Commit 7f184275 authored by Huang Ying's avatar Huang Ying Committed by Len Brown

lib, Make gen_pool memory allocator lockless

This version of the gen_pool memory allocator supports lockless
operation.

This makes it safe to use in NMI handlers and other special
unblockable contexts that could otherwise deadlock on locks.  This is
implemented by using atomic operations and retries on any conflicts.
The disadvantage is that there may be livelocks in extreme cases.  For
better scalability, one gen_pool allocator can be used for each CPU.

The lockless operation only works if there is enough memory available.
If new memory is added to the pool a lock has to be still taken.  So
any user relying on locklessness has to ensure that sufficient memory
is preallocated.

The basic atomic operation of this allocator is cmpxchg on long.  On
architectures that don't have NMI-safe cmpxchg implementation, the
allocator can NOT be used in NMI handler.  So code uses the allocator
in NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
Signed-off-by: default avatarHuang Ying <ying.huang@intel.com>
Reviewed-by: default avatarAndi Kleen <ak@linux.intel.com>
Reviewed-by: default avatarMathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLen Brown <len.brown@intel.com>
parent f49f23ab
...@@ -145,6 +145,7 @@ extern void bitmap_release_region(unsigned long *bitmap, int pos, int order); ...@@ -145,6 +145,7 @@ extern void bitmap_release_region(unsigned long *bitmap, int pos, int order);
extern int bitmap_allocate_region(unsigned long *bitmap, int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, int pos, int order);
extern void bitmap_copy_le(void *dst, const unsigned long *src, int nbits); extern void bitmap_copy_le(void *dst, const unsigned long *src, int nbits);
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
#define BITMAP_LAST_WORD_MASK(nbits) \ #define BITMAP_LAST_WORD_MASK(nbits) \
( \ ( \
((nbits) % BITS_PER_LONG) ? \ ((nbits) % BITS_PER_LONG) ? \
......
/* /*
* Basic general purpose allocator for managing special purpose memory * Basic general purpose allocator for managing special purpose
* not managed by the regular kmalloc/kfree interface. * memory, for example, memory that is not managed by the regular
* Uses for this includes on-device special memory, uncached memory * kmalloc/kfree interface. Uses for this includes on-device special
* etc. * memory, uncached memory etc.
*
* It is safe to use the allocator in NMI handlers and other special
* unblockable contexts that could otherwise deadlock on locks. This
* is implemented by using atomic operations and retries on any
* conflicts. The disadvantage is that there may be livelocks in
* extreme cases. For better scalability, one allocator can be used
* for each CPU.
*
* The lockless operation only works if there is enough memory
* available. If new memory is added to the pool a lock has to be
* still taken. So any user relying on locklessness has to ensure
* that sufficient memory is preallocated.
*
* The basic atomic operation of this allocator is cmpxchg on long.
* On architectures that don't have NMI-safe cmpxchg implementation,
* the allocator can NOT be used in NMI handler. So code uses the
* allocator in NMI handler should depend on
* CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
* *
* This source code is licensed under the GNU General Public License, * This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details. * Version 2. See the file COPYING for more details.
...@@ -15,7 +33,7 @@ ...@@ -15,7 +33,7 @@
* General purpose special memory pool descriptor. * General purpose special memory pool descriptor.
*/ */
struct gen_pool { struct gen_pool {
rwlock_t lock; spinlock_t lock;
struct list_head chunks; /* list of chunks in this pool */ struct list_head chunks; /* list of chunks in this pool */
int min_alloc_order; /* minimum allocation order */ int min_alloc_order; /* minimum allocation order */
}; };
...@@ -24,8 +42,8 @@ struct gen_pool { ...@@ -24,8 +42,8 @@ struct gen_pool {
* General purpose special memory pool chunk descriptor. * General purpose special memory pool chunk descriptor.
*/ */
struct gen_pool_chunk { struct gen_pool_chunk {
spinlock_t lock;
struct list_head next_chunk; /* next chunk in pool */ struct list_head next_chunk; /* next chunk in pool */
atomic_t avail;
phys_addr_t phys_addr; /* physical starting address of memory chunk */ phys_addr_t phys_addr; /* physical starting address of memory chunk */
unsigned long start_addr; /* starting address of memory chunk */ unsigned long start_addr; /* starting address of memory chunk */
unsigned long end_addr; /* ending address of memory chunk */ unsigned long end_addr; /* ending address of memory chunk */
...@@ -56,4 +74,8 @@ static inline int gen_pool_add(struct gen_pool *pool, unsigned long addr, ...@@ -56,4 +74,8 @@ static inline int gen_pool_add(struct gen_pool *pool, unsigned long addr,
extern void gen_pool_destroy(struct gen_pool *); extern void gen_pool_destroy(struct gen_pool *);
extern unsigned long gen_pool_alloc(struct gen_pool *, size_t); extern unsigned long gen_pool_alloc(struct gen_pool *, size_t);
extern void gen_pool_free(struct gen_pool *, unsigned long, size_t); extern void gen_pool_free(struct gen_pool *, unsigned long, size_t);
extern void gen_pool_for_each_chunk(struct gen_pool *,
void (*)(struct gen_pool *, struct gen_pool_chunk *, void *), void *);
extern size_t gen_pool_avail(struct gen_pool *);
extern size_t gen_pool_size(struct gen_pool *);
#endif /* __GENALLOC_H__ */ #endif /* __GENALLOC_H__ */
...@@ -271,8 +271,6 @@ int __bitmap_weight(const unsigned long *bitmap, int bits) ...@@ -271,8 +271,6 @@ int __bitmap_weight(const unsigned long *bitmap, int bits)
} }
EXPORT_SYMBOL(__bitmap_weight); EXPORT_SYMBOL(__bitmap_weight);
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
void bitmap_set(unsigned long *map, int start, int nr) void bitmap_set(unsigned long *map, int start, int nr)
{ {
unsigned long *p = map + BIT_WORD(start); unsigned long *p = map + BIT_WORD(start);
......
/* /*
* Basic general purpose allocator for managing special purpose memory * Basic general purpose allocator for managing special purpose
* not managed by the regular kmalloc/kfree interface. * memory, for example, memory that is not managed by the regular
* Uses for this includes on-device special memory, uncached memory * kmalloc/kfree interface. Uses for this includes on-device special
* etc. * memory, uncached memory etc.
*
* It is safe to use the allocator in NMI handlers and other special
* unblockable contexts that could otherwise deadlock on locks. This
* is implemented by using atomic operations and retries on any
* conflicts. The disadvantage is that there may be livelocks in
* extreme cases. For better scalability, one allocator can be used
* for each CPU.
*
* The lockless operation only works if there is enough memory
* available. If new memory is added to the pool a lock has to be
* still taken. So any user relying on locklessness has to ensure
* that sufficient memory is preallocated.
*
* The basic atomic operation of this allocator is cmpxchg on long.
* On architectures that don't have NMI-safe cmpxchg implementation,
* the allocator can NOT be used in NMI handler. So code uses the
* allocator in NMI handler should depend on
* CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
* *
* Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
* *
...@@ -13,8 +31,109 @@ ...@@ -13,8 +31,109 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/bitmap.h> #include <linux/bitmap.h>
#include <linux/rculist.h>
#include <linux/interrupt.h>
#include <linux/genalloc.h> #include <linux/genalloc.h>
static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if (val & mask_to_set)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
return 0;
}
static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if ((val & mask_to_clear) != mask_to_clear)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
return 0;
}
/*
* bitmap_set_ll - set the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Set @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users set the same bit, one user will return remain bits, otherwise
* return 0.
*/
static int bitmap_set_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_set >= 0) {
if (set_bits_ll(p, mask_to_set))
return nr;
nr -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (nr) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
if (set_bits_ll(p, mask_to_set))
return nr;
}
return 0;
}
/*
* bitmap_clear_ll - clear the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Clear @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users clear the same bit, one user will return remain bits,
* otherwise return 0.
*/
static int bitmap_clear_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_clear >= 0) {
if (clear_bits_ll(p, mask_to_clear))
return nr;
nr -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (nr) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
if (clear_bits_ll(p, mask_to_clear))
return nr;
}
return 0;
}
/** /**
* gen_pool_create - create a new special memory pool * gen_pool_create - create a new special memory pool
...@@ -30,7 +149,7 @@ struct gen_pool *gen_pool_create(int min_alloc_order, int nid) ...@@ -30,7 +149,7 @@ struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
if (pool != NULL) { if (pool != NULL) {
rwlock_init(&pool->lock); spin_lock_init(&pool->lock);
INIT_LIST_HEAD(&pool->chunks); INIT_LIST_HEAD(&pool->chunks);
pool->min_alloc_order = min_alloc_order; pool->min_alloc_order = min_alloc_order;
} }
...@@ -63,14 +182,14 @@ int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phy ...@@ -63,14 +182,14 @@ int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phy
if (unlikely(chunk == NULL)) if (unlikely(chunk == NULL))
return -ENOMEM; return -ENOMEM;
spin_lock_init(&chunk->lock);
chunk->phys_addr = phys; chunk->phys_addr = phys;
chunk->start_addr = virt; chunk->start_addr = virt;
chunk->end_addr = virt + size; chunk->end_addr = virt + size;
atomic_set(&chunk->avail, size);
write_lock(&pool->lock); spin_lock(&pool->lock);
list_add(&chunk->next_chunk, &pool->chunks); list_add_rcu(&chunk->next_chunk, &pool->chunks);
write_unlock(&pool->lock); spin_unlock(&pool->lock);
return 0; return 0;
} }
...@@ -85,19 +204,19 @@ EXPORT_SYMBOL(gen_pool_add_virt); ...@@ -85,19 +204,19 @@ EXPORT_SYMBOL(gen_pool_add_virt);
*/ */
phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
{ {
struct list_head *_chunk;
struct gen_pool_chunk *chunk; struct gen_pool_chunk *chunk;
phys_addr_t paddr = -1;
read_lock(&pool->lock); rcu_read_lock();
list_for_each(_chunk, &pool->chunks) { list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); if (addr >= chunk->start_addr && addr < chunk->end_addr) {
paddr = chunk->phys_addr + (addr - chunk->start_addr);
if (addr >= chunk->start_addr && addr < chunk->end_addr) break;
return chunk->phys_addr + addr - chunk->start_addr; }
} }
read_unlock(&pool->lock); rcu_read_unlock();
return -1; return paddr;
} }
EXPORT_SYMBOL(gen_pool_virt_to_phys); EXPORT_SYMBOL(gen_pool_virt_to_phys);
...@@ -115,7 +234,6 @@ void gen_pool_destroy(struct gen_pool *pool) ...@@ -115,7 +234,6 @@ void gen_pool_destroy(struct gen_pool *pool)
int order = pool->min_alloc_order; int order = pool->min_alloc_order;
int bit, end_bit; int bit, end_bit;
list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
list_del(&chunk->next_chunk); list_del(&chunk->next_chunk);
...@@ -137,44 +255,50 @@ EXPORT_SYMBOL(gen_pool_destroy); ...@@ -137,44 +255,50 @@ EXPORT_SYMBOL(gen_pool_destroy);
* @size: number of bytes to allocate from the pool * @size: number of bytes to allocate from the pool
* *
* Allocate the requested number of bytes from the specified pool. * Allocate the requested number of bytes from the specified pool.
* Uses a first-fit algorithm. * Uses a first-fit algorithm. Can not be used in NMI handler on
* architectures without NMI-safe cmpxchg implementation.
*/ */
unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
{ {
struct list_head *_chunk;
struct gen_pool_chunk *chunk; struct gen_pool_chunk *chunk;
unsigned long addr, flags; unsigned long addr = 0;
int order = pool->min_alloc_order; int order = pool->min_alloc_order;
int nbits, start_bit, end_bit; int nbits, start_bit = 0, end_bit, remain;
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
#endif
if (size == 0) if (size == 0)
return 0; return 0;
nbits = (size + (1UL << order) - 1) >> order; nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
read_lock(&pool->lock); list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
list_for_each(_chunk, &pool->chunks) { if (size > atomic_read(&chunk->avail))
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); continue;
end_bit = (chunk->end_addr - chunk->start_addr) >> order; end_bit = (chunk->end_addr - chunk->start_addr) >> order;
retry:
spin_lock_irqsave(&chunk->lock, flags); start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit,
start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, 0, start_bit, nbits, 0);
nbits, 0); if (start_bit >= end_bit)
if (start_bit >= end_bit) {
spin_unlock_irqrestore(&chunk->lock, flags);
continue; continue;
remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
if (remain) {
remain = bitmap_clear_ll(chunk->bits, start_bit,
nbits - remain);
BUG_ON(remain);
goto retry;
} }
addr = chunk->start_addr + ((unsigned long)start_bit << order); addr = chunk->start_addr + ((unsigned long)start_bit << order);
size = nbits << order;
bitmap_set(chunk->bits, start_bit, nbits); atomic_sub(size, &chunk->avail);
spin_unlock_irqrestore(&chunk->lock, flags); break;
read_unlock(&pool->lock);
return addr;
} }
read_unlock(&pool->lock); rcu_read_unlock();
return 0; return addr;
} }
EXPORT_SYMBOL(gen_pool_alloc); EXPORT_SYMBOL(gen_pool_alloc);
...@@ -184,33 +308,95 @@ EXPORT_SYMBOL(gen_pool_alloc); ...@@ -184,33 +308,95 @@ EXPORT_SYMBOL(gen_pool_alloc);
* @addr: starting address of memory to free back to pool * @addr: starting address of memory to free back to pool
* @size: size in bytes of memory to free * @size: size in bytes of memory to free
* *
* Free previously allocated special memory back to the specified pool. * Free previously allocated special memory back to the specified
* pool. Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/ */
void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
{ {
struct list_head *_chunk;
struct gen_pool_chunk *chunk; struct gen_pool_chunk *chunk;
unsigned long flags;
int order = pool->min_alloc_order; int order = pool->min_alloc_order;
int bit, nbits; int start_bit, nbits, remain;
nbits = (size + (1UL << order) - 1) >> order; #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
read_lock(&pool->lock); #endif
list_for_each(_chunk, &pool->chunks) {
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (addr >= chunk->start_addr && addr < chunk->end_addr) { if (addr >= chunk->start_addr && addr < chunk->end_addr) {
BUG_ON(addr + size > chunk->end_addr); BUG_ON(addr + size > chunk->end_addr);
spin_lock_irqsave(&chunk->lock, flags); start_bit = (addr - chunk->start_addr) >> order;
bit = (addr - chunk->start_addr) >> order; remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
while (nbits--) BUG_ON(remain);
__clear_bit(bit++, chunk->bits); size = nbits << order;
spin_unlock_irqrestore(&chunk->lock, flags); atomic_add(size, &chunk->avail);
break; rcu_read_unlock();
return;
} }
} }
BUG_ON(nbits > 0); rcu_read_unlock();
read_unlock(&pool->lock); BUG();
} }
EXPORT_SYMBOL(gen_pool_free); EXPORT_SYMBOL(gen_pool_free);
/**
* gen_pool_for_each_chunk - call func for every chunk of generic memory pool
* @pool: the generic memory pool
* @func: func to call
* @data: additional data used by @func
*
* Call @func for every chunk of generic memory pool. The @func is
* called with rcu_read_lock held.
*/
void gen_pool_for_each_chunk(struct gen_pool *pool,
void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
void *data)
{
struct gen_pool_chunk *chunk;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
func(pool, chunk, data);
rcu_read_unlock();
}
EXPORT_SYMBOL(gen_pool_for_each_chunk);
/**
* gen_pool_avail - get available free space of the pool
* @pool: pool to get available free space
*
* Return available free space of the specified pool.
*/
size_t gen_pool_avail(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t avail = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
avail += atomic_read(&chunk->avail);
rcu_read_unlock();
return avail;
}
EXPORT_SYMBOL_GPL(gen_pool_avail);
/**
* gen_pool_size - get size in bytes of memory managed by the pool
* @pool: pool to get size
*
* Return size in bytes of memory managed by the pool.
*/
size_t gen_pool_size(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t size = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
size += chunk->end_addr - chunk->start_addr;
rcu_read_unlock();
return size;
}
EXPORT_SYMBOL_GPL(gen_pool_size);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment