Commit 7d70fef5 authored by Jeff Garzik's avatar Jeff Garzik

Merge hostme.bitkeeper.com:/ua/repos/g/gkernel/linus-2.5

into hostme.bitkeeper.com:/ua/repos/g/gkernel/net-drivers-2.5
parents e9d9db6b 4b19b09d
......@@ -217,6 +217,7 @@ typedef enum {
DFE538TX,
DFE690TXD,
FE2000VX,
ALLIED8139,
RTL8129,
} board_t;
......@@ -235,6 +236,7 @@ static struct {
{ "D-Link DFE-538TX (RealTek RTL8139)", RTL8139_CAPS },
{ "D-Link DFE-690TXD (RealTek RTL8139)", RTL8139_CAPS },
{ "AboCom FE2000VX (RealTek RTL8139)", RTL8139_CAPS },
{ "Allied Telesyn 8139 CardBus", RTL8139_CAPS },
{ "RealTek RTL8129", RTL8129_CAPS },
};
......@@ -249,6 +251,7 @@ static struct pci_device_id rtl8139_pci_tbl[] __devinitdata = {
{0x1186, 0x1300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DFE538TX },
{0x1186, 0x1340, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DFE690TXD },
{0x13d1, 0xab06, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FE2000VX },
{0x1259, 0xa117, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ALLIED8139 },
#ifdef CONFIG_8139TOO_8129
{0x10ec, 0x8129, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8129 },
......
......@@ -37,7 +37,6 @@ if [ "$CONFIG_NET_ETHERNET" = "y" ]; then
bool ' Use AAUI port instead of TP by default' CONFIG_MACE_AAUI_PORT
fi
dep_tristate ' BMAC (G3 ethernet) support' CONFIG_BMAC $CONFIG_ALL_PPC
dep_tristate ' GMAC (G4/iBook ethernet) support' CONFIG_GMAC $CONFIG_ALL_PPC
tristate ' National DP83902AV (Oak ethernet) support' CONFIG_OAKNET
fi
if [ "$CONFIG_ZORRO" = "y" ]; then
......
......@@ -57,7 +57,6 @@ obj-$(CONFIG_SUNGEM) += sungem.o
obj-$(CONFIG_MACE) += mace.o
obj-$(CONFIG_BMAC) += bmac.o
obj-$(CONFIG_GMAC) += gmac.o
obj-$(CONFIG_OAKNET) += oaknet.o 8390.o
......
......@@ -22,7 +22,8 @@
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/feature.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#ifdef CONFIG_PMAC_PBOOK
#include <linux/adb.h>
#include <linux/pmu.h>
......@@ -155,7 +156,7 @@ static void bmac_reset_and_enable(struct net_device *dev);
static void bmac_start_chip(struct net_device *dev);
static void bmac_init_chip(struct net_device *dev);
static void bmac_init_registers(struct net_device *dev);
static void bmac_reset_chip(struct net_device *dev);
static void bmac_enable_and_reset_chip(struct net_device *dev);
static int bmac_set_address(struct net_device *dev, void *addr);
static void bmac_misc_intr(int irq, void *dev_id, struct pt_regs *regs);
static void bmac_txdma_intr(int irq, void *dev_id, struct pt_regs *regs);
......@@ -229,21 +230,18 @@ volatile unsigned short bmread(struct net_device *dev, unsigned long reg_offset
}
static void
bmac_reset_chip(struct net_device *dev)
bmac_enable_and_reset_chip(struct net_device *dev)
{
struct bmac_data *bp = (struct bmac_data *) dev->priv;
volatile struct dbdma_regs *rd = bp->rx_dma;
volatile struct dbdma_regs *td = bp->tx_dma;
dbdma_reset(rd);
dbdma_reset(td);
if (rd)
dbdma_reset(rd);
if (td)
dbdma_reset(td);
feature_set(bp->node, FEATURE_BMac_IO_enable);
udelay(10000);
feature_set(bp->node, FEATURE_BMac_reset);
udelay(10000);
feature_clear(bp->node, FEATURE_BMac_reset);
udelay(10000);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, bp->node, 0, 1);
}
#define MIFDELAY udelay(10)
......@@ -522,10 +520,7 @@ bmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
}
}
}
feature_set(bp->node, FEATURE_BMac_reset);
mdelay(10);
feature_clear(bp->node, FEATURE_BMac_IO_enable);
mdelay(10);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, bp->node, 0, 0);
break;
case PBOOK_WAKE:
/* see if this is enough */
......@@ -1254,7 +1249,7 @@ static void bmac_reset_and_enable(struct net_device *dev)
unsigned char *data;
save_flags(flags); cli();
bmac_reset_chip(dev);
bmac_enable_and_reset_chip(dev);
bmac_init_tx_ring(bp);
bmac_init_rx_ring(bp);
bmac_init_chip(dev);
......@@ -1337,14 +1332,30 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
bmac->full_name);
return;
}
bp = (struct bmac_data *) dev->priv;
SET_MODULE_OWNER(dev);
bp->node = bmac;
if (!request_OF_resource(bmac, 0, " (bmac)")) {
printk(KERN_ERR "BMAC: can't request IO resource !\n");
goto err_out;
}
if (!request_OF_resource(bmac, 1, " (bmac tx dma)")) {
printk(KERN_ERR "BMAC: can't request TX DMA resource !\n");
goto err_out;
}
if (!request_OF_resource(bmac, 2, " (bmac rx dma)")) {
printk(KERN_ERR "BMAC: can't request RX DMA resource !\n");
goto err_out;
}
dev->base_addr = (unsigned long)
ioremap(bmac->addrs[0].address, bmac->addrs[0].size);
if (!dev->base_addr)
goto err_out;
dev->irq = bmac->intrs[0].line;
bmac_enable_and_reset_chip(dev);
bmwrite(dev, INTDISABLE, DisableAll);
printk(KERN_INFO "%s: BMAC%s at", dev->name, (is_bmac_plus? "+": ""));
......@@ -1356,6 +1367,10 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
XXDEBUG((", base_addr=%#0lx", dev->base_addr));
printk("\n");
/* Enable chip without interrupts for now */
bmac_enable_and_reset_chip(dev);
bmwrite(dev, INTDISABLE, DisableAll);
dev->open = bmac_open;
dev->stop = bmac_close;
dev->hard_start_xmit = bmac_output;
......@@ -1367,7 +1382,6 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
if (bmac_verify_checksum(dev) != 0)
goto err_out_iounmap;
bp = (struct bmac_data *) dev->priv;
bp->is_bmac_plus = is_bmac_plus;
bp->tx_dma = (volatile struct dbdma_regs *)
ioremap(bmac->addrs[1].address, bmac->addrs[1].size);
......@@ -1386,7 +1400,6 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
skb_queue_head_init(bp->queue);
bp->node = bmac;
memset((char *) bp->tx_cmds, 0,
(N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
/* init_timer(&bp->tx_timeout); */
......@@ -1408,6 +1421,12 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
goto err_out_irq1;
}
/* Mask chip interrupts and disable chip, will be
* re-enabled on open()
*/
disable_irq(dev->irq);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, bp->node, 0, 0);
bp->next_bmac = bmac_devs;
bmac_devs = dev;
return;
......@@ -1423,6 +1442,12 @@ static void __init bmac_probe1(struct device_node *bmac, int is_bmac_plus)
err_out_iounmap:
iounmap((void *)dev->base_addr);
err_out:
if (bp->node) {
release_OF_resource(bp->node, 0);
release_OF_resource(bp->node, 1);
release_OF_resource(bp->node, 2);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, bp->node, 0, 0);
}
unregister_netdev(dev);
kfree(dev);
}
......@@ -1434,6 +1459,7 @@ static int bmac_open(struct net_device *dev)
/* reset the chip */
bp->opened = 1;
bmac_reset_and_enable(dev);
enable_irq(dev->irq);
dev->flags |= IFF_RUNNING;
return 0;
}
......@@ -1446,6 +1472,7 @@ static int bmac_close(struct net_device *dev)
unsigned short config;
int i;
bp->sleeping = 1;
dev->flags &= ~(IFF_UP | IFF_RUNNING);
/* disable rx and tx */
......@@ -1479,6 +1506,8 @@ static int bmac_close(struct net_device *dev)
XXDEBUG(("bmac: all bufs freed\n"));
bp->opened = 0;
disable_irq(dev->irq);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, bp->node, 0, 0);
return 0;
}
......@@ -1548,7 +1577,7 @@ static void bmac_tx_timeout(unsigned long data)
bmwrite(dev, TXCFG, (config & ~TxMACEnable));
out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
printk(KERN_ERR "bmac: transmit timeout - resetting\n");
bmac_reset_chip(dev);
bmac_enable_and_reset_chip(dev);
/* restart rx dma */
cp = bus_to_virt(ld_le32(&rd->cmdptr));
......@@ -1670,11 +1699,15 @@ static void __exit bmac_cleanup (void)
bp = (struct bmac_data *) dev->priv;
bmac_devs = bp->next_bmac;
unregister_netdev(dev);
release_OF_resource(bp->node, 0);
release_OF_resource(bp->node, 1);
release_OF_resource(bp->node, 2);
free_irq(dev->irq, dev);
free_irq(bp->tx_dma_intr, dev);
free_irq(bp->rx_dma_intr, dev);
unregister_netdev(dev);
kfree(dev);
} while (bmac_devs != NULL);
}
......
/*
* Network device driver for the GMAC ethernet controller on
* Apple G4 Powermacs.
*
* Copyright (C) 2000 Paul Mackerras & Ben. Herrenschmidt
*
* portions based on sunhme.c by David S. Miller
*
* Changes:
* Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 08/06/2000
* - check init_etherdev return in gmac_probe1
* BenH <benh@kernel.crashing.org> - 03/09/2000
* - Add support for new PHYs
* - Add some PowerBook sleep code
* BenH <benh@kernel.crashing.org> - ??/??/????
* - PHY updates
* BenH <benh@kernel.crashing.org> - 08/08/2001
* - Add more PHYs, fixes to sleep code
* Matt Domsch <Matt_Domsch@dell.com> - 11/12/2001
* - use library crc32 functions
*/
#include <linux/module.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/feature.h>
#include <asm/keylargo.h>
#include <asm/pci-bridge.h>
#ifdef CONFIG_PMAC_PBOOK
#include <linux/adb.h>
#include <linux/pmu.h>
#include <asm/irq.h>
#endif
#include "gmac.h"
#define DEBUG_PHY
/* Driver version 1.5, kernel 2.4.x */
#define GMAC_VERSION "v1.5k4"
#define DUMMY_BUF_LEN RX_BUF_ALLOC_SIZE + RX_OFFSET + GMAC_BUFFER_ALIGN
static unsigned char *dummy_buf;
static struct net_device *gmacs;
/* Prototypes */
static int mii_read(struct gmac *gm, int phy, int r);
static int mii_write(struct gmac *gm, int phy, int r, int v);
static void mii_poll_start(struct gmac *gm);
static void mii_poll_stop(struct gmac *gm);
static void mii_interrupt(struct gmac *gm);
static int mii_lookup_and_reset(struct gmac *gm);
static void mii_setup_phy(struct gmac *gm);
static int mii_do_reset_phy(struct gmac *gm, int phy_addr);
static void mii_init_BCM5400(struct gmac *gm);
static void mii_init_BCM5401(struct gmac *gm);
static void gmac_set_power(struct gmac *gm, int power_up);
static int gmac_powerup_and_reset(struct net_device *dev);
static void gmac_set_gigabit_mode(struct gmac *gm, int gigabit);
static void gmac_set_duplex_mode(struct gmac *gm, int full_duplex);
static void gmac_mac_init(struct gmac *gm, unsigned char *mac_addr);
static void gmac_init_rings(struct gmac *gm, int from_irq);
static void gmac_start_dma(struct gmac *gm);
static void gmac_stop_dma(struct gmac *gm);
static void gmac_set_multicast(struct net_device *dev);
static int gmac_open(struct net_device *dev);
static int gmac_close(struct net_device *dev);
static void gmac_tx_timeout(struct net_device *dev);
static int gmac_xmit_start(struct sk_buff *skb, struct net_device *dev);
static void gmac_tx_cleanup(struct net_device *dev, int force_cleanup);
static void gmac_receive(struct net_device *dev);
static void gmac_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static struct net_device_stats *gmac_stats(struct net_device *dev);
static int gmac_probe(void);
static void gmac_probe1(struct device_node *gmac);
#ifdef CONFIG_PMAC_PBOOK
int gmac_sleep_notify(struct pmu_sleep_notifier *self, int when);
static struct pmu_sleep_notifier gmac_sleep_notifier = {
gmac_sleep_notify, SLEEP_LEVEL_NET,
};
#endif
/*
* Read via the mii interface from a PHY register
*/
static int
mii_read(struct gmac *gm, int phy, int r)
{
int timeout;
GM_OUT(GM_MIF_FRAME_CTL_DATA,
(0x01 << GM_MIF_FRAME_START_SHIFT) |
(0x02 << GM_MIF_FRAME_OPCODE_SHIFT) |
GM_MIF_FRAME_TURNAROUND_HI |
(phy << GM_MIF_FRAME_PHY_ADDR_SHIFT) |
(r << GM_MIF_FRAME_REG_ADDR_SHIFT));
for (timeout = 1000; timeout > 0; --timeout) {
udelay(20);
if (GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_TURNAROUND_LO)
return GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_DATA_MASK;
}
return -1;
}
/*
* Write on the mii interface to a PHY register
*/
static int
mii_write(struct gmac *gm, int phy, int r, int v)
{
int timeout;
GM_OUT(GM_MIF_FRAME_CTL_DATA,
(0x01 << GM_MIF_FRAME_START_SHIFT) |
(0x01 << GM_MIF_FRAME_OPCODE_SHIFT) |
GM_MIF_FRAME_TURNAROUND_HI |
(phy << GM_MIF_FRAME_PHY_ADDR_SHIFT) |
(r << GM_MIF_FRAME_REG_ADDR_SHIFT) |
(v & GM_MIF_FRAME_DATA_MASK));
for (timeout = 1000; timeout > 0; --timeout) {
udelay(20);
if (GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_TURNAROUND_LO)
return 0;
}
return -1;
}
/*
* Start MIF autopolling of the PHY status register
*/
static void
mii_poll_start(struct gmac *gm)
{
unsigned int tmp;
/* Start the MIF polling on the external transceiver. */
tmp = GM_IN(GM_MIF_CFG);
tmp &= ~(GM_MIF_CFGPR_MASK | GM_MIF_CFGPD_MASK);
tmp |= ((gm->phy_addr & 0x1f) << GM_MIF_CFGPD_SHIFT);
tmp |= (MII_SR << GM_MIF_CFGPR_SHIFT);
tmp |= GM_MIF_CFGPE;
GM_OUT(GM_MIF_CFG, tmp);
/* Let the bits set. */
udelay(GM_MIF_POLL_DELAY);
GM_OUT(GM_MIF_IRQ_MASK, 0xffc0);
}
/*
* Stop MIF autopolling of the PHY status register
*/
static void
mii_poll_stop(struct gmac *gm)
{
GM_OUT(GM_MIF_IRQ_MASK, 0xffff);
GM_BIC(GM_MIF_CFG, GM_MIF_CFGPE);
udelay(GM_MIF_POLL_DELAY);
}
/*
* Called when the MIF detect a change of the PHY status
*
* handles monitoring the link and updating GMAC with the correct
* duplex mode.
*
* Note: Are we missing status changes ? In this case, we'll have to
* a timer and control the autoneg. process more closely. Also, we may
* want to stop rx and tx side when the link is down.
*/
/* Link modes of the BCM5400 PHY */
static int phy_BCM5400_link_table[8][3] = {
{ 0, 0, 0 }, /* No link */
{ 0, 0, 0 }, /* 10BT Half Duplex */
{ 1, 0, 0 }, /* 10BT Full Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 1, 1, 0 }, /* 100BT Full Duplex*/
{ 1, 0, 1 }, /* 1000BT */
{ 1, 0, 1 }, /* 1000BT */
};
static void
mii_interrupt(struct gmac *gm)
{
int phy_status;
int lpar_ability;
mii_poll_stop(gm);
/* May the status change before polling is re-enabled ? */
mii_poll_start(gm);
/* We read the Auxilliary Status Summary register */
phy_status = mii_read(gm, gm->phy_addr, MII_SR);
if ((phy_status ^ gm->phy_status) & (MII_SR_ASSC | MII_SR_LKS)) {
int full_duplex = 0;
int link_100 = 0;
int gigabit = 0;
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link state change, phy_status: 0x%04x\n",
gm->dev->name, phy_status);
#endif
gm->phy_status = phy_status;
/* Should we enable that in generic mode ? */
lpar_ability = mii_read(gm, gm->phy_addr, MII_ANLPA);
if (lpar_ability & MII_ANLPA_PAUS)
GM_BIS(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_SND_PAUSE_EN);
else
GM_BIC(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_SND_PAUSE_EN);
/* Link ? Check for speed and duplex */
if ((phy_status & MII_SR_LKS) && (phy_status & MII_SR_ASSC)) {
int restart = 0;
int aux_stat, link;
switch (gm->phy_type) {
case PHY_B5201:
case PHY_B5221:
aux_stat = mii_read(gm, gm->phy_addr, MII_BCM5201_AUXCTLSTATUS);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! BCM5201/5221 aux_stat: 0x%04x\n",
gm->dev->name, aux_stat);
#endif
full_duplex = ((aux_stat & MII_BCM5201_AUXCTLSTATUS_DUPLEX) != 0);
link_100 = ((aux_stat & MII_BCM5201_AUXCTLSTATUS_SPEED) != 0);
break;
case PHY_B5400:
case PHY_B5401:
case PHY_B5411:
aux_stat = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXSTATUS);
link = (aux_stat & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT;
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! BCM54xx aux_stat: 0x%04x (link mode: %d)\n",
gm->dev->name, aux_stat, link);
#endif
full_duplex = phy_BCM5400_link_table[link][0];
link_100 = phy_BCM5400_link_table[link][1];
gigabit = phy_BCM5400_link_table[link][2];
break;
case PHY_LXT971:
aux_stat = mii_read(gm, gm->phy_addr, MII_LXT971_STATUS2);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! LXT971 stat2: 0x%04x\n",
gm->dev->name, aux_stat);
#endif
full_duplex = ((aux_stat & MII_LXT971_STATUS2_FULLDUPLEX) != 0);
link_100 = ((aux_stat & MII_LXT971_STATUS2_SPEED) != 0);
break;
default:
full_duplex = (lpar_ability & MII_ANLPA_FDAM) != 0;
link_100 = (lpar_ability & MII_ANLPA_100M) != 0;
break;
}
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Full Duplex: %d, Speed: %s\n",
gm->dev->name, full_duplex,
gigabit ? "1000" : (link_100 ? "100" : "10"));
#endif
if (gigabit != gm->gigabit) {
gm->gigabit = gigabit;
gmac_set_gigabit_mode(gm, gm->gigabit);
restart = 1;
}
if (full_duplex != gm->full_duplex) {
gm->full_duplex = full_duplex;
gmac_set_duplex_mode(gm, gm->full_duplex);
restart = 1;
}
if (restart)
gmac_start_dma(gm);
} else if (!(phy_status & MII_SR_LKS)) {
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link down !\n", gm->dev->name);
#endif
}
}
}
/* Power management: stop PHY chip for suspend mode
*
* TODO: This will have to be modified is WOL is to be supported.
*/
static void
gmac_suspend(struct gmac* gm)
{
int data, timeout;
unsigned long flags;
gm->sleeping = 1;
netif_device_detach(gm->dev);
spin_lock_irqsave(&gm->lock, flags);
if (gm->opened) {
disable_irq(gm->dev->irq);
/* Stop polling PHY */
mii_poll_stop(gm);
}
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
spin_unlock_irqrestore(&gm->lock, flags);
if (gm->opened) {
int i;
/* Empty Tx ring of any remaining gremlins */
gmac_tx_cleanup(gm->dev, 1);
/* Empty Rx ring of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb_irq(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
}
/* Clear interrupts on 5201 */
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221)
mii_write(gm, gm->phy_addr, MII_BCM5201_INTERRUPT, 0);
/* Drive MDIO high */
GM_OUT(GM_MIF_CFG, 0);
/* Unchanged, don't ask me why */
data = mii_read(gm, gm->phy_addr, MII_ANLPA);
mii_write(gm, gm->phy_addr, MII_ANLPA, data);
/* Stop everything */
GM_OUT(GM_MAC_RX_CONFIG, 0);
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_XIF_CONFIG, 0);
GM_OUT(GM_TX_CONF, 0);
GM_OUT(GM_RX_CONF, 0);
/* Set MAC in reset state */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0)
break;
}
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
/* Superisolate PHY */
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221)
mii_write(gm, gm->phy_addr, MII_BCM5201_MULTIPHY,
MII_BCM5201_MULTIPHY_SUPERISOLATE);
/* Put MDIO in sane electric state. According to an obscure
* Apple comment, not doing so may let them drive some current
* during sleep and possibly damage BCM PHYs.
*/
GM_OUT(GM_MIF_CFG, GM_MIF_CFGBB);
GM_OUT(GM_MIF_BB_CLOCK, 0);
GM_OUT(GM_MIF_BB_DATA, 0);
GM_OUT(GM_MIF_BB_OUT_ENABLE, 0);
GM_OUT(GM_MAC_XIF_CONFIG,
GM_MAC_XIF_CONF_GMII_MODE|GM_MAC_XIF_CONF_MII_INT_LOOP);
(void)GM_IN(GM_MAC_XIF_CONFIG);
/* Unclock the GMAC chip */
gmac_set_power(gm, 0);
}
static void
gmac_resume(struct gmac *gm)
{
int data;
if (gmac_powerup_and_reset(gm->dev)) {
printk(KERN_ERR "%s: Couldn't revive gmac ethernet !\n", gm->dev->name);
return;
}
gm->sleeping = 0;
if (gm->opened) {
/* Create fresh rings */
gmac_init_rings(gm, 1);
/* re-initialize the MAC */
gmac_mac_init(gm, gm->dev->dev_addr);
/* re-initialize the multicast tables & promisc mode if any */
gmac_set_multicast(gm->dev);
}
/* Early enable Tx and Rx so that we are clocked */
GM_BIS(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221) {
data = mii_read(gm, gm->phy_addr, MII_BCM5201_MULTIPHY);
mii_write(gm, gm->phy_addr, MII_BCM5201_MULTIPHY,
data & ~MII_BCM5201_MULTIPHY_SUPERISOLATE);
}
mdelay(1);
if (gm->opened) {
/* restart polling PHY */
mii_interrupt(gm);
/* restart DMA operations */
gmac_start_dma(gm);
netif_device_attach(gm->dev);
enable_irq(gm->dev->irq);
} else {
/* Driver not opened, just leave things off. Note that
* we could be smart and superisolate the PHY when the
* driver is closed, but I won't do that unless I have
* a better understanding of some electrical issues with
* this PHY chip --BenH
*/
GM_OUT(GM_MAC_RX_CONFIG, 0);
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_XIF_CONFIG, 0);
GM_OUT(GM_TX_CONF, 0);
GM_OUT(GM_RX_CONF, 0);
}
}
static int
mii_do_reset_phy(struct gmac *gm, int phy_addr)
{
int mii_control, timeout;
mii_control = mii_read(gm, phy_addr, MII_CR);
mii_write(gm, phy_addr, MII_CR, mii_control | MII_CR_RST);
mdelay(10);
for (timeout = 100; timeout > 0; --timeout) {
mii_control = mii_read(gm, phy_addr, MII_CR);
if (mii_control == -1) {
printk(KERN_ERR "%s PHY died after reset !\n",
gm->dev->name);
return 1;
}
if ((mii_control & MII_CR_RST) == 0)
break;
mdelay(10);
}
if (mii_control & MII_CR_RST) {
printk(KERN_ERR "%s PHY reset timeout !\n", gm->dev->name);
return 1;
}
mii_write(gm, phy_addr, MII_CR, mii_control & ~MII_CR_ISOL);
return 0;
}
/* Here's a bunch of configuration routines for
* Broadcom PHYs used on various Mac models. Unfortunately,
* except for the 5201, Broadcom never sent me any documentation,
* so this is from my understanding of Apple's Open Firmware
* drivers and Darwin's implementation
*/
static void
mii_init_BCM5400(struct gmac *gm)
{
int data;
/* Configure for gigabit full duplex */
data = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL);
data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
mii_write(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL, data);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
mdelay(10);
/* Reset and configure cascaded 10/100 PHY */
mii_do_reset_phy(gm, 0x1f);
data = mii_read(gm, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
mii_write(gm, 0x1f, MII_BCM5201_MULTIPHY, data);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL);
data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
mii_write(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL, data);
}
static void
mii_init_BCM5401(struct gmac *gm)
{
int data;
int rev;
rev = mii_read(gm, gm->phy_addr, MII_ID1) & 0x000f;
if (rev == 0 || rev == 3) {
/* Some revisions of 5401 appear to need this
* initialisation sequence to disable, according
* to OF, "tap power management"
*
* WARNING ! OF and Darwin don't agree on the
* register addresses. OF seem to interpret the
* register numbers below as decimal
*/
mii_write(gm, gm->phy_addr, 0x18, 0x0c20);
mii_write(gm, gm->phy_addr, 0x17, 0x0012);
mii_write(gm, gm->phy_addr, 0x15, 0x1804);
mii_write(gm, gm->phy_addr, 0x17, 0x0013);
mii_write(gm, gm->phy_addr, 0x15, 0x1204);
mii_write(gm, gm->phy_addr, 0x17, 0x8006);
mii_write(gm, gm->phy_addr, 0x15, 0x0132);
mii_write(gm, gm->phy_addr, 0x17, 0x8006);
mii_write(gm, gm->phy_addr, 0x15, 0x0232);
mii_write(gm, gm->phy_addr, 0x17, 0x201f);
mii_write(gm, gm->phy_addr, 0x15, 0x0a20);
}
/* Configure for gigabit full duplex */
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
mdelay(10);
/* Reset and configure cascaded 10/100 PHY */
mii_do_reset_phy(gm, 0x1f);
data = mii_read(gm, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
mii_write(gm, 0x1f, MII_BCM5201_MULTIPHY, data);
}
static void
mii_init_BCM5411(struct gmac *gm)
{
int data;
/* Here's some more Apple black magic to setup
* some voltage stuffs.
*/
mii_write(gm, gm->phy_addr, 0x1c, 0x8c23);
mii_write(gm, gm->phy_addr, 0x1c, 0x8ca3);
mii_write(gm, gm->phy_addr, 0x1c, 0x8c23);
/* Here, Apple seems to want to reset it, do
* it as well
*/
mii_write(gm, gm->phy_addr, MII_CR, MII_CR_RST);
/* Start autoneg */
mii_write(gm, gm->phy_addr, MII_CR,
MII_CR_ASSE|MII_CR_FDM| /* Autospeed, full duplex */
MII_CR_RAN|
MII_CR_SPEEDSEL2 /* chip specific, gigabit enable ? */);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
}
static int
mii_lookup_and_reset(struct gmac *gm)
{
int i, mii_status, mii_control;
gm->phy_addr = -1;
gm->phy_type = PHY_UNKNOWN;
/* Hard reset the PHY */
feature_gmac_phy_reset(gm->of_node);
/* Find the PHY */
for(i=0; i<=31; i++) {
mii_control = mii_read(gm, i, MII_CR);
mii_status = mii_read(gm, i, MII_SR);
if (mii_control != -1 && mii_status != -1 &&
(mii_control != 0xffff || mii_status != 0xffff))
break;
}
gm->phy_addr = i;
if (gm->phy_addr > 31)
return 0;
/* Reset it */
if (mii_do_reset_phy(gm, gm->phy_addr))
goto fail;
/* Read the PHY ID */
gm->phy_id = (mii_read(gm, gm->phy_addr, MII_ID0) << 16) |
mii_read(gm, gm->phy_addr, MII_ID1);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: PHY ID: 0x%08x\n", gm->dev->name, gm->phy_id);
#endif
if ((gm->phy_id & MII_BCM5400_MASK) == MII_BCM5400_ID) {
gm->phy_type = PHY_B5400;
printk(KERN_INFO "%s: Found Broadcom BCM5400 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5400(gm);
} else if ((gm->phy_id & MII_BCM5401_MASK) == MII_BCM5401_ID) {
gm->phy_type = PHY_B5401;
printk(KERN_INFO "%s: Found Broadcom BCM5401 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5401(gm);
} else if ((gm->phy_id & MII_BCM5411_MASK) == MII_BCM5411_ID) {
gm->phy_type = PHY_B5411;
printk(KERN_INFO "%s: Found Broadcom BCM5411 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5411(gm);
} else if ((gm->phy_id & MII_BCM5201_MASK) == MII_BCM5201_ID) {
gm->phy_type = PHY_B5201;
printk(KERN_INFO "%s: Found Broadcom BCM5201 PHY\n", gm->dev->name);
} else if ((gm->phy_id & MII_BCM5221_MASK) == MII_BCM5221_ID) {
gm->phy_type = PHY_B5221;
printk(KERN_INFO "%s: Found Broadcom BCM5221 PHY\n", gm->dev->name);
} else if ((gm->phy_id & MII_LXT971_MASK) == MII_LXT971_ID) {
gm->phy_type = PHY_LXT971;
printk(KERN_INFO "%s: Found LevelOne LX971 PHY\n", gm->dev->name);
} else {
printk(KERN_WARNING "%s: Warning ! Unknown PHY ID 0x%08x, using generic mode...\n",
gm->dev->name, gm->phy_id);
}
return 1;
fail:
gm->phy_addr = -1;
return 0;
}
/*
* Setup the PHY autonegociation parameters
*
* Code to force the PHY duplex mode and speed should be
* added here
*/
static void
mii_setup_phy(struct gmac *gm)
{
int data;
/* Stop auto-negociation */
data = mii_read(gm, gm->phy_addr, MII_CR);
mii_write(gm, gm->phy_addr, MII_CR, data & ~MII_CR_ASSE);
/* Set advertisement to 10/100 and Half/Full duplex
* (full capabilities) */
data = mii_read(gm, gm->phy_addr, MII_ANA);
data |= MII_ANA_TXAM | MII_ANA_FDAM | MII_ANA_10M;
mii_write(gm, gm->phy_addr, MII_ANA, data);
/* Restart auto-negociation */
data = mii_read(gm, gm->phy_addr, MII_CR);
data |= MII_CR_ASSE;
mii_write(gm, gm->phy_addr, MII_CR, data);
data |= MII_CR_RAN;
mii_write(gm, gm->phy_addr, MII_CR, data);
}
/*
* Turn On/Off the gmac cell inside Uni-N
*
* ToDo: Add code to support powering down of the PHY.
*/
static void
gmac_set_power(struct gmac *gm, int power_up)
{
if (power_up) {
feature_set_gmac_power(gm->of_node, 1);
if (gm->pci_devfn != 0xff) {
u16 cmd;
/*
* Make sure PCI is correctly configured
*
* We use old pci_bios versions of the function since, by
* default, gmac is not powered up, and so will be absent
* from the kernel initial PCI lookup.
*
* Should be replaced by 2.4 new PCI mecanisms and really
* regiser the device.
*/
pcibios_read_config_word(gm->pci_bus, gm->pci_devfn,
PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE;
pcibios_write_config_word(gm->pci_bus, gm->pci_devfn,
PCI_COMMAND, cmd);
pcibios_write_config_byte(gm->pci_bus, gm->pci_devfn,
PCI_LATENCY_TIMER, 16);
pcibios_write_config_byte(gm->pci_bus, gm->pci_devfn,
PCI_CACHE_LINE_SIZE, 8);
}
} else {
feature_set_gmac_power(gm->of_node, 0);
}
}
/*
* Makes sure the GMAC cell is powered up, and reset it
*/
static int
gmac_powerup_and_reset(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int timeout;
/* turn on GB clock */
gmac_set_power(gm, 1);
/* Perform a software reset */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0) {
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
return 0;
}
}
printk(KERN_ERR "%s reset failed!\n", dev->name);
gmac_set_power(gm, 0);
gm->phy_type = 0;
return -1;
}
/*
* Set the MAC duplex mode.
*
* Side effect: stops Tx MAC
*/
static void
gmac_set_duplex_mode(struct gmac *gm, int full_duplex)
{
/* Stop Tx MAC */
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
while(GM_IN(GM_MAC_TX_CONFIG) & GM_MAC_TX_CONF_ENABLE)
;
if (full_duplex) {
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_IGNORE_CARRIER
| GM_MAC_TX_CONF_IGNORE_COLL);
GM_BIC(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_DISABLE_ECHO);
} else {
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_IGNORE_CARRIER
| GM_MAC_TX_CONF_IGNORE_COLL);
GM_BIS(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_DISABLE_ECHO);
}
}
/* Set the MAC gigabit mode. Side effect: stops Tx MAC */
static void
gmac_set_gigabit_mode(struct gmac *gm, int gigabit)
{
/* Stop Tx MAC */
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
while(GM_IN(GM_MAC_TX_CONFIG) & GM_MAC_TX_CONF_ENABLE)
;
if (gigabit) {
GM_BIS(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_GMII_MODE);
} else {
GM_BIC(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_GMII_MODE);
}
}
/*
* Initialize a bunch of registers to put the chip into a known
* and hopefully happy state
*/
static void
gmac_mac_init(struct gmac *gm, unsigned char *mac_addr)
{
int i, fifo_size;
/* Set random seed to low bits of MAC address */
GM_OUT(GM_MAC_RANDOM_SEED, mac_addr[5] | (mac_addr[4] << 8));
/* Configure the data path mode to MII/GII */
GM_OUT(GM_PCS_DATAPATH_MODE, GM_PCS_DATAPATH_MII);
/* Configure XIF to MII mode. Full duplex led is set
* by Apple, so...
*/
GM_OUT(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_TX_MII_OUT_EN
| GM_MAC_XIF_CONF_FULL_DPLX_LED);
/* Mask out all MAC interrupts */
GM_OUT(GM_MAC_TX_MASK, 0xffff);
GM_OUT(GM_MAC_RX_MASK, 0xffff);
GM_OUT(GM_MAC_CTRLSTAT_MASK, 0xff);
/* Setup bits of MAC */
GM_OUT(GM_MAC_SND_PAUSE, GM_MAC_SND_PAUSE_DEFAULT);
GM_OUT(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_RCV_PAUSE_EN);
/* Configure GEM DMA */
GM_OUT(GM_GCONF, GM_GCONF_BURST_SZ |
(31 << GM_GCONF_TXDMA_LIMIT_SHIFT) |
(31 << GM_GCONF_RXDMA_LIMIT_SHIFT));
GM_OUT(GM_TX_CONF,
(GM_TX_CONF_FIFO_THR_DEFAULT << GM_TX_CONF_FIFO_THR_SHIFT) |
NTX_CONF);
/* 34 byte offset for checksum computation. This works because ip_input() will clear out
* the skb->csum and skb->ip_summed fields and recompute the csum if IP options are
* present in the header. 34 == (ethernet header len) + sizeof(struct iphdr)
*/
GM_OUT(GM_RX_CONF,
(RX_OFFSET << GM_RX_CONF_FBYTE_OFF_SHIFT) |
(0x22 << GM_RX_CONF_CHK_START_SHIFT) |
(GM_RX_CONF_DMA_THR_DEFAULT << GM_RX_CONF_DMA_THR_SHIFT) |
NRX_CONF);
/* Configure other bits of MAC */
GM_OUT(GM_MAC_INTR_PKT_GAP0, GM_MAC_INTR_PKT_GAP0_DEFAULT);
GM_OUT(GM_MAC_INTR_PKT_GAP1, GM_MAC_INTR_PKT_GAP1_DEFAULT);
GM_OUT(GM_MAC_INTR_PKT_GAP2, GM_MAC_INTR_PKT_GAP2_DEFAULT);
GM_OUT(GM_MAC_MIN_FRAME_SIZE, GM_MAC_MIN_FRAME_SIZE_DEFAULT);
GM_OUT(GM_MAC_MAX_FRAME_SIZE, GM_MAC_MAX_FRAME_SIZE_DEFAULT);
GM_OUT(GM_MAC_PREAMBLE_LEN, GM_MAC_PREAMBLE_LEN_DEFAULT);
GM_OUT(GM_MAC_JAM_SIZE, GM_MAC_JAM_SIZE_DEFAULT);
GM_OUT(GM_MAC_ATTEMPT_LIMIT, GM_MAC_ATTEMPT_LIMIT_DEFAULT);
GM_OUT(GM_MAC_SLOT_TIME, GM_MAC_SLOT_TIME_DEFAULT);
GM_OUT(GM_MAC_CONTROL_TYPE, GM_MAC_CONTROL_TYPE_DEFAULT);
/* Setup MAC addresses, clear filters, clear hash table */
GM_OUT(GM_MAC_ADDR_NORMAL0, (mac_addr[4] << 8) + mac_addr[5]);
GM_OUT(GM_MAC_ADDR_NORMAL1, (mac_addr[2] << 8) + mac_addr[3]);
GM_OUT(GM_MAC_ADDR_NORMAL2, (mac_addr[0] << 8) + mac_addr[1]);
GM_OUT(GM_MAC_ADDR_ALT0, 0);
GM_OUT(GM_MAC_ADDR_ALT1, 0);
GM_OUT(GM_MAC_ADDR_ALT2, 0);
GM_OUT(GM_MAC_ADDR_CTRL0, 0x0001);
GM_OUT(GM_MAC_ADDR_CTRL1, 0xc200);
GM_OUT(GM_MAC_ADDR_CTRL2, 0x0180);
GM_OUT(GM_MAC_ADDR_FILTER0, 0);
GM_OUT(GM_MAC_ADDR_FILTER1, 0);
GM_OUT(GM_MAC_ADDR_FILTER2, 0);
GM_OUT(GM_MAC_ADDR_FILTER_MASK1_2, 0);
GM_OUT(GM_MAC_ADDR_FILTER_MASK0, 0);
for (i = 0; i < 27; ++i)
GM_OUT(GM_MAC_ADDR_FILTER_HASH0 + i, 0);
/* Clear stat counters */
GM_OUT(GM_MAC_COLLISION_CTR, 0);
GM_OUT(GM_MAC_FIRST_COLLISION_CTR, 0);
GM_OUT(GM_MAC_EXCS_COLLISION_CTR, 0);
GM_OUT(GM_MAC_LATE_COLLISION_CTR, 0);
GM_OUT(GM_MAC_DEFER_TIMER_COUNTER, 0);
GM_OUT(GM_MAC_PEAK_ATTEMPTS, 0);
GM_OUT(GM_MAC_RX_FRAME_CTR, 0);
GM_OUT(GM_MAC_RX_LEN_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_ALIGN_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_CRC_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_CODE_VIOLATION_CTR, 0);
/* default to half duplex */
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_RX_CONFIG, 0);
gmac_set_duplex_mode(gm, gm->full_duplex);
/* Setup pause thresholds */
fifo_size = GM_IN(GM_RX_FIFO_SIZE);
GM_OUT(GM_RX_PTH,
((fifo_size - ((GM_MAC_MAX_FRAME_SIZE_ALIGN + 8) * 2 / GM_RX_PTH_UNITS))
<< GM_RX_PTH_OFF_SHIFT) |
((fifo_size - ((GM_MAC_MAX_FRAME_SIZE_ALIGN + 8) * 3 / GM_RX_PTH_UNITS))
<< GM_RX_PTH_ON_SHIFT));
/* Setup interrupt blanking */
if (GM_IN(GM_BIF_CFG) & GM_BIF_CFG_M66EN)
GM_OUT(GM_RX_BLANK, (5 << GM_RX_BLANK_INTR_PACKETS_SHIFT)
| (8 << GM_RX_BLANK_INTR_TIME_SHIFT));
else
GM_OUT(GM_RX_BLANK, (5 << GM_RX_BLANK_INTR_PACKETS_SHIFT)
| (4 << GM_RX_BLANK_INTR_TIME_SHIFT));
}
/*
* Fill the Rx and Tx rings with good initial values, alloc
* fresh Rx skb's.
*/
static void
gmac_init_rings(struct gmac *gm, int from_irq)
{
int i;
struct sk_buff *skb;
unsigned char *data;
struct gmac_dma_desc *ring;
int gfp_flags = GFP_KERNEL;
if (from_irq || in_interrupt())
gfp_flags = GFP_ATOMIC;
/* init rx ring */
ring = (struct gmac_dma_desc *) gm->rxring;
memset(ring, 0, NRX * sizeof(struct gmac_dma_desc));
for (i = 0; i < NRX; ++i, ++ring) {
data = dummy_buf;
gm->rx_buff[i] = skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags);
if (skb != 0) {
skb->dev = gm->dev;
skb_put(skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(skb, RX_OFFSET);
data = skb->data - RX_OFFSET;
}
st_le32(&ring->lo_addr, virt_to_bus(data));
st_le32(&ring->size, RX_SZ_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET) << RX_SZ_SHIFT));
}
/* init tx ring */
ring = (struct gmac_dma_desc *) gm->txring;
memset(ring, 0, NTX * sizeof(struct gmac_dma_desc));
gm->next_rx = 0;
gm->next_tx = 0;
gm->tx_gone = 0;
/* set pointers in chip */
mb();
GM_OUT(GM_RX_DESC_HI, 0);
GM_OUT(GM_RX_DESC_LO, virt_to_bus(gm->rxring));
GM_OUT(GM_TX_DESC_HI, 0);
GM_OUT(GM_TX_DESC_LO, virt_to_bus(gm->txring));
}
/*
* Start the Tx and Rx DMA engines and enable interrupts
*
* Note: The various mdelay(20); come from Darwin implentation. Some
* tests (doc ?) are needed to replace those with something more intrusive.
*/
static void
gmac_start_dma(struct gmac *gm)
{
/* Enable Tx and Rx */
GM_BIS(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
/* Kick the receiver and enable interrupts */
GM_OUT(GM_RX_KICK, NRX);
GM_BIC(GM_IRQ_MASK, GM_IRQ_TX_INT_ME |
GM_IRQ_TX_ALL |
GM_IRQ_RX_DONE |
GM_IRQ_RX_TAG_ERR |
GM_IRQ_MAC_RX |
GM_IRQ_MIF |
GM_IRQ_BUS_ERROR);
}
/*
* Stop the Tx and Rx DMA engines after disabling interrupts
*
* Note: The various mdelay(20); come from Darwin implentation. Some
* tests (doc ?) are needed to replace those with something more intrusive.
*/
static void
gmac_stop_dma(struct gmac *gm)
{
/* disable interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
/* Enable Tx and Rx */
GM_BIC(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIC(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
}
/*
* Configure promisc mode and setup multicast hash table
* filter
*/
static void
gmac_set_multicast(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
struct dev_mc_list *dmi = dev->mc_list;
int i,j,k,b;
u32 crc;
int multicast_hash = 0;
int multicast_all = 0;
int promisc = 0;
if (gm->sleeping)
return;
/* Lock out others. */
netif_stop_queue(dev);
if (dev->flags & IFF_PROMISC)
promisc = 1;
else if ((dev->flags & IFF_ALLMULTI) /* || (dev->mc_count > XXX) */) {
multicast_all = 1;
} else {
u16 hash_table[16];
for(i = 0; i < 16; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 24; /* bit number in multicast_filter */
hash_table[j >> 4] |= 1 << (15 - (j & 0xf));
dmi = dmi->next;
}
for (i = 0; i < 16; i++)
GM_OUT(GM_MAC_ADDR_FILTER_HASH0 + (i*4), hash_table[i]);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
multicast_hash = 1;
}
if (promisc)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL);
if (multicast_hash)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
if (multicast_all)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL_MULTI);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL_MULTI);
/* Let us get going again. */
netif_wake_queue(dev);
}
/*
* Open the interface
*/
static int
gmac_open(struct net_device *dev)
{
int ret;
struct gmac *gm = (struct gmac *) dev->priv;
/* Power up and reset chip */
if (gmac_powerup_and_reset(dev))
return -EIO;
/* Get our interrupt */
ret = request_irq(dev->irq, gmac_interrupt, 0, dev->name, dev);
if (ret) {
printk(KERN_ERR "%s can't get irq %d\n", dev->name, dev->irq);
return ret;
}
gm->full_duplex = 0;
gm->phy_status = 0;
/* Find a PHY */
if (!mii_lookup_and_reset(gm))
printk(KERN_WARNING "%s WARNING ! Can't find PHY\n", dev->name);
/* Configure the PHY */
mii_setup_phy(gm);
/* Initialize the descriptor rings */
gmac_init_rings(gm, 0);
/* Initialize the MAC */
gmac_mac_init(gm, dev->dev_addr);
/* Initialize the multicast tables & promisc mode if any */
gmac_set_multicast(dev);
/*
* Check out PHY status and start auto-poll
*
* Note: do this before enabling interrutps
*/
mii_interrupt(gm);
/* Start the chip */
gmac_start_dma(gm);
gm->opened = 1;
return 0;
}
/*
* Close the interface
*/
static int
gmac_close(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i;
gm->opened = 0;
/* Stop chip and interrupts */
gmac_stop_dma(gm);
/* Stop polling PHY */
mii_poll_stop(gm);
/* Free interrupt */
free_irq(dev->irq, dev);
/* Shut down chip */
gmac_set_power(gm, 0);
gm->phy_type = 0;
/* Empty rings of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
for (i = 0; i < NTX; ++i) {
if (gm->tx_buff[i] != 0) {
dev_kfree_skb(gm->tx_buff[i]);
gm->tx_buff[i] = 0;
}
}
return 0;
}
#ifdef CONFIG_PMAC_PBOOK
int
gmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
struct gmac *gm;
/* XXX should handle more than one */
if (gmacs == NULL)
return PBOOK_SLEEP_OK;
gm = (struct gmac *) gmacs->priv;
if (!gm->opened)
return PBOOK_SLEEP_OK;
switch (when) {
case PBOOK_SLEEP_REQUEST:
break;
case PBOOK_SLEEP_REJECT:
break;
case PBOOK_SLEEP_NOW:
gmac_suspend(gm);
break;
case PBOOK_WAKE:
gmac_resume(gm);
break;
}
return PBOOK_SLEEP_OK;
}
#endif /* CONFIG_PMAC_PBOOK */
/*
* Handle a transmit timeout
*/
static void
gmac_tx_timeout(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i, timeout;
unsigned long flags;
if (gm->sleeping)
return;
printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
spin_lock_irqsave(&gm->lock, flags);
/* Stop chip */
gmac_stop_dma(gm);
/* Empty Tx ring of any remaining gremlins */
gmac_tx_cleanup(dev, 1);
/* Empty Rx ring of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb_irq(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
/* Perform a software reset */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0) {
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
break;
}
}
if (!timeout)
printk(KERN_ERR "%s reset chip failed !\n", dev->name);
/* Create fresh rings */
gmac_init_rings(gm, 1);
/* re-initialize the MAC */
gmac_mac_init(gm, dev->dev_addr);
/* re-initialize the multicast tables & promisc mode if any */
gmac_set_multicast(dev);
/* Restart PHY auto-poll */
mii_interrupt(gm);
/* Restart chip */
gmac_start_dma(gm);
spin_unlock_irqrestore(&gm->lock, flags);
netif_wake_queue(dev);
}
/*
* Add a packet to the transmit ring
*/
static int
gmac_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
volatile struct gmac_dma_desc *dp;
unsigned long flags;
int i;
if (gm->sleeping)
return 1;
spin_lock_irqsave(&gm->lock, flags);
i = gm->next_tx;
if (gm->tx_buff[i] != 0) {
/*
* Buffer is full, can't send this packet at the moment
*
* Can this ever happen in 2.4 ?
*/
netif_stop_queue(dev);
spin_unlock_irqrestore(&gm->lock, flags);
return 1;
}
gm->next_tx = (i + 1) & (NTX - 1);
gm->tx_buff[i] = skb;
dp = &gm->txring[i];
/* FIXME: Interrupt on all packet for now, change this to every N packet,
* with N to be adjusted
*/
dp->flags = TX_FL_INTERRUPT;
dp->hi_addr = 0;
st_le32(&dp->lo_addr, virt_to_bus(skb->data));
mb();
st_le32(&dp->size, TX_SZ_SOP | TX_SZ_EOP | skb->len);
mb();
GM_OUT(GM_TX_KICK, gm->next_tx);
if (gm->tx_buff[gm->next_tx] != 0)
netif_stop_queue(dev);
spin_unlock_irqrestore(&gm->lock, flags);
dev->trans_start = jiffies;
return 0;
}
/*
* Handle servicing of the transmit ring by deallocating used
* Tx packets and restoring flow control when necessary
*/
static void
gmac_tx_cleanup(struct net_device *dev, int force_cleanup)
{
struct gmac *gm = (struct gmac *) dev->priv;
volatile struct gmac_dma_desc *dp;
struct sk_buff *skb;
int gone, i;
i = gm->tx_gone;
/* Note: If i==gone, we empty the entire ring. This works because
* if the ring was empty, we wouldn't have received the interrupt
*/
do {
gone = GM_IN(GM_TX_COMP);
skb = gm->tx_buff[i];
if (skb == NULL)
break;
dp = &gm->txring[i];
if (force_cleanup)
++gm->stats.tx_errors;
else {
++gm->stats.tx_packets;
gm->stats.tx_bytes += skb->len;
}
gm->tx_buff[i] = NULL;
dev_kfree_skb_irq(skb);
if (++i >= NTX)
i = 0;
} while (force_cleanup || i != gone);
gm->tx_gone = i;
if (!force_cleanup && netif_queue_stopped(dev) &&
(gm->tx_buff[gm->next_tx] == 0))
netif_wake_queue(dev);
}
/*
* Handle servicing of receive ring
*/
static void
gmac_receive(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i = gm->next_rx;
volatile struct gmac_dma_desc *dp;
struct sk_buff *skb, *new_skb;
int len, flags, drop, last;
unsigned char *data;
u16 csum;
last = -1;
for (;;) {
dp = &gm->rxring[i];
/* Buffer not yet filled, no more Rx buffers to handle */
if (ld_le32(&dp->size) & RX_SZ_OWN)
break;
/* Get packet length, flags, etc... */
len = (ld_le32(&dp->size) >> 16) & 0x7fff;
flags = ld_le32(&dp->flags);
skb = gm->rx_buff[i];
drop = 0;
new_skb = NULL;
csum = ld_le32(&dp->size) & RX_SZ_CKSUM_MASK;
/* Handle errors */
if ((len < ETH_ZLEN)||(flags & RX_FL_CRC_ERROR)||(!skb)) {
++gm->stats.rx_errors;
if (len < ETH_ZLEN)
++gm->stats.rx_length_errors;
if (flags & RX_FL_CRC_ERROR)
++gm->stats.rx_crc_errors;
if (!skb) {
++gm->stats.rx_dropped;
skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (skb) {
gm->rx_buff[i] = skb;
skb->dev = dev;
skb_put(skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(skb, RX_OFFSET);
}
}
drop = 1;
} else {
/* Large packet, alloc a new skb for the ring */
if (len > RX_COPY_THRESHOLD) {
new_skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if(!new_skb) {
printk(KERN_INFO "%s: Out of SKBs in Rx, packet dropped !\n",
dev->name);
drop = 1;
++gm->stats.rx_dropped;
goto finish;
}
gm->rx_buff[i] = new_skb;
new_skb->dev = dev;
skb_put(new_skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(new_skb, RX_OFFSET);
skb_trim(skb, len);
} else {
/* Small packet, copy it to a new small skb */
struct sk_buff *copy_skb = dev_alloc_skb(len + RX_OFFSET);
if(!copy_skb) {
printk(KERN_INFO "%s: Out of SKBs in Rx, packet dropped !\n",
dev->name);
drop = 1;
++gm->stats.rx_dropped;
goto finish;
}
copy_skb->dev = dev;
skb_reserve(copy_skb, RX_OFFSET);
skb_put(copy_skb, len);
memcpy(copy_skb->data, skb->data, len);
new_skb = skb;
skb = copy_skb;
}
}
finish:
/* Need to drop packet ? */
if (drop) {
new_skb = skb;
skb = NULL;
}
/* Put back ring entry */
data = new_skb ? (new_skb->data - RX_OFFSET) : dummy_buf;
dp->hi_addr = 0;
st_le32(&dp->lo_addr, virt_to_bus(data));
mb();
st_le32(&dp->size, RX_SZ_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET) << RX_SZ_SHIFT));
/* Got Rx packet ? */
if (skb) {
/* Yes, baby, keep that hot ;) */
if(!(csum ^ 0xffff))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
skb->ip_summed = CHECKSUM_NONE;
skb->protocol = eth_type_trans(skb, dev);
gm->stats.rx_bytes += skb->len;
netif_rx(skb);
dev->last_rx = jiffies;
++gm->stats.rx_packets;
}
last = i;
if (++i >= NRX)
i = 0;
}
gm->next_rx = i;
if (last >= 0) {
mb();
GM_OUT(GM_RX_KICK, last & 0xfffffffc);
}
}
/*
* Service chip interrupts
*/
static void
gmac_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gmac *gm = (struct gmac *) dev->priv;
unsigned int status;
status = GM_IN(GM_IRQ_STATUS);
if (status & (GM_IRQ_BUS_ERROR | GM_IRQ_MIF))
GM_OUT(GM_IRQ_ACK, status & (GM_IRQ_BUS_ERROR | GM_IRQ_MIF));
if (status & (GM_IRQ_RX_TAG_ERR | GM_IRQ_BUS_ERROR)) {
printk(KERN_ERR "%s: IRQ Error status: 0x%08x\n",
dev->name, status);
}
if (status & GM_IRQ_MIF) {
spin_lock(&gm->lock);
mii_interrupt(gm);
spin_unlock(&gm->lock);
}
if (status & GM_IRQ_RX_DONE) {
spin_lock(&gm->lock);
gmac_receive(dev);
spin_unlock(&gm->lock);
}
if (status & (GM_IRQ_TX_INT_ME | GM_IRQ_TX_ALL)) {
spin_lock(&gm->lock);
gmac_tx_cleanup(dev, 0);
spin_unlock(&gm->lock);
}
}
/*
* Retreive some error stats from chip and return them
* to above layer
*/
static struct net_device_stats *
gmac_stats(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
struct net_device_stats *stats = &gm->stats;
if (gm && gm->opened && !gm->sleeping) {
stats->rx_crc_errors += GM_IN(GM_MAC_RX_CRC_ERR_CTR);
GM_OUT(GM_MAC_RX_CRC_ERR_CTR, 0);
stats->rx_frame_errors += GM_IN(GM_MAC_RX_ALIGN_ERR_CTR);
GM_OUT(GM_MAC_RX_ALIGN_ERR_CTR, 0);
stats->rx_length_errors += GM_IN(GM_MAC_RX_LEN_ERR_CTR);
GM_OUT(GM_MAC_RX_LEN_ERR_CTR, 0);
stats->tx_aborted_errors += GM_IN(GM_MAC_EXCS_COLLISION_CTR);
stats->collisions +=
(GM_IN(GM_MAC_EXCS_COLLISION_CTR) +
GM_IN(GM_MAC_LATE_COLLISION_CTR));
GM_OUT(GM_MAC_EXCS_COLLISION_CTR, 0);
GM_OUT(GM_MAC_LATE_COLLISION_CTR, 0);
}
return stats;
}
static int __init
gmac_probe(void)
{
struct device_node *gmac;
/* We bump use count during probe since get_free_page can sleep
* which can be a race condition if module is unloaded at this
* point.
*/
MOD_INC_USE_COUNT;
/*
* We don't use PCI scanning on pmac since the GMAC cell is disabled
* by default, and thus absent from kernel original PCI probing.
*/
for (gmac = find_compatible_devices("network", "gmac"); gmac != 0;
gmac = gmac->next)
gmac_probe1(gmac);
#ifdef CONFIG_PMAC_PBOOK
if (gmacs)
pmu_register_sleep_notifier(&gmac_sleep_notifier);
#endif
MOD_DEC_USE_COUNT;
return gmacs? 0: -ENODEV;
}
static void
gmac_probe1(struct device_node *gmac)
{
struct gmac *gm;
unsigned long tx_descpage, rx_descpage;
unsigned char *addr;
struct net_device *dev;
int i;
if (gmac->n_addrs < 1 || gmac->n_intrs < 1) {
printk(KERN_ERR "can't use GMAC %s: %d addrs and %d intrs\n",
gmac->full_name, gmac->n_addrs, gmac->n_intrs);
return;
}
addr = get_property(gmac, "local-mac-address", NULL);
if (addr == NULL) {
printk(KERN_ERR "Can't get mac-address for GMAC %s\n",
gmac->full_name);
return;
}
if (dummy_buf == NULL) {
dummy_buf = kmalloc(DUMMY_BUF_LEN, GFP_KERNEL);
if (dummy_buf == NULL) {
printk(KERN_ERR "GMAC: failed to allocated dummy buffer\n");
return;
}
}
tx_descpage = get_free_page(GFP_KERNEL);
if (tx_descpage == 0) {
printk(KERN_ERR "GMAC: can't get a page for tx descriptors\n");
return;
}
rx_descpage = get_free_page(GFP_KERNEL);
if (rx_descpage == 0) {
printk(KERN_ERR "GMAC: can't get a page for rx descriptors\n");
goto out_txdesc;
}
dev = init_etherdev(NULL, sizeof(struct gmac));
if (!dev) {
printk(KERN_ERR "GMAC: init_etherdev failed, out of memory\n");
goto out_rxdesc;
}
SET_MODULE_OWNER(dev);
gm = dev->priv;
dev->base_addr = gmac->addrs[0].address;
gm->regs = (volatile unsigned int *)
ioremap(gmac->addrs[0].address, 0x10000);
if (!gm->regs) {
printk(KERN_ERR "GMAC: unable to map I/O registers\n");
goto out_unreg;
}
dev->irq = gmac->intrs[0].line;
gm->dev = dev;
gm->of_node = gmac;
spin_lock_init(&gm->lock);
if (pci_device_from_OF_node(gmac, &gm->pci_bus, &gm->pci_devfn)) {
gm->pci_bus = gm->pci_devfn = 0xff;
printk(KERN_ERR "Can't locate GMAC PCI entry\n");
}
printk(KERN_INFO "%s: GMAC at", dev->name);
for (i = 0; i < 6; ++i) {
dev->dev_addr[i] = addr[i];
printk("%c%.2x", (i? ':': ' '), addr[i]);
}
printk(", driver " GMAC_VERSION "\n");
gm->tx_desc_page = tx_descpage;
gm->rx_desc_page = rx_descpage;
gm->rxring = (volatile struct gmac_dma_desc *) rx_descpage;
gm->txring = (volatile struct gmac_dma_desc *) tx_descpage;
gm->phy_addr = 0;
gm->opened = 0;
gm->sleeping = 0;
dev->open = gmac_open;
dev->stop = gmac_close;
dev->hard_start_xmit = gmac_xmit_start;
dev->get_stats = gmac_stats;
dev->set_multicast_list = &gmac_set_multicast;
dev->tx_timeout = &gmac_tx_timeout;
dev->watchdog_timeo = 5*HZ;
ether_setup(dev);
gm->next_gmac = gmacs;
gmacs = dev;
return;
out_unreg:
unregister_netdev(dev);
kfree(dev);
out_rxdesc:
free_page(rx_descpage);
out_txdesc:
free_page(tx_descpage);
}
MODULE_AUTHOR("Paul Mackerras/Ben Herrenschmidt");
MODULE_DESCRIPTION("PowerMac GMAC driver.");
MODULE_LICENSE("GPL");
static void __exit gmac_cleanup_module(void)
{
struct gmac *gm;
struct net_device *dev;
#ifdef CONFIG_PMAC_PBOOK
if (gmacs)
pmu_unregister_sleep_notifier(&gmac_sleep_notifier);
#endif
while ((dev = gmacs) != NULL) {
gm = (struct gmac *) dev->priv;
unregister_netdev(dev);
iounmap((void *) gm->regs);
free_page(gm->tx_desc_page);
free_page(gm->rx_desc_page);
gmacs = gm->next_gmac;
kfree(dev);
}
if (dummy_buf != NULL) {
kfree(dummy_buf);
dummy_buf = NULL;
}
}
module_init(gmac_probe);
module_exit(gmac_cleanup_module);
/*
* Definitions for the GMAC ethernet chip, used in the
* Apple G4 powermac.
*/
/*
* GMAC register definitions
*
* Note: We encode the register size the same way Apple does. I didn't copy
* Apple's source as-is to avoid licence issues however. That's really
* painful to re-define all those registers ...
* The constants themselves were partially found in OF code, in Sun
* GEM driver and in Apple's Darwin GMAC driver
*/
#define REG_SZ_8 0x00000000
#define REG_SZ_16 0x40000000
#define REG_SZ_32 0x80000000
#define REG_MASK 0x0FFFFFFF
/*
* Global registers
*/
/* -- 0x0004 RW Global configuration
* d: 0x00000042
*/
#define GM_GCONF (0x0004 | REG_SZ_16)
#define GM_GCONF_BURST_SZ 0x0001 /* 1: 64 bytes/burst, 0: infinite */
#define GM_GCONF_TXDMA_LIMIT_MASK 0x003e /* 5-1: No of 64 bytes transfers */
#define GM_GCONF_TXDMA_LIMIT_SHIFT 1
#define GM_GCONF_RXDMA_LIMIT_MASK 0x07c0 /* 10-6: No of 64 bytes transfers */
#define GM_GCONF_RXDMA_LIMIT_SHIFT 6
/* -- 0x000C R-C Global Interrupt status.
* d: 0x00000000 bits 0-6 cleared on read (C)
*/
#define GM_IRQ_STATUS (0x000c | REG_SZ_32)
#define GM_IRQ_TX_INT_ME 0x00000001 /* C Frame with INT_ME bit set in fifo */
#define GM_IRQ_TX_ALL 0x00000002 /* C TX descriptor ring empty */
#define GM_IRQ_TX_DONE 0x00000004 /* C moved from host to TX fifo */
#define GM_IRQ_RX_DONE 0x00000010 /* C moved from RX fifo to host */
#define GM_IRQ_RX_NO_BUF 0x00000020 /* C No RX buffer available */
#define GM_IRQ_RX_TAG_ERR 0x00000040 /* C RX tag error */
#define GM_IRQ_PCS 0x00002000 /* PCS interrupt ? */
#define GM_IRQ_MAC_TX 0x00004000 /* MAC tx register set */
#define GM_IRQ_MAC_RX 0x00008000 /* MAC rx register set */
#define GM_IRQ_MAC_CTRL 0x00010000 /* MAC control register set */
#define GM_IRQ_MIF 0x00020000 /* MIF status register set */
#define GM_IRQ_BUS_ERROR 0x00040000 /* Bus error status register set */
#define GM_IRQ_TX_COMP 0xfff80000 /* TX completion mask */
/* -- 0x0010 RW Interrupt mask.
* d: 0xFFFFFFFF
*/
#define GM_IRQ_MASK (0x0010 | REG_SZ_32)
/* -- 0x0014 WO Interrupt ack.
* Ack. "high" interrupts
*/
#define GM_IRQ_ACK (0x0014 | REG_SZ_32)
/* -- 0x001C WO Alias of status register (no auto-clear of "low" interrupts)
*/
#define GM_IRQ_ALT_STAT (0x001C | REG_SZ_32)
/* -- 0x1000 R-C PCI Error status register
*/
#define GM_PCI_ERR_STAT (0x1000 | REG_SZ_8)
#define GM_PCI_ERR_BAD_ACK 0x01 /* Bad Ack64 */
#define GM_PCI_ERR_TIMEOUT 0x02 /* Transaction timeout */
#define GM_PCI_ERR_OTHER 0x04 /* Any other PCI error */
/* -- 0x1004 RW PCI Error mask register
* d: 0xFFFFFFFF
*/
#define GM_PCI_ERR_MASK (0x1004 | REG_SZ_8)
/* -- 0x1008 RW BIF Configuration
* d: 0x00000000
*/
#define GM_BIF_CFG (0x1008 | REG_SZ_8)
#define GM_BIF_CFG_SLOWCLK 0x01 /* for parity error timing */
#define GM_BIF_CFG_HOST_64 0x02 /* 64-bit host */
#define GM_BIF_CFG_B64D_DIS 0x04 /* no 64-bit wide data cycle */
#define GM_BIF_CFG_M66EN 0x08 /* Read-only: sense if configured for 66MHz */
/* -- 0x100C RW BIF Diagnostic ???
*/
#define GM_BIF_DIAG (0x100C | REG_SZ_32)
#define GM_BIF_DIAG_BURST_STATE 0x007F0000
#define GM_BIF_DIAG_STATE_MACH 0xFF000000
/* -- 0x1010 RW Software reset
* Lower two bits reset TX and RX, both reset whole gmac. They come back
* to 0 when reset is complete.
* bit 2 force RSTOUT# pin when set (PHY reset)
*/
#define GM_RESET (0x1010 | REG_SZ_8)
#define GM_RESET_TX 0x01
#define GM_RESET_RX 0x02
#define GM_RESET_RSTOUT 0x04 /* PHY reset */
/*
* Tx DMA Registers
*/
/* -- 0x2000 RW Tx Kick
* d: 0x00000000 Written by the host with the last tx descriptor number +1 to send
*/
#define GM_TX_KICK (0x2000 | REG_SZ_16)
/* -- 0x2004 RW Tx configuration
* d: 0x118010 Controls operation of Tx DMA channel
*/
#define GM_TX_CONF (0x2004 | REG_SZ_32)
#define GM_TX_CONF_DMA_EN 0x00000001 /* Tx DMA enable */
#define GM_TX_CONF_RING_SZ_MASK 0x0000001e /* Tx desc ring size */
#define GM_TX_CONF_RING_SZ_SHIFT 1 /* Tx desc ring size shift */
#define GM_TX_CONF_FIFO_PIO 0x00000020 /* Tx fifo PIO select ??? */
#define GM_TX_CONF_FIFO_THR_MASK 0x001ffc00 /* Tx fifo threshold */
#define GM_TX_CONF_FIFO_THR_SHIFT 10 /* Tx fifo threshold shift */
#define GM_TX_CONF_FIFO_THR_DEFAULT 0x7ff /* Tx fifo threshold default */
#define GM_TX_CONF_PACED_MODE 0x00100000 /* 1: tx_all irq after last descriptor */
/* 0: tx_all irq when tx fifo empty */
#define GM_TX_RING_SZ_32 (0 << 1)
#define GM_TX_RING_SZ_64 (1 << 1)
#define GM_TX_RING_SZ_128 (2 << 1)
#define GM_TX_RING_SZ_256 (3 << 1)
#define GM_TX_RING_SZ_512 (4 << 1)
#define GM_TX_RING_SZ_1024 (5 << 1)
#define GM_TX_RING_SZ_2048 (6 << 1)
#define GM_TX_RING_SZ_4086 (7 << 1)
#define GM_TX_RING_SZ_8192 (8 << 1)
/* -- 0x2008 RW Tx descriptor ring base low
* -- 0x200C RW Tx descriptor ring base high
*
* Base of tx ring, must be 2k aligned
*/
#define GM_TX_DESC_LO (0x2008 | REG_SZ_32)
#define GM_TX_DESC_HI (0x200C | REG_SZ_32)
/* -- 0x2100 RW Tx Completion
* d: 0x00000000 Written by the gmac with the last tx descriptor number +1 sent
*/
#define GM_TX_COMP (0x2100 | REG_SZ_16)
/*
* Rx DMA registers
*/
/* -- 0x4000 RW Rx configuration
* d: 0x1000010 Controls operation of Rx DMA channel
*/
#define GM_RX_CONF (0x4000 | REG_SZ_32)
#define GM_RX_CONF_DMA_EN 0x00000001 /* Rx DMA enable */
#define GM_RX_CONF_RING_SZ_MASK 0x0000001e /* Rx desc ring size */
#define GM_RX_CONF_RING_SZ_SHIFT 1
#define GM_RX_CONF_BATCH_DIS 0x00000020 /* Rx batch disable */
#define GM_RX_CONF_FBYTE_OFF_MASK 0x00001c00 /* First byte offset (10-12) */
#define GM_RX_CONF_FBYTE_OFF_SHIFT 10
#define GM_RX_CONF_CHK_START_MASK 0x000FE000 /* Checksum start offset */
#define GM_RX_CONF_CHK_START_SHIFT 13
#define GM_RX_CONF_DMA_THR_MASK 0x07000000 /* Rx DMA threshold */
#define GM_RX_CONF_DMA_THR_SHIFT 24 /* Rx DMA threshold shift */
#define GM_RX_CONF_DMA_THR_DEFAULT 1 /* Rx DMA threshold default */
#define GM_RX_RING_SZ_32 (0 << 1)
#define GM_RX_RING_SZ_64 (1 << 1)
#define GM_RX_RING_SZ_128 (2 << 1)
#define GM_RX_RING_SZ_256 (3 << 1)
#define GM_RX_RING_SZ_512 (4 << 1)
#define GM_RX_RING_SZ_1024 (5 << 1)
#define GM_RX_RING_SZ_2048 (6 << 1)
#define GM_RX_RING_SZ_4086 (7 << 1)
#define GM_RX_RING_SZ_8192 (8 << 1)
/* -- 0x4004 RW Rx descriptor ring base low
* -- 0x4008 RW Rx descriptor ring base high
*
* Base of rx ring
*/
#define GM_RX_DESC_LO (0x4004 | REG_SZ_32)
#define GM_RX_DESC_HI (0x4008 | REG_SZ_32)
/* -- 0x4020 RW Rx pause threshold
* d: 0x000000f8
*
* Two PAUSE thresholds are used to define when PAUSE flow control frames are
* emitted by GEM. The granularity of these thresholds is in 64 byte increments.
* XOFF PAUSE frames use the pause_time value pre-programmed in the
* Send PAUSE MAC Register.
* XON PAUSE frames use a pause_time of 0.
*/
#define GM_RX_PTH (0x4020 | REG_SZ_32)
/*
* 0-8: XOFF PAUSE emitted when RX FIFO
* occupancy rises above this value (times 64 bytes)
*/
#define GM_RX_PTH_OFF_MASK 0x000001ff
#define GM_RX_PTH_OFF_SHIFT 0
/*
* 12-20: XON PAUSE emitted when RX FIFO
* occupancy falls below this value (times 64 bytes)
*/
#define GM_RX_PTH_ON_MASK 0x001ff000
#define GM_RX_PTH_ON_SHIFT 12
#define GM_RX_PTH_UNITS 64
/* -- 0x4100 RW Rx Kick
* d: 0x00000000 The last valid RX descriptor is the one right before the value of the
* register. Initially set to 0 on reset. RX descriptors must be posted
* in multiples of 4. The first descriptor should be cache-line aligned
* for best performance.
*/
#define GM_RX_KICK (0x4100 | REG_SZ_16)
/* -- 0x4104 RW Rx Completion
* d: 0x00000000 All descriptors upto but excluding the register value are ready to be
* processed by the host.
*/
#define GM_RX_COMP (0x4104 | REG_SZ_16)
/* -- 0x4108 RW Rx Blanking
* d: 0x00000000 Written by the gmac with the last tx descriptor number +1 sent
*
* Defines the values used for receive interrupt blanking.
* For INTR_TIME field, every count is 2048 PCI clock time. For 66 Mhz, each
* count is about 15 ns.
*/
#define GM_RX_BLANK (0x4108 | REG_SZ_32)
/*
* 0-8:no.of pkts to be recvd since the last RX_DONE
* interrupt, before a new interrupt
*/
#define GM_RX_BLANK_INTR_PACKETS_MASK 0x000001ff
#define GM_RX_BLANK_INTR_PACKETS_SHIFT 0
/*
* 12-19 : no. of clocks to be counted since the last
* RX_DONE interrupt, before a new interrupt
*/
#define GM_RX_BLANK_INTR_TIME_MASK 0x000ff000
#define GM_RX_BLANK_INTR_TIME_SHIFT 12
#define GM_RX_BLANK_UNITS 2048
/* -- 0x4120 RO Rx fifo size
*
* This 11-bit RO register indicates the size, in 64-byte multiples, of the
* RX FIFO. Software should use it to properly configure the PAUSE thresholds.
* The value read is 0x140, indicating a 20kbyte RX FIFO.
* -------------------------------------------------------------------------
*/
#define GM_RX_FIFO_SIZE (0x4120 | REG_SZ_16)
#define GM_RZ_FIFO_SIZE_UNITS 64
/*
* MAC regisers
*/
/* -- 0x6000 MAC Tx reset control
*/
#define GM_MAC_TX_RESET (0x6000 | REG_SZ_8)
#define GM_MAC_TX_RESET_NOW 0x01
/* -- 0x6004 MAC Rx reset control
*/
#define GM_MAC_RX_RESET (0x6004 | REG_SZ_8)
#define GM_MAC_RX_RESET_NOW 0x01
/* -- 0x6008 Send Pause command register
*/
#define GM_MAC_SND_PAUSE (0x6008 | REG_SZ_32)
#define GM_MAC_SND_PAUSE_TIME_MASK 0x0000ffff
#define GM_MAC_SND_PAUSE_TIME_SHIFT 0
#define GM_MAC_SND_PAUSE_NOW 0x00010000
#define GM_MAC_SND_PAUSE_DEFAULT 0x00001bf0
/* -- 0x6010 MAC transmit status
*/
#define GM_MAC_TX_STATUS (0x6010 | REG_SZ_16)
#define GM_MAC_TX_STAT_SENT 0x0001
#define GM_MAC_TX_STAT_UNDERRUN 0x0002
#define GM_MAC_TX_STAT_MAX_PKT_ERR 0x0004
#define GM_MAC_TX_STAT_NORM_COLL_OVF 0x0008
#define GM_MAC_TX_STAT_EXCS_COLL_OVF 0x0010
#define GM_MAC_TX_STAT_LATE_COLL_OVF 0x0020
#define GM_MAC_TX_STAT_FIRS_COLL_OVF 0x0040
#define GM_MAC_TX_STAT_DEFER_TIMER_OVF 0x0080
#define GM_MAC_TX_STAT_PEAK_ATTMP_OVF 0x0100
/* -- 0x6014 MAC receive status
*/
#define GM_MAC_RX_STATUS (0x6014 | REG_SZ_16)
#define GM_MAC_RX_STAT_RECEIVED 0x0001
#define GM_MAC_RX_STAT_FIFO_OVF 0x0002
#define GM_MAC_RX_STAT_FRAME_CTR_OVF 0x0004
#define GM_MAC_RX_STAT_ALIGN_ERR_OVF 0x0008
#define GM_MAC_RX_STAT_CRC_ERR_OVF 0x0010
#define GM_MAC_RX_STAT_LEN_ERR_OVF 0x0020
#define GM_MAC_RX_STAT_CODE_ERR_OVF 0x0040
/* -- 0x6018 MAC control & status
*/
#define GM_MAC_CTRLSTAT (0x6018 | REG_SZ_32)
#define GM_MAC_CTRLSTAT_PAUSE_RCVD 0x00000001
#define GM_MAC_CTRLSTAT_PAUSE_STATE 0x00000002
#define GM_MAC_CTRLSTAT_PAUSE_NOT 0x00000004
#define GM_MAC_CTRLSTAT_PAUSE_TIM_MASK 0xffff0000
#define GM_MAC_CTRLSTAT_PAUSE_TIM_SHIFT 16
/* -- 0x6020 MAC Tx mask
* Same bits as MAC Tx status
*/
#define GM_MAC_TX_MASK (0x6020 | REG_SZ_16)
/* -- 0x6024 MAC Rx mask
* Same bits as MAC Rx status
*/
#define GM_MAC_RX_MASK (0x6024 | REG_SZ_16)
/* -- 0x6028 MAC Control/Status mask
* Same bits as MAC control/status low order byte
*/
#define GM_MAC_CTRLSTAT_MASK (0x6024 | REG_SZ_8)
/* -- 0x6030 MAC Tx configuration
*/
#define GM_MAC_TX_CONFIG (0x6030 | REG_SZ_16)
#define GM_MAC_TX_CONF_ENABLE 0x0001
#define GM_MAC_TX_CONF_IGNORE_CARRIER 0x0002
#define GM_MAC_TX_CONF_IGNORE_COLL 0x0004
#define GM_MAC_TX_CONF_ENABLE_IPG0 0x0008
#define GM_MAC_TX_CONF_DONT_GIVEUP 0x0010
#define GM_MAC_TX_CONF_DONT_GIVEUP_NLMT 0x0020
#define GM_MAC_TX_CONF_NO_BACKOFF 0x0040
#define GM_MAC_TX_CONF_SLOWDOWN 0x0080
#define GM_MAC_TX_CONF_NO_FCS 0x0100
#define GM_MAC_TX_CONF_CARRIER_EXT 0x0200
/* -- 0x6034 MAC Rx configuration
*/
#define GM_MAC_RX_CONFIG (0x6034 | REG_SZ_16)
#define GM_MAC_RX_CONF_ENABLE 0x0001
#define GM_MAC_RX_CONF_STRIP_PAD 0x0002
#define GM_MAC_RX_CONF_STIP_FCS 0x0004
#define GM_MAC_RX_CONF_RX_ALL 0x0008
#define GM_MAC_RX_CONF_RX_ALL_MULTI 0x0010
#define GM_MAC_RX_CONF_HASH_ENABLE 0x0020
#define GM_MAC_RX_CONF_ADDR_FLTR_ENABLE 0x0040
#define GM_MAC_RX_CONF_PASS_ERROR_FRAM 0x0080
#define GM_MAC_RX_CONF_CARRIER_EXT 0x0100
/* -- 0x6038 MAC control configuration
*/
#define GM_MAC_CTRL_CONFIG (0x6038 | REG_SZ_8)
#define GM_MAC_CTRL_CONF_SND_PAUSE_EN 0x01
#define GM_MAC_CTRL_CONF_RCV_PAUSE_EN 0x02
#define GM_MAC_CTRL_CONF_PASS_CTRL_FRAM 0x04
/* -- 0x603c MAC XIF configuration */
#define GM_MAC_XIF_CONFIG (0x603c | REG_SZ_8)
#define GM_MAC_XIF_CONF_TX_MII_OUT_EN 0x01
#define GM_MAC_XIF_CONF_MII_INT_LOOP 0x02
#define GM_MAC_XIF_CONF_DISABLE_ECHO 0x04
#define GM_MAC_XIF_CONF_GMII_MODE 0x08
#define GM_MAC_XIF_CONF_MII_BUFFER_EN 0x10
#define GM_MAC_XIF_CONF_LINK_LED 0x20
#define GM_MAC_XIF_CONF_FULL_DPLX_LED 0x40
/* -- 0x6040 MAC inter-packet GAP 0
*/
#define GM_MAC_INTR_PKT_GAP0 (0x6040 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP0_DEFAULT 0x00
/* -- 0x6044 MAC inter-packet GAP 1
*/
#define GM_MAC_INTR_PKT_GAP1 (0x6044 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP1_DEFAULT 0x08
/* -- 0x6048 MAC inter-packet GAP 2
*/
#define GM_MAC_INTR_PKT_GAP2 (0x6048 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP2_DEFAULT 0x04
/* -- 604c MAC slot time
*/
#define GM_MAC_SLOT_TIME (0x604C | REG_SZ_16)
#define GM_MAC_SLOT_TIME_DEFAULT 0x0040
/* -- 6050 MAC minimum frame size
*/
#define GM_MAC_MIN_FRAME_SIZE (0x6050 | REG_SZ_16)
#define GM_MAC_MIN_FRAME_SIZE_DEFAULT 0x0040
/* -- 6054 MAC maximum frame size
*/
#define GM_MAC_MAX_FRAME_SIZE (0x6054 | REG_SZ_16)
#define GM_MAC_MAX_FRAME_SIZE_DEFAULT 0x05ee
#define GM_MAC_MAX_FRAME_SIZE_ALIGN 0x5f0
/* -- 6058 MAC preamble length
*/
#define GM_MAC_PREAMBLE_LEN (0x6058 | REG_SZ_16)
#define GM_MAC_PREAMBLE_LEN_DEFAULT 0x0007
/* -- 605c MAC jam size
*/
#define GM_MAC_JAM_SIZE (0x605c | REG_SZ_8)
#define GM_MAC_JAM_SIZE_DEFAULT 0x04
/* -- 6060 MAC attempt limit
*/
#define GM_MAC_ATTEMPT_LIMIT (0x6060 | REG_SZ_8)
#define GM_MAC_ATTEMPT_LIMIT_DEFAULT 0x10
/* -- 6064 MAC control type
*/
#define GM_MAC_CONTROL_TYPE (0x6064 | REG_SZ_16)
#define GM_MAC_CONTROL_TYPE_DEFAULT 0x8808
/* -- 6080 MAC address 15..0
* -- 6084 MAC address 16..31
* -- 6088 MAC address 32..47
*/
#define GM_MAC_ADDR_NORMAL0 (0x6080 | REG_SZ_16)
#define GM_MAC_ADDR_NORMAL1 (0x6084 | REG_SZ_16)
#define GM_MAC_ADDR_NORMAL2 (0x6088 | REG_SZ_16)
/* -- 608c MAC alternate address 15..0
* -- 6090 MAC alternate address 16..31
* -- 6094 MAC alternate address 32..47
*/
#define GM_MAC_ADDR_ALT0 (0x608c | REG_SZ_16)
#define GM_MAC_ADDR_ALT1 (0x6090 | REG_SZ_16)
#define GM_MAC_ADDR_ALT2 (0x6094 | REG_SZ_16)
/* -- 6098 MAC control address 15..0
* -- 609c MAC control address 16..31
* -- 60a0 MAC control address 32..47
*/
#define GM_MAC_ADDR_CTRL0 (0x6098 | REG_SZ_16)
#define GM_MAC_ADDR_CTRL1 (0x609c | REG_SZ_16)
#define GM_MAC_ADDR_CTRL2 (0x60a0 | REG_SZ_16)
/* -- 60a4 MAC address filter (0_0)
* -- 60a8 MAC address filter (0_1)
* -- 60ac MAC address filter (0_2)
*/
#define GM_MAC_ADDR_FILTER0 (0x60a4 | REG_SZ_16)
#define GM_MAC_ADDR_FILTER1 (0x60a8 | REG_SZ_16)
#define GM_MAC_ADDR_FILTER2 (0x60ac | REG_SZ_16)
/* -- 60b0 MAC address filter mask 1,2
*/
#define GM_MAC_ADDR_FILTER_MASK1_2 (0x60b0 | REG_SZ_8)
/* -- 60b4 MAC address filter mask 0
*/
#define GM_MAC_ADDR_FILTER_MASK0 (0x60b4 | REG_SZ_16)
/* -- [60c0 .. 60fc] MAC hash table
*/
#define GM_MAC_ADDR_FILTER_HASH0 (0x60c0 | REG_SZ_16)
/* -- 6100 MAC normal collision counter
*/
#define GM_MAC_COLLISION_CTR (0x6100 | REG_SZ_16)
/* -- 6104 MAC 1st successful collision counter
*/
#define GM_MAC_FIRST_COLLISION_CTR (0x6104 | REG_SZ_16)
/* -- 6108 MAC excess collision counter
*/
#define GM_MAC_EXCS_COLLISION_CTR (0x6108 | REG_SZ_16)
/* -- 610c MAC late collision counter
*/
#define GM_MAC_LATE_COLLISION_CTR (0x610c | REG_SZ_16)
/* -- 6110 MAC defer timer counter
*/
#define GM_MAC_DEFER_TIMER_COUNTER (0x6110 | REG_SZ_16)
/* -- 6114 MAC peak attempts
*/
#define GM_MAC_PEAK_ATTEMPTS (0x6114 | REG_SZ_16)
/* -- 6118 MAC Rx frame counter
*/
#define GM_MAC_RX_FRAME_CTR (0x6118 | REG_SZ_16)
/* -- 611c MAC Rx length error counter
*/
#define GM_MAC_RX_LEN_ERR_CTR (0x611c | REG_SZ_16)
/* -- 6120 MAC Rx alignment error counter
*/
#define GM_MAC_RX_ALIGN_ERR_CTR (0x6120 | REG_SZ_16)
/* -- 6124 MAC Rx CRC error counter
*/
#define GM_MAC_RX_CRC_ERR_CTR (0x6124 | REG_SZ_16)
/* -- 6128 MAC Rx code violation error counter
*/
#define GM_MAC_RX_CODE_VIOLATION_CTR (0x6128 | REG_SZ_16)
/* -- 6130 MAC random number seed
*/
#define GM_MAC_RANDOM_SEED (0x6130 | REG_SZ_16)
/* -- 6134 MAC state machine
*/
#define GM_MAC_STATE_MACHINE (0x6134 | REG_SZ_8)
/*
* MIF registers
*/
/* -- 0x6200 RW MIF bit bang clock
*/
#define GM_MIF_BB_CLOCK (0x6200 | REG_SZ_8)
/* -- 0x6204 RW MIF bit bang data
*/
#define GM_MIF_BB_DATA (0x6204 | REG_SZ_8)
/* -- 0x6208 RW MIF bit bang output enable
*/
#define GM_MIF_BB_OUT_ENABLE (0x6208 | REG_SZ_8)
/* -- 0x620c RW MIF frame control & data
*/
#define GM_MIF_FRAME_CTL_DATA (0x620c | REG_SZ_32)
#define GM_MIF_FRAME_START_MASK 0xc0000000
#define GM_MIF_FRAME_START_SHIFT 30
#define GM_MIF_FRAME_OPCODE_MASK 0x30000000
#define GM_MIF_FRAME_OPCODE_SHIFT 28
#define GM_MIF_FRAME_PHY_ADDR_MASK 0x0f800000
#define GM_MIF_FRAME_PHY_ADDR_SHIFT 23
#define GM_MIF_FRAME_REG_ADDR_MASK 0x007c0000
#define GM_MIF_FRAME_REG_ADDR_SHIFT 18
#define GM_MIF_FRAME_TURNAROUND_HI 0x00020000
#define GM_MIF_FRAME_TURNAROUND_LO 0x00010000
#define GM_MIF_FRAME_DATA_MASK 0x0000ffff
#define GM_MIF_FRAME_DATA_SHIFT 0
/* -- 0x6210 RW MIF config reg
*/
#define GM_MIF_CFG (0x6210 | REG_SZ_16)
#define GM_MIF_CFGPS 0x00000001 /* PHY Select */
#define GM_MIF_CFGPE 0x00000002 /* Poll Enable */
#define GM_MIF_CFGBB 0x00000004 /* Bit Bang Enable */
#define GM_MIF_CFGPR_MASK 0x000000f8 /* Poll Register address */
#define GM_MIF_CFGPR_SHIFT 3
#define GM_MIF_CFGM0 0x00000100 /* MDIO_0 Data / MDIO_0 attached */
#define GM_MIF_CFGM1 0x00000200 /* MDIO_1 Data / MDIO_1 attached */
#define GM_MIF_CFGPD_MASK 0x00007c00 /* Poll Device PHY address */
#define GM_MIF_CFGPD_SHIFT 10
#define GM_MIF_POLL_DELAY 200
#define GM_INTERNAL_PHYAD 1 /* PHY address for int. transceiver */
#define GM_EXTERNAL_PHYAD 0 /* PHY address for ext. transceiver */
/* -- 0x6214 RW MIF interrupt mask reg
* same as basic/status Register
*/
#define GM_MIF_IRQ_MASK (0x6214 | REG_SZ_16)
/* -- 0x6218 RW MIF basic/status reg
* The Basic portion of this register indicates the last
* value of the register read indicated in the POLL REG field
* of the Configuration Register.
* The Status portion indicates bit(s) that have changed.
* The MIF Mask register is corresponding to this register in
* terms of the bit(s) that need to be masked for generating
* interrupt on the MIF Interrupt Bit of the Global Status Rgister.
*/
#define GM_MIF_STATUS (0x6218 | REG_SZ_32)
#define GM_MIF_STATUS_MASK 0x0000ffff /* 0-15 : Status */
#define GM_MIF_BASIC_MASK 0xffff0000 /* 16-31 : Basic register */
/*
* PCS link registers
*/
/* -- 0x9000 RW PCS mii control reg
*/
#define GM_PCS_CONTROL (0x9000 | REG_SZ_16)
/* -- 0x9004 RW PCS mii status reg
*/
#define GM_PCS_STATUS (0x9004 | REG_SZ_16)
/* -- 0x9008 RW PCS mii advertisement
*/
#define GM_PCS_ADVERTISEMENT (0x9008 | REG_SZ_16)
/* -- 0x900c RW PCS mii LP ability
*/
#define GM_PCS_ABILITY (0x900c | REG_SZ_16)
/* -- 0x9010 RW PCS config
*/
#define GM_PCS_CONFIG (0x9010 | REG_SZ_8)
/* -- 0x9014 RW PCS state machine
*/
#define GM_PCS_STATE_MACHINE (0x9014 | REG_SZ_32)
/* -- 0x9018 RW PCS interrupt status
*/
#define GM_PCS_IRQ_STATUS (0x9018 | REG_SZ_8)
/* -- 0x9050 RW PCS datapath mode
*/
#define GM_PCS_DATAPATH_MODE (0x9050 | REG_SZ_8)
#define GM_PCS_DATAPATH_INTERNAL 0x01 /* Internal serial link */
#define GM_PCS_DATAPATH_SERDES 0x02 /* 10-bit Serdes interface */
#define GM_PCS_DATAPATH_MII 0x04 /* Select mii/gmii mode */
#define GM_PCS_DATAPATH_GMII_OUT 0x08 /* serial mode only, copy data to gmii */
/* -- 0x9054 RW PCS serdes control
*/
#define GM_PCS_SERDES_CTRL (0x9054 | REG_SZ_8)
/* -- 0x9058 RW PCS serdes output select
*/
#define GM_PCS_SERDES_SELECT (0x9058 | REG_SZ_8)
/* -- 0x905c RW PCS serdes state
*/
#define GM_PCS_SERDES_STATE (0x905c | REG_SZ_8)
/*
* PHY registers
*/
/*
* Standard PHY registers (from de4x5.h)
*/
#define MII_CR 0x00 /* MII Management Control Register */
#define MII_SR 0x01 /* MII Management Status Register */
#define MII_ID0 0x02 /* PHY Identifier Register 0 */
#define MII_ID1 0x03 /* PHY Identifier Register 1 */
#define MII_ANA 0x04 /* Auto Negotiation Advertisement */
#define MII_ANLPA 0x05 /* Auto Negotiation Link Partner Ability */
#define MII_ANE 0x06 /* Auto Negotiation Expansion */
#define MII_ANP 0x07 /* Auto Negotiation Next Page TX */
/*
** MII Management Control Register
*/
#define MII_CR_RST 0x8000 /* RESET the PHY chip */
#define MII_CR_LPBK 0x4000 /* Loopback enable */
#define MII_CR_SPD 0x2000 /* 0: 10Mb/s; 1: 100Mb/s */
#define MII_CR_10 0x0000 /* Set 10Mb/s */
#define MII_CR_100 0x2000 /* Set 100Mb/s */
#define MII_CR_ASSE 0x1000 /* Auto Speed Select Enable */
#define MII_CR_PD 0x0800 /* Power Down */
#define MII_CR_ISOL 0x0400 /* Isolate Mode */
#define MII_CR_RAN 0x0200 /* Restart Auto Negotiation */
#define MII_CR_FDM 0x0100 /* Full Duplex Mode */
#define MII_CR_CTE 0x0080 /* Collision Test Enable */
#define MII_CR_SPEEDSEL2 0x0040 /* Speed selection 2 on BCM */
/*
** MII Management Status Register
*/
#define MII_SR_T4C 0x8000 /* 100BASE-T4 capable */
#define MII_SR_TXFD 0x4000 /* 100BASE-TX Full Duplex capable */
#define MII_SR_TXHD 0x2000 /* 100BASE-TX Half Duplex capable */
#define MII_SR_TFD 0x1000 /* 10BASE-T Full Duplex capable */
#define MII_SR_THD 0x0800 /* 10BASE-T Half Duplex capable */
#define MII_SR_ASSC 0x0020 /* Auto Speed Selection Complete*/
#define MII_SR_RFD 0x0010 /* Remote Fault Detected */
#define MII_SR_ANC 0x0008 /* Auto Negotiation capable */
#define MII_SR_LKS 0x0004 /* Link Status */
#define MII_SR_JABD 0x0002 /* Jabber Detect */
#define MII_SR_XC 0x0001 /* Extended Capabilities */
/*
** MII Management Auto Negotiation Advertisement Register
*/
#define MII_ANA_TAF 0x03e0 /* Technology Ability Field */
#define MII_ANA_T4AM 0x0200 /* T4 Technology Ability Mask */
#define MII_ANA_TXAM 0x0180 /* TX Technology Ability Mask */
#define MII_ANA_FDAM 0x0140 /* Full Duplex Technology Ability Mask */
#define MII_ANA_HDAM 0x02a0 /* Half Duplex Technology Ability Mask */
#define MII_ANA_100M 0x0380 /* 100Mb Technology Ability Mask */
#define MII_ANA_10M 0x0060 /* 10Mb Technology Ability Mask */
#define MII_ANA_CSMA 0x0001 /* CSMA-CD Capable */
/*
** MII Management Auto Negotiation Remote End Register
*/
#define MII_ANLPA_NP 0x8000 /* Next Page (Enable) */
#define MII_ANLPA_ACK 0x4000 /* Remote Acknowledge */
#define MII_ANLPA_RF 0x2000 /* Remote Fault */
#define MII_ANLPA_TAF 0x03e0 /* Technology Ability Field */
#define MII_ANLPA_T4AM 0x0200 /* T4 Technology Ability Mask */
#define MII_ANLPA_TXAM 0x0180 /* TX Technology Ability Mask */
#define MII_ANLPA_FDAM 0x0140 /* Full Duplex Technology Ability Mask */
#define MII_ANLPA_HDAM 0x02a0 /* Half Duplex Technology Ability Mask */
#define MII_ANLPA_100M 0x0380 /* 100Mb Technology Ability Mask */
#define MII_ANLPA_10M 0x0060 /* 10Mb Technology Ability Mask */
#define MII_ANLPA_CSMA 0x0001 /* CSMA-CD Capable */
#define MII_ANLPA_PAUS 0x0400
/* Generic PHYs
*
* These GENERIC values assumes that the PHY devices follow 802.3u and
* allow parallel detection to set the link partner ability register.
* Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
*/
/*
* Model-specific PHY registers
*
* Note: Only the BCM5201 is described here for now. I'll add the 5400 once
* I see a machine using it in real world.
*/
/* Supported PHYs (phy_type field ) */
#define PHY_B5400 0x5400
#define PHY_B5401 0x5401
#define PHY_B5411 0x5411
#define PHY_B5201 0x5201
#define PHY_B5221 0x5221
#define PHY_LXT971 0x0971
#define PHY_UNKNOWN 0
/* Identification (for multi-PHY) */
#define MII_BCM5201_OUI 0x001018
#define MII_BCM5201_MODEL 0x21
#define MII_BCM5201_REV 0x01
#define MII_BCM5201_ID ((MII_BCM5201_OUI << 10) | (MII_BCM5201_MODEL << 4))
#define MII_BCM5201_MASK 0xfffffff0
#define MII_BCM5221_OUI 0x001018
#define MII_BCM5221_MODEL 0x1e
#define MII_BCM5221_REV 0x00
#define MII_BCM5221_ID ((MII_BCM5221_OUI << 10) | (MII_BCM5221_MODEL << 4))
#define MII_BCM5221_MASK 0xfffffff0
#define MII_BCM5400_OUI 0x000818
#define MII_BCM5400_MODEL 0x04
#define MII_BCM5400_REV 0x01
#define MII_BCM5400_ID ((MII_BCM5400_OUI << 10) | (MII_BCM5400_MODEL << 4))
#define MII_BCM5400_MASK 0xfffffff0
#define MII_BCM5401_OUI 0x000818
#define MII_BCM5401_MODEL 0x05
#define MII_BCM5401_REV 0x01
#define MII_BCM5401_ID ((MII_BCM5401_OUI << 10) | (MII_BCM5401_MODEL << 4))
#define MII_BCM5401_MASK 0xfffffff0
#define MII_BCM5411_OUI 0x000818
#define MII_BCM5411_MODEL 0x07
#define MII_BCM5411_REV 0x01
#define MII_BCM5411_ID ((MII_BCM5411_OUI << 10) | (MII_BCM5411_MODEL << 4))
#define MII_BCM5411_MASK 0xfffffff0
#define MII_LXT971_OUI 0x0004de
#define MII_LXT971_MODEL 0x0e
#define MII_LXT971_REV 0x00
#define MII_LXT971_ID ((MII_LXT971_OUI << 10) | (MII_LXT971_MODEL << 4))
#define MII_LXT971_MASK 0xfffffff0
/* BCM5201 AUX STATUS register */
#define MII_BCM5201_AUXCTLSTATUS 0x18
#define MII_BCM5201_AUXCTLSTATUS_DUPLEX 0x0001
#define MII_BCM5201_AUXCTLSTATUS_SPEED 0x0002
/* MII BCM5201 MULTIPHY interrupt register */
#define MII_BCM5201_INTERRUPT 0x1A
#define MII_BCM5201_INTERRUPT_INTENABLE 0x4000
#define MII_BCM5201_AUXMODE2 0x1B
#define MII_BCM5201_AUXMODE2_LOWPOWER 0x0008
#define MII_BCM5201_MULTIPHY 0x1E
/* MII BCM5201 MULTIPHY register bits */
#define MII_BCM5201_MULTIPHY_SERIALMODE 0x0002
#define MII_BCM5201_MULTIPHY_SUPERISOLATE 0x0008
/* MII BCM5400 1000-BASET Control register */
#define MII_BCM5400_GB_CONTROL 0x09
#define MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP 0x0200
/* MII BCM5400 AUXCONTROL register */
#define MII_BCM5400_AUXCONTROL 0x18
#define MII_BCM5400_AUXCONTROL_PWR10BASET 0x0004
/* MII BCM5400 AUXSTATUS register */
#define MII_BCM5400_AUXSTATUS 0x19
#define MII_BCM5400_AUXSTATUS_LINKMODE_MASK 0x0700
#define MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT 8
/* MII LXT971 STATUS2 register */
#define MII_LXT971_STATUS2 0x11
#define MII_LXT971_STATUS2_SPEED 0x4000
#define MII_LXT971_STATUS2_LINK 0x0400
#define MII_LXT971_STATUS2_FULLDUPLEX 0x0200
#define MII_LXT971_STATUS2_AUTONEG_COMPLETE 0x0080
/*
* DMA descriptors
*/
/*
* Descriptor counts and buffer sizes
*/
#define NTX 64 /* must be power of 2 */
#define NTX_CONF GM_TX_RING_SZ_64
#define NRX 64 /* must be power of 2 */
#define NRX_CONF GM_RX_RING_SZ_64
#define RX_COPY_THRESHOLD 256
#define GMAC_BUFFER_ALIGN 32 /* Align on a cache line */
#define RX_BUF_ALLOC_SIZE (ETH_FRAME_LEN + GMAC_BUFFER_ALIGN + 2)
#define RX_OFFSET 2
/*
* Definitions of Rx and Tx descriptors
*/
struct gmac_dma_desc {
unsigned int size; /* data size and OWN bit */
unsigned int flags; /* flags */
unsigned int lo_addr; /* phys addr, low 32 bits */
unsigned int hi_addr;
};
/*
* Rx bits
*/
/* Bits in size */
#define RX_SZ_OWN 0x80000000 /* 1 = owned by chip */
#define RX_SZ_MASK 0x7FFF0000
#define RX_SZ_SHIFT 16
#define RX_SZ_CKSUM_MASK 0x0000FFFF
/* Bits in flags */
#define RX_FL_CRC_ERROR 0x40000000
#define RX_FL_ALT_ADDR 0x20000000 /* Packet rcv. from alt MAC address */
/*
* Tx bits
*/
/* Bits in size */
#define TX_SZ_MASK 0x00007FFF
#define TX_SZ_CRC_MASK 0x00FF8000
#define TX_SZ_CRC_STUFF 0x1F000000
#define TX_SZ_CRC_ENABLE 0x20000000
#define TX_SZ_EOP 0x40000000
#define TX_SZ_SOP 0x80000000
/* Bits in flags */
#define TX_FL_INTERRUPT 0x00000001
#define TX_FL_NO_CRC 0x00000002
/*
* Other stuffs
*/
struct gmac {
volatile unsigned int *regs; /* hardware registers, virtual addr */
struct net_device *dev;
struct device_node *of_node;
unsigned long tx_desc_page; /* page for DMA descriptors */
unsigned long rx_desc_page; /* page for DMA descriptors */
volatile struct gmac_dma_desc *rxring;
struct sk_buff *rx_buff[NRX];
int next_rx;
volatile struct gmac_dma_desc *txring;
struct sk_buff *tx_buff[NTX];
int next_tx;
int tx_gone;
int phy_addr;
unsigned int phy_id;
int phy_type;
int phy_status; /* Cached PHY status */
int full_duplex; /* Current set to full duplex */
int gigabit; /* Current set to 1000BT */
struct net_device_stats stats;
u8 pci_bus;
u8 pci_devfn;
spinlock_t lock;
int opened;
int sleeping;
struct net_device *next_gmac;
};
/* Register access macros. We hope the preprocessor will be smart enough
* to optimize them into one single access instruction
*/
#define GM_OUT(reg, v) (((reg) & REG_SZ_32) ? out_le32(gm->regs + \
(((reg) & REG_MASK)>>2), (v)) \
: (((reg) & REG_SZ_16) ? out_le16((volatile u16 *) \
(gm->regs + (((reg) & REG_MASK)>>2)), (v)) \
: out_8((volatile u8 *)(gm->regs + \
(((reg) & REG_MASK)>>2)), (v))))
#define GM_IN(reg) (((reg) & REG_SZ_32) ? in_le32(gm->regs + \
(((reg) & REG_MASK)>>2)) \
: (((reg) & REG_SZ_16) ? in_le16((volatile u16 *) \
(gm->regs + (((reg) & REG_MASK)>>2))) \
: in_8((volatile u8 *)(gm->regs + \
(((reg) & REG_MASK)>>2)))))
#define GM_BIS(r, v) GM_OUT((r), GM_IN(r) | (v))
#define GM_BIC(r, v) GM_OUT((r), GM_IN(r) & ~(v))
/* Wrapper to alloc_skb to test various alignements */
#define GMAC_ALIGNED_RX_SKB_ADDR(addr) \
((((unsigned long)(addr) + GMAC_BUFFER_ALIGN - 1) & \
~(GMAC_BUFFER_ALIGN - 1)) - (unsigned long)(addr))
static inline struct sk_buff *
gmac_alloc_skb(unsigned int length, int gfp_flags)
{
struct sk_buff *skb;
skb = alloc_skb(length + GMAC_BUFFER_ALIGN, gfp_flags);
if(skb) {
int offset = GMAC_ALIGNED_RX_SKB_ADDR(skb->data);
if(offset)
skb_reserve(skb, offset);
}
return skb;
}
......@@ -25,9 +25,6 @@
static struct net_device *mace_devs;
static int port_aaui = -1;
MODULE_PARM(port_aaui, "i");
MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
#define N_RX_RING 8
#define N_TX_RING 6
#define MAX_TX_ACTIVE 1
......@@ -35,6 +32,9 @@ MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
#define RX_BUFLEN (ETH_FRAME_LEN + 8)
#define TX_TIMEOUT HZ /* 1 second */
/* Chip rev needs workaround on HW & multicast addr change */
#define BROKEN_ADDRCHG_REV 0x0941
/* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80
......@@ -60,6 +60,8 @@ struct mace_data {
struct timer_list tx_timeout;
int timeout_active;
int port_aaui;
int chipid;
struct device_node* of_node;
struct net_device *next_mace;
};
......@@ -153,6 +155,22 @@ static void __init mace_probe1(struct device_node *mace)
SET_MODULE_OWNER(dev);
mp = dev->priv;
mp->of_node = mace;
if (!request_OF_resource(mace, 0, " (mace)")) {
printk(KERN_ERR "MACE: can't request IO resource !\n");
goto err_out;
}
if (!request_OF_resource(mace, 1, " (mace tx dma)")) {
printk(KERN_ERR "MACE: can't request TX DMA resource !\n");
goto err_out;
}
if (!request_OF_resource(mace, 2, " (mace tx dma)")) {
printk(KERN_ERR "MACE: can't request RX DMA resource !\n");
goto err_out;
}
dev->base_addr = mace->addrs[0].address;
mp->mace = (volatile struct mace *)
ioremap(mace->addrs[0].address, 0x1000);
......@@ -164,8 +182,10 @@ static void __init mace_probe1(struct device_node *mace)
dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j];
printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
}
printk(", chip revision %d.%d\n",
in_8(&mp->mace->chipid_hi), in_8(&mp->mace->chipid_lo));
mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
in_8(&mp->mace->chipid_lo);
printk(", chip revision %d.%d\n", mp->chipid >> 8, mp->chipid & 0xff);
mp = (struct mace_data *) dev->priv;
mp->maccc = ENXMT | ENRCV;
......@@ -222,6 +242,16 @@ static void __init mace_probe1(struct device_node *mace)
mp->next_mace = mace_devs;
mace_devs = dev;
return;
err_out:
unregister_netdev(dev);
if (mp->of_node) {
release_OF_resource(mp->of_node, 0);
release_OF_resource(mp->of_node, 1);
release_OF_resource(mp->of_node, 2);
}
kfree(dev);
}
static void dbdma_reset(volatile struct dbdma_regs *dma)
......@@ -274,14 +304,19 @@ static void mace_reset(struct net_device *dev)
__mace_set_address(dev, dev->dev_addr);
/* clear the multicast filter */
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
for (i = 0; i < 8; ++i) {
out_8(&mb->ladrf, 0);
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, LOGADDR);
else {
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
out_8(&mb->ladrf, 0);
/* done changing address */
out_8(&mb->iac, 0);
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
if (mp->port_aaui)
out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
......@@ -291,16 +326,23 @@ static void mace_reset(struct net_device *dev)
static void __mace_set_address(struct net_device *dev, void *addr)
{
volatile struct mace *mb = ((struct mace_data *) dev->priv)->mace;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace *mb = mp->mace;
unsigned char *p = addr;
int i;
/* load up the hardware address */
out_8(&mb->iac, ADDRCHG | PHYADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, PHYADDR);
else {
out_8(&mb->iac, ADDRCHG | PHYADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 6; ++i)
out_8(&mb->padr, dev->dev_addr[i] = p[i]);
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
}
static int mace_set_address(struct net_device *dev, void *addr)
......@@ -313,7 +355,6 @@ static int mace_set_address(struct net_device *dev, void *addr)
__mace_set_address(dev, addr);
out_8(&mb->iac, 0);
/* note: setting ADDRCHG clears ENRCV */
out_8(&mb->maccc, mp->maccc);
......@@ -543,12 +584,17 @@ static void mace_set_multicast(struct net_device *dev)
printk("\n");
#endif
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
for (i = 0; i < 8; ++i) {
out_8(&mb->ladrf, multicast_filter[i]);
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, LOGADDR);
else {
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
out_8(&mb->ladrf, multicast_filter[i]);
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
}
/* reset maccc */
out_8(&mb->maccc, mp->maccc);
......@@ -899,7 +945,10 @@ static void mace_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs)
MODULE_AUTHOR("Paul Mackerras");
MODULE_DESCRIPTION("PowerMac MACE driver.");
MODULE_PARM(port_aaui, "i");
MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
MODULE_LICENSE("GPL");
EXPORT_NO_SYMBOLS;
static void __exit mace_cleanup (void)
{
......@@ -907,19 +956,23 @@ static void __exit mace_cleanup (void)
struct mace_data *mp;
while ((dev = mace_devs) != 0) {
mp = (struct mace_data *) mace_devs->priv;
mace_devs = mp->next_mace;
mp = (struct mace_data *) mace_devs->priv;
mace_devs = mp->next_mace;
free_irq(dev->irq, dev);
free_irq(mp->tx_dma_intr, dev);
free_irq(mp->rx_dma_intr, dev);
unregister_netdev(dev);
free_irq(dev->irq, dev);
free_irq(mp->tx_dma_intr, dev);
free_irq(mp->rx_dma_intr, dev);
unregister_netdev(dev);
kfree(dev);
release_OF_resource(mp->of_node, 0);
release_OF_resource(mp->of_node, 1);
release_OF_resource(mp->of_node, 2);
kfree(dev);
}
if (dummy_buf != NULL) {
kfree(dummy_buf);
dummy_buf = NULL;
kfree(dummy_buf);
dummy_buf = NULL;
}
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment