Commit 88108e06 authored by Anton Blanchard's avatar Anton Blanchard

ppc64: add Config.help

parent e4481393
CONFIG_SMP
This enables support for systems with more than one CPU. If you have
a system with only one CPU, say N. If you have a system with more
than one CPU, say Y. Note that the kernel does not currently
support SMP machines with 603/603e/603ev or PPC750 ("G3") processors
since they have inadequate hardware support for multiprocessor
operation.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on single-processor machines.
On a single-processor machine, the kernel will run faster if you say
N here.
If you don't know what to do here, say N.
CONFIG_PREEMPT
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
Unfortunately the kernel code has some race conditions if both
CONFIG_SMP and CONFIG_PREEMPT are enabled, so this option is
currently disabled if you are building an SMP kernel.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
CONFIG_IDE
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. Quite a number of
disks use the IDE interface.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
CONFIG_ISA
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. If you have an Apple machine, say N here; if you
have an IBM RS/6000 or pSeries machine or a PReP machine, say Y. If
you have an embedded board, consult your board documentation.
CONFIG_PCI
Find out whether your system includes a PCI bus. PCI is the name of
a bus system, i.e. the way the CPU talks to the other stuff inside
your box. If you say Y here, the kernel will include drivers and
infrastructure code to support PCI bus devices.
CONFIG_HOTPLUG
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
CONFIG_PCMCIA
Say Y here if you want to attach PCMCIA- or PC-cards to your Linux
computer. These are credit-card size devices such as network cards,
modems or hard drives often used with laptops computers. There are
actually two varieties of these cards: the older 16 bit PCMCIA cards
and the newer 32 bit CardBus cards. If you want to use CardBus
cards, you need to say Y here and also to "CardBus support" below.
To use your PC-cards, you will need supporting software from David
Hinds' pcmcia-cs package (see the file <file:Documentation/Changes>
for location). Please also read the PCMCIA-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
When compiled this way, there will be modules called pcmcia_core.o
and ds.o. If you want to compile it as a module, say M here and
read <file:Documentation/modules.txt>.
CONFIG_KCORE_ELF
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image in ELF format. This
can be used in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel.
CONFIG_BINFMT_ELF
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems.
CONFIG_BINFMT_MISC
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
CONFIG_VGA_CONSOLE
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. This can be
useful on PReP systems and IBM RS/6000 or pSeries machines but is of
limited usefulness on Apple machines.
Say N here if you have an Apple machine.
CONFIG_IRQ_ALL_CPUS
This option gives the kernel permission to distribute IRQs across
multiple CPUs. Saying N here will route all IRQs to the first
CPU. Generally saying Y is safe, although some problems have been
reported with SMP Power Macintoshes with this option enabled.
CONFIG_FB
The frame buffer device provides an abstraction for the graphics
hardware. It represents the frame buffer of some video hardware and
allows application software to access the graphics hardware through
a well-defined interface, so the software doesn't need to know
anything about the low-level (hardware register) stuff.
Frame buffer devices work identically across the different
architectures supported by Linux and make the implementation of
application programs easier and more portable; at this point, an X
server exists which uses the frame buffer device exclusively.
On several non-X86 architectures, the frame buffer device is the
only way to use the graphics hardware.
The device is accessed through special device nodes, usually located
in the /dev directory, i.e. /dev/fb*.
You need an utility program called fbset to make full use of frame
buffer devices. Please read <file:Documentation/fb/framebuffer.txt>
and the Framebuffer-HOWTO at
<http://www.tahallah.demon.co.uk/programming/prog.html> for more
information.
Saying Y here is recommended if your machine has graphics hardware,
and strongly recommended if you are compiling a kernel for an Apple
machine.
CONFIG_SCSI
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
CONFIG_NETDEVICES
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
CONFIG_SERIAL_CONSOLE
If you say Y here, it will be possible to use a serial port as the
system console (the system console is the device which receives all
kernel messages and warnings and which allows logins in single user
mode). This could be useful if some terminal or printer is connected
to that serial port.
Even if you say Y here, the currently visible virtual console
(/dev/tty0) will still be used as the system console by default, but
you can alter that using a kernel command line option such as
"console=ttyS1". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If you don't have a graphics card installed and you say Y here, the
kernel will automatically use the first serial line, /dev/ttyS0, as
system console.
If unsure, say N.
CONFIG_MOUSE
This is for machines with a mouse which is neither a serial nor a
USB nor a bus mouse. Examples are PS/2 mice (including the track
balls on some laptops) and some digitizer pads. Say Y here if you
have a CHRP machine (such as an IBM RS/6000 or pSeries machine) with
a PS/2-style mouse.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about non-serial mice. If unsure, say Y.
CONFIG_MAGIC_SYSRQ
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
CONFIG_PROC_DEVICETREE
This option adds a device-tree directory under /proc which contains
an image of the device tree that the kernel copies from Open
Firmware. If unsure, say Y here.
CONFIG_CMDLINE
On some platforms, there is currently no way for the boot loader to
pass arguments to the kernel. For these platforms, you can supply
some command-line options at build time by entering them here. In
most cases you will need to specify the root device here.
CONFIG_XMON
Include in-kernel hooks for the xmon kernel monitor/debugger.
Unless you are intending to debug the kernel, say N here.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment