Commit 9320b5c4 authored by Nick Kossifidis's avatar Nick Kossifidis Committed by John W. Linville

ath5k: Reset cleanup and generic cleanup

 * No functional changes

 * Clean up reset:
 Introduce init functions for each unit and call them instead
 of having everything inside ath5k_hw_reset (it's just c/p for
 now so nothing changes except calling order -I tested it with
 various cards and it's ok-)

 * Further cleanups:
 ofdm_timings belongs to phy.c
 rate_duration belongs to pcu.c
 clock functions are general and belong to reset.c (more to follow)

 * Reorder functions for better organization:
 We start with helpers and other functions follow in categories,
 init functions are last
Signed-off-by: default avatarNick Kossifidis <mickflemm@gmail.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent ea066d5a
...@@ -58,19 +58,19 @@ ath5k_ani_set_noise_immunity_level(struct ath5k_hw *ah, int level) ...@@ -58,19 +58,19 @@ ath5k_ani_set_noise_immunity_level(struct ath5k_hw *ah, int level)
{ {
/* TODO: /* TODO:
* ANI documents suggest the following five levels to use, but the HAL * ANI documents suggest the following five levels to use, but the HAL
* and ath9k use only use the last two levels, making this * and ath9k use only the last two levels, making this
* essentially an on/off option. There *may* be a reason for this (???), * essentially an on/off option. There *may* be a reason for this (???),
* so i stick with the HAL version for now... * so i stick with the HAL version for now...
*/ */
#if 0 #if 0
static const s8 hi[] = { -18, -18, -16, -14, -12 };
static const s8 lo[] = { -52, -56, -60, -64, -70 }; static const s8 lo[] = { -52, -56, -60, -64, -70 };
static const s8 hi[] = { -18, -18, -16, -14, -12 };
static const s8 sz[] = { -34, -41, -48, -55, -62 }; static const s8 sz[] = { -34, -41, -48, -55, -62 };
static const s8 fr[] = { -70, -72, -75, -78, -80 }; static const s8 fr[] = { -70, -72, -75, -78, -80 };
#else #else
static const s8 sz[] = { -55, -62 };
static const s8 lo[] = { -64, -70 }; static const s8 lo[] = { -64, -70 };
static const s8 hi[] = { -14, -12 }; static const s8 hi[] = { -14, -12 };
static const s8 sz[] = { -55, -62 };
static const s8 fr[] = { -78, -80 }; static const s8 fr[] = { -78, -80 };
#endif #endif
if (level < 0 || level >= ARRAY_SIZE(sz)) { if (level < 0 || level >= ARRAY_SIZE(sz)) {
......
...@@ -1140,12 +1140,14 @@ void ath5k_hw_detach(struct ath5k_hw *ah); ...@@ -1140,12 +1140,14 @@ void ath5k_hw_detach(struct ath5k_hw *ah);
int ath5k_sysfs_register(struct ath5k_softc *sc); int ath5k_sysfs_register(struct ath5k_softc *sc);
void ath5k_sysfs_unregister(struct ath5k_softc *sc); void ath5k_sysfs_unregister(struct ath5k_softc *sc);
/* LED functions */ /* LED functions */
int ath5k_init_leds(struct ath5k_softc *sc); int ath5k_init_leds(struct ath5k_softc *sc);
void ath5k_led_enable(struct ath5k_softc *sc); void ath5k_led_enable(struct ath5k_softc *sc);
void ath5k_led_off(struct ath5k_softc *sc); void ath5k_led_off(struct ath5k_softc *sc);
void ath5k_unregister_leds(struct ath5k_softc *sc); void ath5k_unregister_leds(struct ath5k_softc *sc);
/* Reset Functions */ /* Reset Functions */
int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial); int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial);
int ath5k_hw_on_hold(struct ath5k_hw *ah); int ath5k_hw_on_hold(struct ath5k_hw *ah);
...@@ -1155,6 +1157,13 @@ int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val, ...@@ -1155,6 +1157,13 @@ int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
bool is_set); bool is_set);
/* Power management functions */ /* Power management functions */
/* Clock rate related functions */
unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec);
unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock);
void ath5k_hw_set_clockrate(struct ath5k_hw *ah);
/* DMA Related Functions */ /* DMA Related Functions */
void ath5k_hw_start_rx_dma(struct ath5k_hw *ah); void ath5k_hw_start_rx_dma(struct ath5k_hw *ah);
int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah); int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah);
...@@ -1171,26 +1180,28 @@ bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah); ...@@ -1171,26 +1180,28 @@ bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah);
int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask); int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask);
enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask); enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask);
void ath5k_hw_update_mib_counters(struct ath5k_hw *ah); void ath5k_hw_update_mib_counters(struct ath5k_hw *ah);
/* Init function */
void ath5k_hw_dma_init(struct ath5k_hw *ah);
/* EEPROM access functions */ /* EEPROM access functions */
int ath5k_eeprom_init(struct ath5k_hw *ah); int ath5k_eeprom_init(struct ath5k_hw *ah);
void ath5k_eeprom_detach(struct ath5k_hw *ah); void ath5k_eeprom_detach(struct ath5k_hw *ah);
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac); int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac);
/* Protocol Control Unit Functions */ /* Protocol Control Unit Functions */
extern int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype opmode); extern int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype opmode);
void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class); void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class);
/* BSSID Functions */ /* RX filter control*/
int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac); int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac);
void ath5k_hw_set_bssid(struct ath5k_hw *ah); void ath5k_hw_set_bssid(struct ath5k_hw *ah);
void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask); void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask);
/* Receive start/stop functions */
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah);
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah);
/* RX Filter functions */
void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1); void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1);
u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah); u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah);
void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter); void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter);
/* Receive (DRU) start/stop functions */
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah);
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah);
/* Beacon control functions */ /* Beacon control functions */
u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah); u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah);
void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64); void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64);
...@@ -1199,10 +1210,9 @@ void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval); ...@@ -1199,10 +1210,9 @@ void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval);
bool ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval); bool ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval);
/* ACK bit rate */ /* ACK bit rate */
void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high); void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high);
/* Clock rate related functions */ /* Init function */
unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec); void ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock); u8 mode);
void ath5k_hw_set_clockrate(struct ath5k_hw *ah);
/* Queue Control Unit, DFS Control Unit Functions */ /* Queue Control Unit, DFS Control Unit Functions */
int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue, int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
...@@ -1216,6 +1226,8 @@ u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue); ...@@ -1216,6 +1226,8 @@ u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue);
void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue); void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue);
int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue); int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue);
int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time); int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time);
/* Init function */
int ath5k_hw_init_queues(struct ath5k_hw *ah);
/* Hardware Descriptor Functions */ /* Hardware Descriptor Functions */
int ath5k_hw_init_desc_functions(struct ath5k_hw *ah); int ath5k_hw_init_desc_functions(struct ath5k_hw *ah);
...@@ -1225,6 +1237,7 @@ int ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, ...@@ -1225,6 +1237,7 @@ int ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2,
u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3); u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3);
/* GPIO Functions */ /* GPIO Functions */
void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state); void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state);
int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio); int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio);
...@@ -1234,11 +1247,13 @@ int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val); ...@@ -1234,11 +1247,13 @@ int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val);
void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio, void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
u32 interrupt_level); u32 interrupt_level);
/* rfkill Functions */
/* RFkill Functions */
void ath5k_rfkill_hw_start(struct ath5k_hw *ah); void ath5k_rfkill_hw_start(struct ath5k_hw *ah);
void ath5k_rfkill_hw_stop(struct ath5k_hw *ah); void ath5k_rfkill_hw_stop(struct ath5k_hw *ah);
/* Misc functions */
/* Misc functions TODO: Cleanup */
int ath5k_hw_set_capabilities(struct ath5k_hw *ah); int ath5k_hw_set_capabilities(struct ath5k_hw *ah);
int ath5k_hw_get_capability(struct ath5k_hw *ah, int ath5k_hw_get_capability(struct ath5k_hw *ah,
enum ath5k_capability_type cap_type, u32 capability, enum ath5k_capability_type cap_type, u32 capability,
...@@ -1246,19 +1261,20 @@ int ath5k_hw_get_capability(struct ath5k_hw *ah, ...@@ -1246,19 +1261,20 @@ int ath5k_hw_get_capability(struct ath5k_hw *ah,
int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid, u16 assoc_id); int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid, u16 assoc_id);
int ath5k_hw_disable_pspoll(struct ath5k_hw *ah); int ath5k_hw_disable_pspoll(struct ath5k_hw *ah);
/* Initial register settings functions */ /* Initial register settings functions */
int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel); int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel);
/* Initialize RF */
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, /* PHY functions */
struct ieee80211_channel *channel, /* Misc PHY functions */
unsigned int mode); u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan);
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq); int ath5k_hw_phy_disable(struct ath5k_hw *ah);
/* Gain_F optimization */
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah); enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah);
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah); int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah);
/* PHY/RF channel functions */ /* PHY/RF channel functions */
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags); bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags);
int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel);
/* PHY calibration */ /* PHY calibration */
void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah); void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah);
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
...@@ -1267,18 +1283,14 @@ void ath5k_hw_update_noise_floor(struct ath5k_hw *ah); ...@@ -1267,18 +1283,14 @@ void ath5k_hw_update_noise_floor(struct ath5k_hw *ah);
/* Spur mitigation */ /* Spur mitigation */
bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
struct ieee80211_channel *channel); struct ieee80211_channel *channel);
void ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
struct ieee80211_channel *channel);
/* Misc PHY functions */
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan);
int ath5k_hw_phy_disable(struct ath5k_hw *ah);
/* Antenna control */ /* Antenna control */
void ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode); void ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode);
void ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode); void ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode);
/* TX power setup */ /* TX power setup */
int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 ee_mode, u8 txpower);
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower); int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower);
/* Init function */
int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 mode, u8 ee_mode, u8 freq);
/* /*
* Functions used internaly * Functions used internaly
......
...@@ -26,9 +26,10 @@ ...@@ -26,9 +26,10 @@
#include "debug.h" #include "debug.h"
#include "base.h" #include "base.h"
/*
* TX Descriptors /************************\
*/ * TX Control descriptors *
\************************/
/* /*
* Initialize the 2-word tx control descriptor on 5210/5211 * Initialize the 2-word tx control descriptor on 5210/5211
...@@ -335,6 +336,11 @@ ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, ...@@ -335,6 +336,11 @@ ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
return 0; return 0;
} }
/***********************\
* TX Status descriptors *
\***********************/
/* /*
* Proccess the tx status descriptor on 5210/5211 * Proccess the tx status descriptor on 5210/5211
*/ */
...@@ -476,9 +482,10 @@ static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah, ...@@ -476,9 +482,10 @@ static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
return 0; return 0;
} }
/*
* RX Descriptors /****************\
*/ * RX Descriptors *
\****************/
/* /*
* Initialize an rx control descriptor * Initialize an rx control descriptor
...@@ -666,6 +673,11 @@ static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah, ...@@ -666,6 +673,11 @@ static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
return 0; return 0;
} }
/********\
* Attach *
\********/
/* /*
* Init function pointers inside ath5k_hw struct * Init function pointers inside ath5k_hw struct
*/ */
......
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#include "debug.h" #include "debug.h"
#include "base.h" #include "base.h"
/*********\ /*********\
* Receive * * Receive *
\*********/ \*********/
...@@ -427,6 +428,7 @@ int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase) ...@@ -427,6 +428,7 @@ int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
return ret; return ret;
} }
/*******************\ /*******************\
* Interrupt masking * * Interrupt masking *
\*******************/ \*******************/
...@@ -688,3 +690,46 @@ enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask) ...@@ -688,3 +690,46 @@ enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
return old_mask; return old_mask;
} }
/********************\
Init/Stop functions
\********************/
/**
* ath5k_hw_dma_init - Initialize DMA unit
*
* @ah: The &struct ath5k_hw
*
* Set DMA size and pre-enable interrupts
* (driver handles tx/rx buffer setup and
* dma start/stop)
*
* XXX: Save/restore RXDP/TXDP registers ?
*/
void ath5k_hw_dma_init(struct ath5k_hw *ah)
{
/*
* Set Rx/Tx DMA Configuration
*
* Set standard DMA size (128). Note that
* a DMA size of 512 causes rx overruns and tx errors
* on pci-e cards (tested on 5424 but since rx overruns
* also occur on 5416/5418 with madwifi we set 128
* for all PCI-E cards to be safe).
*
* XXX: need to check 5210 for this
* TODO: Check out tx triger level, it's always 64 on dumps but I
* guess we can tweak it and see how it goes ;-)
*/
if (ah->ah_version != AR5K_AR5210) {
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_imr(ah, ah->ah_imr);
}
...@@ -28,6 +28,43 @@ ...@@ -28,6 +28,43 @@
#include "debug.h" #include "debug.h"
#include "base.h" #include "base.h"
/******************\
* Helper functions *
\******************/
/*
* Translate binary channel representation in EEPROM to frequency
*/
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
unsigned int mode)
{
u16 val;
if (bin == AR5K_EEPROM_CHANNEL_DIS)
return bin;
if (mode == AR5K_EEPROM_MODE_11A) {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800;
else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100;
} else {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300;
else
val = bin + 2400;
}
return val;
}
/*********\
* Parsers *
\*********/
/* /*
* Read from eeprom * Read from eeprom
*/ */
...@@ -62,33 +99,6 @@ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) ...@@ -62,33 +99,6 @@ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
return -ETIMEDOUT; return -ETIMEDOUT;
} }
/*
* Translate binary channel representation in EEPROM to frequency
*/
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
unsigned int mode)
{
u16 val;
if (bin == AR5K_EEPROM_CHANNEL_DIS)
return bin;
if (mode == AR5K_EEPROM_MODE_11A) {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800;
else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100;
} else {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300;
else
val = bin + 2400;
}
return val;
}
/* /*
* Initialize eeprom & capabilities structs * Initialize eeprom & capabilities structs
*/ */
...@@ -647,6 +657,7 @@ ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) ...@@ -647,6 +657,7 @@ ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
return 0; return 0;
} }
/* /*
* Read power calibration for RF5111 chips * Read power calibration for RF5111 chips
* *
...@@ -1514,6 +1525,7 @@ ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) ...@@ -1514,6 +1525,7 @@ ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
return 0; return 0;
} }
/* /*
* Read per channel calibration info from EEPROM * Read per channel calibration info from EEPROM
* *
...@@ -1607,15 +1619,6 @@ ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) ...@@ -1607,15 +1619,6 @@ ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
return 0; return 0;
} }
void
ath5k_eeprom_detach(struct ath5k_hw *ah)
{
u8 mode;
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
ath5k_eeprom_free_pcal_info(ah, mode);
}
/* Read conformance test limits used for regulatory control */ /* Read conformance test limits used for regulatory control */
static int static int
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
...@@ -1756,6 +1759,44 @@ ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah) ...@@ -1756,6 +1759,44 @@ ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
return ret; return ret;
} }
/*
* Read the MAC address from eeprom
*/
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
{
u8 mac_d[ETH_ALEN] = {};
u32 total, offset;
u16 data;
int octet, ret;
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
if (ret)
return ret;
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
ret = ath5k_hw_eeprom_read(ah, offset, &data);
if (ret)
return ret;
total += data;
mac_d[octet + 1] = data & 0xff;
mac_d[octet] = data >> 8;
octet += 2;
}
if (!total || total == 3 * 0xffff)
return -EINVAL;
memcpy(mac, mac_d, ETH_ALEN);
return 0;
}
/***********************\
* Init/Detach functions *
\***********************/
/* /*
* Initialize eeprom data structure * Initialize eeprom data structure
*/ */
...@@ -1787,35 +1828,11 @@ ath5k_eeprom_init(struct ath5k_hw *ah) ...@@ -1787,35 +1828,11 @@ ath5k_eeprom_init(struct ath5k_hw *ah)
return 0; return 0;
} }
/* void
* Read the MAC address from eeprom ath5k_eeprom_detach(struct ath5k_hw *ah)
*/
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
{ {
u8 mac_d[ETH_ALEN] = {}; u8 mode;
u32 total, offset;
u16 data;
int octet, ret;
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
if (ret)
return ret;
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
ret = ath5k_hw_eeprom_read(ah, offset, &data);
if (ret)
return ret;
total += data;
mac_d[octet + 1] = data & 0xff;
mac_d[octet] = data >> 8;
octet += 2;
}
if (!total || total == 3 * 0xffff)
return -EINVAL;
memcpy(mac, mac_d, ETH_ALEN);
return 0; for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
ath5k_eeprom_free_pcal_info(ah, mode);
} }
...@@ -32,86 +32,47 @@ ...@@ -32,86 +32,47 @@
#include "base.h" #include "base.h"
/*******************\ /*******************\
* Generic functions * * Helper functions *
\*******************/ \*******************/
/** /**
* ath5k_hw_set_opmode - Set PCU operating mode * ath5k_hw_get_default_slottime - Get the default slot time for current mode
* *
* @ah: The &struct ath5k_hw * @ah: The &struct ath5k_hw
* @op_mode: &enum nl80211_iftype operating mode
*
* Initialize PCU for the various operating modes (AP/STA etc)
*/ */
int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode) static unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
{ {
struct ath_common *common = ath5k_hw_common(ah); struct ieee80211_channel *channel = ah->ah_current_channel;
u32 pcu_reg, beacon_reg, low_id, high_id;
ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
/* Preserve rest settings */
pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
beacon_reg = 0;
switch (op_mode) {
case NL80211_IFTYPE_ADHOC:
pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_ADHOC;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_AP: if (channel->hw_value & CHANNEL_TURBO)
case NL80211_IFTYPE_MESH_POINT: return 6; /* both turbo modes */
pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_AP;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_STATION: if (channel->hw_value & CHANNEL_CCK)
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE return 20; /* 802.11b */
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_PWR_SV : 0);
case NL80211_IFTYPE_MONITOR:
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
break;
default: return 9; /* 802.11 a/g */
return -EINVAL; }
}
/* /**
* Set PCU registers * ath5k_hw_get_default_sifs - Get the default SIFS for current mode
*
* @ah: The &struct ath5k_hw
*/ */
low_id = get_unaligned_le32(common->macaddr); static unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
high_id = get_unaligned_le16(common->macaddr + 4); {
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); struct ieee80211_channel *channel = ah->ah_current_channel;
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
/* if (channel->hw_value & CHANNEL_TURBO)
* Set Beacon Control Register on 5210 return 8; /* both turbo modes */
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
return 0; if (channel->hw_value & CHANNEL_5GHZ)
return 16; /* 802.11a */
return 10; /* 802.11 b/g */
} }
/** /**
* ath5k_hw_update - Update MIB counters (mac layer statistics) * ath5k_hw_update_mib_counters - Update MIB counters (mac layer statistics)
* *
* @ah: The &struct ath5k_hw * @ah: The &struct ath5k_hw
* *
...@@ -163,6 +124,82 @@ void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high) ...@@ -163,6 +124,82 @@ void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
* ACK/CTS Timeouts * * ACK/CTS Timeouts *
\******************/ \******************/
/*
* index into rates for control rates, we can set it up like this because
* this is only used for AR5212 and we know it supports G mode
*/
static const unsigned int control_rates[] =
{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
/**
* ath5k_hw_write_rate_duration - fill rate code to duration table
*
* @ah: the &struct ath5k_hw
* @mode: one of enum ath5k_driver_mode
*
* Write the rate code to duration table upon hw reset. This is a helper for
* ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
* the hardware, based on current mode, for each rate. The rates which are
* capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
* different rate code so we write their value twice (one for long preamble
* and one for short).
*
* Note: Band doesn't matter here, if we set the values for OFDM it works
* on both a and g modes. So all we have to do is set values for all g rates
* that include all OFDM and CCK rates. If we operate in turbo or xr/half/
* quarter rate mode, we need to use another set of bitrates (that's why we
* need the mode parameter) but we don't handle these proprietary modes yet.
*/
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
unsigned int mode)
{
struct ath5k_softc *sc = ah->ah_sc;
struct ieee80211_rate *rate;
unsigned int i;
/* Write rate duration table */
for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
u32 reg;
u16 tx_time;
rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
/* Set ACK timeout */
reg = AR5K_RATE_DUR(rate->hw_value);
/* An ACK frame consists of 10 bytes. If you add the FCS,
* which ieee80211_generic_frame_duration() adds,
* its 14 bytes. Note we use the control rate and not the
* actual rate for this rate. See mac80211 tx.c
* ieee80211_duration() for a brief description of
* what rate we should choose to TX ACKs. */
tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
NULL, 10, rate));
ath5k_hw_reg_write(ah, tx_time, reg);
if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
continue;
/*
* We're not distinguishing short preamble here,
* This is true, all we'll get is a longer value here
* which is not necessarilly bad. We could use
* export ieee80211_frame_duration() but that needs to be
* fixed first to be properly used by mac802111 drivers:
*
* - remove erp stuff and let the routine figure ofdm
* erp rates
* - remove passing argument ieee80211_local as
* drivers don't have access to it
* - move drivers using ieee80211_generic_frame_duration()
* to this
*/
ath5k_hw_reg_write(ah, tx_time,
reg + (AR5K_SET_SHORT_PREAMBLE << 2));
}
}
/** /**
* ath5k_hw_set_ack_timeout - Set ACK timeout on PCU * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
* *
...@@ -199,88 +236,10 @@ static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) ...@@ -199,88 +236,10 @@ static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
return 0; return 0;
} }
/**
* ath5k_hw_htoclock - Translate usec to hw clock units
*
* @ah: The &struct ath5k_hw
* @usec: value in microseconds
*/
unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
{
struct ath_common *common = ath5k_hw_common(ah);
return usec * common->clockrate;
}
/**
* ath5k_hw_clocktoh - Translate hw clock units to usec
* @clock: value in hw clock units
*/
unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
{
struct ath_common *common = ath5k_hw_common(ah);
return clock / common->clockrate;
}
/**
* ath5k_hw_set_clockrate - Set common->clockrate for the current channel
*
* @ah: The &struct ath5k_hw
*/
void ath5k_hw_set_clockrate(struct ath5k_hw *ah)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
struct ath_common *common = ath5k_hw_common(ah);
int clock;
if (channel->hw_value & CHANNEL_5GHZ)
clock = 40; /* 802.11a */
else if (channel->hw_value & CHANNEL_CCK)
clock = 22; /* 802.11b */
else
clock = 44; /* 802.11g */
/* Clock rate in turbo modes is twice the normal rate */
if (channel->hw_value & CHANNEL_TURBO)
clock *= 2;
common->clockrate = clock;
}
/**
* ath5k_hw_get_default_slottime - Get the default slot time for current mode
*
* @ah: The &struct ath5k_hw
*/
static unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
if (channel->hw_value & CHANNEL_TURBO)
return 6; /* both turbo modes */
if (channel->hw_value & CHANNEL_CCK)
return 20; /* 802.11b */
return 9; /* 802.11 a/g */
}
/**
* ath5k_hw_get_default_sifs - Get the default SIFS for current mode
*
* @ah: The &struct ath5k_hw
*/
static unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
if (channel->hw_value & CHANNEL_TURBO) /*******************\
return 8; /* both turbo modes */ * RX filter Control *
\*******************/
if (channel->hw_value & CHANNEL_5GHZ)
return 16; /* 802.11a */
return 10; /* 802.11 b/g */
}
/** /**
* ath5k_hw_set_lladdr - Set station id * ath5k_hw_set_lladdr - Set station id
...@@ -362,39 +321,6 @@ void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) ...@@ -362,39 +321,6 @@ void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
ath_hw_setbssidmask(common); ath_hw_setbssidmask(common);
} }
/************\
* RX Control *
\************/
/**
* ath5k_hw_start_rx_pcu - Start RX engine
*
* @ah: The &struct ath5k_hw
*
* Starts RX engine on PCU so that hw can process RXed frames
* (ACK etc).
*
* NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
*/
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
{
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/**
* at5k_hw_stop_rx_pcu - Stop RX engine
*
* @ah: The &struct ath5k_hw
*
* Stops RX engine on PCU
*
* TODO: Detach ANI here
*/
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
{
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/* /*
* Set multicast filter * Set multicast filter
*/ */
...@@ -761,3 +687,161 @@ void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class) ...@@ -761,3 +687,161 @@ void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
ah->ah_coverage_class = coverage_class; ah->ah_coverage_class = coverage_class;
} }
/***************************\
* Init/Start/Stop functions *
\***************************/
/**
* ath5k_hw_start_rx_pcu - Start RX engine
*
* @ah: The &struct ath5k_hw
*
* Starts RX engine on PCU so that hw can process RXed frames
* (ACK etc).
*
* NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
*/
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
{
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/**
* at5k_hw_stop_rx_pcu - Stop RX engine
*
* @ah: The &struct ath5k_hw
*
* Stops RX engine on PCU
*/
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
{
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/**
* ath5k_hw_set_opmode - Set PCU operating mode
*
* @ah: The &struct ath5k_hw
* @op_mode: &enum nl80211_iftype operating mode
*
* Configure PCU for the various operating modes (AP/STA etc)
*/
int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
{
struct ath_common *common = ath5k_hw_common(ah);
u32 pcu_reg, beacon_reg, low_id, high_id;
ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
/* Preserve rest settings */
pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
beacon_reg = 0;
switch (op_mode) {
case NL80211_IFTYPE_ADHOC:
pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_ADHOC;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_AP;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_STATION:
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_PWR_SV : 0);
case NL80211_IFTYPE_MONITOR:
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
break;
default:
return -EINVAL;
}
/*
* Set PCU registers
*/
low_id = get_unaligned_le32(common->macaddr);
high_id = get_unaligned_le16(common->macaddr + 4);
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
/*
* Set Beacon Control Register on 5210
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
return 0;
}
void ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
u8 mode)
{
/* Set bssid and bssid mask */
ath5k_hw_set_bssid(ah);
/* Set PCU config */
ath5k_hw_set_opmode(ah, op_mode);
/* Write rate duration table only on AR5212 and if
* virtual interface has already been brought up
* XXX: rethink this after new mode changes to
* mac80211 are integrated */
if (ah->ah_version == AR5K_AR5212 &&
ah->ah_sc->nvifs)
ath5k_hw_write_rate_duration(ah, mode);
/* Set RSSI/BRSSI thresholds
*
* Note: If we decide to set this value
* dynamicaly, have in mind that when AR5K_RSSI_THR
* register is read it might return 0x40 if we haven't
* wrote anything to it plus BMISS RSSI threshold is zeroed.
* So doing a save/restore procedure here isn't the right
* choice. Instead store it on ath5k_hw */
ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
AR5K_TUNE_BMISS_THRES <<
AR5K_RSSI_THR_BMISS_S),
AR5K_RSSI_THR);
/* MIC QoS support */
if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
}
/* QoS NOACK Policy */
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah,
AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
AR5K_QOS_NOACK);
}
/* Restore slot time and ACK timeouts */
if (ah->ah_coverage_class > 0)
ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
return;
}
...@@ -29,6 +29,95 @@ ...@@ -29,6 +29,95 @@
#include "rfbuffer.h" #include "rfbuffer.h"
#include "rfgain.h" #include "rfgain.h"
/******************\
* Helper functions *
\******************/
/*
* Get the PHY Chip revision
*/
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
unsigned int i;
u32 srev;
u16 ret;
/*
* Set the radio chip access register
*/
switch (chan) {
case CHANNEL_2GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
break;
case CHANNEL_5GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
break;
default:
return 0;
}
mdelay(2);
/* ...wait until PHY is ready and read the selected radio revision */
ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
for (i = 0; i < 8; i++)
ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
if (ah->ah_version == AR5K_AR5210) {
srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
} else {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
((srev & 0x0f) << 4), 8);
}
/* Reset to the 5GHz mode */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
return ret;
}
/*
* Check if a channel is supported
*/
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
/* Check if the channel is in our supported range */
if (flags & CHANNEL_2GHZ) {
if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
return true;
} else if (flags & CHANNEL_5GHZ)
if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
return true;
return false;
}
bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u8 refclk_freq;
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
refclk_freq = 40;
else
refclk_freq = 32;
if ((channel->center_freq % refclk_freq != 0) &&
((channel->center_freq % refclk_freq < 10) ||
(channel->center_freq % refclk_freq > 22)))
return true;
else
return false;
}
/* /*
* Used to modify RF Banks before writing them to AR5K_RF_BUFFER * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
*/ */
...@@ -110,6 +199,78 @@ static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, ...@@ -110,6 +199,78 @@ static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
return data; return data;
} }
/**
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
*
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
*
* Since delta slope is floating point we split it on its exponent and
* mantissa and provide these values on hw.
*
* For more infos i think this patent is related
* http://www.freepatentsonline.com/7184495.html
*/
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/* Get exponent and mantissa and set it */
u32 coef_scaled, coef_exp, coef_man,
ds_coef_exp, ds_coef_man, clock;
BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
!(channel->hw_value & CHANNEL_OFDM));
/* Get coefficient
* ALGO: coef = (5 * clock / carrier_freq) / 2
* we scale coef by shifting clock value by 24 for
* better precision since we use integers */
/* TODO: Half/quarter rate */
clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
/* Get exponent
* ALGO: coef_exp = 14 - highest set bit position */
coef_exp = ilog2(coef_scaled);
/* Doesn't make sense if it's zero*/
if (!coef_scaled || !coef_exp)
return -EINVAL;
/* Note: we've shifted coef_scaled by 24 */
coef_exp = 14 - (coef_exp - 24);
/* Get mantissa (significant digits)
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
coef_man = coef_scaled +
(1 << (24 - coef_exp - 1));
/* Calculate delta slope coefficient exponent
* and mantissa (remove scaling) and set them on hw */
ds_coef_man = coef_man >> (24 - coef_exp);
ds_coef_exp = coef_exp - 16;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0;
}
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
/*Just a try M.F.*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
return 0;
}
/**********************\ /**********************\
* RF Gain optimization * * RF Gain optimization *
\**********************/ \**********************/
...@@ -436,7 +597,7 @@ enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) ...@@ -436,7 +597,7 @@ enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
/* Write initial RF gain table to set the RF sensitivity /* Write initial RF gain table to set the RF sensitivity
* this one works on all RF chips and has nothing to do * this one works on all RF chips and has nothing to do
* with gain_F calibration */ * with gain_F calibration */
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
{ {
const struct ath5k_ini_rfgain *ath5k_rfg; const struct ath5k_ini_rfgain *ath5k_rfg;
unsigned int i, size; unsigned int i, size;
...@@ -494,12 +655,11 @@ int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) ...@@ -494,12 +655,11 @@ int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
* RF Registers setup * * RF Registers setup *
\********************/ \********************/
/* /*
* Setup RF registers by writing RF buffer on hw * Setup RF registers by writing RF buffer on hw
*/ */
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
unsigned int mode) struct ieee80211_channel *channel, unsigned int mode)
{ {
const struct ath5k_rf_reg *rf_regs; const struct ath5k_rf_reg *rf_regs;
const struct ath5k_ini_rfbuffer *ini_rfb; const struct ath5k_ini_rfbuffer *ini_rfb;
...@@ -821,24 +981,6 @@ int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, ...@@ -821,24 +981,6 @@ int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
PHY/RF channel functions PHY/RF channel functions
\**************************/ \**************************/
/*
* Check if a channel is supported
*/
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
/* Check if the channel is in our supported range */
if (flags & CHANNEL_2GHZ) {
if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
return true;
} else if (flags & CHANNEL_5GHZ)
if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
return true;
return false;
}
/* /*
* Convertion needed for RF5110 * Convertion needed for RF5110
*/ */
...@@ -1045,7 +1187,8 @@ static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, ...@@ -1045,7 +1187,8 @@ static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
/* /*
* Set a channel on the radio chip * Set a channel on the radio chip
*/ */
int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) static int ath5k_hw_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{ {
int ret; int ret;
/* /*
...@@ -1419,31 +1562,12 @@ int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, ...@@ -1419,31 +1562,12 @@ int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
return ret; return ret;
} }
/***************************\ /***************************\
* Spur mitigation functions * * Spur mitigation functions *
\***************************/ \***************************/
bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, static void
struct ieee80211_channel *channel)
{
u8 refclk_freq;
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
refclk_freq = 40;
else
refclk_freq = 32;
if ((channel->center_freq % refclk_freq != 0) &&
((channel->center_freq % refclk_freq < 10) ||
(channel->center_freq % refclk_freq > 22)))
return true;
else
return false;
}
void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
struct ieee80211_channel *channel) struct ieee80211_channel *channel)
{ {
...@@ -1666,63 +1790,6 @@ ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, ...@@ -1666,63 +1790,6 @@ ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
} }
} }
/********************\
Misc PHY functions
\********************/
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
/*Just a try M.F.*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
return 0;
}
/*
* Get the PHY Chip revision
*/
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
unsigned int i;
u32 srev;
u16 ret;
/*
* Set the radio chip access register
*/
switch (chan) {
case CHANNEL_2GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
break;
case CHANNEL_5GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
break;
default:
return 0;
}
mdelay(2);
/* ...wait until PHY is ready and read the selected radio revision */
ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
for (i = 0; i < 8; i++)
ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
if (ah->ah_version == AR5K_AR5210) {
srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
} else {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
((srev & 0x0f) << 4), 8);
}
/* Reset to the 5GHz mode */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
return ret;
}
/*****************\ /*****************\
* Antenna control * * Antenna control *
...@@ -2984,7 +3051,7 @@ ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, ...@@ -2984,7 +3051,7 @@ ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
/* /*
* Set transmission power * Set transmission power
*/ */
int static int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 ee_mode, u8 txpower) u8 ee_mode, u8 txpower)
{ {
...@@ -3108,3 +3175,176 @@ int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) ...@@ -3108,3 +3175,176 @@ int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
return ath5k_hw_txpower(ah, channel, ee_mode, txpower); return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
} }
/*************\
Init function
\*************/
int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 mode, u8 ee_mode, u8 freq)
{
int ret, i;
u32 phy_tst1;
ret = 0;
/*
* 5211/5212 Specific
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain_init(ah, freq);
if (ret)
return ret;
mdelay(1);
/*
* Set TX power
*/
ret = ath5k_hw_txpower(ah, channel, ee_mode,
ah->ah_txpower.txp_max_pwr / 2);
if (ret)
return ret;
/*
* Write RF buffer
*/
ret = ath5k_hw_rfregs_init(ah, channel, mode);
if (ret)
return ret;
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->hw_value & CHANNEL_OFDM) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
/* Spur info is available only from EEPROM versions
* greater than 5.3, but the EEPROM routines will use
* static values for older versions */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
ath5k_hw_set_spur_mitigation_filter(ah,
channel);
}
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (mode == AR5K_MODE_11B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
} else {
/*
* For 5210 we do all initialization using
* initvals, so we don't have to modify
* any settings (5210 also only supports
* a/aturbo modes)
*/
mdelay(1);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
mdelay(1);
}
/* Set channel on PHY */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
/*
* Enable the PHY and wait until completion
* This includes BaseBand and Synthesizer
* activation.
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
/*
* On 5211+ read activation -> rx delay
* and use it.
*
* TODO: Half/quarter rate support
*/
if (ah->ah_version != AR5K_AR5210) {
u32 delay;
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
delay = (channel->hw_value & CHANNEL_CCK) ?
((delay << 2) / 22) : (delay / 10);
udelay(100 + (2 * delay));
} else {
mdelay(1);
}
/*
* Perform ADC test to see if baseband is ready
* Set TX hold and check ADC test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
for (i = 0; i <= 20; i++) {
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
break;
udelay(200);
}
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
/*
* Start automatic gain control calibration
*
* During AGC calibration RX path is re-routed to
* a power detector so we don't receive anything.
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
* one performed via ath5k_hw_phy_calibrate), which doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
* start a noise floor calibration to measure the
* card's noise floor (the noise we measure when we are not
* transmitting or receiving anything).
*
* If we are in a noisy environment, AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
/* At the same time start I/Q calibration for QAM constellation
* -no need for CCK- */
ah->ah_calibration = false;
if (!(mode == AR5K_MODE_11B)) {
ah->ah_calibration = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/* Wait for gain calibration to finish (we check for I/Q calibration
* during ath5k_phy_calibrate) */
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
channel->center_freq);
}
/* Restore antenna mode */
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
return ret;
}
...@@ -25,14 +25,52 @@ Queue Control Unit, DFS Control Unit Functions ...@@ -25,14 +25,52 @@ Queue Control Unit, DFS Control Unit Functions
#include "debug.h" #include "debug.h"
#include "base.h" #include "base.h"
/******************\
* Helper functions *
\******************/
/* /*
* Get properties for a transmit queue * Get number of pending frames
* for a specific queue [5211+]
*/ */
int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue, u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue)
struct ath5k_txq_info *queue_info)
{ {
memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info)); u32 pending;
return 0; AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return false;
/* XXX: How about AR5K_CFG_TXCNT ? */
if (ah->ah_version == AR5K_AR5210)
return false;
pending = ath5k_hw_reg_read(ah, AR5K_QUEUE_STATUS(queue));
pending &= AR5K_QCU_STS_FRMPENDCNT;
/* It's possible to have no frames pending even if TXE
* is set. To indicate that q has not stopped return
* true */
if (!pending && AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return true;
return pending;
}
/*
* Set a transmit queue inactive
*/
void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
{
if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
return;
/* This queue will be skipped in further operations */
ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
/*For SIMR setup*/
AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
} }
/* /*
...@@ -49,6 +87,16 @@ static u16 ath5k_cw_validate(u16 cw_req) ...@@ -49,6 +87,16 @@ static u16 ath5k_cw_validate(u16 cw_req)
return cw; return cw;
} }
/*
* Get properties for a transmit queue
*/
int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
struct ath5k_txq_info *queue_info)
{
memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
return 0;
}
/* /*
* Set properties for a transmit queue * Set properties for a transmit queue
*/ */
...@@ -172,48 +220,10 @@ int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type, ...@@ -172,48 +220,10 @@ int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
return queue; return queue;
} }
/*
* Get number of pending frames
* for a specific queue [5211+]
*/
u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue)
{
u32 pending;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return false;
/* XXX: How about AR5K_CFG_TXCNT ? */
if (ah->ah_version == AR5K_AR5210)
return false;
pending = ath5k_hw_reg_read(ah, AR5K_QUEUE_STATUS(queue));
pending &= AR5K_QCU_STS_FRMPENDCNT;
/* It's possible to have no frames pending even if TXE
* is set. To indicate that q has not stopped return
* true */
if (!pending && AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return true;
return pending; /*******************************\
} * Single QCU/DCU initialization *
\*******************************/
/*
* Set a transmit queue inactive
*/
void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
{
if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
return;
/* This queue will be skipped in further operations */
ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
/*For SIMR setup*/
AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
}
/* /*
* Set DFS properties for a transmit queue on DCU * Set DFS properties for a transmit queue on DCU
...@@ -512,6 +522,11 @@ int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue) ...@@ -512,6 +522,11 @@ int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
return 0; return 0;
} }
/**************************\
* Global QCU/DCU functions *
\**************************/
/* /*
* Set slot time on DCU * Set slot time on DCU
*/ */
...@@ -530,3 +545,26 @@ int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time) ...@@ -530,3 +545,26 @@ int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
return 0; return 0;
} }
int ath5k_hw_init_queues(struct ath5k_hw *ah)
{
int i, ret;
/* TODO: HW Compression support for data queues */
/* TODO: Burst prefetch for data queues */
/*
* Reset queues and start beacon timers at the end of the reset routine
* This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
* Note: If we want we can assign multiple qcus on one dcu.
*/
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
ret = ath5k_hw_reset_tx_queue(ah, i);
if (ret) {
ATH5K_ERR(ah->ah_sc,
"failed to reset TX queue #%d\n", i);
return ret;
}
}
return 0;
}
...@@ -32,6 +32,11 @@ ...@@ -32,6 +32,11 @@
#include "base.h" #include "base.h"
#include "debug.h" #include "debug.h"
/******************\
* Helper functions *
\******************/
/* /*
* Check if a register write has been completed * Check if a register write has been completed
*/ */
...@@ -53,146 +58,165 @@ int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val, ...@@ -53,146 +58,165 @@ int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
return (i <= 0) ? -EAGAIN : 0; return (i <= 0) ? -EAGAIN : 0;
} }
/*************************\
* Clock related functions *
\*************************/
/** /**
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 * ath5k_hw_htoclock - Translate usec to hw clock units
*
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
* *
* Since delta slope is floating point we split it on its exponent and * @ah: The &struct ath5k_hw
* mantissa and provide these values on hw. * @usec: value in microseconds
*
* For more infos i think this patent is related
* http://www.freepatentsonline.com/7184495.html
*/ */
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
struct ieee80211_channel *channel)
{ {
/* Get exponent and mantissa and set it */ struct ath_common *common = ath5k_hw_common(ah);
u32 coef_scaled, coef_exp, coef_man, return usec * common->clockrate;
ds_coef_exp, ds_coef_man, clock; }
BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
!(channel->hw_value & CHANNEL_OFDM));
/* Get coefficient
* ALGO: coef = (5 * clock / carrier_freq) / 2
* we scale coef by shifting clock value by 24 for
* better precision since we use integers */
/* TODO: Half/quarter rate */
clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
/* Get exponent
* ALGO: coef_exp = 14 - highest set bit position */
coef_exp = ilog2(coef_scaled);
/* Doesn't make sense if it's zero*/
if (!coef_scaled || !coef_exp)
return -EINVAL;
/* Note: we've shifted coef_scaled by 24 */
coef_exp = 14 - (coef_exp - 24);
/**
* ath5k_hw_clocktoh - Translate hw clock units to usec
* @clock: value in hw clock units
*/
unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
{
struct ath_common *common = ath5k_hw_common(ah);
return clock / common->clockrate;
}
/* Get mantissa (significant digits) /**
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ * ath5k_hw_set_clockrate - Set common->clockrate for the current channel
coef_man = coef_scaled + *
(1 << (24 - coef_exp - 1)); * @ah: The &struct ath5k_hw
*/
void ath5k_hw_set_clockrate(struct ath5k_hw *ah)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
struct ath_common *common = ath5k_hw_common(ah);
int clock;
/* Calculate delta slope coefficient exponent if (channel->hw_value & CHANNEL_5GHZ)
* and mantissa (remove scaling) and set them on hw */ clock = 40; /* 802.11a */
ds_coef_man = coef_man >> (24 - coef_exp); else if (channel->hw_value & CHANNEL_CCK)
ds_coef_exp = coef_exp - 16; clock = 22; /* 802.11b */
else
clock = 44; /* 802.11g */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, /* Clock rate in turbo modes is twice the normal rate */
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); if (channel->hw_value & CHANNEL_TURBO)
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, clock *= 2;
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0; common->clockrate = clock;
} }
/* /*
* index into rates for control rates, we can set it up like this because * If there is an external 32KHz crystal available, use it
* this is only used for AR5212 and we know it supports G mode * as ref. clock instead of 32/40MHz clock and baseband clocks
*/ * to save power during sleep or restore normal 32/40MHz
static const unsigned int control_rates[] = * operation.
{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
/**
* ath5k_hw_write_rate_duration - fill rate code to duration table
*
* @ah: the &struct ath5k_hw
* @mode: one of enum ath5k_driver_mode
*
* Write the rate code to duration table upon hw reset. This is a helper for
* ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
* the hardware, based on current mode, for each rate. The rates which are
* capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
* different rate code so we write their value twice (one for long preample
* and one for short).
* *
* Note: Band doesn't matter here, if we set the values for OFDM it works * XXX: When operating on 32KHz certain PHY registers (27 - 31,
* on both a and g modes. So all we have to do is set values for all g rates * 123 - 127) require delay on access.
* that include all OFDM and CCK rates. If we operate in turbo or xr/half/
* quarter rate mode, we need to use another set of bitrates (that's why we
* need the mode parameter) but we don't handle these proprietary modes yet.
*/ */
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah, static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
unsigned int mode)
{ {
struct ath5k_softc *sc = ah->ah_sc; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ieee80211_rate *rate; u32 scal, spending, usec32;
unsigned int i;
/* Write rate duration table */ /* Only set 32KHz settings if we have an external
for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) { * 32KHz crystal present */
u32 reg; if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
u16 tx_time; AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
enable) {
rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]]; /* 1 usec/cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
/* Set up tsf increment on each cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
/* Set ACK timeout */ /* Set baseband sleep control registers
reg = AR5K_RATE_DUR(rate->hw_value); * and sleep control rate */
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
/* An ACK frame consists of 10 bytes. If you add the FCS, if ((ah->ah_radio == AR5K_RF5112) ||
* which ieee80211_generic_frame_duration() adds, (ah->ah_radio == AR5K_RF5413) ||
* its 14 bytes. Note we use the control rate and not the (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
* actual rate for this rate. See mac80211 tx.c spending = 0x14;
* ieee80211_duration() for a brief description of else
* what rate we should choose to TX ACKs. */ spending = 0x18;
tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw, ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
NULL, 10, rate));
ath5k_hw_reg_write(ah, tx_time, reg); if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
} else {
ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
}
if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)) /* Enable sleep clock operation */
continue; AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
/* } else {
* We're not distinguishing short preamble here,
* This is true, all we'll get is a longer value here /* Disable sleep clock operation and
* which is not necessarilly bad. We could use * restore default parameters */
* export ieee80211_frame_duration() but that needs to be AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
* fixed first to be properly used by mac802111 drivers: AR5K_PCICFG_SLEEP_CLOCK_EN);
*
* - remove erp stuff and let the routine figure ofdm AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
* erp rates AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
* - remove passing argument ieee80211_local as
* drivers don't have access to it ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
* - move drivers using ieee80211_generic_frame_duration() ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
* to this
*/ if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
ath5k_hw_reg_write(ah, tx_time, scal = AR5K_PHY_SCAL_32MHZ_2417;
reg + (AR5K_SET_SHORT_PREAMBLE << 2)); else if (ee->ee_is_hb63)
scal = AR5K_PHY_SCAL_32MHZ_HB63;
else
scal = AR5K_PHY_SCAL_32MHZ;
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413))
usec32 = 39;
else
usec32 = 31;
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
} }
} }
/*********************\
* Reset/Sleep control *
\*********************/
/* /*
* Reset chipset * Reset chipset
*/ */
...@@ -522,107 +546,10 @@ int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial) ...@@ -522,107 +546,10 @@ int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
return 0; return 0;
} }
/*
* If there is an external 32KHz crystal available, use it
* as ref. clock instead of 32/40MHz clock and baseband clocks
* to save power during sleep or restore normal 32/40MHz
* operation.
*
* XXX: When operating on 32KHz certain PHY registers (27 - 31,
* 123 - 127) require delay on access.
*/
static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 scal, spending, usec32;
/* Only set 32KHz settings if we have an external /**************************************\
* 32KHz crystal present */ * Post-initvals register modifications *
if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) || \**************************************/
AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
enable) {
/* 1 usec/cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
/* Set up tsf increment on each cycle */
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
/* Set baseband sleep control registers
* and sleep control rate */
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
} else {
ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
}
/* Enable sleep clock operation */
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
} else {
/* Disable sleep clock operation and
* restore default parameters */
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_EN);
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
scal = AR5K_PHY_SCAL_32MHZ_2417;
else if (ee->ee_is_hb63)
scal = AR5K_PHY_SCAL_32MHZ_HB63;
else
scal = AR5K_PHY_SCAL_32MHZ;
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
spending = 0x14;
else
spending = 0x18;
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413))
usec32 = 39;
else
usec32 = 31;
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
}
}
/* TODO: Half/Quarter rate */ /* TODO: Half/Quarter rate */
static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
...@@ -705,7 +632,8 @@ static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, ...@@ -705,7 +632,8 @@ static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
} }
if (ah->ah_mac_srev < AR5K_SREV_AR5211) { if ((ah->ah_radio == AR5K_RF5112) &&
(ah->ah_mac_srev < AR5K_SREV_AR5211)) {
u32 usec_reg; u32 usec_reg;
/* 5311 has different tx/rx latency masks /* 5311 has different tx/rx latency masks
* from 5211, since we deal 5311 the same * from 5211, since we deal 5311 the same
...@@ -734,6 +662,10 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, ...@@ -734,6 +662,10 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
s16 cck_ofdm_pwr_delta; s16 cck_ofdm_pwr_delta;
/* TODO: Add support for AR5210 EEPROM */
if (ah->ah_version == AR5K_AR5210)
return;
/* Adjust power delta for channel 14 */ /* Adjust power delta for channel 14 */
if (channel->center_freq == 2484) if (channel->center_freq == 2484)
cck_ofdm_pwr_delta = cck_ofdm_pwr_delta =
...@@ -870,15 +802,16 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, ...@@ -870,15 +802,16 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
} }
/*
* Main reset function /*********************\
*/ * Main reset function *
\*********************/
int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
struct ieee80211_channel *channel, bool change_channel) struct ieee80211_channel *channel, bool change_channel)
{ {
struct ath_common *common = ath5k_hw_common(ah); struct ath_common *common = ath5k_hw_common(ah);
u32 s_seq[10], s_led[3], staid1_flags, tsf_up, tsf_lo; u32 s_seq[10], s_led[3], staid1_flags, tsf_up, tsf_lo;
u32 phy_tst1;
u8 mode, freq, ee_mode; u8 mode, freq, ee_mode;
int i, ret; int i, ret;
...@@ -1025,21 +958,6 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, ...@@ -1025,21 +958,6 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
if (ret) if (ret)
return ret; return ret;
/*
* 5211/5212 Specific
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain_init(ah, freq);
if (ret)
return ret;
mdelay(1);
/* /*
* Tweak initval settings for revised * Tweak initval settings for revised
* chipsets and add some more config * chipsets and add some more config
...@@ -1047,72 +965,9 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, ...@@ -1047,72 +965,9 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
*/ */
ath5k_hw_tweak_initval_settings(ah, channel); ath5k_hw_tweak_initval_settings(ah, channel);
/*
* Set TX power
*/
ret = ath5k_hw_txpower(ah, channel, ee_mode,
ah->ah_txpower.txp_max_pwr / 2);
if (ret)
return ret;
/* Write rate duration table only on AR5212 and if
* virtual interface has already been brought up
* XXX: rethink this after new mode changes to
* mac80211 are integrated */
if (ah->ah_version == AR5K_AR5212 &&
ah->ah_sc->nvifs)
ath5k_hw_write_rate_duration(ah, mode);
/*
* Write RF buffer
*/
ret = ath5k_hw_rfregs_init(ah, channel, mode);
if (ret)
return ret;
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->hw_value & CHANNEL_OFDM) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
/* Spur info is available only from EEPROM versions
* greater than 5.3, but the EEPROM routines will use
* static values for older versions */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
ath5k_hw_set_spur_mitigation_filter(ah,
channel);
}
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (mode == AR5K_MODE_11B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
/* Commit values from EEPROM */ /* Commit values from EEPROM */
ath5k_hw_commit_eeprom_settings(ah, channel, ee_mode); ath5k_hw_commit_eeprom_settings(ah, channel, ee_mode);
} else {
/*
* For 5210 we do all initialization using
* initvals, so we don't have to modify
* any settings (5210 also only supports
* a/aturbo modes)
*/
mdelay(1);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
mdelay(1);
}
/* /*
* Restore saved values * Restore saved values
...@@ -1156,193 +1011,38 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, ...@@ -1156,193 +1011,38 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
/* /*
* Configure PCU * Initialize PCU
*/ */
ath5k_hw_pcu_init(ah, op_mode, mode);
/* Restore bssid and bssid mask */
ath5k_hw_set_bssid(ah);
/* Set PCU config */
ath5k_hw_set_opmode(ah, op_mode);
/* Clear any pending interrupts /* Clear any pending interrupts
* PISR/SISR Not available on 5210 */ * PISR/SISR Not available on 5210 */
if (ah->ah_version != AR5K_AR5210) if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR); ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
/* Set RSSI/BRSSI thresholds
*
* Note: If we decide to set this value
* dynamically, keep in mind that when AR5K_RSSI_THR
* register is read, it might return 0x40 if we haven't
* written anything to it. Also, BMISS RSSI threshold is zeroed.
* So doing a save/restore procedure here isn't the right
* choice. Instead, store it in ath5k_hw */
ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
AR5K_TUNE_BMISS_THRES <<
AR5K_RSSI_THR_BMISS_S),
AR5K_RSSI_THR);
/* MIC QoS support */
if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
}
/* QoS NOACK Policy */
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah,
AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
AR5K_QOS_NOACK);
}
/* /*
* Configure PHY * Initialize PHY
*/ */
ret = ath5k_hw_phy_init(ah, channel, mode, ee_mode, freq);
/* Set channel on PHY */ if (ret) {
ret = ath5k_hw_channel(ah, channel); ATH5K_ERR(ah->ah_sc,
if (ret) "failed to initialize PHY (%i) !\n", ret);
return ret; return ret;
/*
* Enable the PHY and wait until completion
* This includes BaseBand and Synthesizer
* activation.
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
/*
* On 5211+ read activation -> rx delay
* and use it.
*
* TODO: Half/quarter rate support
*/
if (ah->ah_version != AR5K_AR5210) {
u32 delay;
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
delay = (channel->hw_value & CHANNEL_CCK) ?
((delay << 2) / 22) : (delay / 10);
udelay(100 + (2 * delay));
} else {
mdelay(1);
}
/*
* Perform ADC test to see if baseband is ready
* Set TX hold and check ADC test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
for (i = 0; i <= 20; i++) {
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
break;
udelay(200);
}
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
/*
* Start automatic gain control calibration
*
* During AGC calibration RX path is re-routed to
* a power detector so we don't receive anything.
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
* one performed via ath5k_hw_phy_calibrate), which doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
* start a noise floor calibration to measure the
* card's noise floor (the noise we measure when we are not
* transmitting or receiving anything).
*
* If we are in a noisy environment, AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
/* At the same time start I/Q calibration for QAM constellation
* -no need for CCK- */
ah->ah_calibration = false;
if (!(mode == AR5K_MODE_11B)) {
ah->ah_calibration = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/* Wait for gain calibration to finish (we check for I/Q calibration
* during ath5k_phy_calibrate) */
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
channel->center_freq);
} }
/* Restore antenna mode */
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
/* Restore slot time and ACK timeouts */
if (ah->ah_coverage_class > 0)
ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
/* /*
* Configure QCUs/DCUs * Configure QCUs/DCUs
*/ */
ret = ath5k_hw_init_queues(ah);
/* TODO: HW Compression support for data queues */ if (ret)
/* TODO: Burst prefetch for data queues */
/*
* Reset queues and start beacon timers at the end of the reset routine
* This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
* Note: If we want we can assign multiple qcus on one dcu.
*/
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
ret = ath5k_hw_reset_tx_queue(ah, i);
if (ret) {
ATH5K_ERR(ah->ah_sc,
"failed to reset TX queue #%d\n", i);
return ret; return ret;
}
}
/*
* Configure DMA/Interrupts
*/
/* /*
* Set Rx/Tx DMA Configuration * Initialize DMA/Interrupts
*
* Set standard DMA size (128). Note that
* a DMA size of 512 causes rx overruns and tx errors
* on pci-e cards (tested on 5424 but since rx overruns
* also occur on 5416/5418 with madwifi we set 128
* for all PCI-E cards to be safe).
*
* XXX: need to check 5210 for this
* TODO: Check out tx triger level, it's always 64 on dumps but I
* guess we can tweak it and see how it goes ;-)
*/ */
if (ah->ah_version != AR5K_AR5210) { ath5k_hw_dma_init(ah);
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_imr(ah, ah->ah_imr);
/* Enable 32KHz clock function for AR5212+ chips /* Enable 32KHz clock function for AR5212+ chips
* Set clocks to 32KHz operation and use an * Set clocks to 32KHz operation and use an
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment