Commit 87dfd85c authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm

Pull ARM updates from Russell King:

 - Refactor VFP code and convert to C code (Ard Biesheuvel)

 - Fix hardware breakpoint single-stepping using bpf_overflow_handler

 - Make SMP stop calls asynchronous allowing panic from irq context to
   work

 - Fix for kernel-doc warnings for locomo

* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
  Revert part of ae1f8d79 ("ARM: 9304/1: add prototype for function called only from asm")
  ARM: 9318/1: locomo: move kernel-doc to prevent warnings
  ARM: 9317/1: kexec: Make smp stop calls asynchronous
  ARM: 9316/1: hw_breakpoint: fix single-stepping when using bpf_overflow_handler
  ARM: entry: Make asm coproc dispatch code NWFPE only
  ARM: iwmmxt: Use undef hook to enable coprocessor for task
  ARM: entry: Disregard Thumb undef exception in coproc dispatch
  ARM: vfp: Use undef hook for handling VFP exceptions
  ARM: kernel: Get rid of thread_info::used_cp[] array
  ARM: vfp: Reimplement VFP exception entry in C code
  ARM: vfp: Remove workaround for Feroceon CPUs
  ARM: vfp: Record VFP bounces as perf emulation faults
parents 4ad0a4c2 133789d4
...@@ -350,19 +350,6 @@ static int locomo_resume(struct platform_device *dev) ...@@ -350,19 +350,6 @@ static int locomo_resume(struct platform_device *dev)
} }
#endif #endif
/**
* locomo_probe - probe for a single LoCoMo chip.
* @phys_addr: physical address of device.
*
* Probe for a LoCoMo chip. This must be called
* before any other locomo-specific code.
*
* Returns:
* %-ENODEV device not found.
* %-EBUSY physical address already marked in-use.
* %0 successful.
*/
static int static int
__locomo_probe(struct device *me, struct resource *mem, int irq) __locomo_probe(struct device *me, struct resource *mem, int irq)
{ {
...@@ -479,6 +466,21 @@ static void __locomo_remove(struct locomo *lchip) ...@@ -479,6 +466,21 @@ static void __locomo_remove(struct locomo *lchip)
kfree(lchip); kfree(lchip);
} }
/**
* locomo_probe - probe for a single LoCoMo chip.
* @dev: platform device
*
* Probe for a LoCoMo chip. This must be called
* before any other locomo-specific code.
*
* Returns:
* * %-EINVAL - device's IORESOURCE_MEM not found
* * %-ENXIO - could not allocate an IRQ for the device
* * %-ENODEV - device not found.
* * %-EBUSY - physical address already marked in-use.
* * %-ENOMEM - could not allocate or iomap memory.
* * %0 - successful.
*/
static int locomo_probe(struct platform_device *dev) static int locomo_probe(struct platform_device *dev)
{ {
struct resource *mem; struct resource *mem;
......
...@@ -40,6 +40,7 @@ struct task_struct; ...@@ -40,6 +40,7 @@ struct task_struct;
DECLARE_PER_CPU(struct task_struct *, __entry_task); DECLARE_PER_CPU(struct task_struct *, __entry_task);
#include <asm/types.h> #include <asm/types.h>
#include <asm/traps.h>
struct cpu_context_save { struct cpu_context_save {
__u32 r4; __u32 r4;
...@@ -66,7 +67,6 @@ struct thread_info { ...@@ -66,7 +67,6 @@ struct thread_info {
__u32 cpu_domain; /* cpu domain */ __u32 cpu_domain; /* cpu domain */
struct cpu_context_save cpu_context; /* cpu context */ struct cpu_context_save cpu_context; /* cpu context */
__u32 abi_syscall; /* ABI type and syscall nr */ __u32 abi_syscall; /* ABI type and syscall nr */
__u8 used_cp[16]; /* thread used copro */
unsigned long tp_value[2]; /* TLS registers */ unsigned long tp_value[2]; /* TLS registers */
union fp_state fpstate __attribute__((aligned(8))); union fp_state fpstate __attribute__((aligned(8)));
union vfp_state vfpstate; union vfp_state vfpstate;
...@@ -105,6 +105,21 @@ extern void iwmmxt_task_restore(struct thread_info *, void *); ...@@ -105,6 +105,21 @@ extern void iwmmxt_task_restore(struct thread_info *, void *);
extern void iwmmxt_task_release(struct thread_info *); extern void iwmmxt_task_release(struct thread_info *);
extern void iwmmxt_task_switch(struct thread_info *); extern void iwmmxt_task_switch(struct thread_info *);
extern int iwmmxt_undef_handler(struct pt_regs *, u32);
static inline void register_iwmmxt_undef_handler(void)
{
static struct undef_hook iwmmxt_undef_hook = {
.instr_mask = 0x0c000e00,
.instr_val = 0x0c000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT,
.cpsr_val = USR_MODE,
.fn = iwmmxt_undef_handler,
};
register_undef_hook(&iwmmxt_undef_hook);
}
extern void vfp_sync_hwstate(struct thread_info *); extern void vfp_sync_hwstate(struct thread_info *);
extern void vfp_flush_hwstate(struct thread_info *); extern void vfp_flush_hwstate(struct thread_info *);
......
...@@ -102,7 +102,6 @@ ...@@ -102,7 +102,6 @@
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
void vfp_disable(void); void vfp_disable(void);
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs);
#endif #endif
#endif /* __ASM_VFP_H */ #endif /* __ASM_VFP_H */
...@@ -47,7 +47,6 @@ int main(void) ...@@ -47,7 +47,6 @@ int main(void)
DEFINE(TI_CPU_DOMAIN, offsetof(struct thread_info, cpu_domain)); DEFINE(TI_CPU_DOMAIN, offsetof(struct thread_info, cpu_domain));
DEFINE(TI_CPU_SAVE, offsetof(struct thread_info, cpu_context)); DEFINE(TI_CPU_SAVE, offsetof(struct thread_info, cpu_context));
DEFINE(TI_ABI_SYSCALL, offsetof(struct thread_info, abi_syscall)); DEFINE(TI_ABI_SYSCALL, offsetof(struct thread_info, abi_syscall));
DEFINE(TI_USED_CP, offsetof(struct thread_info, used_cp));
DEFINE(TI_TP_VALUE, offsetof(struct thread_info, tp_value)); DEFINE(TI_TP_VALUE, offsetof(struct thread_info, tp_value));
DEFINE(TI_FPSTATE, offsetof(struct thread_info, fpstate)); DEFINE(TI_FPSTATE, offsetof(struct thread_info, fpstate));
#ifdef CONFIG_VFP #ifdef CONFIG_VFP
......
...@@ -446,258 +446,26 @@ ENDPROC(__irq_usr) ...@@ -446,258 +446,26 @@ ENDPROC(__irq_usr)
__und_usr: __und_usr:
usr_entry uaccess=0 usr_entry uaccess=0
mov r2, r4
mov r3, r5
@ r2 = regs->ARM_pc, which is either 2 or 4 bytes ahead of the
@ faulting instruction depending on Thumb mode.
@ r3 = regs->ARM_cpsr
@
@ The emulation code returns using r9 if it has emulated the
@ instruction, or the more conventional lr if we are to treat
@ this as a real undefined instruction
@
badr r9, ret_from_exception
@ IRQs must be enabled before attempting to read the instruction from @ IRQs must be enabled before attempting to read the instruction from
@ user space since that could cause a page/translation fault if the @ user space since that could cause a page/translation fault if the
@ page table was modified by another CPU. @ page table was modified by another CPU.
enable_irq enable_irq
tst r3, #PSR_T_BIT @ Thumb mode? tst r5, #PSR_T_BIT @ Thumb mode?
bne __und_usr_thumb mov r1, #2 @ set insn size to 2 for Thumb
sub r4, r2, #4 @ ARM instr at LR - 4 bne 0f @ handle as Thumb undef exception
1: ldrt r0, [r4] #ifdef CONFIG_FPE_NWFPE
ARM_BE8(rev r0, r0) @ little endian instruction adr r9, ret_from_exception
bl call_fpe @ returns via R9 on success
uaccess_disable ip
@ r0 = 32-bit ARM instruction which caused the exception
@ r2 = PC value for the following instruction (:= regs->ARM_pc)
@ r4 = PC value for the faulting instruction
@ lr = 32-bit undefined instruction function
badr lr, __und_usr_fault_32
b call_fpe
__und_usr_thumb:
@ Thumb instruction
sub r4, r2, #2 @ First half of thumb instr at LR - 2
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
/*
* Thumb-2 instruction handling. Note that because pre-v6 and >= v6 platforms
* can never be supported in a single kernel, this code is not applicable at
* all when __LINUX_ARM_ARCH__ < 6. This allows simplifying assumptions to be
* made about .arch directives.
*/
#if __LINUX_ARM_ARCH__ < 7
/* If the target CPU may not be Thumb-2-capable, a run-time check is needed: */
ldr_va r5, cpu_architecture
cmp r5, #CPU_ARCH_ARMv7
blo __und_usr_fault_16 @ 16bit undefined instruction
/*
* The following code won't get run unless the running CPU really is v7, so
* coding round the lack of ldrht on older arches is pointless. Temporarily
* override the assembler target arch with the minimum required instead:
*/
.arch armv6t2
#endif #endif
2: ldrht r5, [r4] mov r1, #4 @ set insn size to 4 for ARM
ARM_BE8(rev16 r5, r5) @ little endian instruction 0: mov r0, sp
cmp r5, #0xe800 @ 32bit instruction if xx != 0
blo __und_usr_fault_16_pan @ 16bit undefined instruction
3: ldrht r0, [r2]
ARM_BE8(rev16 r0, r0) @ little endian instruction
uaccess_disable ip uaccess_disable ip
add r2, r2, #2 @ r2 is PC + 2, make it PC + 4 bl __und_fault
str r2, [sp, #S_PC] @ it's a 2x16bit instr, update b ret_from_exception
orr r0, r0, r5, lsl #16
badr lr, __und_usr_fault_32
@ r0 = the two 16-bit Thumb instructions which caused the exception
@ r2 = PC value for the following Thumb instruction (:= regs->ARM_pc)
@ r4 = PC value for the first 16-bit Thumb instruction
@ lr = 32bit undefined instruction function
#if __LINUX_ARM_ARCH__ < 7
/* If the target arch was overridden, change it back: */
#ifdef CONFIG_CPU_32v6K
.arch armv6k
#else
.arch armv6
#endif
#endif /* __LINUX_ARM_ARCH__ < 7 */
#else /* !(CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7) */
b __und_usr_fault_16
#endif
UNWIND(.fnend) UNWIND(.fnend)
ENDPROC(__und_usr) ENDPROC(__und_usr)
/*
* The out of line fixup for the ldrt instructions above.
*/
.pushsection .text.fixup, "ax"
.align 2
4: str r4, [sp, #S_PC] @ retry current instruction
ret r9
.popsection
.pushsection __ex_table,"a"
.long 1b, 4b
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
.long 2b, 4b
.long 3b, 4b
#endif
.popsection
/*
* Check whether the instruction is a co-processor instruction.
* If yes, we need to call the relevant co-processor handler.
*
* Note that we don't do a full check here for the co-processor
* instructions; all instructions with bit 27 set are well
* defined. The only instructions that should fault are the
* co-processor instructions. However, we have to watch out
* for the ARM6/ARM7 SWI bug.
*
* NEON is a special case that has to be handled here. Not all
* NEON instructions are co-processor instructions, so we have
* to make a special case of checking for them. Plus, there's
* five groups of them, so we have a table of mask/opcode pairs
* to check against, and if any match then we branch off into the
* NEON handler code.
*
* Emulators may wish to make use of the following registers:
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
* r2 = PC value to resume execution after successful emulation
* r9 = normal "successful" return address
* r10 = this threads thread_info structure
* lr = unrecognised instruction return address
* IRQs enabled, FIQs enabled.
*/
@
@ Fall-through from Thumb-2 __und_usr
@
#ifdef CONFIG_NEON
get_thread_info r10 @ get current thread
adr r6, .LCneon_thumb_opcodes
b 2f
#endif
call_fpe:
get_thread_info r10 @ get current thread
#ifdef CONFIG_NEON
adr r6, .LCneon_arm_opcodes
2: ldr r5, [r6], #4 @ mask value
ldr r7, [r6], #4 @ opcode bits matching in mask
cmp r5, #0 @ end mask?
beq 1f
and r8, r0, r5
cmp r8, r7 @ NEON instruction?
bne 2b
mov r7, #1
strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used
strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used
b do_vfp @ let VFP handler handle this
1:
#endif
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2
reteq lr
and r8, r0, #0x00000f00 @ mask out CP number
mov r7, #1
add r6, r10, r8, lsr #8 @ add used_cp[] array offset first
strb r7, [r6, #TI_USED_CP] @ set appropriate used_cp[]
#ifdef CONFIG_IWMMXT
@ Test if we need to give access to iWMMXt coprocessors
ldr r5, [r10, #TI_FLAGS]
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1)
bcs iwmmxt_task_enable
#endif
ARM( add pc, pc, r8, lsr #6 )
THUMB( lsr r8, r8, #6 )
THUMB( add pc, r8 )
nop
ret.w lr @ CP#0
W(b) do_fpe @ CP#1 (FPE)
W(b) do_fpe @ CP#2 (FPE)
ret.w lr @ CP#3
ret.w lr @ CP#4
ret.w lr @ CP#5
ret.w lr @ CP#6
ret.w lr @ CP#7
ret.w lr @ CP#8
ret.w lr @ CP#9
#ifdef CONFIG_VFP
W(b) do_vfp @ CP#10 (VFP)
W(b) do_vfp @ CP#11 (VFP)
#else
ret.w lr @ CP#10 (VFP)
ret.w lr @ CP#11 (VFP)
#endif
ret.w lr @ CP#12
ret.w lr @ CP#13
ret.w lr @ CP#14 (Debug)
ret.w lr @ CP#15 (Control)
#ifdef CONFIG_NEON
.align 6
.LCneon_arm_opcodes:
.word 0xfe000000 @ mask
.word 0xf2000000 @ opcode
.word 0xff100000 @ mask
.word 0xf4000000 @ opcode
.word 0x00000000 @ mask
.word 0x00000000 @ opcode
.LCneon_thumb_opcodes:
.word 0xef000000 @ mask
.word 0xef000000 @ opcode
.word 0xff100000 @ mask
.word 0xf9000000 @ opcode
.word 0x00000000 @ mask
.word 0x00000000 @ opcode
#endif
do_fpe:
add r10, r10, #TI_FPSTATE @ r10 = workspace
ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point
/*
* The FP module is called with these registers set:
* r0 = instruction
* r2 = PC+4
* r9 = normal "successful" return address
* r10 = FP workspace
* lr = unrecognised FP instruction return address
*/
.pushsection .data
.align 2
ENTRY(fp_enter)
.word no_fp
.popsection
ENTRY(no_fp)
ret lr
ENDPROC(no_fp)
__und_usr_fault_32:
mov r1, #4
b 1f
__und_usr_fault_16_pan:
uaccess_disable ip
__und_usr_fault_16:
mov r1, #2
1: mov r0, sp
badr lr, ret_from_exception
b __und_fault
ENDPROC(__und_usr_fault_32)
ENDPROC(__und_usr_fault_16)
.align 5 .align 5
__pabt_usr: __pabt_usr:
usr_entry usr_entry
......
...@@ -58,9 +58,19 @@ ...@@ -58,9 +58,19 @@
.text .text
.arm .arm
ENTRY(iwmmxt_undef_handler)
push {r9, r10, lr}
get_thread_info r10
mov r9, pc
b iwmmxt_task_enable
mov r0, #0
pop {r9, r10, pc}
ENDPROC(iwmmxt_undef_handler)
/* /*
* Lazy switching of Concan coprocessor context * Lazy switching of Concan coprocessor context
* *
* r0 = struct pt_regs pointer
* r10 = struct thread_info pointer * r10 = struct thread_info pointer
* r9 = ret_from_exception * r9 = ret_from_exception
* lr = undefined instr exit * lr = undefined instr exit
...@@ -84,12 +94,12 @@ ENTRY(iwmmxt_task_enable) ...@@ -84,12 +94,12 @@ ENTRY(iwmmxt_task_enable)
PJ4(mcr p15, 0, r2, c1, c0, 2) PJ4(mcr p15, 0, r2, c1, c0, 2)
ldr r3, =concan_owner ldr r3, =concan_owner
add r0, r10, #TI_IWMMXT_STATE @ get task Concan save area ldr r2, [r0, #S_PC] @ current task pc value
ldr r2, [sp, #60] @ current task pc value
ldr r1, [r3] @ get current Concan owner ldr r1, [r3] @ get current Concan owner
str r0, [r3] @ this task now owns Concan regs
sub r2, r2, #4 @ adjust pc back sub r2, r2, #4 @ adjust pc back
str r2, [sp, #60] str r2, [r0, #S_PC]
add r0, r10, #TI_IWMMXT_STATE @ get task Concan save area
str r0, [r3] @ this task now owns Concan regs
mrc p15, 0, r2, c2, c0, 0 mrc p15, 0, r2, c2, c0, 0
mov r2, r2 @ cpwait mov r2, r2 @ cpwait
......
...@@ -94,16 +94,28 @@ static void machine_crash_nonpanic_core(void *unused) ...@@ -94,16 +94,28 @@ static void machine_crash_nonpanic_core(void *unused)
} }
} }
static DEFINE_PER_CPU(call_single_data_t, cpu_stop_csd) =
CSD_INIT(machine_crash_nonpanic_core, NULL);
void crash_smp_send_stop(void) void crash_smp_send_stop(void)
{ {
static int cpus_stopped; static int cpus_stopped;
unsigned long msecs; unsigned long msecs;
call_single_data_t *csd;
int cpu, this_cpu = raw_smp_processor_id();
if (cpus_stopped) if (cpus_stopped)
return; return;
atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
smp_call_function(machine_crash_nonpanic_core, NULL, false); for_each_online_cpu(cpu) {
if (cpu == this_cpu)
continue;
csd = &per_cpu(cpu_stop_csd, cpu);
smp_call_function_single_async(cpu, csd);
}
msecs = 1000; /* Wait at most a second for the other cpus to stop */ msecs = 1000; /* Wait at most a second for the other cpus to stop */
while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) { while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) {
mdelay(1); mdelay(1);
......
...@@ -126,6 +126,7 @@ static int __init pj4_cp0_init(void) ...@@ -126,6 +126,7 @@ static int __init pj4_cp0_init(void)
pr_info("PJ4 iWMMXt v%d coprocessor enabled.\n", vers); pr_info("PJ4 iWMMXt v%d coprocessor enabled.\n", vers);
elf_hwcap |= HWCAP_IWMMXT; elf_hwcap |= HWCAP_IWMMXT;
thread_register_notifier(&iwmmxt_notifier_block); thread_register_notifier(&iwmmxt_notifier_block);
register_iwmmxt_undef_handler();
#endif #endif
return 0; return 0;
......
...@@ -222,7 +222,6 @@ void flush_thread(void) ...@@ -222,7 +222,6 @@ void flush_thread(void)
flush_ptrace_hw_breakpoint(tsk); flush_ptrace_hw_breakpoint(tsk);
memset(thread->used_cp, 0, sizeof(thread->used_cp));
memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
memset(&thread->fpstate, 0, sizeof(union fp_state)); memset(&thread->fpstate, 0, sizeof(union fp_state));
......
...@@ -584,8 +584,6 @@ static int fpa_set(struct task_struct *target, ...@@ -584,8 +584,6 @@ static int fpa_set(struct task_struct *target,
{ {
struct thread_info *thread = task_thread_info(target); struct thread_info *thread = task_thread_info(target);
thread->used_cp[1] = thread->used_cp[2] = 1;
return user_regset_copyin(&pos, &count, &kbuf, &ubuf, return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&thread->fpstate, &thread->fpstate,
0, sizeof(struct user_fp)); 0, sizeof(struct user_fp));
......
...@@ -166,6 +166,7 @@ static int __init xscale_cp0_init(void) ...@@ -166,6 +166,7 @@ static int __init xscale_cp0_init(void)
pr_info("XScale iWMMXt coprocessor detected.\n"); pr_info("XScale iWMMXt coprocessor detected.\n");
elf_hwcap |= HWCAP_IWMMXT; elf_hwcap |= HWCAP_IWMMXT;
thread_register_notifier(&iwmmxt_notifier_block); thread_register_notifier(&iwmmxt_notifier_block);
register_iwmmxt_undef_handler();
#endif #endif
} else { } else {
pr_info("XScale DSP coprocessor detected.\n"); pr_info("XScale DSP coprocessor detected.\n");
......
...@@ -56,6 +56,10 @@ ENTRY(cpu_feroceon_proc_init) ...@@ -56,6 +56,10 @@ ENTRY(cpu_feroceon_proc_init)
movne r2, r2, lsr #2 @ turned into # of sets movne r2, r2, lsr #2 @ turned into # of sets
sub r2, r2, #(1 << 5) sub r2, r2, #(1 << 5)
stmia r1, {r2, r3} stmia r1, {r2, r3}
#ifdef CONFIG_VFP
mov r1, #1 @ disable quirky VFP
str_l r1, VFP_arch_feroceon, r2
#endif
ret lr ret lr
/* /*
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
Direct questions, comments to Scott Bambrough <scottb@netwinder.org> Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
*/ */
#include <linux/linkage.h>
#include <asm/assembler.h> #include <asm/assembler.h>
#include <asm/opcodes.h> #include <asm/opcodes.h>
...@@ -104,6 +105,7 @@ next: ...@@ -104,6 +105,7 @@ next:
@ plain LDR instruction. Weird, but it seems harmless. @ plain LDR instruction. Weird, but it seems harmless.
.pushsection .text.fixup,"ax" .pushsection .text.fixup,"ax"
.align 2 .align 2
.Lrep: str r4, [sp, #S_PC] @ retry current instruction
.Lfix: ret r9 @ let the user eat segfaults .Lfix: ret r9 @ let the user eat segfaults
.popsection .popsection
...@@ -111,3 +113,78 @@ next: ...@@ -111,3 +113,78 @@ next:
.align 3 .align 3
.long .Lx1, .Lfix .long .Lx1, .Lfix
.popsection .popsection
@
@ Check whether the instruction is a co-processor instruction.
@ If yes, we need to call the relevant co-processor handler.
@ Only FPE instructions are dispatched here, everything else
@ is handled by undef hooks.
@
@ Emulators may wish to make use of the following registers:
@ r4 = PC value to resume execution after successful emulation
@ r9 = normal "successful" return address
@ lr = unrecognised instruction return address
@ IRQs enabled, FIQs enabled.
@
ENTRY(call_fpe)
mov r2, r4
sub r4, r4, #4 @ ARM instruction at user PC - 4
USERL( .Lrep, ldrt r0, [r4]) @ load opcode from user space
ARM_BE8(rev r0, r0) @ little endian instruction
uaccess_disable ip
get_thread_info r10 @ get current thread
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
reteq lr
and r8, r0, #0x00000f00 @ mask out CP number
#ifdef CONFIG_IWMMXT
@ Test if we need to give access to iWMMXt coprocessors
ldr r5, [r10, #TI_FLAGS]
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1)
movcs r0, sp @ pass struct pt_regs
bcs iwmmxt_task_enable
#endif
add pc, pc, r8, lsr #6
nop
ret lr @ CP#0
b do_fpe @ CP#1 (FPE)
b do_fpe @ CP#2 (FPE)
ret lr @ CP#3
ret lr @ CP#4
ret lr @ CP#5
ret lr @ CP#6
ret lr @ CP#7
ret lr @ CP#8
ret lr @ CP#9
ret lr @ CP#10 (VFP)
ret lr @ CP#11 (VFP)
ret lr @ CP#12
ret lr @ CP#13
ret lr @ CP#14 (Debug)
ret lr @ CP#15 (Control)
do_fpe:
add r10, r10, #TI_FPSTATE @ r10 = workspace
ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point
@
@ The FP module is called with these registers set:
@ r0 = instruction
@ r2 = PC+4
@ r9 = normal "successful" return address
@ r10 = FP workspace
@ lr = unrecognised FP instruction return address
@
.pushsection .data
.align 2
ENTRY(fp_enter)
.word no_fp
.popsection
no_fp:
ret lr
ENDPROC(no_fp)
...@@ -8,4 +8,4 @@ ...@@ -8,4 +8,4 @@
# ccflags-y := -DDEBUG # ccflags-y := -DDEBUG
# asflags-y := -DDEBUG # asflags-y := -DDEBUG
obj-y += vfpmodule.o entry.o vfphw.o vfpsingle.o vfpdouble.o obj-y += vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/arm/vfp/entry.S
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
*/
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/thread_info.h>
#include <asm/vfpmacros.h>
#include <asm/assembler.h>
#include <asm/asm-offsets.h>
@ VFP entry point.
@
@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
@ r2 = PC value to resume execution after successful emulation
@ r9 = normal "successful" return address
@ r10 = this threads thread_info structure
@ lr = unrecognised instruction return address
@ IRQs enabled.
@
ENTRY(do_vfp)
mov r1, r10
str lr, [sp, #-8]!
add r3, sp, #4
str r9, [r3]
bl vfp_entry
ldr pc, [sp], #8
ENDPROC(do_vfp)
...@@ -375,3 +375,4 @@ struct op { ...@@ -375,3 +375,4 @@ struct op {
}; };
asmlinkage void vfp_save_state(void *location, u32 fpexc); asmlinkage void vfp_save_state(void *location, u32 fpexc);
asmlinkage u32 vfp_load_state(const void *location);
...@@ -4,12 +4,6 @@ ...@@ -4,12 +4,6 @@
* *
* Copyright (C) 2004 ARM Limited. * Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited. * Written by Deep Blue Solutions Limited.
*
* This code is called from the kernel's undefined instruction trap.
* r1 holds the thread_info pointer
* r3 holds the return address for successful handling.
* lr holds the return address for unrecognised instructions.
* sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
*/ */
#include <linux/init.h> #include <linux/init.h>
#include <linux/linkage.h> #include <linux/linkage.h>
...@@ -19,20 +13,6 @@ ...@@ -19,20 +13,6 @@
#include <asm/assembler.h> #include <asm/assembler.h>
#include <asm/asm-offsets.h> #include <asm/asm-offsets.h>
.macro DBGSTR, str
#ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr}
ldr r0, =1f
bl _printk
ldmfd sp!, {r0-r3, ip, lr}
.pushsection .rodata, "a"
1: .ascii KERN_DEBUG "VFP: \str\n"
.byte 0
.previous
#endif
.endm
.macro DBGSTR1, str, arg .macro DBGSTR1, str, arg
#ifdef DEBUG #ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr} stmfd sp!, {r0-r3, ip, lr}
...@@ -48,181 +28,25 @@ ...@@ -48,181 +28,25 @@
#endif #endif
.endm .endm
.macro DBGSTR3, str, arg1, arg2, arg3 ENTRY(vfp_load_state)
#ifdef DEBUG @ Load the current VFP state
stmfd sp!, {r0-r3, ip, lr} @ r0 - load location
mov r3, \arg3 @ returns FPEXC
mov r2, \arg2 DBGSTR1 "load VFP state %p", r0
mov r1, \arg1
ldr r0, =1f
bl _printk
ldmfd sp!, {r0-r3, ip, lr}
.pushsection .rodata, "a"
1: .ascii KERN_DEBUG "VFP: \str\n"
.byte 0
.previous
#endif
.endm
@ VFP hardware support entry point.
@
@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
@ r1 = thread_info pointer
@ r2 = PC value to resume execution after successful emulation
@ r3 = normal "successful" return address
@ lr = unrecognised instruction return address
@ IRQs enabled.
ENTRY(vfp_support_entry)
ldr r11, [r1, #TI_CPU] @ CPU number
add r10, r1, #TI_VFPSTATE @ r10 = workspace
DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
.fpu vfpv2
VFPFMRX r1, FPEXC @ Is the VFP enabled?
DBGSTR1 "fpexc %08x", r1
tst r1, #FPEXC_EN
bne look_for_VFP_exceptions @ VFP is already enabled
DBGSTR1 "enable %x", r10
ldr r9, vfp_current_hw_state_address
orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
ldr r4, [r9, r11, lsl #2] @ vfp_current_hw_state pointer
bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
cmp r4, r10 @ this thread owns the hw context?
#ifndef CONFIG_SMP
@ For UP, checking that this thread owns the hw context is
@ sufficient to determine that the hardware state is valid.
beq vfp_hw_state_valid
@ On UP, we lazily save the VFP context. As a different
@ thread wants ownership of the VFP hardware, save the old
@ state if there was a previous (valid) owner.
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
@ exceptions, so we can get at the
@ rest of it
DBGSTR1 "save old state %p", r4
cmp r4, #0 @ if the vfp_current_hw_state is NULL
beq vfp_reload_hw @ then the hw state needs reloading
VFPFSTMIA r4, r5 @ save the working registers
VFPFMRX r5, FPSCR @ current status
#ifndef CONFIG_CPU_FEROCEON
tst r1, #FPEXC_EX @ is there additional state to save?
beq 1f
VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
beq 1f
VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
1:
#endif
stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
vfp_reload_hw:
#else
@ For SMP, if this thread does not own the hw context, then we
@ need to reload it. No need to save the old state as on SMP,
@ we always save the state when we switch away from a thread.
bne vfp_reload_hw
@ This thread has ownership of the current hardware context.
@ However, it may have been migrated to another CPU, in which
@ case the saved state is newer than the hardware context.
@ Check this by looking at the CPU number which the state was
@ last loaded onto.
ldr ip, [r10, #VFP_CPU]
teq ip, r11
beq vfp_hw_state_valid
vfp_reload_hw:
@ We're loading this threads state into the VFP hardware. Update
@ the CPU number which contains the most up to date VFP context.
str r11, [r10, #VFP_CPU]
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
@ exceptions, so we can get at the
@ rest of it
#endif
DBGSTR1 "load state %p", r10
str r10, [r9, r11, lsl #2] @ update the vfp_current_hw_state pointer
@ Load the saved state back into the VFP @ Load the saved state back into the VFP
VFPFLDMIA r10, r5 @ reload the working registers while VFPFLDMIA r0, r1 @ reload the working registers while
@ FPEXC is in a safe state @ FPEXC is in a safe state
ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2 ldmia r0, {r0-r3} @ load FPEXC, FPSCR, FPINST, FPINST2
#ifndef CONFIG_CPU_FEROCEON tst r0, #FPEXC_EX @ is there additional state to restore?
tst r1, #FPEXC_EX @ is there additional state to restore?
beq 1f beq 1f
VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set) VFPFMXR FPINST, r2 @ restore FPINST (only if FPEXC.EX is set)
tst r1, #FPEXC_FP2V @ is there an FPINST2 to write? tst r0, #FPEXC_FP2V @ is there an FPINST2 to write?
beq 1f beq 1f
VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present) VFPFMXR FPINST2, r3 @ FPINST2 if needed (and present)
1: 1:
#endif VFPFMXR FPSCR, r1 @ restore status
VFPFMXR FPSCR, r5 @ restore status ret lr
ENDPROC(vfp_load_state)
@ The context stored in the VFP hardware is up to date with this thread
vfp_hw_state_valid:
tst r1, #FPEXC_EX
bne process_exception @ might as well handle the pending
@ exception before retrying branch
@ out before setting an FPEXC that
@ stops us reading stuff
VFPFMXR FPEXC, r1 @ Restore FPEXC last
mov sp, r3 @ we think we have handled things
pop {lr}
sub r2, r2, #4 @ Retry current instruction - if Thumb
str r2, [sp, #S_PC] @ mode it's two 16-bit instructions,
@ else it's one 32-bit instruction, so
@ always subtract 4 from the following
@ instruction address.
local_bh_enable_and_ret:
adr r0, .
mov r1, #SOFTIRQ_DISABLE_OFFSET
b __local_bh_enable_ip @ tail call
look_for_VFP_exceptions:
@ Check for synchronous or asynchronous exception
tst r1, #FPEXC_EX | FPEXC_DEX
bne process_exception
@ On some implementations of the VFP subarch 1, setting FPSCR.IXE
@ causes all the CDP instructions to be bounced synchronously without
@ setting the FPEXC.EX bit
VFPFMRX r5, FPSCR
tst r5, #FPSCR_IXE
bne process_exception
tst r5, #FPSCR_LENGTH_MASK
beq skip
orr r1, r1, #FPEXC_DEX
b process_exception
skip:
@ Fall into hand on to next handler - appropriate coproc instr
@ not recognised by VFP
DBGSTR "not VFP"
b local_bh_enable_and_ret
process_exception:
DBGSTR "bounce"
mov sp, r3 @ setup for a return to the user code.
pop {lr}
mov r2, sp @ nothing stacked - regdump is at TOS
@ Now call the C code to package up the bounce to the support code
@ r0 holds the trigger instruction
@ r1 holds the FPEXC value
@ r2 pointer to register dump
b VFP_bounce @ we have handled this - the support
@ code will raise an exception if
@ required. If not, the user code will
@ retry the faulted instruction
ENDPROC(vfp_support_entry)
ENTRY(vfp_save_state) ENTRY(vfp_save_state)
@ Save the current VFP state @ Save the current VFP state
...@@ -242,10 +66,6 @@ ENTRY(vfp_save_state) ...@@ -242,10 +66,6 @@ ENTRY(vfp_save_state)
ret lr ret lr
ENDPROC(vfp_save_state) ENDPROC(vfp_save_state)
.align
vfp_current_hw_state_address:
.word vfp_current_hw_state
.macro tbl_branch, base, tmp, shift .macro tbl_branch, base, tmp, shift
#ifdef CONFIG_THUMB2_KERNEL #ifdef CONFIG_THUMB2_KERNEL
adr \tmp, 1f adr \tmp, 1f
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/user.h> #include <linux/user.h>
#include <linux/export.h> #include <linux/export.h>
#include <linux/perf_event.h>
#include <asm/cp15.h> #include <asm/cp15.h>
#include <asm/cputype.h> #include <asm/cputype.h>
...@@ -30,11 +31,6 @@ ...@@ -30,11 +31,6 @@
#include "vfpinstr.h" #include "vfpinstr.h"
#include "vfp.h" #include "vfp.h"
/*
* Our undef handlers (in entry.S)
*/
asmlinkage void vfp_support_entry(u32, void *, u32, u32);
static bool have_vfp __ro_after_init; static bool have_vfp __ro_after_init;
/* /*
...@@ -42,7 +38,11 @@ static bool have_vfp __ro_after_init; ...@@ -42,7 +38,11 @@ static bool have_vfp __ro_after_init;
* Used in startup: set to non-zero if VFP checks fail * Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture * After startup, holds VFP architecture
*/ */
static unsigned int __initdata VFP_arch; static unsigned int VFP_arch;
#ifdef CONFIG_CPU_FEROCEON
extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
#endif
/* /*
* The pointer to the vfpstate structure of the thread which currently * The pointer to the vfpstate structure of the thread which currently
...@@ -314,13 +314,14 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) ...@@ -314,13 +314,14 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
* emulate it. * emulate it.
*/ */
} }
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
return exceptions & ~VFP_NAN_FLAG; return exceptions & ~VFP_NAN_FLAG;
} }
/* /*
* Package up a bounce condition. * Package up a bounce condition.
*/ */
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{ {
u32 fpscr, orig_fpscr, fpsid, exceptions; u32 fpscr, orig_fpscr, fpsid, exceptions;
...@@ -356,14 +357,12 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) ...@@ -356,14 +357,12 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
} }
if (fpexc & FPEXC_EX) { if (fpexc & FPEXC_EX) {
#ifndef CONFIG_CPU_FEROCEON
/* /*
* Asynchronous exception. The instruction is read from FPINST * Asynchronous exception. The instruction is read from FPINST
* and the interrupted instruction has to be restarted. * and the interrupted instruction has to be restarted.
*/ */
trigger = fmrx(FPINST); trigger = fmrx(FPINST);
regs->ARM_pc -= 4; regs->ARM_pc -= 4;
#endif
} else if (!(fpexc & FPEXC_DEX)) { } else if (!(fpexc & FPEXC_DEX)) {
/* /*
* Illegal combination of bits. It can be caused by an * Illegal combination of bits. It can be caused by an
...@@ -371,7 +370,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) ...@@ -371,7 +370,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
* on VFP subarch 1. * on VFP subarch 1.
*/ */
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
goto exit; return;
} }
/* /*
...@@ -402,7 +401,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) ...@@ -402,7 +401,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/ */
if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
goto exit; return;
/* /*
* The barrier() here prevents fpinst2 being read * The barrier() here prevents fpinst2 being read
...@@ -415,8 +414,6 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) ...@@ -415,8 +414,6 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
if (exceptions) if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
exit:
local_bh_enable();
} }
static void vfp_enable(void *unused) static void vfp_enable(void *unused)
...@@ -645,27 +642,6 @@ static int vfp_starting_cpu(unsigned int unused) ...@@ -645,27 +642,6 @@ static int vfp_starting_cpu(unsigned int unused)
return 0; return 0;
} }
/*
* Entered with:
*
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
* r1 = thread_info pointer
* r2 = PC value to resume execution after successful emulation
* r3 = normal "successful" return address
* lr = unrecognised instruction return address
*/
asmlinkage void vfp_entry(u32 trigger, struct thread_info *ti, u32 resume_pc,
u32 resume_return_address)
{
if (unlikely(!have_vfp))
return;
local_bh_disable();
vfp_support_entry(trigger, ti, resume_pc, resume_return_address);
}
#ifdef CONFIG_KERNEL_MODE_NEON
static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr) static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
{ {
/* /*
...@@ -688,47 +664,151 @@ static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr) ...@@ -688,47 +664,151 @@ static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
return 1; return 1;
} }
static struct undef_hook vfp_kmode_exception_hook[] = {{ /*
* vfp_support_entry - Handle VFP exception
*
* @regs: pt_regs structure holding the register state at exception entry
* @trigger: The opcode of the instruction that triggered the exception
*
* Returns 0 if the exception was handled, or an error code otherwise.
*/
static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
{
struct thread_info *ti = current_thread_info();
u32 fpexc;
if (unlikely(!have_vfp))
return -ENODEV;
if (!user_mode(regs))
return vfp_kmode_exception(regs, trigger);
local_bh_disable();
fpexc = fmrx(FPEXC);
/*
* If the VFP unit was not enabled yet, we have to check whether the
* VFP state in the CPU's registers is the most recent VFP state
* associated with the process. On UP systems, we don't save the VFP
* state eagerly on a context switch, so we may need to save the
* VFP state to memory first, as it may belong to another process.
*/
if (!(fpexc & FPEXC_EN)) {
/*
* Enable the VFP unit but mask the FP exception flag for the
* time being, so we can access all the registers.
*/
fpexc |= FPEXC_EN;
fmxr(FPEXC, fpexc & ~FPEXC_EX);
/*
* Check whether or not the VFP state in the CPU's registers is
* the most recent VFP state associated with this task. On SMP,
* migration may result in multiple CPUs holding VFP states
* that belong to the same task, but only the most recent one
* is valid.
*/
if (!vfp_state_in_hw(ti->cpu, ti)) {
if (!IS_ENABLED(CONFIG_SMP) &&
vfp_current_hw_state[ti->cpu] != NULL) {
/*
* This CPU is currently holding the most
* recent VFP state associated with another
* task, and we must save that to memory first.
*/
vfp_save_state(vfp_current_hw_state[ti->cpu],
fpexc);
}
/*
* We can now proceed with loading the task's VFP state
* from memory into the CPU registers.
*/
fpexc = vfp_load_state(&ti->vfpstate);
vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
#ifdef CONFIG_SMP
/*
* Record that this CPU is now the one holding the most
* recent VFP state of the task.
*/
ti->vfpstate.hard.cpu = ti->cpu;
#endif
}
if (fpexc & FPEXC_EX)
/*
* Might as well handle the pending exception before
* retrying branch out before setting an FPEXC that
* stops us reading stuff.
*/
goto bounce;
/*
* No FP exception is pending: just enable the VFP and
* replay the instruction that trapped.
*/
fmxr(FPEXC, fpexc);
} else {
/* Check for synchronous or asynchronous exceptions */
if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
u32 fpscr = fmrx(FPSCR);
/*
* On some implementations of the VFP subarch 1,
* setting FPSCR.IXE causes all the CDP instructions to
* be bounced synchronously without setting the
* FPEXC.EX bit
*/
if (!(fpscr & FPSCR_IXE)) {
if (!(fpscr & FPSCR_LENGTH_MASK)) {
pr_debug("not VFP\n");
local_bh_enable();
return -ENOEXEC;
}
fpexc |= FPEXC_DEX;
}
}
bounce: regs->ARM_pc += 4;
VFP_bounce(trigger, fpexc, regs);
}
local_bh_enable();
return 0;
}
static struct undef_hook neon_support_hook[] = {{
.instr_mask = 0xfe000000, .instr_mask = 0xfe000000,
.instr_val = 0xf2000000, .instr_val = 0xf2000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT, .cpsr_mask = PSR_T_BIT,
.cpsr_val = SVC_MODE, .cpsr_val = 0,
.fn = vfp_kmode_exception, .fn = vfp_support_entry,
}, { }, {
.instr_mask = 0xff100000, .instr_mask = 0xff100000,
.instr_val = 0xf4000000, .instr_val = 0xf4000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT, .cpsr_mask = PSR_T_BIT,
.cpsr_val = SVC_MODE, .cpsr_val = 0,
.fn = vfp_kmode_exception, .fn = vfp_support_entry,
}, { }, {
.instr_mask = 0xef000000, .instr_mask = 0xef000000,
.instr_val = 0xef000000, .instr_val = 0xef000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT, .cpsr_mask = PSR_T_BIT,
.cpsr_val = SVC_MODE | PSR_T_BIT, .cpsr_val = PSR_T_BIT,
.fn = vfp_kmode_exception, .fn = vfp_support_entry,
}, { }, {
.instr_mask = 0xff100000, .instr_mask = 0xff100000,
.instr_val = 0xf9000000, .instr_val = 0xf9000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT, .cpsr_mask = PSR_T_BIT,
.cpsr_val = SVC_MODE | PSR_T_BIT, .cpsr_val = PSR_T_BIT,
.fn = vfp_kmode_exception, .fn = vfp_support_entry,
}, {
.instr_mask = 0x0c000e00,
.instr_val = 0x0c000a00,
.cpsr_mask = MODE_MASK,
.cpsr_val = SVC_MODE,
.fn = vfp_kmode_exception,
}}; }};
static int __init vfp_kmode_exception_hook_init(void) static struct undef_hook vfp_support_hook = {
{ .instr_mask = 0x0c000e00,
int i; .instr_val = 0x0c000a00,
.fn = vfp_support_entry,
};
for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++) #ifdef CONFIG_KERNEL_MODE_NEON
register_undef_hook(&vfp_kmode_exception_hook[i]);
return 0;
}
subsys_initcall(vfp_kmode_exception_hook_init);
/* /*
* Kernel-side NEON support functions * Kernel-side NEON support functions
...@@ -833,8 +913,11 @@ static int __init vfp_init(void) ...@@ -833,8 +913,11 @@ static int __init vfp_init(void)
* for NEON if the hardware has the MVFR registers. * for NEON if the hardware has the MVFR registers.
*/ */
if (IS_ENABLED(CONFIG_NEON) && if (IS_ENABLED(CONFIG_NEON) &&
(fmrx(MVFR1) & 0x000fff00) == 0x00011100) (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
elf_hwcap |= HWCAP_NEON; elf_hwcap |= HWCAP_NEON;
for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
register_undef_hook(&neon_support_hook[i]);
}
if (IS_ENABLED(CONFIG_VFPv3)) { if (IS_ENABLED(CONFIG_VFPv3)) {
u32 mvfr0 = fmrx(MVFR0); u32 mvfr0 = fmrx(MVFR0);
...@@ -903,6 +986,7 @@ static int __init vfp_init(void) ...@@ -903,6 +986,7 @@ static int __init vfp_init(void)
have_vfp = true; have_vfp = true;
register_undef_hook(&vfp_support_hook);
thread_register_notifier(&vfp_notifier_block); thread_register_notifier(&vfp_notifier_block);
vfp_pm_init(); vfp_pm_init();
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment