Commit 85030c51 authored by Romain Perier's avatar Romain Perier Committed by Herbert Xu

crypto: marvell - Add support for chaining crypto requests in TDMA mode

The Cryptographic Engines and Security Accelerators (CESA) supports the
Multi-Packet Chain Mode. With this mode enabled, multiple tdma requests
can be chained and processed by the hardware without software
intervention. This mode was already activated, however the crypto
requests were not chained together. By doing so, we reduce significantly
the number of IRQs. Instead of being interrupted at the end of each
crypto request, we are interrupted at the end of the last cryptographic
request processed by the engine.

This commits re-factorizes the code, changes the code architecture and
adds the required data structures to chain cryptographic requests
together before sending them to an engine (stopped or possibly already
running).
Signed-off-by: default avatarRomain Perier <romain.perier@free-electrons.com>
Acked-by: default avatarBoris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent bf8f91e7
...@@ -40,14 +40,33 @@ MODULE_PARM_DESC(allhwsupport, "Enable support for all hardware (even it if over ...@@ -40,14 +40,33 @@ MODULE_PARM_DESC(allhwsupport, "Enable support for all hardware (even it if over
struct mv_cesa_dev *cesa_dev; struct mv_cesa_dev *cesa_dev;
static void mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine) struct crypto_async_request *
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
struct crypto_async_request **backlog)
{ {
struct crypto_async_request *req, *backlog; struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
backlog = crypto_get_backlog(&engine->queue); *backlog = crypto_get_backlog(&engine->queue);
req = crypto_dequeue_request(&engine->queue); req = crypto_dequeue_request(&engine->queue);
if (!req)
return NULL;
return req;
}
static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine)
{
struct crypto_async_request *req = NULL, *backlog = NULL;
struct mv_cesa_ctx *ctx;
spin_lock_bh(&engine->lock);
if (!engine->req) {
req = mv_cesa_dequeue_req_locked(engine, &backlog);
engine->req = req; engine->req = req;
}
spin_unlock_bh(&engine->lock);
if (!req) if (!req)
return; return;
...@@ -57,6 +76,46 @@ static void mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine) ...@@ -57,6 +76,46 @@ static void mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine)
ctx = crypto_tfm_ctx(req->tfm); ctx = crypto_tfm_ctx(req->tfm);
ctx->ops->step(req); ctx->ops->step(req);
return;
}
static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status)
{
struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
int res;
req = engine->req;
ctx = crypto_tfm_ctx(req->tfm);
res = ctx->ops->process(req, status);
if (res == 0) {
ctx->ops->complete(req);
mv_cesa_engine_enqueue_complete_request(engine, req);
} else if (res == -EINPROGRESS) {
ctx->ops->step(req);
}
return res;
}
static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status)
{
if (engine->chain.first && engine->chain.last)
return mv_cesa_tdma_process(engine, status);
return mv_cesa_std_process(engine, status);
}
static inline void
mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req,
int res)
{
ctx->ops->cleanup(req);
local_bh_disable();
req->complete(req, res);
local_bh_enable();
} }
static irqreturn_t mv_cesa_int(int irq, void *priv) static irqreturn_t mv_cesa_int(int irq, void *priv)
...@@ -83,26 +142,31 @@ static irqreturn_t mv_cesa_int(int irq, void *priv) ...@@ -83,26 +142,31 @@ static irqreturn_t mv_cesa_int(int irq, void *priv)
writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS); writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS);
writel(~status, engine->regs + CESA_SA_INT_STATUS); writel(~status, engine->regs + CESA_SA_INT_STATUS);
/* Process fetched requests */
res = mv_cesa_int_process(engine, status & mask);
ret = IRQ_HANDLED; ret = IRQ_HANDLED;
spin_lock_bh(&engine->lock); spin_lock_bh(&engine->lock);
req = engine->req; req = engine->req;
spin_unlock_bh(&engine->lock); if (res != -EINPROGRESS)
if (req) {
ctx = crypto_tfm_ctx(req->tfm);
res = ctx->ops->process(req, status & mask);
if (res != -EINPROGRESS) {
spin_lock_bh(&engine->lock);
engine->req = NULL; engine->req = NULL;
mv_cesa_dequeue_req_locked(engine);
spin_unlock_bh(&engine->lock); spin_unlock_bh(&engine->lock);
ctx->ops->complete(req);
ctx->ops->cleanup(req); ctx = crypto_tfm_ctx(req->tfm);
local_bh_disable();
req->complete(req, res); if (res && res != -EINPROGRESS)
local_bh_enable(); mv_cesa_complete_req(ctx, req, res);
} else {
ctx->ops->step(req); /* Launch the next pending request */
} mv_cesa_rearm_engine(engine);
/* Iterate over the complete queue */
while (true) {
req = mv_cesa_engine_dequeue_complete_request(engine);
if (!req)
break;
mv_cesa_complete_req(ctx, req, 0);
} }
} }
...@@ -116,16 +180,16 @@ int mv_cesa_queue_req(struct crypto_async_request *req, ...@@ -116,16 +180,16 @@ int mv_cesa_queue_req(struct crypto_async_request *req,
struct mv_cesa_engine *engine = creq->engine; struct mv_cesa_engine *engine = creq->engine;
spin_lock_bh(&engine->lock); spin_lock_bh(&engine->lock);
if (mv_cesa_req_get_type(creq) == CESA_DMA_REQ)
mv_cesa_tdma_chain(engine, creq);
ret = crypto_enqueue_request(&engine->queue, req); ret = crypto_enqueue_request(&engine->queue, req);
spin_unlock_bh(&engine->lock); spin_unlock_bh(&engine->lock);
if (ret != -EINPROGRESS) if (ret != -EINPROGRESS)
return ret; return ret;
spin_lock_bh(&engine->lock); mv_cesa_rearm_engine(engine);
if (!engine->req)
mv_cesa_dequeue_req_locked(engine);
spin_unlock_bh(&engine->lock);
return -EINPROGRESS; return -EINPROGRESS;
} }
...@@ -496,6 +560,7 @@ static int mv_cesa_probe(struct platform_device *pdev) ...@@ -496,6 +560,7 @@ static int mv_cesa_probe(struct platform_device *pdev)
crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN); crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN);
atomic_set(&engine->load, 0); atomic_set(&engine->load, 0);
INIT_LIST_HEAD(&engine->complete_queue);
} }
cesa_dev = cesa; cesa_dev = cesa;
......
...@@ -271,7 +271,9 @@ struct mv_cesa_op_ctx { ...@@ -271,7 +271,9 @@ struct mv_cesa_op_ctx {
/* TDMA descriptor flags */ /* TDMA descriptor flags */
#define CESA_TDMA_DST_IN_SRAM BIT(31) #define CESA_TDMA_DST_IN_SRAM BIT(31)
#define CESA_TDMA_SRC_IN_SRAM BIT(30) #define CESA_TDMA_SRC_IN_SRAM BIT(30)
#define CESA_TDMA_TYPE_MSK GENMASK(29, 0) #define CESA_TDMA_END_OF_REQ BIT(29)
#define CESA_TDMA_BREAK_CHAIN BIT(28)
#define CESA_TDMA_TYPE_MSK GENMASK(27, 0)
#define CESA_TDMA_DUMMY 0 #define CESA_TDMA_DUMMY 0
#define CESA_TDMA_DATA 1 #define CESA_TDMA_DATA 1
#define CESA_TDMA_OP 2 #define CESA_TDMA_OP 2
...@@ -431,6 +433,9 @@ struct mv_cesa_dev { ...@@ -431,6 +433,9 @@ struct mv_cesa_dev {
* SRAM * SRAM
* @queue: fifo of the pending crypto requests * @queue: fifo of the pending crypto requests
* @load: engine load counter, useful for load balancing * @load: engine load counter, useful for load balancing
* @chain: list of the current tdma descriptors being processed
* by this engine.
* @complete_queue: fifo of the processed requests by the engine
* *
* Structure storing CESA engine information. * Structure storing CESA engine information.
*/ */
...@@ -448,6 +453,8 @@ struct mv_cesa_engine { ...@@ -448,6 +453,8 @@ struct mv_cesa_engine {
struct gen_pool *pool; struct gen_pool *pool;
struct crypto_queue queue; struct crypto_queue queue;
atomic_t load; atomic_t load;
struct mv_cesa_tdma_chain chain;
struct list_head complete_queue;
}; };
/** /**
...@@ -608,6 +615,29 @@ struct mv_cesa_ahash_req { ...@@ -608,6 +615,29 @@ struct mv_cesa_ahash_req {
extern struct mv_cesa_dev *cesa_dev; extern struct mv_cesa_dev *cesa_dev;
static inline void
mv_cesa_engine_enqueue_complete_request(struct mv_cesa_engine *engine,
struct crypto_async_request *req)
{
list_add_tail(&req->list, &engine->complete_queue);
}
static inline struct crypto_async_request *
mv_cesa_engine_dequeue_complete_request(struct mv_cesa_engine *engine)
{
struct crypto_async_request *req;
req = list_first_entry_or_null(&engine->complete_queue,
struct crypto_async_request,
list);
if (req)
list_del(&req->list);
return req;
}
static inline enum mv_cesa_req_type static inline enum mv_cesa_req_type
mv_cesa_req_get_type(struct mv_cesa_req *req) mv_cesa_req_get_type(struct mv_cesa_req *req)
{ {
...@@ -689,6 +719,10 @@ static inline bool mv_cesa_mac_op_is_first_frag(const struct mv_cesa_op_ctx *op) ...@@ -689,6 +719,10 @@ static inline bool mv_cesa_mac_op_is_first_frag(const struct mv_cesa_op_ctx *op)
int mv_cesa_queue_req(struct crypto_async_request *req, int mv_cesa_queue_req(struct crypto_async_request *req,
struct mv_cesa_req *creq); struct mv_cesa_req *creq);
struct crypto_async_request *
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
struct crypto_async_request **backlog);
static inline struct mv_cesa_engine *mv_cesa_select_engine(int weight) static inline struct mv_cesa_engine *mv_cesa_select_engine(int weight)
{ {
int i; int i;
...@@ -794,6 +828,9 @@ static inline int mv_cesa_dma_process(struct mv_cesa_req *dreq, ...@@ -794,6 +828,9 @@ static inline int mv_cesa_dma_process(struct mv_cesa_req *dreq,
void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, void mv_cesa_dma_prepare(struct mv_cesa_req *dreq,
struct mv_cesa_engine *engine); struct mv_cesa_engine *engine);
void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq); void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq);
void mv_cesa_tdma_chain(struct mv_cesa_engine *engine,
struct mv_cesa_req *dreq);
int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status);
static inline void static inline void
......
...@@ -390,6 +390,7 @@ static int mv_cesa_ablkcipher_dma_req_init(struct ablkcipher_request *req, ...@@ -390,6 +390,7 @@ static int mv_cesa_ablkcipher_dma_req_init(struct ablkcipher_request *req,
goto err_free_tdma; goto err_free_tdma;
basereq->chain = chain; basereq->chain = chain;
basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
return 0; return 0;
...@@ -447,7 +448,6 @@ static int mv_cesa_ablkcipher_req_init(struct ablkcipher_request *req, ...@@ -447,7 +448,6 @@ static int mv_cesa_ablkcipher_req_init(struct ablkcipher_request *req,
mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY, mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY,
CESA_SA_DESC_CFG_OP_MSK); CESA_SA_DESC_CFG_OP_MSK);
/* TODO: add a threshold for DMA usage */
if (cesa_dev->caps->has_tdma) if (cesa_dev->caps->has_tdma)
ret = mv_cesa_ablkcipher_dma_req_init(req, tmpl); ret = mv_cesa_ablkcipher_dma_req_init(req, tmpl);
else else
......
...@@ -172,6 +172,9 @@ static void mv_cesa_ahash_std_step(struct ahash_request *req) ...@@ -172,6 +172,9 @@ static void mv_cesa_ahash_std_step(struct ahash_request *req)
for (i = 0; i < digsize / 4; i++) for (i = 0; i < digsize / 4; i++)
writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i)); writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
mv_cesa_adjust_op(engine, &creq->op_tmpl);
memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
if (creq->cache_ptr) if (creq->cache_ptr)
memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET, memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
creq->cache, creq->cache_ptr); creq->cache, creq->cache_ptr);
...@@ -647,6 +650,9 @@ static int mv_cesa_ahash_dma_req_init(struct ahash_request *req) ...@@ -647,6 +650,9 @@ static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
else else
creq->cache_ptr = 0; creq->cache_ptr = 0;
basereq->chain.last->flags |= (CESA_TDMA_END_OF_REQ |
CESA_TDMA_BREAK_CHAIN);
return 0; return 0;
err_free_tdma: err_free_tdma:
......
...@@ -99,6 +99,92 @@ void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, ...@@ -99,6 +99,92 @@ void mv_cesa_dma_prepare(struct mv_cesa_req *dreq,
} }
} }
void mv_cesa_tdma_chain(struct mv_cesa_engine *engine,
struct mv_cesa_req *dreq)
{
if (engine->chain.first == NULL && engine->chain.last == NULL) {
engine->chain.first = dreq->chain.first;
engine->chain.last = dreq->chain.last;
} else {
struct mv_cesa_tdma_desc *last;
last = engine->chain.last;
last->next = dreq->chain.first;
engine->chain.last = dreq->chain.last;
if (!(last->flags & CESA_TDMA_BREAK_CHAIN))
last->next_dma = dreq->chain.first->cur_dma;
}
}
int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status)
{
struct crypto_async_request *req = NULL;
struct mv_cesa_tdma_desc *tdma = NULL, *next = NULL;
dma_addr_t tdma_cur;
int res = 0;
tdma_cur = readl(engine->regs + CESA_TDMA_CUR);
for (tdma = engine->chain.first; tdma; tdma = next) {
spin_lock_bh(&engine->lock);
next = tdma->next;
spin_unlock_bh(&engine->lock);
if (tdma->flags & CESA_TDMA_END_OF_REQ) {
struct crypto_async_request *backlog = NULL;
struct mv_cesa_ctx *ctx;
u32 current_status;
spin_lock_bh(&engine->lock);
/*
* if req is NULL, this means we're processing the
* request in engine->req.
*/
if (!req)
req = engine->req;
else
req = mv_cesa_dequeue_req_locked(engine,
&backlog);
/* Re-chaining to the next request */
engine->chain.first = tdma->next;
tdma->next = NULL;
/* If this is the last request, clear the chain */
if (engine->chain.first == NULL)
engine->chain.last = NULL;
spin_unlock_bh(&engine->lock);
ctx = crypto_tfm_ctx(req->tfm);
current_status = (tdma->cur_dma == tdma_cur) ?
status : CESA_SA_INT_ACC0_IDMA_DONE;
res = ctx->ops->process(req, current_status);
ctx->ops->complete(req);
if (res == 0)
mv_cesa_engine_enqueue_complete_request(engine,
req);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
}
if (res || tdma->cur_dma == tdma_cur)
break;
}
/* Save the last request in error to engine->req, so that the core
* knows which request was fautly */
if (res) {
spin_lock_bh(&engine->lock);
engine->req = req;
spin_unlock_bh(&engine->lock);
}
return res;
}
static struct mv_cesa_tdma_desc * static struct mv_cesa_tdma_desc *
mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags) mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags)
{ {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment