Commit 80fe6031 authored by Miquel Raynal's avatar Miquel Raynal

mtd: nand: ecc-bch: Stop using raw NAND structures

This code is meant to be reused by the SPI-NAND core. Now that the
driver has been cleaned and reorganized, use a generic ECC engine
object to store the driver's data instead of accessing members of the
nand_chip structure.
Signed-off-by: default avatarMiquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-9-miquel.raynal@bootlin.com
parent ea146d7f
......@@ -11,23 +11,8 @@
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-sw-bch.h>
#include <linux/bch.h>
/**
* struct nand_bch_control - private NAND BCH control structure
* @bch: BCH control structure
* @errloc: error location array
* @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
*/
struct nand_bch_control {
struct bch_control *bch;
unsigned int *errloc;
unsigned char *eccmask;
};
/**
* nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block
......@@ -38,16 +23,15 @@ struct nand_bch_control {
int nand_ecc_sw_bch_calculate(struct nand_device *nand,
const unsigned char *buf, unsigned char *code)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
unsigned int i;
memset(code, 0, chip->ecc.bytes);
bch_encode(nbc->bch, buf, chip->ecc.size, code);
memset(code, 0, engine_conf->code_size);
bch_encode(engine_conf->bch, buf, nand->ecc.ctx.conf.step_size, code);
/* apply mask so that an erased page is a valid codeword */
for (i = 0; i < chip->ecc.bytes; i++)
code[i] ^= nbc->eccmask[i];
for (i = 0; i < engine_conf->code_size; i++)
code[i] ^= engine_conf->eccmask[i];
return 0;
}
......@@ -65,16 +49,16 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_calculate);
int nand_ecc_sw_bch_correct(struct nand_device *nand, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
unsigned int *errloc = nbc->errloc;
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
unsigned int step_size = nand->ecc.ctx.conf.step_size;
unsigned int *errloc = engine_conf->errloc;
int i, count;
count = bch_decode(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
NULL, errloc);
count = bch_decode(engine_conf->bch, NULL, step_size, read_ecc,
calc_ecc, NULL, errloc);
if (count > 0) {
for (i = 0; i < count; i++) {
if (errloc[i] < (chip->ecc.size * 8))
if (errloc[i] < (step_size * 8))
/* The error is in the data area: correct it */
buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
......@@ -97,31 +81,30 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_correct);
*
* Returns: a pointer to a new NAND BCH control structure, or NULL upon failure
*
* Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
* are used to compute the following BCH parameters:
* Initialize NAND BCH error correction. @nand.ecc parameters 'step_size' and
* 'bytes' are used to compute the following BCH parameters:
* m, the Galois field order
* t, the error correction capability
* @eccbytes should be equal to the number of bytes required to store m * t
* 'bytes' should be equal to the number of bytes required to store m * t
* bits, where m is such that 2^m - 1 > step_size * 8.
*
* Example: to configure 4 bit correction per 512 bytes, you should pass
* @eccsize = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
* @eccbytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
* step_size = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
* bytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
*/
int nand_ecc_sw_bch_init(struct nand_device *nand)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int m, t, eccsteps, i;
struct nand_bch_control *nbc = NULL;
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
unsigned char *erased_page;
unsigned int eccsize = chip->ecc.size;
unsigned int eccbytes = chip->ecc.bytes;
unsigned int eccstrength = chip->ecc.strength;
unsigned int eccsize = nand->ecc.ctx.conf.step_size;
unsigned int eccbytes = engine_conf->code_size;
unsigned int eccstrength = nand->ecc.ctx.conf.strength;
if (!eccbytes && eccstrength) {
eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
chip->ecc.bytes = eccbytes;
engine_conf->code_size = eccbytes;
}
if (!eccsize || !eccbytes) {
......@@ -132,20 +115,14 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
m = fls(1+8*eccsize);
t = (eccbytes*8)/m;
nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
if (!nbc)
return -ENOMEM;
chip->ecc.priv = nbc;
nbc->bch = bch_init(m, t, 0, false);
if (!nbc->bch)
goto fail;
engine_conf->bch = bch_init(m, t, 0, false);
if (!engine_conf->bch)
return -EINVAL;
/* verify that eccbytes has the expected value */
if (nbc->bch->ecc_bytes != eccbytes) {
if (engine_conf->bch->ecc_bytes != eccbytes) {
pr_warn("invalid eccbytes %u, should be %u\n",
eccbytes, nbc->bch->ecc_bytes);
eccbytes, engine_conf->bch->ecc_bytes);
goto fail;
}
......@@ -163,25 +140,15 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
goto fail;
}
/*
* ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(),
* which is called by mtd_ooblayout_count_eccbytes().
* Make sure they are properly initialized before calling
* mtd_ooblayout_count_eccbytes().
* FIXME: we should probably rework the sequencing in nand_scan_tail()
* to avoid setting those fields twice.
*/
chip->ecc.steps = eccsteps;
chip->ecc.total = eccsteps * eccbytes;
nand->base.ecc.ctx.total = chip->ecc.total;
if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
pr_warn("invalid ecc layout\n");
goto fail;
}
nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
if (!nbc->eccmask || !nbc->errloc)
engine_conf->eccmask = kzalloc(eccbytes, GFP_KERNEL);
engine_conf->errloc = kmalloc_array(t, sizeof(*engine_conf->errloc),
GFP_KERNEL);
if (!engine_conf->eccmask || !engine_conf->errloc)
goto fail;
/*
......@@ -192,14 +159,15 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
goto fail;
memset(erased_page, 0xff, eccsize);
bch_encode(nbc->bch, erased_page, eccsize, nbc->eccmask);
bch_encode(engine_conf->bch, erased_page, eccsize,
engine_conf->eccmask);
kfree(erased_page);
for (i = 0; i < eccbytes; i++)
nbc->eccmask[i] ^= 0xff;
engine_conf->eccmask[i] ^= 0xff;
if (!eccstrength)
chip->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
nand->ecc.ctx.conf.strength = (eccbytes * 8) / fls(8 * eccsize);
return 0;
......@@ -216,14 +184,12 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_init);
*/
void nand_ecc_sw_bch_cleanup(struct nand_device *nand)
{
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
struct nand_bch_control *nbc = chip->ecc.priv;
if (nbc) {
bch_free(nbc->bch);
kfree(nbc->errloc);
kfree(nbc->eccmask);
kfree(nbc);
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
if (engine_conf) {
bch_free(engine_conf->bch);
kfree(engine_conf->errloc);
kfree(engine_conf->eccmask);
}
}
EXPORT_SYMBOL(nand_ecc_sw_bch_cleanup);
......
......@@ -5142,8 +5142,33 @@ static void nand_scan_ident_cleanup(struct nand_chip *chip)
int rawnand_sw_bch_init(struct nand_chip *chip)
{
struct nand_device *base = &chip->base;
struct nand_ecc_sw_bch_conf *engine_conf;
int ret;
base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
base->ecc.user_conf.step_size = chip->ecc.size;
base->ecc.user_conf.strength = chip->ecc.strength;
engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
if (!engine_conf)
return -ENOMEM;
engine_conf->code_size = chip->ecc.bytes;
base->ecc.ctx.priv = engine_conf;
return nand_ecc_sw_bch_init(base);
ret = nand_ecc_sw_bch_init(base);
if (ret)
kfree(base->ecc.ctx.priv);
chip->ecc.size = base->ecc.ctx.conf.step_size;
chip->ecc.strength = base->ecc.ctx.conf.strength;
chip->ecc.total = base->ecc.ctx.total;
chip->ecc.steps = engine_conf->nsteps;
chip->ecc.bytes = engine_conf->code_size;
return ret;
}
EXPORT_SYMBOL(rawnand_sw_bch_init);
......@@ -5171,7 +5196,7 @@ void rawnand_sw_bch_cleanup(struct nand_chip *chip)
nand_ecc_sw_bch_cleanup(base);
chip->ecc.priv = NULL;
kfree(base->ecc.ctx.priv);
}
EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
......@@ -5794,6 +5819,7 @@ static int nand_scan_tail(struct nand_chip *chip)
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
if (!ecc->steps)
ecc->steps = mtd->writesize / ecc->size;
if (ecc->steps * ecc->size != mtd->writesize) {
WARN(1, "Invalid ECC parameters\n");
......@@ -5801,8 +5827,10 @@ static int nand_scan_tail(struct nand_chip *chip)
goto err_nand_manuf_cleanup;
}
if (!ecc->total) {
ecc->total = ecc->steps * ecc->bytes;
chip->base.ecc.ctx.total = ecc->total;
}
if (ecc->total > mtd->oobsize) {
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
......
......@@ -9,6 +9,31 @@
#define __MTD_NAND_ECC_SW_BCH_H__
#include <linux/mtd/nand.h>
#include <linux/bch.h>
/**
* struct nand_ecc_sw_bch_conf - private software BCH ECC engine structure
* @reqooblen: Save the actual user OOB length requested before overwriting it
* @spare_oobbuf: Spare OOB buffer if none is provided
* @code_size: Number of bytes needed to store a code (one code per step)
* @nsteps: Number of steps
* @calc_buf: Buffer to use when calculating ECC bytes
* @code_buf: Buffer to use when reading (raw) ECC bytes from the chip
* @bch: BCH control structure
* @errloc: error location array
* @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
*/
struct nand_ecc_sw_bch_conf {
unsigned int reqooblen;
void *spare_oobbuf;
unsigned int code_size;
unsigned int nsteps;
u8 *calc_buf;
u8 *code_buf;
struct bch_control *bch;
unsigned int *errloc;
unsigned char *eccmask;
};
#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment