Commit 84773406 authored by Harry Wentland's avatar Harry Wentland Committed by Alex Deucher

drm/amd/display: Remove unused color and power modules

Signed-off-by: default avatarHarry Wentland <harry.wentland@amd.com>
Acked-by: default avatarAlex Deucher <alexander.deucher@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 649aa6f4
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "mod_color.h"
#include "core_types.h"
#include "fixed31_32.h"
#include "core_dc.h"
#define MOD_COLOR_MAX_CONCURRENT_SINKS 32
#define DIVIDER 10000
/* S2D13 value in [-3.00...0.9999] */
#define S2D13_MIN (-3 * DIVIDER)
#define S2D13_MAX (3 * DIVIDER)
#define S0D13_MIN (-1 * DIVIDER)
#define S0D13_MAX (1 * DIVIDER)
struct sink_caps {
const struct dc_sink *sink;
};
struct gamut_calculation_matrix {
struct fixed31_32 MTransposed[9];
struct fixed31_32 XYZtoRGB_Custom[9];
struct fixed31_32 XYZtoRGB_Ref[9];
struct fixed31_32 RGBtoXYZ_Final[9];
struct fixed31_32 MResult[9];
struct fixed31_32 fXYZofWhiteRef[9];
struct fixed31_32 fXYZofRGBRef[9];
};
struct gamut_src_dst_matrix {
struct fixed31_32 rgbCoeffDst[9];
struct fixed31_32 whiteCoeffDst[3];
struct fixed31_32 rgbCoeffSrc[9];
struct fixed31_32 whiteCoeffSrc[3];
};
struct color_state {
bool user_enable_color_temperature;
int custom_color_temperature;
struct color_range contrast;
struct color_range saturation;
struct color_range brightness;
struct color_range hue;
struct dc_gamma *gamma;
enum dc_quantization_range preferred_quantization_range;
struct color_gamut_data source_gamut;
struct color_gamut_data destination_gamut;
enum color_transfer_func input_transfer_function;
enum color_transfer_func output_transfer_function;
struct dc_hdr_static_metadata mastering_info;
};
struct core_color {
struct mod_color public;
struct dc *dc;
int num_sinks;
struct sink_caps *caps;
struct color_state *state;
struct color_edid_caps *edid_caps;
};
#define MOD_COLOR_TO_CORE(mod_color)\
container_of(mod_color, struct core_color, public)
#define COLOR_REGISTRY_NAME "color_v1"
/*Matrix Calculation Functions*/
/**
*****************************************************************************
* Function: transposeMatrix
*
* @brief
* rotate the matrix 90 degrees clockwise
* rows become a columns and columns to rows
* @param [ in ] M - source matrix
* @param [ in ] Rows - num of Rows of the original matrix
* @param [ in ] Cols - num of Cols of the original matrix
* @param [ out] MTransposed - result matrix
* @return void
*
*****************************************************************************
*/
static void transpose_matrix(const struct fixed31_32 *M, unsigned int Rows,
unsigned int Cols, struct fixed31_32 *MTransposed)
{
unsigned int i, j;
for (i = 0; i < Rows; i++) {
for (j = 0; j < Cols; j++)
MTransposed[(j*Rows)+i] = M[(i*Cols)+j];
}
}
/**
*****************************************************************************
* Function: multiplyMatrices
*
* @brief
* multiplies produce of two matrices: M = M1[ulRows1 x ulCols1] *
* M2[ulCols1 x ulCols2].
*
* @param [ in ] M1 - first Matrix.
* @param [ in ] M2 - second Matrix.
* @param [ in ] Rows1 - num of Rows of the first Matrix
* @param [ in ] Cols1 - num of Cols of the first Matrix/Num of Rows
* of the second Matrix
* @param [ in ] Cols2 - num of Cols of the second Matrix
* @param [out ] mResult - resulting matrix.
* @return void
*
*****************************************************************************
*/
static void multiply_matrices(struct fixed31_32 *mResult,
const struct fixed31_32 *M1,
const struct fixed31_32 *M2, unsigned int Rows1,
unsigned int Cols1, unsigned int Cols2)
{
unsigned int i, j, k;
for (i = 0; i < Rows1; i++) {
for (j = 0; j < Cols2; j++) {
mResult[(i * Cols2) + j] = dal_fixed31_32_zero;
for (k = 0; k < Cols1; k++)
mResult[(i * Cols2) + j] =
dal_fixed31_32_add
(mResult[(i * Cols2) + j],
dal_fixed31_32_mul(M1[(i * Cols1) + k],
M2[(k * Cols2) + j]));
}
}
}
/**
*****************************************************************************
* Function: cFind3X3Det
*
* @brief
* finds determinant of given 3x3 matrix
*
* @param [ in ] m - matrix
* @return determinate whioch could not be zero
*
*****************************************************************************
*/
static struct fixed31_32 find_3X3_det(const struct fixed31_32 *m)
{
struct fixed31_32 det, A1, A2, A3;
A1 = dal_fixed31_32_mul(m[0],
dal_fixed31_32_sub(dal_fixed31_32_mul(m[4], m[8]),
dal_fixed31_32_mul(m[5], m[7])));
A2 = dal_fixed31_32_mul(m[1],
dal_fixed31_32_sub(dal_fixed31_32_mul(m[3], m[8]),
dal_fixed31_32_mul(m[5], m[6])));
A3 = dal_fixed31_32_mul(m[2],
dal_fixed31_32_sub(dal_fixed31_32_mul(m[3], m[7]),
dal_fixed31_32_mul(m[4], m[6])));
det = dal_fixed31_32_add(dal_fixed31_32_sub(A1, A2), A3);
return det;
}
/**
*****************************************************************************
* Function: computeInverseMatrix_3x3
*
* @brief
* builds inverse matrix
*
* @param [ in ] m - matrix
* @param [ out ] im - result matrix
* @return true if success
*
*****************************************************************************
*/
static bool compute_inverse_matrix_3x3(const struct fixed31_32 *m,
struct fixed31_32 *im)
{
struct fixed31_32 determinant = find_3X3_det(m);
if (dal_fixed31_32_eq(determinant, dal_fixed31_32_zero) == false) {
im[0] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[4], m[8]),
dal_fixed31_32_mul(m[5], m[7])), determinant);
im[1] = dal_fixed31_32_neg(dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[1], m[8]),
dal_fixed31_32_mul(m[2], m[7])), determinant));
im[2] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[1], m[5]),
dal_fixed31_32_mul(m[2], m[4])), determinant);
im[3] = dal_fixed31_32_neg(dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[3], m[8]),
dal_fixed31_32_mul(m[5], m[6])), determinant));
im[4] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[0], m[8]),
dal_fixed31_32_mul(m[2], m[6])), determinant);
im[5] = dal_fixed31_32_neg(dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[0], m[5]),
dal_fixed31_32_mul(m[2], m[3])), determinant));
im[6] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[3], m[7]),
dal_fixed31_32_mul(m[4], m[6])), determinant);
im[7] = dal_fixed31_32_neg(dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[0], m[7]),
dal_fixed31_32_mul(m[1], m[6])), determinant));
im[8] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_mul(m[0], m[4]),
dal_fixed31_32_mul(m[1], m[3])), determinant);
return true;
}
return false;
}
/**
*****************************************************************************
* Function: calculateXYZtoRGB_M3x3
*
* @brief
* Calculates transformation matrix from XYZ coordinates to RBG
*
* @param [ in ] XYZofRGB - primaries XYZ
* @param [ in ] XYZofWhite - white point.
* @param [ out ] XYZtoRGB - RGB primires
* @return true if success
*
*****************************************************************************
*/
static bool calculate_XYZ_to_RGB_3x3(const struct fixed31_32 *XYZofRGB,
const struct fixed31_32 *XYZofWhite,
struct fixed31_32 *XYZtoRGB)
{
struct fixed31_32 MInversed[9];
struct fixed31_32 SVector[3];
/*1. Find Inverse matrix 3x3 of MTransposed*/
if (!compute_inverse_matrix_3x3(XYZofRGB, MInversed))
return false;
/*2. Calculate vector: |Sr Sg Sb| = [MInversed] * |Wx Wy Wz|*/
multiply_matrices(SVector, MInversed, XYZofWhite, 3, 3, 1);
/*3. Calculate matrix XYZtoRGB 3x3*/
XYZtoRGB[0] = dal_fixed31_32_mul(XYZofRGB[0], SVector[0]);
XYZtoRGB[1] = dal_fixed31_32_mul(XYZofRGB[1], SVector[1]);
XYZtoRGB[2] = dal_fixed31_32_mul(XYZofRGB[2], SVector[2]);
XYZtoRGB[3] = dal_fixed31_32_mul(XYZofRGB[3], SVector[0]);
XYZtoRGB[4] = dal_fixed31_32_mul(XYZofRGB[4], SVector[1]);
XYZtoRGB[5] = dal_fixed31_32_mul(XYZofRGB[5], SVector[2]);
XYZtoRGB[6] = dal_fixed31_32_mul(XYZofRGB[6], SVector[0]);
XYZtoRGB[7] = dal_fixed31_32_mul(XYZofRGB[7], SVector[1]);
XYZtoRGB[8] = dal_fixed31_32_mul(XYZofRGB[8], SVector[2]);
return true;
}
static bool gamut_to_color_matrix(
const struct fixed31_32 *pXYZofRGB,/*destination gamut*/
const struct fixed31_32 *pXYZofWhite,/*destination of white point*/
const struct fixed31_32 *pRefXYZofRGB,/*source gamut*/
const struct fixed31_32 *pRefXYZofWhite,/*source of white point*/
bool invert,
struct fixed31_32 *tempMatrix3X3)
{
int i = 0;
struct gamut_calculation_matrix *matrix =
dm_alloc(sizeof(struct gamut_calculation_matrix));
struct fixed31_32 *pXYZtoRGB_Temp;
struct fixed31_32 *pXYZtoRGB_Final;
matrix->fXYZofWhiteRef[0] = pRefXYZofWhite[0];
matrix->fXYZofWhiteRef[1] = pRefXYZofWhite[1];
matrix->fXYZofWhiteRef[2] = pRefXYZofWhite[2];
matrix->fXYZofRGBRef[0] = pRefXYZofRGB[0];
matrix->fXYZofRGBRef[1] = pRefXYZofRGB[1];
matrix->fXYZofRGBRef[2] = pRefXYZofRGB[2];
matrix->fXYZofRGBRef[3] = pRefXYZofRGB[3];
matrix->fXYZofRGBRef[4] = pRefXYZofRGB[4];
matrix->fXYZofRGBRef[5] = pRefXYZofRGB[5];
matrix->fXYZofRGBRef[6] = pRefXYZofRGB[6];
matrix->fXYZofRGBRef[7] = pRefXYZofRGB[7];
matrix->fXYZofRGBRef[8] = pRefXYZofRGB[8];
/*default values - unity matrix*/
while (i < 9) {
if (i == 0 || i == 4 || i == 8)
tempMatrix3X3[i] = dal_fixed31_32_one;
else
tempMatrix3X3[i] = dal_fixed31_32_zero;
i++;
}
/*1. Decide about the order of calculation.
* bInvert == FALSE --> RGBtoXYZ_Ref * XYZtoRGB_Custom
* bInvert == TRUE --> RGBtoXYZ_Custom * XYZtoRGB_Ref */
if (invert) {
pXYZtoRGB_Temp = matrix->XYZtoRGB_Custom;
pXYZtoRGB_Final = matrix->XYZtoRGB_Ref;
} else {
pXYZtoRGB_Temp = matrix->XYZtoRGB_Ref;
pXYZtoRGB_Final = matrix->XYZtoRGB_Custom;
}
/*2. Calculate XYZtoRGB_Ref*/
transpose_matrix(matrix->fXYZofRGBRef, 3, 3, matrix->MTransposed);
if (!calculate_XYZ_to_RGB_3x3(
matrix->MTransposed,
matrix->fXYZofWhiteRef,
matrix->XYZtoRGB_Ref))
goto function_fail;
/*3. Calculate XYZtoRGB_Custom*/
transpose_matrix(pXYZofRGB, 3, 3, matrix->MTransposed);
if (!calculate_XYZ_to_RGB_3x3(
matrix->MTransposed,
pXYZofWhite,
matrix->XYZtoRGB_Custom))
goto function_fail;
/*4. Calculate RGBtoXYZ -
* inverse matrix 3x3 of XYZtoRGB_Ref or XYZtoRGB_Custom*/
if (!compute_inverse_matrix_3x3(pXYZtoRGB_Temp, matrix->RGBtoXYZ_Final))
goto function_fail;
/*5. Calculate M(3x3) = RGBtoXYZ * XYZtoRGB*/
multiply_matrices(matrix->MResult, matrix->RGBtoXYZ_Final,
pXYZtoRGB_Final, 3, 3, 3);
for (i = 0; i < 9; i++)
tempMatrix3X3[i] = matrix->MResult[i];
dm_free(matrix);
return true;
function_fail:
dm_free(matrix);
return false;
}
static bool build_gamut_remap_matrix
(struct color_space_coordinates gamut_description,
struct fixed31_32 *rgb_matrix,
struct fixed31_32 *white_point_matrix)
{
struct fixed31_32 fixed_blueX = dal_fixed31_32_from_fraction
(gamut_description.blueX, DIVIDER);
struct fixed31_32 fixed_blueY = dal_fixed31_32_from_fraction
(gamut_description.blueY, DIVIDER);
struct fixed31_32 fixed_greenX = dal_fixed31_32_from_fraction
(gamut_description.greenX, DIVIDER);
struct fixed31_32 fixed_greenY = dal_fixed31_32_from_fraction
(gamut_description.greenY, DIVIDER);
struct fixed31_32 fixed_redX = dal_fixed31_32_from_fraction
(gamut_description.redX, DIVIDER);
struct fixed31_32 fixed_redY = dal_fixed31_32_from_fraction
(gamut_description.redY, DIVIDER);
struct fixed31_32 fixed_whiteX = dal_fixed31_32_from_fraction
(gamut_description.whiteX, DIVIDER);
struct fixed31_32 fixed_whiteY = dal_fixed31_32_from_fraction
(gamut_description.whiteY, DIVIDER);
rgb_matrix[0] = dal_fixed31_32_div(fixed_redX, fixed_redY);
rgb_matrix[1] = dal_fixed31_32_one;
rgb_matrix[2] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_sub(dal_fixed31_32_one, fixed_redX),
fixed_redY), fixed_redY);
rgb_matrix[3] = dal_fixed31_32_div(fixed_greenX, fixed_greenY);
rgb_matrix[4] = dal_fixed31_32_one;
rgb_matrix[5] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_sub(dal_fixed31_32_one, fixed_greenX),
fixed_greenY), fixed_greenY);
rgb_matrix[6] = dal_fixed31_32_div(fixed_blueX, fixed_blueY);
rgb_matrix[7] = dal_fixed31_32_one;
rgb_matrix[8] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_sub(dal_fixed31_32_one, fixed_blueX),
fixed_blueY), fixed_blueY);
white_point_matrix[0] = dal_fixed31_32_div(fixed_whiteX, fixed_whiteY);
white_point_matrix[1] = dal_fixed31_32_one;
white_point_matrix[2] = dal_fixed31_32_div(dal_fixed31_32_sub
(dal_fixed31_32_sub(dal_fixed31_32_one, fixed_whiteX),
fixed_whiteY), fixed_whiteY);
return true;
}
static bool check_dc_support(const struct dc *dc)
{
if (dc->stream_funcs.set_gamut_remap == NULL)
return false;
return true;
}
static uint16_t fixed_point_to_int_frac(
struct fixed31_32 arg,
uint8_t integer_bits,
uint8_t fractional_bits)
{
int32_t numerator;
int32_t divisor = 1 << fractional_bits;
uint16_t result;
uint16_t d = (uint16_t)dal_fixed31_32_floor(
dal_fixed31_32_abs(
arg));
if (d <= (uint16_t)(1 << integer_bits) - (1 / (uint16_t)divisor))
numerator = (uint16_t)dal_fixed31_32_floor(
dal_fixed31_32_mul_int(
arg,
divisor));
else {
numerator = dal_fixed31_32_floor(
dal_fixed31_32_sub(
dal_fixed31_32_from_int(
1LL << integer_bits),
dal_fixed31_32_recip(
dal_fixed31_32_from_int(
divisor))));
}
if (numerator >= 0)
result = (uint16_t)numerator;
else
result = (uint16_t)(
(1 << (integer_bits + fractional_bits + 1)) + numerator);
if ((result != 0) && dal_fixed31_32_lt(
arg, dal_fixed31_32_zero))
result |= 1 << (integer_bits + fractional_bits);
return result;
}
/**
* convert_float_matrix
* This converts a double into HW register spec defined format S2D13.
* @param :
* @return None
*/
static void convert_float_matrix_legacy(
uint16_t *matrix,
struct fixed31_32 *flt,
uint32_t buffer_size)
{
const struct fixed31_32 min_2_13 =
dal_fixed31_32_from_fraction(S2D13_MIN, DIVIDER);
const struct fixed31_32 max_2_13 =
dal_fixed31_32_from_fraction(S2D13_MAX, DIVIDER);
uint32_t i;
for (i = 0; i < buffer_size; ++i) {
uint32_t reg_value =
fixed_point_to_int_frac(
dal_fixed31_32_clamp(
flt[i],
min_2_13,
max_2_13),
2,
13);
matrix[i] = (uint16_t)reg_value;
}
}
static void convert_float_matrix(
uint16_t *matrix,
struct fixed31_32 *flt,
uint32_t buffer_size)
{
const struct fixed31_32 min_0_13 =
dal_fixed31_32_from_fraction(S0D13_MIN, DIVIDER);
const struct fixed31_32 max_0_13 =
dal_fixed31_32_from_fraction(S0D13_MAX, DIVIDER);
const struct fixed31_32 min_2_13 =
dal_fixed31_32_from_fraction(S2D13_MIN, DIVIDER);
const struct fixed31_32 max_2_13 =
dal_fixed31_32_from_fraction(S2D13_MAX, DIVIDER);
uint32_t i;
uint16_t temp_matrix[12];
for (i = 0; i < buffer_size; ++i) {
if (i == 3 || i == 7 || i == 11) {
uint32_t reg_value =
fixed_point_to_int_frac(
dal_fixed31_32_clamp(
flt[i],
min_0_13,
max_0_13),
2,
13);
temp_matrix[i] = (uint16_t)reg_value;
} else {
uint32_t reg_value =
fixed_point_to_int_frac(
dal_fixed31_32_clamp(
flt[i],
min_2_13,
max_2_13),
2,
13);
temp_matrix[i] = (uint16_t)reg_value;
}
}
matrix[4] = temp_matrix[0];
matrix[5] = temp_matrix[1];
matrix[6] = temp_matrix[2];
matrix[7] = temp_matrix[3];
matrix[8] = temp_matrix[4];
matrix[9] = temp_matrix[5];
matrix[10] = temp_matrix[6];
matrix[11] = temp_matrix[7];
matrix[0] = temp_matrix[8];
matrix[1] = temp_matrix[9];
matrix[2] = temp_matrix[10];
matrix[3] = temp_matrix[11];
}
static int get_hw_value_from_sw_value(int swVal, int swMin,
int swMax, int hwMin, int hwMax)
{
int dSW = swMax - swMin; /*software adjustment range size*/
int dHW = hwMax - hwMin; /*hardware adjustment range size*/
int hwVal; /*HW adjustment value*/
/* error case, I preserve the behavior from the predecessor
*getHwStepFromSwHwMinMaxValue (removed in Feb 2013)
*which was the FP version that only computed SCLF (i.e. dHW/dSW).
*it would return 0 in this case so
*hwVal = hwMin from the formula given in @brief
*/
if (dSW == 0)
return hwMin;
/*it's quite often that ranges match,
*e.g. for overlay colors currently (Feb 2013)
*only brightness has a different
*HW range, and in this case no multiplication or division is needed,
*and if minimums match, no calculation at all
*/
if (dSW != dHW) {
hwVal = (swVal - swMin)*dHW/dSW + hwMin;
} else {
hwVal = swVal;
if (swMin != hwMin)
hwVal += (hwMin - swMin);
}
return hwVal;
}
static void initialize_fix_point_color_values(
struct core_color *core_color,
unsigned int sink_index,
struct fixed31_32 *grph_cont,
struct fixed31_32 *grph_sat,
struct fixed31_32 *grph_bright,
struct fixed31_32 *sin_grph_hue,
struct fixed31_32 *cos_grph_hue)
{
/* Hue adjustment could be negative. -45 ~ +45 */
struct fixed31_32 hue =
dal_fixed31_32_mul(
dal_fixed31_32_from_fraction
(get_hw_value_from_sw_value
(core_color->state[sink_index].hue.current,
core_color->state[sink_index].hue.min,
core_color->state[sink_index].hue.max,
-30, 30), 180),
dal_fixed31_32_pi);
*sin_grph_hue = dal_fixed31_32_sin(hue);
*cos_grph_hue = dal_fixed31_32_cos(hue);
*grph_cont =
dal_fixed31_32_from_fraction(get_hw_value_from_sw_value
(core_color->state[sink_index].contrast.current,
core_color->state[sink_index].contrast.min,
core_color->state[sink_index].contrast.max,
50, 150), 100);
*grph_sat =
dal_fixed31_32_from_fraction(get_hw_value_from_sw_value
(core_color->state[sink_index].saturation.current,
core_color->state[sink_index].saturation.min,
core_color->state[sink_index].saturation.max,
0, 200), 100);
*grph_bright =
dal_fixed31_32_from_fraction(get_hw_value_from_sw_value
(core_color->state[sink_index].brightness.current,
core_color->state[sink_index].brightness.min,
core_color->state[sink_index].brightness.max,
-25, 25), 100);
}
/* Given a specific dc_sink* this function finds its equivalent
* on the dc_sink array and returns the corresponding index
*/
static int sink_index_from_sink(struct core_color *core_color,
const struct dc_sink *sink)
{
int index = 0;
for (index = 0; index < core_color->num_sinks; index++)
if (core_color->caps[index].sink == sink)
return index;
/* Could not find sink requested */
ASSERT(false);
return -1;
}
static void calculate_rgb_matrix_legacy(struct core_color *core_color,
unsigned int sink_index,
struct fixed31_32 *rgb_matrix)
{
const struct fixed31_32 k1 =
dal_fixed31_32_from_fraction(701000, 1000000);
const struct fixed31_32 k2 =
dal_fixed31_32_from_fraction(236568, 1000000);
const struct fixed31_32 k3 =
dal_fixed31_32_from_fraction(-587000, 1000000);
const struct fixed31_32 k4 =
dal_fixed31_32_from_fraction(464432, 1000000);
const struct fixed31_32 k5 =
dal_fixed31_32_from_fraction(-114000, 1000000);
const struct fixed31_32 k6 =
dal_fixed31_32_from_fraction(-701000, 1000000);
const struct fixed31_32 k7 =
dal_fixed31_32_from_fraction(-299000, 1000000);
const struct fixed31_32 k8 =
dal_fixed31_32_from_fraction(-292569, 1000000);
const struct fixed31_32 k9 =
dal_fixed31_32_from_fraction(413000, 1000000);
const struct fixed31_32 k10 =
dal_fixed31_32_from_fraction(-92482, 1000000);
const struct fixed31_32 k11 =
dal_fixed31_32_from_fraction(-114000, 1000000);
const struct fixed31_32 k12 =
dal_fixed31_32_from_fraction(385051, 1000000);
const struct fixed31_32 k13 =
dal_fixed31_32_from_fraction(-299000, 1000000);
const struct fixed31_32 k14 =
dal_fixed31_32_from_fraction(886000, 1000000);
const struct fixed31_32 k15 =
dal_fixed31_32_from_fraction(-587000, 1000000);
const struct fixed31_32 k16 =
dal_fixed31_32_from_fraction(-741914, 1000000);
const struct fixed31_32 k17 =
dal_fixed31_32_from_fraction(886000, 1000000);
const struct fixed31_32 k18 =
dal_fixed31_32_from_fraction(-144086, 1000000);
const struct fixed31_32 luma_r =
dal_fixed31_32_from_fraction(299, 1000);
const struct fixed31_32 luma_g =
dal_fixed31_32_from_fraction(587, 1000);
const struct fixed31_32 luma_b =
dal_fixed31_32_from_fraction(114, 1000);
struct fixed31_32 grph_cont;
struct fixed31_32 grph_sat;
struct fixed31_32 grph_bright;
struct fixed31_32 sin_grph_hue;
struct fixed31_32 cos_grph_hue;
initialize_fix_point_color_values(
core_color, sink_index, &grph_cont, &grph_sat,
&grph_bright, &sin_grph_hue, &cos_grph_hue);
/* COEF_1_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K1 +*/
/* Sin(GrphHue) * K2))*/
/* (Cos(GrphHue) * K1 + Sin(GrphHue) * K2)*/
rgb_matrix[0] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k1),
dal_fixed31_32_mul(sin_grph_hue, k2));
/* GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue) * K2 */
rgb_matrix[0] = dal_fixed31_32_mul(grph_sat, rgb_matrix[0]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue) * K2))*/
rgb_matrix[0] = dal_fixed31_32_add(luma_r, rgb_matrix[0]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue)**/
/* K2))*/
rgb_matrix[0] = dal_fixed31_32_mul(grph_cont, rgb_matrix[0]);
/* COEF_1_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K3 +*/
/* Sin(GrphHue) * K4))*/
/* (Cos(GrphHue) * K3 + Sin(GrphHue) * K4)*/
rgb_matrix[1] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k3),
dal_fixed31_32_mul(sin_grph_hue, k4));
/* GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue) * K4)*/
rgb_matrix[1] = dal_fixed31_32_mul(grph_sat, rgb_matrix[1]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue) * K4))*/
rgb_matrix[1] = dal_fixed31_32_add(luma_g, rgb_matrix[1]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue)**/
/* K4))*/
rgb_matrix[1] = dal_fixed31_32_mul(grph_cont, rgb_matrix[1]);
/* COEF_1_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K5 +*/
/* Sin(GrphHue) * K6))*/
/* (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k5),
dal_fixed31_32_mul(sin_grph_hue, k6));
/* GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] = dal_fixed31_32_mul(grph_sat, rgb_matrix[2]);
/* LumaB + GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] = dal_fixed31_32_add(luma_b, rgb_matrix[2]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue)**/
/* K6))*/
rgb_matrix[2] = dal_fixed31_32_mul(grph_cont, rgb_matrix[2]);
/* COEF_1_4 = GrphBright*/
rgb_matrix[3] = grph_bright;
/* COEF_2_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K7 +*/
/* Sin(GrphHue) * K8))*/
/* (Cos(GrphHue) * K7 + Sin(GrphHue) * K8)*/
rgb_matrix[4] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k7),
dal_fixed31_32_mul(sin_grph_hue, k8));
/* GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue) * K8)*/
rgb_matrix[4] = dal_fixed31_32_mul(grph_sat, rgb_matrix[4]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue) * K8))*/
rgb_matrix[4] = dal_fixed31_32_add(luma_r, rgb_matrix[4]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue)**/
/* K8))*/
rgb_matrix[4] = dal_fixed31_32_mul(grph_cont, rgb_matrix[4]);
/* COEF_2_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K9 +*/
/* Sin(GrphHue) * K10))*/
/* (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k9),
dal_fixed31_32_mul(sin_grph_hue, k10));
/* GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] = dal_fixed31_32_mul(grph_sat, rgb_matrix[5]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] = dal_fixed31_32_add(luma_g, rgb_matrix[5]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue)**/
/* K10))*/
rgb_matrix[5] = dal_fixed31_32_mul(grph_cont, rgb_matrix[5]);
/* COEF_2_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K11 +*/
/* Sin(GrphHue) * K12))*/
/* (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k11),
dal_fixed31_32_mul(sin_grph_hue, k12));
/* GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] = dal_fixed31_32_mul(grph_sat, rgb_matrix[6]);
/* (LumaB + GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] = dal_fixed31_32_add(luma_b, rgb_matrix[6]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue)**/
/* K12))*/
rgb_matrix[6] = dal_fixed31_32_mul(grph_cont, rgb_matrix[6]);
/* COEF_2_4 = GrphBright*/
rgb_matrix[7] = grph_bright;
/* COEF_3_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K13 +*/
/* Sin(GrphHue) * K14))*/
/* (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k13),
dal_fixed31_32_mul(sin_grph_hue, k14));
/* GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] = dal_fixed31_32_mul(grph_sat, rgb_matrix[8]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] = dal_fixed31_32_add(luma_r, rgb_matrix[8]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue)**/
/* K14)) */
rgb_matrix[8] = dal_fixed31_32_mul(grph_cont, rgb_matrix[8]);
/* COEF_3_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K15 +*/
/* Sin(GrphHue) * K16)) */
/* GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16) */
rgb_matrix[9] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k15),
dal_fixed31_32_mul(sin_grph_hue, k16));
/* (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16)) */
rgb_matrix[9] = dal_fixed31_32_mul(grph_sat, rgb_matrix[9]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16)) */
rgb_matrix[9] = dal_fixed31_32_add(luma_g, rgb_matrix[9]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue)**/
/* K16)) */
rgb_matrix[9] = dal_fixed31_32_mul(grph_cont, rgb_matrix[9]);
/* COEF_3_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K17 +*/
/* Sin(GrphHue) * K18)) */
/* (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k17),
dal_fixed31_32_mul(sin_grph_hue, k18));
/* GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] = dal_fixed31_32_mul(grph_sat, rgb_matrix[10]);
/* (LumaB + GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] = dal_fixed31_32_add(luma_b, rgb_matrix[10]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue)**/
/* K18)) */
rgb_matrix[10] = dal_fixed31_32_mul(grph_cont, rgb_matrix[10]);
/* COEF_3_4 = GrphBright */
rgb_matrix[11] = grph_bright;
}
static void calculate_rgb_limited_range_matrix_legacy(
struct core_color *core_color, unsigned int sink_index,
struct fixed31_32 *rgb_matrix)
{
const struct fixed31_32 k1 =
dal_fixed31_32_from_fraction(701000, 1000000);
const struct fixed31_32 k2 =
dal_fixed31_32_from_fraction(236568, 1000000);
const struct fixed31_32 k3 =
dal_fixed31_32_from_fraction(-587000, 1000000);
const struct fixed31_32 k4 =
dal_fixed31_32_from_fraction(464432, 1000000);
const struct fixed31_32 k5 =
dal_fixed31_32_from_fraction(-114000, 1000000);
const struct fixed31_32 k6 =
dal_fixed31_32_from_fraction(-701000, 1000000);
const struct fixed31_32 k7 =
dal_fixed31_32_from_fraction(-299000, 1000000);
const struct fixed31_32 k8 =
dal_fixed31_32_from_fraction(-292569, 1000000);
const struct fixed31_32 k9 =
dal_fixed31_32_from_fraction(413000, 1000000);
const struct fixed31_32 k10 =
dal_fixed31_32_from_fraction(-92482, 1000000);
const struct fixed31_32 k11 =
dal_fixed31_32_from_fraction(-114000, 1000000);
const struct fixed31_32 k12 =
dal_fixed31_32_from_fraction(385051, 1000000);
const struct fixed31_32 k13 =
dal_fixed31_32_from_fraction(-299000, 1000000);
const struct fixed31_32 k14 =
dal_fixed31_32_from_fraction(886000, 1000000);
const struct fixed31_32 k15 =
dal_fixed31_32_from_fraction(-587000, 1000000);
const struct fixed31_32 k16 =
dal_fixed31_32_from_fraction(-741914, 1000000);
const struct fixed31_32 k17 =
dal_fixed31_32_from_fraction(886000, 1000000);
const struct fixed31_32 k18 =
dal_fixed31_32_from_fraction(-144086, 1000000);
const struct fixed31_32 luma_r =
dal_fixed31_32_from_fraction(299, 1000);
const struct fixed31_32 luma_g =
dal_fixed31_32_from_fraction(587, 1000);
const struct fixed31_32 luma_b =
dal_fixed31_32_from_fraction(114, 1000);
const struct fixed31_32 luma_scale =
dal_fixed31_32_from_fraction(875855, 1000000);
const struct fixed31_32 rgb_scale =
dal_fixed31_32_from_fraction(85546875, 100000000);
const struct fixed31_32 rgb_bias =
dal_fixed31_32_from_fraction(625, 10000);
struct fixed31_32 grph_cont;
struct fixed31_32 grph_sat;
struct fixed31_32 grph_bright;
struct fixed31_32 sin_grph_hue;
struct fixed31_32 cos_grph_hue;
initialize_fix_point_color_values(
core_color, sink_index, &grph_cont, &grph_sat,
&grph_bright, &sin_grph_hue, &cos_grph_hue);
/* COEF_1_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K1 +*/
/* Sin(GrphHue) * K2))*/
/* (Cos(GrphHue) * K1 + Sin(GrphHue) * K2)*/
rgb_matrix[0] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k1),
dal_fixed31_32_mul(sin_grph_hue, k2));
/* GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue) * K2 */
rgb_matrix[0] = dal_fixed31_32_mul(grph_sat, rgb_matrix[0]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue) * K2))*/
rgb_matrix[0] = dal_fixed31_32_add(luma_r, rgb_matrix[0]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K1 + Sin(GrphHue)**/
/* K2))*/
rgb_matrix[0] = dal_fixed31_32_mul(grph_cont, rgb_matrix[0]);
/* LumaScale * GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K1 + */
/* Sin(GrphHue) * K2))*/
rgb_matrix[0] = dal_fixed31_32_mul(luma_scale, rgb_matrix[0]);
/* COEF_1_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K3 +*/
/* Sin(GrphHue) * K4))*/
/* (Cos(GrphHue) * K3 + Sin(GrphHue) * K4)*/
rgb_matrix[1] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k3),
dal_fixed31_32_mul(sin_grph_hue, k4));
/* GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue) * K4)*/
rgb_matrix[1] = dal_fixed31_32_mul(grph_sat, rgb_matrix[1]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue) * K4))*/
rgb_matrix[1] = dal_fixed31_32_add(luma_g, rgb_matrix[1]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K3 + Sin(GrphHue)**/
/* K4))*/
rgb_matrix[1] = dal_fixed31_32_mul(grph_cont, rgb_matrix[1]);
/* LumaScale * GrphCont * (LumaG + GrphSat *(Cos(GrphHue) * K3 + */
/* Sin(GrphHue) * K4))*/
rgb_matrix[1] = dal_fixed31_32_mul(luma_scale, rgb_matrix[1]);
/* COEF_1_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K5 +*/
/* Sin(GrphHue) * K6))*/
/* (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k5),
dal_fixed31_32_mul(sin_grph_hue, k6));
/* GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] = dal_fixed31_32_mul(grph_sat, rgb_matrix[2]);
/* LumaB + GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue) * K6)*/
rgb_matrix[2] = dal_fixed31_32_add(luma_b, rgb_matrix[2]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K5 + Sin(GrphHue)**/
/* K6))*/
rgb_matrix[2] = dal_fixed31_32_mul(grph_cont, rgb_matrix[2]);
/* LumaScale * GrphCont * (LumaB + GrphSat *(Cos(GrphHue) * K5 + */
/* Sin(GrphHue) * K6))*/
rgb_matrix[2] = dal_fixed31_32_mul(luma_scale, rgb_matrix[2]);
/* COEF_1_4 = RGBBias + RGBScale * GrphBright*/
rgb_matrix[3] = dal_fixed31_32_add(
rgb_bias,
dal_fixed31_32_mul(rgb_scale, grph_bright));
/* COEF_2_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K7 +*/
/* Sin(GrphHue) * K8))*/
/* (Cos(GrphHue) * K7 + Sin(GrphHue) * K8)*/
rgb_matrix[4] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k7),
dal_fixed31_32_mul(sin_grph_hue, k8));
/* GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue) * K8)*/
rgb_matrix[4] = dal_fixed31_32_mul(grph_sat, rgb_matrix[4]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue) * K8))*/
rgb_matrix[4] = dal_fixed31_32_add(luma_r, rgb_matrix[4]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K7 + Sin(GrphHue)**/
/* K8))*/
rgb_matrix[4] = dal_fixed31_32_mul(grph_cont, rgb_matrix[4]);
/* LumaScale * GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K7 + */
/* Sin(GrphHue) * K8))*/
rgb_matrix[4] = dal_fixed31_32_mul(luma_scale, rgb_matrix[4]);
/* COEF_2_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K9 +*/
/* Sin(GrphHue) * K10))*/
/* (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k9),
dal_fixed31_32_mul(sin_grph_hue, k10));
/* GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] = dal_fixed31_32_mul(grph_sat, rgb_matrix[5]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue) * K10))*/
rgb_matrix[5] = dal_fixed31_32_add(luma_g, rgb_matrix[5]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K9 + Sin(GrphHue)**/
/* K10))*/
rgb_matrix[5] = dal_fixed31_32_mul(grph_cont, rgb_matrix[5]);
/* LumaScale * GrphCont * (LumaG + GrphSat *(Cos(GrphHue) * K9 + */
/* Sin(GrphHue) * K10))*/
rgb_matrix[5] = dal_fixed31_32_mul(luma_scale, rgb_matrix[5]);
/* COEF_2_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K11 +*/
/* Sin(GrphHue) * K12))*/
/* (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k11),
dal_fixed31_32_mul(sin_grph_hue, k12));
/* GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] = dal_fixed31_32_mul(grph_sat, rgb_matrix[6]);
/* (LumaB + GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue) * K12))*/
rgb_matrix[6] = dal_fixed31_32_add(luma_b, rgb_matrix[6]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K11 + Sin(GrphHue)**/
/* K12))*/
rgb_matrix[6] = dal_fixed31_32_mul(grph_cont, rgb_matrix[6]);
/* LumaScale * GrphCont * (LumaB + GrphSat *(Cos(GrphHue) * K11 +*/
/* Sin(GrphHue) * K12)) */
rgb_matrix[6] = dal_fixed31_32_mul(luma_scale, rgb_matrix[6]);
/* COEF_2_4 = RGBBias + RGBScale * GrphBright*/
rgb_matrix[7] = dal_fixed31_32_add(
rgb_bias,
dal_fixed31_32_mul(rgb_scale, grph_bright));
/* COEF_3_1 = GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K13 +*/
/* Sin(GrphHue) * K14))*/
/* (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k13),
dal_fixed31_32_mul(sin_grph_hue, k14));
/* GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] = dal_fixed31_32_mul(grph_sat, rgb_matrix[8]);
/* (LumaR + GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue) * K14)) */
rgb_matrix[8] = dal_fixed31_32_add(luma_r, rgb_matrix[8]);
/* GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K13 + Sin(GrphHue)**/
/* K14)) */
rgb_matrix[8] = dal_fixed31_32_mul(grph_cont, rgb_matrix[8]);
/* LumaScale * GrphCont * (LumaR + GrphSat * (Cos(GrphHue) * K13 +*/
/* Sin(GrphHue) * K14))*/
rgb_matrix[8] = dal_fixed31_32_mul(luma_scale, rgb_matrix[8]);
/* COEF_3_2 = GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K15 +*/
/* Sin(GrphHue) * K16)) */
/* GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16) */
rgb_matrix[9] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k15),
dal_fixed31_32_mul(sin_grph_hue, k16));
/* (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16)) */
rgb_matrix[9] = dal_fixed31_32_mul(grph_sat, rgb_matrix[9]);
/* (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue) * K16)) */
rgb_matrix[9] = dal_fixed31_32_add(luma_g, rgb_matrix[9]);
/* GrphCont * (LumaG + GrphSat * (Cos(GrphHue) * K15 + Sin(GrphHue)**/
/* K16)) */
rgb_matrix[9] = dal_fixed31_32_mul(grph_cont, rgb_matrix[9]);
/* LumaScale * GrphCont * (LumaG + GrphSat *(Cos(GrphHue) * K15 + */
/* Sin(GrphHue) * K16))*/
rgb_matrix[9] = dal_fixed31_32_mul(luma_scale, rgb_matrix[9]);
/* COEF_3_3 = GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K17 +*/
/* Sin(GrphHue) * K18)) */
/* (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] =
dal_fixed31_32_add(
dal_fixed31_32_mul(cos_grph_hue, k17),
dal_fixed31_32_mul(sin_grph_hue, k18));
/* GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] = dal_fixed31_32_mul(grph_sat, rgb_matrix[10]);
/* (LumaB + GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue) * K18)) */
rgb_matrix[10] = dal_fixed31_32_add(luma_b, rgb_matrix[10]);
/* GrphCont * (LumaB + GrphSat * (Cos(GrphHue) * K17 + Sin(GrphHue)**/
/* K18)) */
rgb_matrix[10] = dal_fixed31_32_mul(grph_cont, rgb_matrix[10]);
/* LumaScale * GrphCont * (LumaB + GrphSat *(Cos(GrphHue) * */
/* K17 + Sin(GrphHue) * K18))*/
rgb_matrix[10] = dal_fixed31_32_mul(luma_scale, rgb_matrix[10]);
/* COEF_3_4 = RGBBias + RGBScale * GrphBright */
rgb_matrix[11] = dal_fixed31_32_add(
rgb_bias,
dal_fixed31_32_mul(rgb_scale, grph_bright));
}
static void calculate_yuv_matrix(struct core_color *core_color,
unsigned int sink_index,
enum dc_color_space color_space,
struct fixed31_32 *yuv_matrix)
{
struct fixed31_32 ideal[12];
uint32_t i = 0;
if ((color_space == COLOR_SPACE_YPBPR601) ||
(color_space == COLOR_SPACE_YCBCR601) ||
(color_space == COLOR_SPACE_YCBCR601_LIMITED)) {
static const int32_t matrix_[] = {
25578516, 50216016, 9752344, 6250000,
-14764391, -28985609, 43750000, 50000000,
43750000, -36635164, -7114836, 50000000
};
do {
ideal[i] = dal_fixed31_32_from_fraction(
matrix_[i],
100000000);
++i;
} while (i != ARRAY_SIZE(matrix_));
} else {
static const int32_t matrix_[] = {
18187266, 61183125, 6176484, 6250000,
-10025059, -33724941, 43750000, 50000000,
43750000, -39738379, -4011621, 50000000
};
do {
ideal[i] = dal_fixed31_32_from_fraction(
matrix_[i],
100000000);
++i;
} while (i != ARRAY_SIZE(matrix_));
}
struct fixed31_32 grph_cont;
struct fixed31_32 grph_sat;
struct fixed31_32 grph_bright;
struct fixed31_32 sin_grph_hue;
struct fixed31_32 cos_grph_hue;
initialize_fix_point_color_values(
core_color, sink_index, &grph_cont, &grph_sat,
&grph_bright, &sin_grph_hue, &cos_grph_hue);
const struct fixed31_32 multiplier =
dal_fixed31_32_mul(grph_cont, grph_sat);
yuv_matrix[0] = dal_fixed31_32_mul(ideal[0], grph_cont);
yuv_matrix[1] = dal_fixed31_32_mul(ideal[1], grph_cont);
yuv_matrix[2] = dal_fixed31_32_mul(ideal[2], grph_cont);
yuv_matrix[4] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_add(
dal_fixed31_32_mul(
ideal[4],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[8],
sin_grph_hue)));
yuv_matrix[5] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_add(
dal_fixed31_32_mul(
ideal[5],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[9],
sin_grph_hue)));
yuv_matrix[6] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_add(
dal_fixed31_32_mul(
ideal[6],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[10],
sin_grph_hue)));
yuv_matrix[7] = ideal[7];
yuv_matrix[8] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_sub(
dal_fixed31_32_mul(
ideal[8],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[4],
sin_grph_hue)));
yuv_matrix[9] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_sub(
dal_fixed31_32_mul(
ideal[9],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[5],
sin_grph_hue)));
yuv_matrix[10] = dal_fixed31_32_mul(
multiplier,
dal_fixed31_32_sub(
dal_fixed31_32_mul(
ideal[10],
cos_grph_hue),
dal_fixed31_32_mul(
ideal[6],
sin_grph_hue)));
yuv_matrix[11] = ideal[11];
if ((color_space == COLOR_SPACE_YCBCR601_LIMITED) ||
(color_space == COLOR_SPACE_YCBCR709_LIMITED)) {
yuv_matrix[3] = dal_fixed31_32_add(ideal[3], grph_bright);
} else {
yuv_matrix[3] = dal_fixed31_32_add(
ideal[3],
dal_fixed31_32_mul(
grph_bright,
dal_fixed31_32_from_fraction(86, 100)));
}
}
static void calculate_csc_matrix(struct core_color *core_color,
unsigned int sink_index,
enum dc_color_space color_space,
uint16_t *csc_matrix)
{
struct fixed31_32 fixed_csc_matrix[12];
switch (color_space) {
case COLOR_SPACE_SRGB:
calculate_rgb_matrix_legacy
(core_color, sink_index, fixed_csc_matrix);
convert_float_matrix_legacy
(csc_matrix, fixed_csc_matrix, 12);
break;
case COLOR_SPACE_SRGB_LIMITED:
calculate_rgb_limited_range_matrix_legacy(
core_color, sink_index, fixed_csc_matrix);
convert_float_matrix_legacy(csc_matrix, fixed_csc_matrix, 12);
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR601_LIMITED:
case COLOR_SPACE_YCBCR709_LIMITED:
case COLOR_SPACE_YPBPR601:
case COLOR_SPACE_YPBPR709:
calculate_yuv_matrix(core_color, sink_index, color_space,
fixed_csc_matrix);
convert_float_matrix(csc_matrix, fixed_csc_matrix, 12);
break;
default:
calculate_rgb_matrix_legacy
(core_color, sink_index, fixed_csc_matrix);
convert_float_matrix_legacy
(csc_matrix, fixed_csc_matrix, 12);
break;
}
}
static struct dc_surface *dc_stream_to_surface_from_pipe_ctx(
struct core_color *core_color,
const struct dc_stream *stream)
{
int i;
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct core_stream *core_stream = DC_STREAM_TO_CORE(stream);
struct dc_surface *out_surface = NULL;
for (i = 0; i < MAX_PIPES; i++) {
if (core_dc->current_context->res_ctx.pipe_ctx[i].stream
== core_stream) {
out_surface = &core_dc->current_context->res_ctx.
pipe_ctx[i].surface->public;
break;
}
}
return out_surface;
}
static enum predefined_gamut_type color_space_to_predefined_gamut_types(enum
color_color_space color_space)
{
switch (color_space) {
case color_space_bt709:
case color_space_xv_ycc_bt709:
return gamut_type_bt709;
case color_space_bt601:
case color_space_xv_ycc_bt601:
return gamut_type_bt601;
case color_space_adobe:
return gamut_type_adobe_rgb;
case color_space_srgb:
case color_space_sc_rgb_ms_ref:
return gamut_type_srgb;
case color_space_bt2020:
return gamut_type_bt2020;
case color_space_dci_p3: /* TODO */
default:
return gamut_type_unknown;
}
}
static enum predefined_white_point_type white_point_to_predefined_white_point
(enum color_white_point_type white_point)
{
switch (white_point) {
case color_white_point_type_5000k_horizon:
return white_point_type_5000k_horizon;
case color_white_point_type_6500k_noon:
return white_point_type_6500k_noon;
case color_white_point_type_7500k_north_sky:
return white_point_type_7500k_north_sky;
case color_white_point_type_9300k:
return white_point_type_9300k;
default:
return white_point_type_unknown;
}
}
static bool update_color_gamut_data(struct color_gamut_data *input_data,
struct color_gamut_data *output_data)
{
bool output_custom_cs = false;
bool output_custom_wp = false;
if (input_data == NULL || output_data == NULL)
return false;
if (input_data->color_space == color_space_custom_coordinates) {
output_data->color_space = input_data->color_space;
output_data->gamut.redX = input_data->gamut.redX;
output_data->gamut.redY = input_data->gamut.redY;
output_data->gamut.greenX = input_data->gamut.greenX;
output_data->gamut.greenY = input_data->gamut.greenY;
output_data->gamut.blueX = input_data->gamut.blueX;
output_data->gamut.blueY = input_data->gamut.blueY;
} else {
struct gamut_space_coordinates gamut_coord;
enum predefined_gamut_type gamut_type =
color_space_to_predefined_gamut_types
(input_data->color_space);
/* fall back to original color space if unknown */
if (gamut_type == gamut_type_unknown) {
if (output_data->color_space ==
color_space_custom_coordinates) {
output_custom_cs = true;
} else {
gamut_type =
color_space_to_predefined_gamut_types
(output_data->color_space);
/* fall back to sRGB if both unknown*/
if (gamut_type == gamut_type_unknown) {
output_data->color_space =
color_space_srgb;
gamut_type = gamut_type_srgb;
}
}
} else {
output_data->color_space = input_data->color_space;
}
if (!output_custom_cs) {
mod_color_find_predefined_gamut(&gamut_coord,
gamut_type);
output_data->gamut.redX = gamut_coord.redX;
output_data->gamut.redY = gamut_coord.redY;
output_data->gamut.greenX = gamut_coord.greenX;
output_data->gamut.greenY = gamut_coord.greenY;
output_data->gamut.blueX = gamut_coord.blueX;
output_data->gamut.blueY = gamut_coord.blueY;
}
}
if (input_data->white_point == color_space_custom_coordinates) {
output_data->white_point = input_data->white_point;
output_data->gamut.whiteX = input_data->gamut.whiteX;
output_data->gamut.whiteY = input_data->gamut.whiteY;
} else {
struct white_point_coodinates white_point_coord;
enum predefined_white_point_type white_type =
white_point_to_predefined_white_point
(input_data->white_point);
/* fall back to original white point if not found */
if (white_type == white_point_type_unknown) {
if (output_data->white_point ==
color_white_point_type_custom_coordinates) {
output_custom_wp = true;
} else {
white_type =
white_point_to_predefined_white_point
(output_data->white_point);
/* fall back to 6500 if both unknown*/
if (white_type == white_point_type_unknown) {
output_data->white_point =
color_white_point_type_6500k_noon;
white_type =
white_point_type_6500k_noon;
}
}
} else {
output_data->white_point = input_data->white_point;
}
if (!output_custom_wp) {
mod_color_find_predefined_white_point(
&white_point_coord, white_type);
output_data->gamut.whiteX = white_point_coord.whiteX;
output_data->gamut.whiteY = white_point_coord.whiteY;
}
}
return true;
}
void initialize_color_state(struct core_color *core_color, int index)
{
core_color->state[index].user_enable_color_temperature = true;
core_color->state[index].custom_color_temperature = 6500;
core_color->state[index].contrast.current = 100;
core_color->state[index].contrast.min = 0;
core_color->state[index].contrast.max = 200;
core_color->state[index].saturation.current = 100;
core_color->state[index].saturation.min = 0;
core_color->state[index].saturation.max = 200;
core_color->state[index].brightness.current = 0;
core_color->state[index].brightness.min = -100;
core_color->state[index].brightness.max = 100;
core_color->state[index].hue.current = 0;
core_color->state[index].hue.min = -30;
core_color->state[index].hue.max = 30;
core_color->state[index].gamma = NULL;
core_color->state[index].preferred_quantization_range =
QUANTIZATION_RANGE_FULL;
core_color->state[index].source_gamut.color_space =
color_space_srgb;
core_color->state[index].source_gamut.white_point =
color_white_point_type_6500k_noon;
core_color->state[index].source_gamut.gamut.blueX = 1500;
core_color->state[index].source_gamut.gamut.blueY = 600;
core_color->state[index].source_gamut.gamut.greenX = 3000;
core_color->state[index].source_gamut.gamut.greenY = 6000;
core_color->state[index].source_gamut.gamut.redX = 6400;
core_color->state[index].source_gamut.gamut.redY = 3300;
core_color->state[index].source_gamut.gamut.whiteX = 3127;
core_color->state[index].source_gamut.gamut.whiteY = 3290;
core_color->state[index].destination_gamut.color_space =
color_space_srgb;
core_color->state[index].destination_gamut.white_point =
color_white_point_type_6500k_noon;
core_color->state[index].destination_gamut.gamut.blueX = 1500;
core_color->state[index].destination_gamut.gamut.blueY = 600;
core_color->state[index].destination_gamut.gamut.greenX = 3000;
core_color->state[index].destination_gamut.gamut.greenY = 6000;
core_color->state[index].destination_gamut.gamut.redX = 6400;
core_color->state[index].destination_gamut.gamut.redY = 3300;
core_color->state[index].destination_gamut.gamut.whiteX = 3127;
core_color->state[index].destination_gamut.gamut.whiteY = 3290;
core_color->state[index].input_transfer_function =
transfer_func_srgb;
core_color->state[index].output_transfer_function =
transfer_func_srgb;
}
struct mod_color *mod_color_create(struct dc *dc)
{
int i = 0;
struct core_color *core_color =
dm_alloc(sizeof(struct core_color));
struct core_dc *core_dc = DC_TO_CORE(dc);
struct persistent_data_flag flag;
if (core_color == NULL)
goto fail_alloc_context;
core_color->caps = dm_alloc(sizeof(struct sink_caps) *
MOD_COLOR_MAX_CONCURRENT_SINKS);
if (core_color->caps == NULL)
goto fail_alloc_caps;
for (i = 0; i < MOD_COLOR_MAX_CONCURRENT_SINKS; i++)
core_color->caps[i].sink = NULL;
core_color->state = dm_alloc(sizeof(struct color_state) *
MOD_COLOR_MAX_CONCURRENT_SINKS);
/*hardcoded to sRGB with 6500 color temperature*/
for (i = 0; i < MOD_COLOR_MAX_CONCURRENT_SINKS; i++) {
initialize_color_state(core_color, i);
}
if (core_color->state == NULL)
goto fail_alloc_state;
core_color->edid_caps = dm_alloc(sizeof(struct color_edid_caps) *
MOD_COLOR_MAX_CONCURRENT_SINKS);
if (core_color->edid_caps == NULL)
goto fail_alloc_edid_caps;
core_color->num_sinks = 0;
if (dc == NULL)
goto fail_construct;
core_color->dc = dc;
if (!check_dc_support(dc))
goto fail_construct;
/* Create initial module folder in registry for color adjustment */
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx, NULL, COLOR_REGISTRY_NAME, NULL,
NULL, 0, &flag);
return &core_color->public;
fail_construct:
dm_free(core_color->edid_caps);
fail_alloc_edid_caps:
dm_free(core_color->state);
fail_alloc_state:
dm_free(core_color->caps);
fail_alloc_caps:
dm_free(core_color);
fail_alloc_context:
return NULL;
}
void mod_color_destroy(struct mod_color *mod_color)
{
if (mod_color != NULL) {
int i;
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
dm_free(core_color->edid_caps);
for (i = 0; i < core_color->num_sinks; i++)
if (core_color->state[i].gamma)
dc_gamma_release(&core_color->state[i].gamma);
dm_free(core_color->state);
for (i = 0; i < core_color->num_sinks; i++)
dc_sink_release(core_color->caps[i].sink);
dm_free(core_color->caps);
dm_free(core_color);
}
}
bool mod_color_add_sink(struct mod_color *mod_color, const struct dc_sink *sink,
struct color_edid_caps *edid_caps)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
bool persistent_color_temp_enable;
int persistent_custom_color_temp = 0;
struct color_space_coordinates persistent_source_gamut;
struct color_space_coordinates persistent_destination_gamut;
int persistent_brightness;
int persistent_contrast;
int persistent_hue;
int persistent_saturation;
enum dc_quantization_range persistent_quantization_range;
struct persistent_data_flag flag;
if (core_color->num_sinks < MOD_COLOR_MAX_CONCURRENT_SINKS) {
dc_sink_retain(sink);
core_color->caps[core_color->num_sinks].sink = sink;
initialize_color_state(core_color, core_color->num_sinks);
core_color->edid_caps[core_color->num_sinks].colorimetry_caps =
edid_caps->colorimetry_caps;
core_color->edid_caps[core_color->num_sinks].hdr_caps =
edid_caps->hdr_caps;
/* get persistent data from registry */
flag.save_per_edid = true;
flag.save_per_link = false;
if (dm_read_persistent_data(core_dc->ctx, sink,
COLOR_REGISTRY_NAME,
"enablecolortempadj",
&persistent_color_temp_enable,
sizeof(bool), &flag))
core_color->state[core_color->num_sinks].
user_enable_color_temperature =
persistent_color_temp_enable;
if (dm_read_persistent_data(core_dc->ctx, sink,
COLOR_REGISTRY_NAME,
"customcolortemp",
&persistent_custom_color_temp,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
custom_color_temperature
= persistent_custom_color_temp;
if (dm_read_persistent_data(core_dc->ctx, sink,
COLOR_REGISTRY_NAME,
"sourcegamut",
&persistent_source_gamut,
sizeof(struct color_space_coordinates),
&flag)) {
memcpy(&core_color->state[core_color->num_sinks].
source_gamut.gamut, &persistent_source_gamut,
sizeof(struct color_space_coordinates));
}
if (dm_read_persistent_data(core_dc->ctx, sink, COLOR_REGISTRY_NAME,
"destgamut",
&persistent_destination_gamut,
sizeof(struct color_space_coordinates),
&flag)) {
memcpy(&core_color->state[core_color->num_sinks].
destination_gamut.gamut,
&persistent_destination_gamut,
sizeof(struct color_space_coordinates));
}
if (dm_read_persistent_data(core_dc->ctx, sink, COLOR_REGISTRY_NAME,
"brightness",
&persistent_brightness,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
brightness.current = persistent_brightness;
if (dm_read_persistent_data(core_dc->ctx, sink, COLOR_REGISTRY_NAME,
"contrast",
&persistent_contrast,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
contrast.current = persistent_contrast;
if (dm_read_persistent_data(core_dc->ctx, sink, COLOR_REGISTRY_NAME,
"hue",
&persistent_hue,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
hue.current = persistent_hue;
if (dm_read_persistent_data(core_dc->ctx, sink, COLOR_REGISTRY_NAME,
"saturation",
&persistent_saturation,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
saturation.current = persistent_saturation;
if (dm_read_persistent_data(core_dc->ctx, sink,
COLOR_REGISTRY_NAME,
"preferred_quantization_range",
&persistent_quantization_range,
sizeof(int), &flag))
core_color->state[core_color->num_sinks].
preferred_quantization_range =
persistent_quantization_range;
core_color->num_sinks++;
return true;
}
return false;
}
bool mod_color_remove_sink(struct mod_color *mod_color,
const struct dc_sink *sink)
{
int i = 0, j = 0;
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
for (i = 0; i < core_color->num_sinks; i++) {
if (core_color->caps[i].sink == sink) {
if (core_color->state[i].gamma) {
dc_gamma_release(&core_color->state[i].gamma);
}
memset(&core_color->state[i], 0,
sizeof(struct color_state));
memset(&core_color->edid_caps[i], 0,
sizeof(struct color_edid_caps));
/* To remove this sink, shift everything after down */
for (j = i; j < core_color->num_sinks - 1; j++) {
core_color->caps[j].sink =
core_color->caps[j + 1].sink;
memcpy(&core_color->state[j],
&core_color->state[j + 1],
sizeof(struct color_state));
memcpy(&core_color->edid_caps[j],
&core_color->edid_caps[j + 1],
sizeof(struct color_edid_caps));
}
memset(&core_color->state[core_color->num_sinks - 1], 0,
sizeof(struct color_state));
memset(&core_color->edid_caps[core_color->num_sinks - 1], 0,
sizeof(struct color_edid_caps));
core_color->num_sinks--;
dc_sink_release(sink);
return true;
}
}
return false;
}
bool mod_color_update_gamut_to_stream(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
struct gamut_src_dst_matrix *matrix =
dm_alloc(sizeof(struct gamut_src_dst_matrix));
unsigned int stream_index, j;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"sourcegamut",
&core_color->state[sink_index].
source_gamut.gamut,
sizeof(struct color_space_coordinates),
&flag);
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"destgamut",
&core_color->state[sink_index].
destination_gamut.gamut,
sizeof(struct color_space_coordinates),
&flag);
if (!build_gamut_remap_matrix
(core_color->state[sink_index].source_gamut.gamut,
matrix->rgbCoeffSrc,
matrix->whiteCoeffSrc))
goto function_fail;
if (!build_gamut_remap_matrix
(core_color->state[sink_index].
destination_gamut.gamut,
matrix->rgbCoeffDst, matrix->whiteCoeffDst))
goto function_fail;
struct fixed31_32 gamut_result[12];
struct fixed31_32 temp_matrix[9];
if (!gamut_to_color_matrix(
matrix->rgbCoeffDst,
matrix->whiteCoeffDst,
matrix->rgbCoeffSrc,
matrix->whiteCoeffSrc,
true,
temp_matrix))
goto function_fail;
gamut_result[0] = temp_matrix[0];
gamut_result[1] = temp_matrix[1];
gamut_result[2] = temp_matrix[2];
gamut_result[3] = matrix->whiteCoeffSrc[0];
gamut_result[4] = temp_matrix[3];
gamut_result[5] = temp_matrix[4];
gamut_result[6] = temp_matrix[5];
gamut_result[7] = matrix->whiteCoeffSrc[1];
gamut_result[8] = temp_matrix[6];
gamut_result[9] = temp_matrix[7];
gamut_result[10] = temp_matrix[8];
gamut_result[11] = matrix->whiteCoeffSrc[2];
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_stream->public.gamut_remap_matrix.enable_remap = true;
for (j = 0; j < 12; j++)
core_stream->public.
gamut_remap_matrix.matrix[j] =
gamut_result[j];
}
dm_free(matrix);
core_color->dc->stream_funcs.set_gamut_remap
(core_color->dc, streams, num_streams);
return true;
function_fail:
dm_free(matrix);
return false;
}
bool mod_color_adjust_source_gamut(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
update_color_gamut_data(input_gamut_data,
&core_color->state[sink_index].source_gamut);
}
if (!mod_color_update_gamut_info(mod_color, streams, num_streams))
return false;
return true;
}
bool mod_color_adjust_source_gamut_and_tf(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data,
enum color_transfer_func input_transfer_func)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
update_color_gamut_data(input_gamut_data,
&core_color->state[sink_index].source_gamut);
core_color->state[sink_index].input_transfer_function =
input_transfer_func;
}
if (!mod_color_update_gamut_info(mod_color, streams, num_streams))
return false;
return true;
}
bool mod_color_adjust_destination_gamut(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
update_color_gamut_data(input_gamut_data,
&core_color->state[sink_index].destination_gamut);
}
if (!mod_color_update_gamut_to_stream(mod_color, streams, num_streams))
return false;
return true;
}
bool mod_color_set_white_point(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct white_point_coodinates *white_point)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams;
stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
core_color->state[sink_index].source_gamut.gamut.whiteX =
white_point->whiteX;
core_color->state[sink_index].source_gamut.gamut.whiteY =
white_point->whiteY;
}
if (!mod_color_update_gamut_to_stream(mod_color, streams, num_streams))
return false;
return true;
}
bool mod_color_set_mastering_info(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
const struct dc_hdr_static_metadata *mastering_info)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
memcpy(&core_color->state[sink_index].mastering_info,
mastering_info,
sizeof(struct dc_hdr_static_metadata));
}
return true;
}
bool mod_color_get_mastering_info(struct mod_color *mod_color,
const struct dc_sink *sink,
struct dc_hdr_static_metadata *mastering_info)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
memcpy(mastering_info, &core_color->state[sink_index].mastering_info,
sizeof(struct dc_hdr_static_metadata));
return true;
}
bool mod_color_set_user_enable(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
bool user_enable)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
core_color->state[sink_index].user_enable_color_temperature
= user_enable;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"enablecolortempadj",
&user_enable,
sizeof(bool),
&flag);
}
return true;
}
bool mod_color_get_user_enable(struct mod_color *mod_color,
const struct dc_sink *sink,
bool *user_enable)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*user_enable = core_color->state[sink_index].
user_enable_color_temperature;
return true;
}
bool mod_color_get_custom_color_temperature(struct mod_color *mod_color,
const struct dc_sink *sink,
int *color_temperature)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*color_temperature = core_color->state[sink_index].
custom_color_temperature;
return true;
}
bool mod_color_set_custom_color_temperature(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int color_temperature)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
core_color->state[sink_index].custom_color_temperature
= color_temperature;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"customcolortemp",
&color_temperature,
sizeof(int),
&flag);
}
return true;
}
bool mod_color_get_color_saturation(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_saturation)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*color_saturation = core_color->state[sink_index].saturation;
return true;
}
bool mod_color_get_color_contrast(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_contrast)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*color_contrast = core_color->state[sink_index].contrast;
return true;
}
bool mod_color_get_color_brightness(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_brightness)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*color_brightness = core_color->state[sink_index].brightness;
return true;
}
bool mod_color_get_color_hue(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_hue)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*color_hue = core_color->state[sink_index].hue;
return true;
}
bool mod_color_get_source_gamut(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_space_coordinates *source_gamut)
{
struct core_color *core_color =
MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
*source_gamut = core_color->state[sink_index].source_gamut.gamut;
return true;
}
bool mod_color_notify_mode_change(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct gamut_src_dst_matrix *matrix =
dm_alloc(sizeof(struct gamut_src_dst_matrix));
unsigned int stream_index, j;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
if (!build_gamut_remap_matrix
(core_color->state[sink_index].source_gamut.gamut,
matrix->rgbCoeffSrc,
matrix->whiteCoeffSrc))
goto function_fail;
if (!build_gamut_remap_matrix
(core_color->state[sink_index].
destination_gamut.gamut,
matrix->rgbCoeffDst, matrix->whiteCoeffDst))
goto function_fail;
struct fixed31_32 gamut_result[12];
struct fixed31_32 temp_matrix[9];
if (!gamut_to_color_matrix(
matrix->rgbCoeffDst,
matrix->whiteCoeffDst,
matrix->rgbCoeffSrc,
matrix->whiteCoeffSrc,
true,
temp_matrix))
goto function_fail;
gamut_result[0] = temp_matrix[0];
gamut_result[1] = temp_matrix[1];
gamut_result[2] = temp_matrix[2];
gamut_result[3] = matrix->whiteCoeffSrc[0];
gamut_result[4] = temp_matrix[3];
gamut_result[5] = temp_matrix[4];
gamut_result[6] = temp_matrix[5];
gamut_result[7] = matrix->whiteCoeffSrc[1];
gamut_result[8] = temp_matrix[6];
gamut_result[9] = temp_matrix[7];
gamut_result[10] = temp_matrix[8];
gamut_result[11] = matrix->whiteCoeffSrc[2];
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_stream->public.gamut_remap_matrix.enable_remap = true;
for (j = 0; j < 12; j++)
core_stream->public.
gamut_remap_matrix.matrix[j] =
gamut_result[j];
calculate_csc_matrix(core_color, sink_index,
core_stream->public.output_color_space,
core_stream->public.csc_color_matrix.matrix);
core_stream->public.csc_color_matrix.enable_adjustment = true;
}
dm_free(matrix);
return true;
function_fail:
dm_free(matrix);
return false;
}
bool mod_color_set_brightness(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int brightness_value)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_color->state[sink_index].brightness.current =
brightness_value;
calculate_csc_matrix(core_color, sink_index,
core_stream->public.output_color_space,
core_stream->public.csc_color_matrix.matrix);
core_stream->public.csc_color_matrix.enable_adjustment = true;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"brightness",
&brightness_value,
sizeof(int),
&flag);
}
core_color->dc->stream_funcs.set_gamut_remap
(core_color->dc, streams, num_streams);
return true;
}
bool mod_color_set_contrast(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int contrast_value)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_color->state[sink_index].contrast.current =
contrast_value;
calculate_csc_matrix(core_color, sink_index,
core_stream->public.output_color_space,
core_stream->public.csc_color_matrix.matrix);
core_stream->public.csc_color_matrix.enable_adjustment = true;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"contrast",
&contrast_value,
sizeof(int),
&flag);
}
core_color->dc->stream_funcs.set_gamut_remap
(core_color->dc, streams, num_streams);
return true;
}
bool mod_color_set_hue(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int hue_value)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_color->state[sink_index].hue.current = hue_value;
calculate_csc_matrix(core_color, sink_index,
core_stream->public.output_color_space,
core_stream->public.csc_color_matrix.matrix);
core_stream->public.csc_color_matrix.enable_adjustment = true;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"hue",
&hue_value,
sizeof(int),
&flag);
}
core_color->dc->stream_funcs.set_gamut_remap
(core_color->dc, streams, num_streams);
return true;
}
bool mod_color_set_saturation(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int saturation_value)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
struct core_stream *core_stream =
DC_STREAM_TO_CORE
(streams[stream_index]);
core_color->state[sink_index].saturation.current =
saturation_value;
calculate_csc_matrix(core_color, sink_index,
core_stream->public.output_color_space,
core_stream->public.csc_color_matrix.matrix);
core_stream->public.csc_color_matrix.enable_adjustment = true;
/* Write persistent data in registry*/
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
streams[stream_index]->sink,
COLOR_REGISTRY_NAME,
"saturation",
&saturation_value,
sizeof(int),
&flag);
}
core_color->dc->stream_funcs.set_gamut_remap
(core_color->dc, streams, num_streams);
return true;
}
bool mod_color_set_input_gamma_correction(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct dc_gamma *gamma)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
struct dc_surface *surface =
dc_stream_to_surface_from_pipe_ctx(core_color,
streams[stream_index]);
if (surface != NULL) {
struct dc_transfer_func *input_tf =
dc_create_transfer_func();
struct dc_surface_update updates = {0};
if (input_tf != NULL) {
input_tf->type = TF_TYPE_PREDEFINED;
input_tf->tf = TRANSFER_FUNCTION_SRGB;
}
if (core_color->state[sink_index].gamma != gamma) {
if (core_color->state[sink_index].gamma)
dc_gamma_release(
&core_color->state[sink_index].gamma);
dc_gamma_retain(gamma);
core_color->state[sink_index].gamma = gamma;
}
updates.surface = surface;
updates.gamma = gamma;
updates.in_transfer_func = input_tf;
dc_update_surfaces_for_target(core_color->dc, &updates,
1, NULL);
if (input_tf != NULL)
dc_transfer_func_release(input_tf);
}
}
return true;
}
bool mod_color_persist_user_preferred_quantization_range(
struct mod_color *mod_color,
const struct dc_sink *sink,
enum dc_quantization_range quantization_range)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
struct core_dc *core_dc = DC_TO_CORE(core_color->dc);
struct persistent_data_flag flag;
int sink_index;
sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
if (core_color->state[sink_index].
preferred_quantization_range != quantization_range) {
core_color->state[sink_index].preferred_quantization_range =
quantization_range;
flag.save_per_edid = true;
flag.save_per_link = false;
dm_write_persistent_data(core_dc->ctx,
sink,
COLOR_REGISTRY_NAME,
"quantization_range",
&quantization_range,
sizeof(int),
&flag);
}
return true;
}
bool mod_color_get_preferred_quantization_range(struct mod_color *mod_color,
const struct dc_sink *sink,
const struct dc_crtc_timing *timing,
enum dc_quantization_range *quantization_range)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
int sink_index = sink_index_from_sink(core_color, sink);
if (sink_index == -1)
return false;
enum dc_quantization_range user_preferred_quantization_range =
core_color->state[sink_index].
preferred_quantization_range;
bool rgb_full_range_supported =
mod_color_is_rgb_full_range_supported_for_timing(
sink, timing);
bool rgb_limited_range_supported =
mod_color_is_rgb_limited_range_supported_for_timing(
sink, timing);
if (rgb_full_range_supported && rgb_limited_range_supported)
*quantization_range = user_preferred_quantization_range;
else if (rgb_full_range_supported && !rgb_limited_range_supported)
*quantization_range = QUANTIZATION_RANGE_FULL;
else if (!rgb_full_range_supported && rgb_limited_range_supported)
*quantization_range = QUANTIZATION_RANGE_LIMITED;
else
*quantization_range = QUANTIZATION_RANGE_UNKNOWN;
return true;
}
bool mod_color_is_rgb_full_range_supported_for_timing(
const struct dc_sink *sink,
const struct dc_crtc_timing *timing)
{
bool result = false;
if (!sink || !timing)
return result;
if (sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A)
if (timing->vic || timing->hdmi_vic)
if (timing->h_addressable == 640 &&
timing->v_addressable == 480 &&
(timing->pix_clk_khz == 25200 ||
timing->pix_clk_khz == 25170 ||
timing->pix_clk_khz == 25175))
result = true;
else
/* don't support full range rgb */
/* for HDMI CEA861 timings except VGA mode */
result = false;
else
result = true;
else
result = true;
return result;
}
bool mod_color_is_rgb_limited_range_supported_for_timing(
const struct dc_sink *sink,
const struct dc_crtc_timing *timing)
{
bool result = false;
if (!sink || !timing)
return result;
if (sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A)
if (timing->vic || timing->hdmi_vic)
if (timing->h_addressable == 640 &&
timing->v_addressable == 480 &&
(timing->pix_clk_khz == 25200 ||
timing->pix_clk_khz == 25170 ||
timing->pix_clk_khz == 25175))
/* don't support rgb limited for */
/* HDMI CEA VGA mode */
result = false;
else
/* support rgb limited for non VGA CEA timing */
result = true;
else
/* support rgb limited for non CEA HDMI timing */
result = true;
else
/* don't support rgb limited for non HDMI signal */
result = false;
return result;
}
bool mod_color_set_regamma(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams)
{
/*TODO*/
return true;
}
bool mod_color_set_degamma(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
enum color_transfer_func transfer_function)
{
/*TODO*/
return true;
}
bool mod_color_update_gamut_info(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams)
{
struct core_color *core_color = MOD_COLOR_TO_CORE(mod_color);
unsigned int stream_index;
int sink_index;
bool should_defer = false;
bool is_hdr = false;
enum color_color_space source_color_space;
enum color_transfer_func input_transfer_function;
struct color_gamut_data new_gamut_source;
struct color_gamut_data new_gamut_destination;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
sink_index = sink_index_from_sink(core_color,
streams[stream_index]->sink);
if (sink_index == -1)
continue;
source_color_space =
core_color->state[sink_index].source_gamut.color_space;
input_transfer_function =
core_color->state[sink_index].input_transfer_function;
new_gamut_source.color_space = source_color_space;
new_gamut_destination.color_space =
core_color->state[sink_index].
destination_gamut.color_space;
struct dc_surface *surface =
dc_stream_to_surface_from_pipe_ctx(core_color,
streams[stream_index]);
if (surface == NULL)
return false;
if (surface->format == SURFACE_PIXEL_FORMAT_GRPH_ARGB8888 ||
surface->format ==
SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010) {
if (input_transfer_function ==
transfer_func_pq2084 ||
input_transfer_function ==
transfer_func_pq2084_interim) {
/* For PQ and PQ interim, we bypass degamma+
* remap+regamma, application needs to also
* handle gamut remapping
*/
/* TODO */
is_hdr = true;
} else if (input_transfer_function ==
transfer_func_linear_0_1 ||
input_transfer_function ==
transfer_func_linear_0_125) {
/* TF not supported in current surface format,
* but may be deferred to a later flip
*/
should_defer = true;
} else {
new_gamut_destination.color_space =
color_space_srgb;
}
} else if (surface->format ==
SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F ||
surface->format ==
SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F ||
surface->format ==
SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616) {
if (input_transfer_function ==
transfer_func_linear_0_125) {
/* Regamma PQ for HDR supported displays and
* 0-125 source
*/
if ((core_color->edid_caps[sink_index].
hdr_caps) & smpte_st2084)
is_hdr = true;
/* override for BT.2020 whenever PQ */
if (core_color->state[sink_index].
destination_gamut.color_space !=
color_space_bt2020) {
if (streams[stream_index]->timing.
pixel_encoding ==
PIXEL_ENCODING_RGB) {
if ((core_color->
edid_caps[sink_index].
colorimetry_caps) & bt_2020_rgb)
new_gamut_destination.
color_space =
color_space_bt2020;
} else {
if ((core_color->
edid_caps[sink_index].
colorimetry_caps) & bt_2020_ycc)
new_gamut_destination.
color_space =
color_space_bt2020;
}
}
} else if (input_transfer_function ==
transfer_func_linear_0_1) {
new_gamut_destination.color_space =
color_space_srgb;
} else {
/* TF not supported in current surface format,
* but may be deferred to a later flip
*/
should_defer = true;
}
}
/* 0. ---- CHECK DEFERRED ---- */
if (should_defer)
return true;
/* 1. ---- SET GAMUT SOURCE ---- */
new_gamut_source.white_point = core_color->state[sink_index].
source_gamut.white_point;
update_color_gamut_data(&new_gamut_source,
&core_color->state[sink_index].source_gamut);
/* 2. ---- SET GAMUT DESTINATION ---- */
new_gamut_destination.white_point =
core_color->state[sink_index].
destination_gamut.white_point;
update_color_gamut_data(&new_gamut_destination,
&core_color->state[sink_index].destination_gamut);
/* 3. ---- SET DEGAMMA ---- */
struct dc_transfer_func *input_tf = NULL;
input_tf = dc_create_transfer_func();
if (input_tf != NULL) {
input_tf->type = TF_TYPE_PREDEFINED;
switch (input_transfer_function) {
case transfer_func_srgb:
input_tf->tf = TRANSFER_FUNCTION_SRGB;
break;
case transfer_func_linear_0_1:
case transfer_func_linear_0_125:
input_tf->tf = TRANSFER_FUNCTION_LINEAR;
break;
default:
dc_transfer_func_release(input_tf);
input_tf = NULL;
break;
}
}
/* 4. ---- SET REGAMMA ---- */
struct dc_transfer_func *output_tf = NULL;
output_tf = dc_create_transfer_func();
if (output_tf != NULL) {
output_tf->type = TF_TYPE_PREDEFINED;
if (is_hdr)
output_tf->tf = TRANSFER_FUNCTION_PQ;
else
output_tf->tf = TRANSFER_FUNCTION_SRGB;
}
/* 5. ---- POPULATE HDR METADATA ---- */
core_color->state[sink_index].mastering_info.is_hdr = is_hdr;
/* 6. ---- TODO: UPDATE INFOPACKETS ---- */
if (!mod_color_update_gamut_to_stream(
mod_color, streams, num_streams))
return false;
struct dc_surface_update updates[4] = {0};
updates[0].surface = surface;
updates[0].gamma = core_color->state[sink_index].gamma;
updates[0].in_transfer_func = input_tf;
updates[0].out_transfer_func = output_tf;
updates[0].hdr_static_metadata =
&core_color->state[sink_index].mastering_info;
dc_update_surfaces_for_target(core_color->dc, updates, 1, NULL);
if (input_tf != NULL)
dc_transfer_func_release(input_tf);
if (output_tf != NULL)
dc_transfer_func_release(output_tf);
}
return true;
}
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "mod_color.h"
#include "color_helper.h"
const struct gamut_space_entry predefined_gamuts[] = {
/* x_red y_red x_gr y_gr x_blue y_blue a0 a1 a2 a3 gamma */
[gamut_type_bt709] = {6400, 3300, 3000, 6000, 1500, 600, 180000, 4500, 99, 99, 2200},
[gamut_type_bt601] = {6400, 3300, 2900, 6000, 1500, 600, 180000, 4500, 99, 99, 2200},
[gamut_type_adobe_rgb] = {6400, 3300, 2100, 7100, 1500, 600, 180000, 4500, 99, 99, 2200},
[gamut_type_srgb] = {6400, 3300, 3000, 6000, 1500, 600, 31308, 12920, 55, 55, 2400},
[gamut_type_bt2020] = {7080, 2920, 1700, 7970, 1310, 460, 180000, 4500, 99, 99, 2200}
};
const struct white_point_coodinates_entry predefined_white_points[] = {
[white_point_type_5000k_horizon] = {5000, 3473, 3561},
[white_point_type_6500k_noon] = {6500, 3127, 3290},
[white_point_type_7500k_north_sky] = {7500, 3022, 3129},
[white_point_type_9300k] = {9300, 2866, 2950}
};
const unsigned int white_point_entries = 91;
const struct white_point_coodinates_entry white_point_temps[] = {
/*001*/{1000, 6499, 3474},
/*002*/{1100, 6361, 3594},
/*003*/{1200, 6226, 3703},
/*004*/{1300, 6095, 3801},
/*005*/{1400, 5966, 3887},
/*006*/{1500, 5841, 3962},
/*007*/{1600, 5720, 4025},
/*008*/{1700, 5601, 4076},
/*009*/{1800, 5486, 4118},
/*010*/{1900, 5375, 4150},
/*011*/{2000, 5267, 4173},
/*012*/{2100, 5162, 4188},
/*013*/{2200, 5062, 4196},
/*014*/{2300, 4965, 4198},
/*015*/{2400, 4872, 4194},
/*016*/{2500, 4782, 4186},
/*017*/{2600, 4696, 4173},
/*018*/{2700, 4614, 4158},
/*019*/{2800, 4535, 4139},
/*020*/{2900, 4460, 4118},
/*021*/{3000, 4388, 4095},
/*022*/{3100, 4320, 4070},
/*023*/{3200, 4254, 4044},
/*024*/{3300, 4192, 4018},
/*025*/{3400, 4132, 3990},
/*026*/{3500, 4075, 3962},
/*027*/{3600, 4021, 3934},
/*028*/{3700, 3969, 3905},
/*029*/{3800, 3919, 3877},
/*030*/{3900, 3872, 3849},
/*031*/{4000, 3827, 3820},
/*032*/{4100, 3784, 3793},
/*033*/{4200, 3743, 3765},
/*034*/{4300, 3704, 3738},
/*035*/{4400, 3666, 3711},
/*036*/{4500, 3631, 3685},
/*037*/{4600, 3596, 3659},
/*038*/{4700, 3563, 3634},
/*039*/{4800, 3532, 3609},
/*040*/{4900, 3502, 3585},
/*041*/{5000, 3473, 3561},
/*042*/{5100, 3446, 3538},
/*043*/{5200, 3419, 3516},
/*044*/{5300, 3394, 3494},
/*045*/{5400, 3369, 3472},
/*046*/{5500, 3346, 3451},
/*047*/{5600, 3323, 3431},
/*048*/{5700, 3302, 3411},
/*049*/{5800, 3281, 3392},
/*050*/{5900, 3261, 3373},
/*051*/{6000, 3242, 3355},
/*052*/{6100, 3223, 3337},
/*053*/{6200, 3205, 3319},
/*054*/{6300, 3188, 3302},
/*055*/{6400, 3161, 3296},
/*056*/{6500, 3127, 3290}, /* This is the real white point sRGB */
/*057*/{6600, 3126, 3264},
/*058*/{6700, 3125, 3238},
/*059*/{6800, 3110, 3224},
/*060*/{6900, 3097, 3209},
/*061*/{7000, 3083, 3195},
/*062*/{7100, 3070, 3181},
/*063*/{7200, 3058, 3168},
/*064*/{7300, 3045, 3154},
/*065*/{7400, 3034, 3142},
/*066*/{7500, 3022, 3129},
/*067*/{7600, 3011, 3117},
/*068*/{7700, 3000, 3105},
/*069*/{7800, 2990, 3094},
/*070*/{7900, 2980, 3082},
/*071*/{8000, 2970, 3071},
/*072*/{8100, 2961, 3061},
/*073*/{8200, 2952, 3050},
/*074*/{8300, 2943, 3040},
/*075*/{8400, 2934, 3030},
/*076*/{8500, 2926, 3020},
/*077*/{8600, 2917, 3011},
/*078*/{8700, 2910, 3001},
/*079*/{8800, 2902, 2992},
/*080*/{8900, 2894, 2983},
/*081*/{9000, 2887, 2975},
/*082*/{9100, 2880, 2966},
/*083*/{9200, 2873, 2958},
/*084*/{9300, 2866, 2950},
/*085*/{9400, 2860, 2942},
/*086*/{9500, 2853, 2934},
/*087*/{9600, 2847, 2927},
/*088*/{9700, 2841, 2919},
/*089*/{9800, 2835, 2912},
/*090*/{9900, 2829, 2905},
/*091*/{10000, 2824, 2898}
};
bool mod_color_find_predefined_gamut(
struct gamut_space_coordinates *out_gamut,
enum predefined_gamut_type type)
{
out_gamut->redX = predefined_gamuts[type].redX;
out_gamut->redY = predefined_gamuts[type].redY;
out_gamut->greenX = predefined_gamuts[type].greenX;
out_gamut->greenY = predefined_gamuts[type].greenY;
out_gamut->blueX = predefined_gamuts[type].blueX;
out_gamut->blueY = predefined_gamuts[type].blueY;
return true;
}
bool mod_color_find_predefined_white_point(
struct white_point_coodinates *out_white_point,
enum predefined_white_point_type type)
{
out_white_point->whiteX = predefined_white_points[type].whiteX;
out_white_point->whiteY = predefined_white_points[type].whiteY;
return true;
}
bool mod_color_find_white_point_from_temperature(
struct white_point_coodinates *out_white_point,
unsigned int temperature)
{
int i;
unsigned int found = false;
struct white_point_coodinates_entry temp_white_point =
white_point_temps[55];
if (temperature < 1000 || temperature > 10000)
return false;
for (i = 0; i < white_point_entries; i++) {
if (temperature == white_point_temps[i].temperature) {
temp_white_point = white_point_temps[i];
found = true;
break;
}
}
out_white_point->whiteX = temp_white_point.whiteX;
out_white_point->whiteY = temp_white_point.whiteY;
return found;
}
bool mod_color_find_temperature_from_white_point(
struct white_point_coodinates *in_white_point,
unsigned int *out_temperature)
{
unsigned int i;
*out_temperature = 6500;
for (i = 0; i < white_point_entries; i++) {
if (in_white_point->whiteX == white_point_temps[i].whiteX &&
in_white_point->whiteY == white_point_temps[i].whiteY) {
*out_temperature = white_point_temps[i].temperature;
return true;
}
}
return false;
}
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef COLOR_MOD_COLOR_HELPER_H_
#define COLOR_MOD_COLOR_HELPER_H_
enum predefined_gamut_type {
gamut_type_bt709,
gamut_type_bt601,
gamut_type_adobe_rgb,
gamut_type_srgb,
gamut_type_bt2020,
gamut_type_unknown,
};
enum predefined_white_point_type {
white_point_type_5000k_horizon,
white_point_type_6500k_noon,
white_point_type_7500k_north_sky,
white_point_type_9300k,
white_point_type_unknown,
};
bool mod_color_find_predefined_gamut(
struct gamut_space_coordinates *out_gamut,
enum predefined_gamut_type type);
bool mod_color_find_predefined_white_point(
struct white_point_coodinates *out_white_point,
enum predefined_white_point_type type);
bool mod_color_find_white_point_from_temperature(
struct white_point_coodinates *out_white_point,
unsigned int temperature);
bool mod_color_find_temperature_from_white_point(
struct white_point_coodinates *in_white_point,
unsigned int *out_temperature);
#endif /* COLOR_MOD_COLOR_HELPER_H_ */
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef MOD_COLOR_H_
#define MOD_COLOR_H_
#include "dm_services.h"
#include "color_helper.h"
enum color_transfer_func {
transfer_func_unknown,
transfer_func_srgb,
transfer_func_bt709,
transfer_func_pq2084,
transfer_func_pq2084_interim,
transfer_func_linear_0_1,
transfer_func_linear_0_125,
transfer_func_dolbyvision,
transfer_func_gamma_22,
transfer_func_gamma_26
};
enum color_color_space {
color_space_unsupported,
color_space_srgb,
color_space_bt601,
color_space_bt709,
color_space_xv_ycc_bt601,
color_space_xv_ycc_bt709,
color_space_xr_rgb,
color_space_bt2020,
color_space_adobe,
color_space_dci_p3,
color_space_sc_rgb_ms_ref,
color_space_display_native,
color_space_app_ctrl,
color_space_dolby_vision,
color_space_custom_coordinates
};
enum color_white_point_type {
color_white_point_type_unknown,
color_white_point_type_5000k_horizon,
color_white_point_type_6500k_noon,
color_white_point_type_7500k_north_sky,
color_white_point_type_9300k,
color_white_point_type_custom_coordinates
};
enum colorimetry_support_flag {
xv_ycc_bt601 = 0x01,
xv_ycc_bt709 = 0x02,
s_ycc_601 = 0x04,
adobe_ycc_601 = 0x08,
adobe_rgb = 0x10,
bt_2020_c_ycc = 0x20,
bt_2020_ycc = 0x40,
bt_2020_rgb = 0x80
};
enum hdr_tf_support_flag {
traditional_gamma_sdr = 0x01,
traditional_gamma_hdr = 0x02,
smpte_st2084 = 0x04
};
struct mod_color {
int dummy;
};
struct color_space_coordinates {
unsigned int redX;
unsigned int redY;
unsigned int greenX;
unsigned int greenY;
unsigned int blueX;
unsigned int blueY;
unsigned int whiteX;
unsigned int whiteY;
};
struct gamut_space_coordinates {
unsigned int redX;
unsigned int redY;
unsigned int greenX;
unsigned int greenY;
unsigned int blueX;
unsigned int blueY;
};
struct gamut_space_entry {
unsigned int redX;
unsigned int redY;
unsigned int greenX;
unsigned int greenY;
unsigned int blueX;
unsigned int blueY;
int a0;
int a1;
int a2;
int a3;
int gamma;
};
struct white_point_coodinates {
unsigned int whiteX;
unsigned int whiteY;
};
struct white_point_coodinates_entry {
unsigned int temperature;
unsigned int whiteX;
unsigned int whiteY;
};
struct color_range {
int current;
int min;
int max;
};
struct color_gamut_data {
enum color_color_space color_space;
enum color_white_point_type white_point;
struct color_space_coordinates gamut;
};
struct color_edid_caps {
unsigned int colorimetry_caps;
unsigned int hdr_caps;
};
struct mod_color *mod_color_create(struct dc *dc);
void mod_color_destroy(struct mod_color *mod_color);
bool mod_color_add_sink(struct mod_color *mod_color,
const struct dc_sink *sink, struct color_edid_caps *edid_caps);
bool mod_color_remove_sink(struct mod_color *mod_color,
const struct dc_sink *sink);
bool mod_color_update_gamut_to_stream(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams);
bool mod_color_set_white_point(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct white_point_coodinates *white_point);
bool mod_color_adjust_source_gamut(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data);
bool mod_color_adjust_destination_gamut(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data);
bool mod_color_adjust_source_gamut_and_tf(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct color_gamut_data *input_gamut_data,
enum color_transfer_func input_transfer_func);
bool mod_color_get_user_enable(struct mod_color *mod_color,
const struct dc_sink *sink,
bool *user_enable);
bool mod_color_set_mastering_info(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
const struct dc_hdr_static_metadata *mastering_info);
bool mod_color_get_mastering_info(struct mod_color *mod_color,
const struct dc_sink *sink,
struct dc_hdr_static_metadata *mastering_info);
bool mod_color_set_user_enable(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
bool user_enable);
bool mod_color_get_custom_color_temperature(struct mod_color *mod_color,
const struct dc_sink *sink,
int *color_temperature);
bool mod_color_set_custom_color_temperature(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int color_temperature);
bool mod_color_get_color_saturation(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_saturation);
bool mod_color_get_color_contrast(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_contrast);
bool mod_color_get_color_brightness(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_brightness);
bool mod_color_get_color_hue(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_range *color_hue);
bool mod_color_get_source_gamut(struct mod_color *mod_color,
const struct dc_sink *sink,
struct color_space_coordinates *source_gamut);
bool mod_color_notify_mode_change(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams);
bool mod_color_set_brightness(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int brightness_value);
bool mod_color_set_contrast(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int contrast_value);
bool mod_color_set_hue(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int hue_value);
bool mod_color_set_saturation(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
int saturation_value);
bool mod_color_set_input_gamma_correction(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
struct dc_gamma *gamma);
bool mod_color_persist_user_preferred_quantization_range(
struct mod_color *mod_color,
const struct dc_sink *sink,
enum dc_quantization_range quantization_range);
bool mod_color_get_preferred_quantization_range(struct mod_color *mod_color,
const struct dc_sink *sink,
const struct dc_crtc_timing *timing,
enum dc_quantization_range *quantization_range);
bool mod_color_is_rgb_full_range_supported_for_timing(
const struct dc_sink *sink,
const struct dc_crtc_timing *timing);
bool mod_color_is_rgb_limited_range_supported_for_timing(
const struct dc_sink *sink,
const struct dc_crtc_timing *timing);
bool mod_color_set_regamma(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams);
bool mod_color_set_degamma(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams,
enum color_transfer_func transfer_function);
bool mod_color_update_gamut_info(struct mod_color *mod_color,
const struct dc_stream **streams, int num_streams);
#endif /* MOD_COLOR_H_ */
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef MODULES_INC_MOD_POWER_H_
#define MODULES_INC_MOD_POWER_H_
#include "dm_services.h"
struct mod_power {
int dummy;
};
/* VariBright related commands */
enum varibright_command {
VariBright_Cmd__SetVBLevel = 0,
VariBright_Cmd__UserEnable,
VariBright_Cmd__PreDisplayConfigChange,
VariBright_Cmd__PostDisplayConfigChange,
VariBright_Cmd__SuspendABM,
VariBright_Cmd__ResumeABM,
VariBright_Cmd__Unknown,
};
/* VariBright settings structure */
struct varibright_info {
enum varibright_command cmd;
unsigned int level;
bool enable;
bool activate;
};
enum dmcu_block_psr_reason {
/* This is a bitfield mask */
dmcu_block_psr_reason_invalid = 0x0,
dmcu_block_psr_reason_vsync_int = 0x1,
dmcu_block_psr_reason_shared_primary = 0x2,
dmcu_block_psr_reason_unsupported_link_rate = 0x4
};
struct mod_power *mod_power_create(struct dc *dc);
void mod_power_destroy(struct mod_power *mod_power);
bool mod_power_add_sink(struct mod_power *mod_power,
const struct dc_sink *sink);
bool mod_power_remove_sink(struct mod_power *mod_power,
const struct dc_sink *sink);
bool mod_power_set_backlight(struct mod_power *mod_power,
const struct dc_stream **streams, int num_streams,
unsigned int backlight_8bit);
bool mod_power_get_backlight(struct mod_power *mod_power,
const struct dc_sink *sink,
unsigned int *backlight_8bit);
void mod_power_initialize_backlight_caps
(struct mod_power *mod_power);
unsigned int mod_power_backlight_level_percentage_to_signal
(struct mod_power *mod_power, unsigned int percentage);
unsigned int mod_power_backlight_level_signal_to_percentage
(struct mod_power *mod_power, unsigned int signalLevel8bit);
bool mod_power_get_panel_backlight_boundaries
(struct mod_power *mod_power,
unsigned int *min_backlight,
unsigned int *max_backlight,
unsigned int *output_ac_level_percentage,
unsigned int *output_dc_level_percentage);
bool mod_power_set_smooth_brightness(struct mod_power *mod_power,
const struct dc_sink *sink, bool enable_brightness);
bool mod_power_notify_mode_change(struct mod_power *mod_power,
const struct dc_stream *stream);
bool mod_power_varibright_control(struct mod_power *mod_power,
struct varibright_info *input_varibright_info);
bool mod_power_block_psr(bool block_enable, enum dmcu_block_psr_reason reason);
bool mod_power_set_psr_enable(struct mod_power *mod_power,
bool psr_enable);
#endif /* MODULES_INC_MOD_POWER_H_ */
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "mod_power.h"
#include "dm_services.h"
#include "dc.h"
#include "core_types.h"
#include "core_dc.h"
#define MOD_POWER_MAX_CONCURRENT_SINKS 32
#define SMOOTH_BRIGHTNESS_ADJUSTMENT_TIME_IN_MS 500
struct sink_caps {
const struct dc_sink *sink;
};
struct backlight_state {
unsigned int backlight;
unsigned int frame_ramp;
bool smooth_brightness_enabled;
};
struct core_power {
struct mod_power public;
struct dc *dc;
int num_sinks;
struct sink_caps *caps;
struct backlight_state *state;
};
union dmcu_abm_set_bl_params {
struct {
unsigned int gradual_change : 1; /* [0:0] */
unsigned int reserved : 15; /* [15:1] */
unsigned int frame_ramp : 16; /* [31:16] */
} bits;
unsigned int u32All;
};
/* Backlight cached properties */
static unsigned int backlight_8bit_lut_array[101];
static unsigned int ac_level_percentage;
static unsigned int dc_level_percentage;
static bool backlight_caps_valid;
/* we use lazy initialization of backlight capabilities cache */
static bool backlight_caps_initialized;
/* AC/DC levels initialized later in separate context */
static bool backlight_def_levels_valid;
/* ABM cached properties */
static unsigned int abm_level;
static bool abm_user_enable;
static bool abm_active;
/*PSR cached properties*/
static unsigned int block_psr;
/* Defines default backlight curve F(x) = A(x*x) + Bx + C.
*
* Backlight curve should always satisfy F(0) = min, F(100) = max,
* so polynom coefficients are:
* A is 0.0255 - B/100 - min/10000 - (255-max)/10000 = (max - min)/10000 - B/100
* B is adjustable factor to modify the curve.
* Bigger B results in less concave curve. B range is [0..(max-min)/100]
* C is backlight minimum
*/
static const unsigned int backlight_curve_coeff_a_factor = 10000;
static const unsigned int backlight_curve_coeff_b = 100;
static const unsigned int backlight_curve_coeff_b_factor = 100;
/* Minimum and maximum backlight input signal levels */
static const unsigned int default_min_backlight = 12;
static const unsigned int default_max_backlight = 255;
/* Other backlight constants */
static const unsigned int absolute_backlight_max = 255;
#define MOD_POWER_TO_CORE(mod_power)\
container_of(mod_power, struct core_power, public)
static bool check_dc_support(const struct dc *dc)
{
if (dc->stream_funcs.set_backlight == NULL)
return false;
return true;
}
/* Given a specific dc_sink* this function finds its equivalent
* on the dc_sink array and returns the corresponding index
*/
static unsigned int sink_index_from_sink(struct core_power *core_power,
const struct dc_sink *sink)
{
unsigned int index = 0;
for (index = 0; index < core_power->num_sinks; index++)
if (core_power->caps[index].sink == sink)
return index;
/* Could not find sink requested */
ASSERT(false);
return index;
}
static unsigned int convertBL8to17(unsigned int backlight_8bit)
{
unsigned int temp_ulong = backlight_8bit * 0x10101;
unsigned char temp_uchar =
(unsigned char)(((temp_ulong & 0x80) >> 7) & 1);
temp_ulong = (temp_ulong >> 8) + temp_uchar;
return temp_ulong;
}
static uint16_t convertBL8to16(unsigned int backlight_8bit)
{
return (uint16_t)((backlight_8bit * 0x10101) >> 8);
}
/*This is used when OS wants to retrieve the current BL.
* We return the 8bit value to OS.
*/
static unsigned int convertBL17to8(unsigned int backlight_17bit)
{
if (backlight_17bit & 0x10000)
return default_max_backlight;
else
return (backlight_17bit >> 8);
}
struct mod_power *mod_power_create(struct dc *dc)
{
struct core_power *core_power =
dm_alloc(sizeof(struct core_power));
struct core_dc *core_dc = DC_TO_CORE(dc);
int i = 0;
if (core_power == NULL)
goto fail_alloc_context;
core_power->caps = dm_alloc(sizeof(struct sink_caps) *
MOD_POWER_MAX_CONCURRENT_SINKS);
if (core_power->caps == NULL)
goto fail_alloc_caps;
for (i = 0; i < MOD_POWER_MAX_CONCURRENT_SINKS; i++)
core_power->caps[i].sink = NULL;
core_power->state = dm_alloc(sizeof(struct backlight_state) *
MOD_POWER_MAX_CONCURRENT_SINKS);
if (core_power->state == NULL)
goto fail_alloc_state;
core_power->num_sinks = 0;
backlight_caps_valid = false;
if (dc == NULL)
goto fail_construct;
core_power->dc = dc;
if (!check_dc_support(dc))
goto fail_construct;
abm_user_enable = false;
abm_active = false;
return &core_power->public;
fail_construct:
dm_free(core_power->state);
fail_alloc_state:
dm_free(core_power->caps);
fail_alloc_caps:
dm_free(core_power);
fail_alloc_context:
return NULL;
}
void mod_power_destroy(struct mod_power *mod_power)
{
if (mod_power != NULL) {
int i;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
dm_free(core_power->state);
for (i = 0; i < core_power->num_sinks; i++)
dc_sink_release(core_power->caps[i].sink);
dm_free(core_power->caps);
dm_free(core_power);
}
}
bool mod_power_add_sink(struct mod_power *mod_power,
const struct dc_sink *sink)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
struct core_dc *core_dc = DC_TO_CORE(core_power->dc);
if (core_power->num_sinks < MOD_POWER_MAX_CONCURRENT_SINKS) {
dc_sink_retain(sink);
core_power->caps[core_power->num_sinks].sink = sink;
core_power->state[core_power->num_sinks].
smooth_brightness_enabled = false;
core_power->state[core_power->num_sinks].
backlight = 100;
core_power->num_sinks++;
return true;
}
return false;
}
bool mod_power_remove_sink(struct mod_power *mod_power,
const struct dc_sink *sink)
{
int i = 0, j = 0;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
for (i = 0; i < core_power->num_sinks; i++) {
if (core_power->caps[i].sink == sink) {
/* To remove this sink, shift everything after down */
for (j = i; j < core_power->num_sinks - 1; j++) {
core_power->caps[j].sink =
core_power->caps[j + 1].sink;
memcpy(&core_power->state[j],
&core_power->state[j + 1],
sizeof(struct backlight_state));
}
core_power->num_sinks--;
dc_sink_release(sink);
return true;
}
}
return false;
}
bool mod_power_set_backlight(struct mod_power *mod_power,
const struct dc_stream **streams, int num_streams,
unsigned int backlight_8bit)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int frame_ramp = 0;
unsigned int stream_index, sink_index, vsync_rate_hz;
union dmcu_abm_set_bl_params params;
for (stream_index = 0; stream_index < num_streams; stream_index++) {
if (streams[stream_index]->sink->sink_signal == SIGNAL_TYPE_VIRTUAL) {
core_power->state[sink_index].backlight = 0;
core_power->state[sink_index].frame_ramp = 0;
core_power->state[sink_index].smooth_brightness_enabled = false;
continue;
}
sink_index = sink_index_from_sink(core_power,
streams[stream_index]->sink);
vsync_rate_hz = div64_u64(div64_u64((streams[stream_index]->
timing.pix_clk_khz * 1000),
streams[stream_index]->timing.v_total),
streams[stream_index]->timing.h_total);
core_power->state[sink_index].backlight = backlight_8bit;
if (core_power->state[sink_index].smooth_brightness_enabled)
frame_ramp = ((vsync_rate_hz *
SMOOTH_BRIGHTNESS_ADJUSTMENT_TIME_IN_MS) + 500)
/ 1000;
else
frame_ramp = 0;
core_power->state[sink_index].frame_ramp = frame_ramp;
}
params.u32All = 0;
params.bits.gradual_change = (frame_ramp > 0);
params.bits.frame_ramp = frame_ramp;
core_power->dc->stream_funcs.set_backlight
(core_power->dc, backlight_8bit, params.u32All, streams[0]);
return true;
}
bool mod_power_get_backlight(struct mod_power *mod_power,
const struct dc_sink *sink,
unsigned int *backlight_8bit)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power, sink);
*backlight_8bit = core_power->state[sink_index].backlight;
return true;
}
/* hard coded to default backlight curve. */
void mod_power_initialize_backlight_caps(struct mod_power
*mod_power)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
struct core_dc *core_dc = DC_TO_CORE(core_power->dc);
unsigned int i;
backlight_caps_initialized = true;
struct dm_acpi_atif_backlight_caps *pExtCaps = NULL;
bool customCurvePresent = false;
bool customMinMaxPresent = false;
bool customDefLevelsPresent = false;
/* Allocate memory for ATIF output
* (do not want to use 256 bytes on the stack)
*/
pExtCaps = (struct dm_acpi_atif_backlight_caps *)
(dm_alloc(sizeof(struct dm_acpi_atif_backlight_caps)));
if (pExtCaps == NULL)
return;
/* Retrieve ACPI extended brightness caps */
if (dm_query_extended_brightness_caps
(core_dc->ctx, AcpiDisplayType_LCD1, pExtCaps)) {
ac_level_percentage = pExtCaps->acLevelPercentage;
dc_level_percentage = pExtCaps->dcLevelPercentage;
customMinMaxPresent = true;
customDefLevelsPresent = true;
customCurvePresent = (pExtCaps->numOfDataPoints > 0);
ASSERT(pExtCaps->numOfDataPoints <= 99);
} else {
dm_free(pExtCaps);
return;
}
if (customMinMaxPresent)
backlight_8bit_lut_array[0] = pExtCaps->minInputSignal;
else
backlight_8bit_lut_array[0] = default_min_backlight;
if (customMinMaxPresent)
backlight_8bit_lut_array[100] = pExtCaps->maxInputSignal;
else
backlight_8bit_lut_array[100] = default_max_backlight;
ASSERT(backlight_8bit_lut_array[100] <= absolute_backlight_max);
ASSERT(backlight_8bit_lut_array[0] <=
backlight_8bit_lut_array[100]);
/* Just to make sure we use valid values */
if (backlight_8bit_lut_array[100] > absolute_backlight_max)
backlight_8bit_lut_array[100] = absolute_backlight_max;
if (backlight_8bit_lut_array[0] > backlight_8bit_lut_array[100]) {
unsigned int swap;
swap = backlight_8bit_lut_array[0];
backlight_8bit_lut_array[0] = backlight_8bit_lut_array[100];
backlight_8bit_lut_array[100] = swap;
}
/* Build backlight translation table for custom curve */
if (customCurvePresent) {
unsigned int index = 1;
unsigned int numOfDataPoints =
(pExtCaps->numOfDataPoints <= 99 ?
pExtCaps->numOfDataPoints : 99);
/* Filling translation table from data points -
* between every two provided data points we
* lineary interpolate missing values
*/
for (i = 0; i < numOfDataPoints; i++) {
/* Clamp signal level between min and max
* (since min and max might come other
* soruce like registry)
*/
unsigned int luminance =
pExtCaps->dataPoints[i].luminance;
unsigned int signalLevel =
pExtCaps->dataPoints[i].signalLevel;
if (signalLevel < backlight_8bit_lut_array[0])
signalLevel = backlight_8bit_lut_array[0];
if (signalLevel > backlight_8bit_lut_array[100])
signalLevel = backlight_8bit_lut_array[100];
/* Lineary interpolate missing values */
if (index < luminance) {
unsigned int baseValue =
backlight_8bit_lut_array[index-1];
unsigned int deltaSignal =
signalLevel - baseValue;
unsigned int deltaLuma =
luminance - index + 1;
unsigned int step = deltaSignal;
for (; index < luminance; index++) {
backlight_8bit_lut_array[index] =
baseValue + (step / deltaLuma);
step += deltaSignal;
}
}
/* Now [index == luminance],
* so we can add data point to the translation table
*/
backlight_8bit_lut_array[index++] = signalLevel;
}
/* Complete the final segment of interpolation -
* between last datapoint and maximum value
*/
if (index < 100) {
unsigned int baseValue =
backlight_8bit_lut_array[index-1];
unsigned int deltaSignal =
backlight_8bit_lut_array[100] -
baseValue;
unsigned int deltaLuma = 100 - index + 1;
unsigned int step = deltaSignal;
for (; index < 100; index++) {
backlight_8bit_lut_array[index] =
baseValue + (step / deltaLuma);
step += deltaSignal;
}
}
/* Build backlight translation table based on default curve */
} else {
unsigned int delta =
backlight_8bit_lut_array[100] -
backlight_8bit_lut_array[0];
unsigned int coeffC = backlight_8bit_lut_array[0];
unsigned int coeffB =
(backlight_curve_coeff_b < delta ?
backlight_curve_coeff_b : delta);
unsigned int coeffA = delta - coeffB; /* coeffB is B*100 */
for (i = 1; i < 100; i++) {
backlight_8bit_lut_array[i] =
(coeffA * i * i) /
backlight_curve_coeff_a_factor +
(coeffB * i) /
backlight_curve_coeff_b_factor +
coeffC;
}
}
if (pExtCaps != NULL)
dm_free(pExtCaps);
/* Successfully initialized */
backlight_caps_valid = true;
backlight_def_levels_valid = customDefLevelsPresent;
}
unsigned int mod_power_backlight_level_percentage_to_signal(
struct mod_power *mod_power, unsigned int percentage)
{
/* Do lazy initialization of backlight capabilities*/
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* Since the translation table is indexed by percentage,
* we simply return backlight value at given percent
*/
if (backlight_caps_valid && percentage <= 100)
return backlight_8bit_lut_array[percentage];
return -1;
}
unsigned int mod_power_backlight_level_signal_to_percentage(
struct mod_power *mod_power,
unsigned int signalLevel8bit)
{
unsigned int invalid_backlight = (unsigned int)(-1);
/* Do lazy initialization of backlight capabilities */
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* If customer curve cannot convert to differentiated value near min
* it is important to report 0 for min signal to pass setting "Dimmed"
* setting in HCK brightness2 tests.
*/
if (signalLevel8bit <= backlight_8bit_lut_array[0])
return 0;
/* Since the translation table is indexed by percentage
* we need to do a binary search over the array
* Another option would be to guess entry based on linear distribution
* and then do linear search in correct direction
*/
if (backlight_caps_valid && signalLevel8bit <=
absolute_backlight_max) {
unsigned int min = 0;
unsigned int max = 100;
unsigned int mid = invalid_backlight;
while (max >= min) {
mid = (min + max) / 2; /* floor of half range */
if (backlight_8bit_lut_array[mid] < signalLevel8bit)
min = mid + 1;
else if (backlight_8bit_lut_array[mid] >
signalLevel8bit)
max = mid - 1;
else
break;
if (max == 0 || max == 1)
return invalid_backlight;
}
return mid;
}
return invalid_backlight;
}
bool mod_power_get_panel_backlight_boundaries(
struct mod_power *mod_power,
unsigned int *min_backlight,
unsigned int *max_backlight,
unsigned int *output_ac_level_percentage,
unsigned int *output_dc_level_percentage)
{
/* Do lazy initialization of backlight capabilities */
if (!backlight_caps_initialized)
mod_power_initialize_backlight_caps(mod_power);
/* If cache was successfully updated,
* copy the values to output structure and return success
*/
if (backlight_caps_valid) {
*min_backlight = backlight_8bit_lut_array[0];
*max_backlight = backlight_8bit_lut_array[100];
*output_ac_level_percentage = ac_level_percentage;
*output_dc_level_percentage = dc_level_percentage;
return true;
}
return false;
}
bool mod_power_set_smooth_brightness(struct mod_power *mod_power,
const struct dc_sink *sink, bool enable_brightness)
{
if (sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power, sink);
core_power->state[sink_index].smooth_brightness_enabled
= enable_brightness;
return true;
}
bool mod_power_notify_mode_change(struct mod_power *mod_power,
const struct dc_stream *stream)
{
if (stream->sink->sink_signal == SIGNAL_TYPE_VIRTUAL)
return false;
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
unsigned int sink_index = sink_index_from_sink(core_power,
stream->sink);
unsigned int frame_ramp = core_power->state[sink_index].frame_ramp;
union dmcu_abm_set_bl_params params;
params.u32All = 0;
params.bits.gradual_change = (frame_ramp > 0);
params.bits.frame_ramp = frame_ramp;
core_power->dc->stream_funcs.set_backlight
(core_power->dc,
core_power->state[sink_index].backlight,
params.u32All, stream);
core_power->dc->stream_funcs.setup_psr
(core_power->dc, stream);
return true;
}
static bool mod_power_abm_feature_enable(struct mod_power
*mod_power, bool enable)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_user_enable == enable)
return true;
abm_user_enable = enable;
if (enable) {
if (abm_level != 0 && abm_active)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
} else {
if (abm_level != 0 && abm_active) {
abm_level = 0;
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
}
}
return true;
}
static bool mod_power_abm_activate(struct mod_power
*mod_power, bool activate)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_active == activate)
return true;
abm_active = activate;
if (activate) {
if (abm_level != 0 && abm_user_enable)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
} else {
if (abm_level != 0 && abm_user_enable) {
abm_level = 0;
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, abm_level);
}
}
return true;
}
static bool mod_power_abm_set_level(struct mod_power *mod_power,
unsigned int level)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (abm_level == level)
return true;
if (abm_active && abm_user_enable && level == 0)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, 0);
else if (abm_active && abm_user_enable && level != 0)
core_power->dc->stream_funcs.set_abm_level
(core_power->dc, level);
abm_level = level;
return true;
}
bool mod_power_varibright_control(struct mod_power *mod_power,
struct varibright_info *input_varibright_info)
{
switch (input_varibright_info->cmd) {
case VariBright_Cmd__SetVBLevel:
{
/* Set VariBright user level. */
mod_power_abm_set_level(mod_power,
input_varibright_info->level);
}
break;
case VariBright_Cmd__UserEnable:
{
/* Set VariBright user enable state. */
mod_power_abm_feature_enable(mod_power,
input_varibright_info->enable);
}
break;
case VariBright_Cmd__PostDisplayConfigChange:
{
/* Set VariBright user level. */
mod_power_abm_set_level(mod_power,
input_varibright_info->level);
/* Set VariBright user enable state. */
mod_power_abm_feature_enable(mod_power,
input_varibright_info->enable);
/* Set VariBright activate based on power state. */
mod_power_abm_activate(mod_power,
input_varibright_info->activate);
}
break;
default:
{
return false;
}
break;
}
return true;
}
bool mod_power_block_psr(bool block_enable, enum dmcu_block_psr_reason reason)
{
if (block_enable)
block_psr |= reason;
else
block_psr &= ~reason;
return true;
}
bool mod_power_set_psr_enable(struct mod_power *mod_power,
bool psr_enable)
{
struct core_power *core_power =
MOD_POWER_TO_CORE(mod_power);
if (block_psr == 0)
return core_power->dc->stream_funcs.set_psr_enable
(core_power->dc, psr_enable);
return false;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment