ {
out->min_range = get_unaligned_le64((void *)&in->min_range_low); out->min_range = get_unaligned_le64((void *)&in->min_range_low);
out->max_range = get_unaligned_le64((void *)&in->max_range_low); out->max_range = get_unaligned_le64((void *)&in->max_range_low);
} }
static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph, struct scmi_sens_ipriv {
struct scmi_sensor_info *s) void *priv;
{ struct device *dev;
int ret, cnt; };
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *ti;
struct scmi_msg_resp_sensor_list_update_intervals *buf;
struct scmi_msg_sensor_list_update_intervals *msg;
ret = ph->xops->xfer_get_init(ph, SENSOR_LIST_UPDATE_INTERVALS,
sizeof(*msg), 0, &ti);
if (ret)
return ret;
buf = ti->rx.buf;
do {
u32 flags;
msg = ti->tx.buf;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
ret = ph->xops->do_xfer(ph, ti); static void iter_intervals_prepare_message(void *message,
if (ret) unsigned int desc_index,
break; const void *p)
{
struct scmi_msg_sensor_list_update_intervals *msg = message;
const struct scmi_sensor_info *s;
flags = le32_to_cpu(buf->num_intervals_flags); s = ((const struct scmi_sens_ipriv *)p)->priv;
num_returned = NUM_INTERVALS_RETURNED(flags); /* Set the number of sensors to be skipped/already read */
num_remaining = NUM_INTERVALS_REMAINING(flags); msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
}
/* static int iter_intervals_update_state(struct scmi_iterator_state *st,
* Max intervals is not declared previously anywhere so we const void *response, void *p)
* assume it's returned+remaining. {
*/ u32 flags;
if (!s->intervals.count) { struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags); struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
s->intervals.count = num_returned + num_remaining; const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented && flags = le32_to_cpu(r->num_intervals_flags);
(num_remaining || num_returned != 3)) { st->num_returned = NUM_INTERVALS_RETURNED(flags);
dev_err(ph->dev, st->num_remaining = NUM_INTERVALS_REMAINING(flags);
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count); /*
* Max intervals is not declared previously anywhere so we
* assume it's returned+remaining on first call.
*/
if (!st->max_resources) {
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
s->intervals.count = st->num_returned + st->num_remaining;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented &&
(st->num_remaining || st->num_returned != 3)) {
dev_err(dev,
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count);
s->intervals.segmented = false;
s->intervals.count = 0;
return -EINVAL;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false; s->intervals.segmented = false;
s->intervals.count = 0; s->intervals.count = 0;
ret = -EINVAL; return -ENOMEM;
break;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(ph->dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false;
s->intervals.count = 0;
ret = -ENOMEM;
break;
}
} }
} else if (desc_index + num_returned > s->intervals.count) {
dev_err(ph->dev,
"No. of update intervals can't exceed %d\n",
s->intervals.count);
ret = -EINVAL;
break;
} }
for (cnt = 0; cnt < num_returned; cnt++) st->max_resources = s->intervals.count;
s->intervals.desc[desc_index + cnt] = }
le32_to_cpu(buf->intervals[cnt]);
desc_index += num_returned; return 0;
}
ph->xops->reset_rx_to_maxsz(ph, ti); static int
/* iter_intervals_process_response(const struct scmi_protocol_handle *ph,
* check for both returned and remaining to avoid infinite const void *response,
* loop due to buggy firmware struct scmi_iterator_state *st, void *p)
*/ {
} while (num_returned && num_remaining); const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
ph->xops->xfer_put(ph, ti); s->intervals.desc[st->desc_index + st->loop_idx] =
return ret; le32_to_cpu(r->intervals[st->loop_idx]);
return 0;
} }
static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph, static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s) struct scmi_sensor_info *s)
{ {
int ret, cnt; void *iter;
u32 desc_index = 0; struct scmi_msg_sensor_list_update_intervals *msg;
u16 num_returned, num_remaining; struct scmi_iterator_ops ops = {
struct scmi_xfer *te; .prepare_message = iter_intervals_prepare_message,
struct scmi_msg_resp_sensor_axis_description *buf; .update_state = iter_intervals_update_state,
struct scmi_msg_sensor_axis_description_get *msg; .process_response = iter_intervals_process_response,
};
struct scmi_sens_ipriv upriv = {
.priv = s,
.dev = ph->dev,
};
iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
SENSOR_LIST_UPDATE_INTERVALS,
sizeof(*msg), &upriv);
if (IS_ERR(iter))
return PTR_ERR(iter);
return ph->hops->iter_response_run(iter);
}
s->axis = devm_kcalloc(ph->dev, s->num_axis, static void iter_axes_desc_prepare_message(void *message,
sizeof(*s->axis), GFP_KERNEL); const unsigned int desc_index,
if (!s->axis) const void *priv)
return -ENOMEM; {
struct scmi_msg_sensor_axis_description_get *msg = message;
const struct scmi_sensor_info *s = priv;
ret = ph->xops->xfer_get_init(ph, SENSOR_AXIS_DESCRIPTION_GET, /* Set the number of sensors to be skipped/already read */
sizeof(*msg), 0, &te); msg->id = cpu_to_le32(s->id);
if (ret) msg->axis_desc_index = cpu_to_le32(desc_index);
return ret; }
buf = te->rx.buf; static int
do { iter_axes_desc_update_state(struct scmi_iterator_state *st,
u32 flags; const void *response, void *priv)
struct scmi_axis_descriptor *adesc; {
u32 flags;
const struct scmi_msg_resp_sensor_axis_description *r = response;
msg = te->tx.buf; flags = le32_to_cpu(r->num_axis_flags);
/* Set the number of sensors to be skipped/already read */ st->num_returned = NUM_AXIS_RETURNED(flags);
msg->id = cpu_to_le32(s->id); st->num_remaining = NUM_AXIS_REMAINING(flags);
msg->axis_desc_index = cpu_to_le32(desc_index); st->priv = (void *)&r->desc[0];
ret = ph->xops->do_xfer(ph, te); return 0;
if (ret) }
break;
flags = le32_to_cpu(buf->num_axis_flags); static int
num_returned = NUM_AXIS_RETURNED(flags); iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
num_remaining = NUM_AXIS_REMAINING(flags); const void *response,
struct scmi_iterator_state *st, void *priv)
{
u32 attrh, attrl;
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
struct scmi_sensor_info *s = priv;
const struct scmi_axis_descriptor *adesc = st->priv;
if (desc_index + num_returned > s->num_axis) { attrl = le32_to_cpu(adesc->attributes_low);
dev_err(ph->dev, "No. of axis can't exceed %d\n",
s->num_axis);
break;
}
adesc = &buf->desc[0]; a = &s->axis[st->desc_index + st->loop_idx];
for (cnt = 0; cnt < num_returned; cnt++) { a->id = le32_to_cpu(adesc->id);
u32 attrh, attrl; a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
attrl = le32_to_cpu(adesc->attributes_low); attrh = le32_to_cpu(adesc->attributes_high);
a = &s->axis[desc_index + cnt]; a->scale = S32_EXT(SENSOR_SCALE(attrh));
a->type = SENSOR_TYPE(attrh);
strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
a->id = le32_to_cpu(adesc->id); if (a->extended_attrs) {
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl); unsigned int ares = le32_to_cpu(adesc->resolution);
attrh = le32_to_cpu(adesc->attributes_high); a->resolution = SENSOR_RES(ares);
a->scale = S32_EXT(SENSOR_SCALE(attrh)); a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
a->type = SENSOR_TYPE(attrh); dsize += sizeof(adesc->resolution);
strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
if (a->extended_attrs) { scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
unsigned int ares = dsize += sizeof(adesc->attrs);
le32_to_cpu(adesc->resolution); }
a->resolution = SENSOR_RES(ares); st->priv = ((u8 *)adesc + dsize);
a->exponent =
S32_EXT(SENSOR_RES_EXP(ares));
dsize += sizeof(adesc->resolution);
scmi_parse_range_attrs(&a->attrs, return 0;
&adesc->attrs); }
dsize += sizeof(adesc->attrs);
}
adesc = (typeof(adesc))((u8 *)adesc + dsize); static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
} struct scmi_sensor_info *s)
{
void *iter;
struct scmi_msg_sensor_axis_description_get *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_axes_desc_prepare_message,
.update_state = iter_axes_desc_update_state,
.process_response = iter_axes_desc_process_response,
};
desc_index += num_returned; s->axis = devm_kcalloc(ph->dev, s->num_axis,
sizeof(*s->axis), GFP_KERNEL);
if (!s->axis)
return -ENOMEM;
ph->xops->reset_rx_to_maxsz(ph, te); iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
/* SENSOR_AXIS_DESCRIPTION_GET,
* check for both returned and remaining to avoid infinite sizeof(*msg), s);
* loop due to buggy firmware if (IS_ERR(iter))
*/ return PTR_ERR(iter);
} while (num_returned && num_remaining);
ph->xops->xfer_put(ph, te); return ph->hops->iter_response_run(iter);
return ret;
} }
static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph, static void iter_sens_descr_prepare_message(void *message,
struct sensors_info *si) unsigned int desc_index,
const void *priv)
{ {
int ret, cnt; struct scmi_msg_sensor_description *msg = message;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_msg_resp_sensor_description *buf;
ret = ph->xops->xfer_get_init(ph, SENSOR_DESCRIPTION_GET,
sizeof(__le32), 0, &t);
if (ret)
return ret;
buf = t->rx.buf;
do {
struct scmi_sensor_descriptor *sdesc;
/* Set the number of sensors to be skipped/already read */ msg->desc_index = cpu_to_le32(desc_index);
put_unaligned_le32(desc_index, t->tx.buf); }
ret = ph->xops->do_xfer(ph, t); static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
if (ret) const void *response, void *priv)
break; {
const struct scmi_msg_resp_sensor_description *r = response;
num_returned = le16_to_cpu(buf->num_returned); st->num_returned = le16_to_cpu(r->num_returned);
num_remaining = le16_to_cpu(buf->num_remaining); st->num_remaining = le16_to_cpu(r->num_remaining);
st->priv = (void *)&r->desc[0];
if (desc_index + num_returned > si->num_sensors) { return 0;
dev_err(ph->dev, "No. of sensors can't exceed %d", }
si->num_sensors);
break;
}
sdesc = &buf->desc[0]; static int
for (cnt = 0; cnt < num_returned; cnt++) { iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
u32 attrh, attrl; const void *response,
struct scmi_sensor_info *s; struct scmi_iterator_state *st, void *priv)
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
s = &si->sensors[desc_index + cnt];
s->id = le32_to_cpu(sdesc->id);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale =
S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs =
SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
s->intervals.desc[0] =
(SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(ph, s))
dev_dbg(ph->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
/*
* If supported overwrite short name with the extended
* one; on error just carry on and use already provided
* short name.
*/
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
SUPPORTS_EXTENDED_NAMES(attrl))
ph->hops->extended_name_get(ph, SENSOR_NAME_GET,
s->id, s->name,
SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres =
le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent =
S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
}
}
if (s->num_axis > 0) {
ret = scmi_sensor_axis_description(ph, s);
if (ret)
goto out;
}
sdesc = (typeof(sdesc))((u8 *)sdesc + dsize); {
int ret = 0;
u32 attrh, attrl;
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
struct scmi_sensor_info *s;
struct sensors_info *si = priv;
const struct scmi_sensor_descriptor *sdesc = st->priv;
s = &si->sensors[st->desc_index + st->loop_idx];
s->id = le32_to_cpu(sdesc->id);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(ph, s))
dev_dbg(ph->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strscpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
/*
* If supported overwrite short name with the extended
* one; on error just carry on and use already provided
* short name.
*/
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
SUPPORTS_EXTENDED_NAMES(attrl))
ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
s->name, SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres = le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
} }
}
desc_index += num_returned; if (s->num_axis > 0)
ret = scmi_sensor_axis_description(ph, s);
ph->xops->reset_rx_to_maxsz(ph, t); st->priv = ((u8 *)sdesc + dsize);
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
out:
ph->xops->xfer_put(ph, t);
return ret; return ret;
} }
static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
struct sensors_info *si)
{
void *iter;
struct scmi_iterator_ops ops = {
.prepare_message = iter_sens_descr_prepare_message,
.update_state = iter_sens_descr_update_state,
.process_response = iter_sens_descr_process_response,
};
iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
SENSOR_DESCRIPTION_GET,
sizeof(__le32), si);
if (IS_ERR(iter))
return PTR_ERR(iter);
return ph->hops->iter_response_run(iter);
}
static inline int static inline int
scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id, scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
u8 message_id, bool enable) u8 message_id, bool enable)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment