Commit 9d3b5030 authored by Fabien DESSENNE's avatar Fabien DESSENNE Committed by Herbert Xu

crypto: stm32/cryp - add aes gcm / ccm support

Add AEAD cipher algorithms for aes gcm and ccm.
Signed-off-by: default avatarFabien Dessenne <fabien.dessenne@st.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 9f32bb53
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <crypto/des.h> #include <crypto/des.h>
#include <crypto/engine.h> #include <crypto/engine.h>
#include <crypto/scatterwalk.h> #include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#define DRIVER_NAME "stm32-cryp" #define DRIVER_NAME "stm32-cryp"
...@@ -29,8 +30,12 @@ ...@@ -29,8 +30,12 @@
#define FLG_ECB BIT(4) #define FLG_ECB BIT(4)
#define FLG_CBC BIT(5) #define FLG_CBC BIT(5)
#define FLG_CTR BIT(6) #define FLG_CTR BIT(6)
#define FLG_GCM BIT(7)
#define FLG_CCM BIT(8)
/* Mode mask = bits [15..0] */ /* Mode mask = bits [15..0] */
#define FLG_MODE_MASK GENMASK(15, 0) #define FLG_MODE_MASK GENMASK(15, 0)
/* Bit [31..16] status */
#define FLG_CCM_PADDED_WA BIT(16)
/* Registers */ /* Registers */
#define CRYP_CR 0x00000000 #define CRYP_CR 0x00000000
...@@ -53,6 +58,8 @@ ...@@ -53,6 +58,8 @@
#define CRYP_IV0RR 0x00000044 #define CRYP_IV0RR 0x00000044
#define CRYP_IV1LR 0x00000048 #define CRYP_IV1LR 0x00000048
#define CRYP_IV1RR 0x0000004C #define CRYP_IV1RR 0x0000004C
#define CRYP_CSGCMCCM0R 0x00000050
#define CRYP_CSGCM0R 0x00000070
/* Registers values */ /* Registers values */
#define CR_DEC_NOT_ENC 0x00000004 #define CR_DEC_NOT_ENC 0x00000004
...@@ -64,6 +71,8 @@ ...@@ -64,6 +71,8 @@
#define CR_AES_CBC 0x00000028 #define CR_AES_CBC 0x00000028
#define CR_AES_CTR 0x00000030 #define CR_AES_CTR 0x00000030
#define CR_AES_KP 0x00000038 #define CR_AES_KP 0x00000038
#define CR_AES_GCM 0x00080000
#define CR_AES_CCM 0x00080008
#define CR_AES_UNKNOWN 0xFFFFFFFF #define CR_AES_UNKNOWN 0xFFFFFFFF
#define CR_ALGO_MASK 0x00080038 #define CR_ALGO_MASK 0x00080038
#define CR_DATA32 0x00000000 #define CR_DATA32 0x00000000
...@@ -75,6 +84,12 @@ ...@@ -75,6 +84,12 @@
#define CR_KEY256 0x00000200 #define CR_KEY256 0x00000200
#define CR_FFLUSH 0x00004000 #define CR_FFLUSH 0x00004000
#define CR_CRYPEN 0x00008000 #define CR_CRYPEN 0x00008000
#define CR_PH_INIT 0x00000000
#define CR_PH_HEADER 0x00010000
#define CR_PH_PAYLOAD 0x00020000
#define CR_PH_FINAL 0x00030000
#define CR_PH_MASK 0x00030000
#define CR_NBPBL_SHIFT 20
#define SR_BUSY 0x00000010 #define SR_BUSY 0x00000010
#define SR_OFNE 0x00000004 #define SR_OFNE 0x00000004
...@@ -87,9 +102,15 @@ ...@@ -87,9 +102,15 @@
/* Misc */ /* Misc */
#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32)) #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
#define GCM_CTR_INIT 2
#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset) #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset) #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
struct stm32_cryp_caps {
bool swap_final;
bool padding_wa;
};
struct stm32_cryp_ctx { struct stm32_cryp_ctx {
struct crypto_engine_ctx enginectx; struct crypto_engine_ctx enginectx;
struct stm32_cryp *cryp; struct stm32_cryp *cryp;
...@@ -109,13 +130,16 @@ struct stm32_cryp { ...@@ -109,13 +130,16 @@ struct stm32_cryp {
struct clk *clk; struct clk *clk;
unsigned long flags; unsigned long flags;
u32 irq_status; u32 irq_status;
const struct stm32_cryp_caps *caps;
struct stm32_cryp_ctx *ctx; struct stm32_cryp_ctx *ctx;
struct crypto_engine *engine; struct crypto_engine *engine;
struct mutex lock; /* protects req */ struct mutex lock; /* protects req / areq */
struct ablkcipher_request *req; struct ablkcipher_request *req;
struct aead_request *areq;
size_t authsize;
size_t hw_blocksize; size_t hw_blocksize;
size_t total_in; size_t total_in;
...@@ -138,6 +162,7 @@ struct stm32_cryp { ...@@ -138,6 +162,7 @@ struct stm32_cryp {
struct scatter_walk out_walk; struct scatter_walk out_walk;
u32 last_ctr[4]; u32 last_ctr[4];
u32 gcm_ctr;
}; };
struct stm32_cryp_list { struct stm32_cryp_list {
...@@ -180,6 +205,16 @@ static inline bool is_ctr(struct stm32_cryp *cryp) ...@@ -180,6 +205,16 @@ static inline bool is_ctr(struct stm32_cryp *cryp)
return cryp->flags & FLG_CTR; return cryp->flags & FLG_CTR;
} }
static inline bool is_gcm(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_GCM;
}
static inline bool is_ccm(struct stm32_cryp *cryp)
{
return cryp->flags & FLG_CCM;
}
static inline bool is_encrypt(struct stm32_cryp *cryp) static inline bool is_encrypt(struct stm32_cryp *cryp)
{ {
return cryp->flags & FLG_ENCRYPT; return cryp->flags & FLG_ENCRYPT;
...@@ -208,6 +243,24 @@ static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp) ...@@ -208,6 +243,24 @@ static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
!(status & SR_BUSY), 10, 100000); !(status & SR_BUSY), 10, 100000);
} }
static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
{
u32 status;
return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
!(status & CR_CRYPEN), 10, 100000);
}
static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
{
u32 status;
return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
status & SR_OFNE, 10, 100000);
}
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx) static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
{ {
struct stm32_cryp *tmp, *cryp = NULL; struct stm32_cryp *tmp, *cryp = NULL;
...@@ -366,6 +419,12 @@ static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp) ...@@ -366,6 +419,12 @@ static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
if (is_aes(cryp) && is_ctr(cryp)) if (is_aes(cryp) && is_ctr(cryp))
return CR_AES_CTR; return CR_AES_CTR;
if (is_aes(cryp) && is_gcm(cryp))
return CR_AES_GCM;
if (is_aes(cryp) && is_ccm(cryp))
return CR_AES_CCM;
if (is_des(cryp) && is_ecb(cryp)) if (is_des(cryp) && is_ecb(cryp))
return CR_DES_ECB; return CR_DES_ECB;
...@@ -382,6 +441,79 @@ static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp) ...@@ -382,6 +441,79 @@ static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
return CR_AES_UNKNOWN; return CR_AES_UNKNOWN;
} }
static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
{
return is_encrypt(cryp) ? cryp->areq->cryptlen :
cryp->areq->cryptlen - cryp->authsize;
}
static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
{
int ret;
u32 iv[4];
/* Phase 1 : init */
memcpy(iv, cryp->areq->iv, 12);
iv[3] = cpu_to_be32(GCM_CTR_INIT);
cryp->gcm_ctr = GCM_CTR_INIT;
stm32_cryp_hw_write_iv(cryp, iv);
stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
/* Wait for end of processing */
ret = stm32_cryp_wait_enable(cryp);
if (ret)
dev_err(cryp->dev, "Timeout (gcm init)\n");
return ret;
}
static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
{
int ret;
u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
u32 *d;
unsigned int i, textlen;
/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
iv[AES_BLOCK_SIZE - 1] = 1;
stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
/* Build B0 */
memcpy(b0, iv, AES_BLOCK_SIZE);
b0[0] |= (8 * ((cryp->authsize - 2) / 2));
if (cryp->areq->assoclen)
b0[0] |= 0x40;
textlen = stm32_cryp_get_input_text_len(cryp);
b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
/* Enable HW */
stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
/* Write B0 */
d = (u32 *)b0;
for (i = 0; i < AES_BLOCK_32; i++) {
if (!cryp->caps->padding_wa)
*d = cpu_to_be32(*d);
stm32_cryp_write(cryp, CRYP_DIN, *d++);
}
/* Wait for end of processing */
ret = stm32_cryp_wait_enable(cryp);
if (ret)
dev_err(cryp->dev, "Timeout (ccm init)\n");
return ret;
}
static int stm32_cryp_hw_init(struct stm32_cryp *cryp) static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
{ {
int ret; int ret;
...@@ -437,6 +569,29 @@ static int stm32_cryp_hw_init(struct stm32_cryp *cryp) ...@@ -437,6 +569,29 @@ static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
stm32_cryp_write(cryp, CRYP_CR, cfg); stm32_cryp_write(cryp, CRYP_CR, cfg);
switch (hw_mode) { switch (hw_mode) {
case CR_AES_GCM:
case CR_AES_CCM:
/* Phase 1 : init */
if (hw_mode == CR_AES_CCM)
ret = stm32_cryp_ccm_init(cryp, cfg);
else
ret = stm32_cryp_gcm_init(cryp, cfg);
if (ret)
return ret;
/* Phase 2 : header (authenticated data) */
if (cryp->areq->assoclen) {
cfg |= CR_PH_HEADER;
} else if (stm32_cryp_get_input_text_len(cryp)) {
cfg |= CR_PH_PAYLOAD;
stm32_cryp_write(cryp, CRYP_CR, cfg);
} else {
cfg |= CR_PH_INIT;
}
break;
case CR_DES_CBC: case CR_DES_CBC:
case CR_TDES_CBC: case CR_TDES_CBC:
case CR_AES_CBC: case CR_AES_CBC:
...@@ -453,12 +608,16 @@ static int stm32_cryp_hw_init(struct stm32_cryp *cryp) ...@@ -453,12 +608,16 @@ static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
stm32_cryp_write(cryp, CRYP_CR, cfg); stm32_cryp_write(cryp, CRYP_CR, cfg);
cryp->flags &= ~FLG_CCM_PADDED_WA;
return 0; return 0;
} }
static void stm32_cryp_finish_req(struct stm32_cryp *cryp) static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
{ {
int err = 0; if (!err && (is_gcm(cryp) || is_ccm(cryp)))
/* Phase 4 : output tag */
err = stm32_cryp_read_auth_tag(cryp);
if (cryp->sgs_copied) { if (cryp->sgs_copied) {
void *buf_in, *buf_out; void *buf_in, *buf_out;
...@@ -479,8 +638,14 @@ static void stm32_cryp_finish_req(struct stm32_cryp *cryp) ...@@ -479,8 +638,14 @@ static void stm32_cryp_finish_req(struct stm32_cryp *cryp)
free_pages((unsigned long)buf_out, pages); free_pages((unsigned long)buf_out, pages);
} }
crypto_finalize_ablkcipher_request(cryp->engine, cryp->req, err); if (is_gcm(cryp) || is_ccm(cryp)) {
crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
cryp->areq = NULL;
} else {
crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
err);
cryp->req = NULL; cryp->req = NULL;
}
memset(cryp->ctx->key, 0, cryp->ctx->keylen); memset(cryp->ctx->key, 0, cryp->ctx->keylen);
...@@ -511,6 +676,23 @@ static int stm32_cryp_cra_init(struct crypto_tfm *tfm) ...@@ -511,6 +676,23 @@ static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
return 0; return 0;
} }
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
void *areq);
static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
ctx->enginectx.op.unprepare_request = NULL;
return 0;
}
static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode) static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
{ {
struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx( struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
...@@ -526,6 +708,20 @@ static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode) ...@@ -526,6 +708,20 @@ static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req); return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
} }
static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
if (!cryp)
return -ENODEV;
rctx->mode = mode;
return crypto_transfer_aead_request_to_engine(cryp->engine, req);
}
static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key, static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen) unsigned int keylen)
{ {
...@@ -565,6 +761,46 @@ static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, ...@@ -565,6 +761,46 @@ static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
return stm32_cryp_setkey(tfm, key, keylen); return stm32_cryp_setkey(tfm, key, keylen);
} }
static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
}
static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req) static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
{ {
return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT); return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
...@@ -595,6 +831,26 @@ static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req) ...@@ -595,6 +831,26 @@ static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
return stm32_cryp_crypt(req, FLG_AES | FLG_CTR); return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
} }
static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
}
static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
}
static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
}
static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
{
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
}
static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req) static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
{ {
return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT); return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
...@@ -635,18 +891,19 @@ static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req) ...@@ -635,18 +891,19 @@ static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC); return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
} }
static int stm32_cryp_prepare_req(struct crypto_engine *engine, static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
struct ablkcipher_request *req) struct aead_request *areq)
{ {
struct stm32_cryp_ctx *ctx; struct stm32_cryp_ctx *ctx;
struct stm32_cryp *cryp; struct stm32_cryp *cryp;
struct stm32_cryp_reqctx *rctx; struct stm32_cryp_reqctx *rctx;
int ret; int ret;
if (!req) if (!req && !areq)
return -EINVAL; return -EINVAL;
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
crypto_aead_ctx(crypto_aead_reqtfm(areq));
cryp = ctx->cryp; cryp = ctx->cryp;
...@@ -655,7 +912,7 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine, ...@@ -655,7 +912,7 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine,
mutex_lock(&cryp->lock); mutex_lock(&cryp->lock);
rctx = ablkcipher_request_ctx(req); rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
rctx->mode &= FLG_MODE_MASK; rctx->mode &= FLG_MODE_MASK;
ctx->cryp = cryp; ctx->cryp = cryp;
...@@ -664,15 +921,48 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine, ...@@ -664,15 +921,48 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine,
cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE; cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
cryp->ctx = ctx; cryp->ctx = ctx;
if (req) {
cryp->req = req; cryp->req = req;
cryp->total_in = req->nbytes; cryp->total_in = req->nbytes;
cryp->total_out = cryp->total_in; cryp->total_out = cryp->total_in;
} else {
/*
* Length of input and output data:
* Encryption case:
* INPUT = AssocData || PlainText
* <- assoclen -> <- cryptlen ->
* <------- total_in ----------->
*
* OUTPUT = AssocData || CipherText || AuthTag
* <- assoclen -> <- cryptlen -> <- authsize ->
* <---------------- total_out ----------------->
*
* Decryption case:
* INPUT = AssocData || CipherText || AuthTag
* <- assoclen -> <--------- cryptlen --------->
* <- authsize ->
* <---------------- total_in ------------------>
*
* OUTPUT = AssocData || PlainText
* <- assoclen -> <- crypten - authsize ->
* <---------- total_out ----------------->
*/
cryp->areq = areq;
cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
cryp->total_in = areq->assoclen + areq->cryptlen;
if (is_encrypt(cryp))
/* Append auth tag to output */
cryp->total_out = cryp->total_in + cryp->authsize;
else
/* No auth tag in output */
cryp->total_out = cryp->total_in - cryp->authsize;
}
cryp->total_in_save = cryp->total_in; cryp->total_in_save = cryp->total_in;
cryp->total_out_save = cryp->total_out; cryp->total_out_save = cryp->total_out;
cryp->in_sg = req->src; cryp->in_sg = req ? req->src : areq->src;
cryp->out_sg = req->dst; cryp->out_sg = req ? req->dst : areq->dst;
cryp->out_sg_save = cryp->out_sg; cryp->out_sg_save = cryp->out_sg;
cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in); cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
...@@ -696,6 +986,12 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine, ...@@ -696,6 +986,12 @@ static int stm32_cryp_prepare_req(struct crypto_engine *engine,
scatterwalk_start(&cryp->in_walk, cryp->in_sg); scatterwalk_start(&cryp->in_walk, cryp->in_sg);
scatterwalk_start(&cryp->out_walk, cryp->out_sg); scatterwalk_start(&cryp->out_walk, cryp->out_sg);
if (is_gcm(cryp) || is_ccm(cryp)) {
/* In output, jump after assoc data */
scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
cryp->total_out -= cryp->areq->assoclen;
}
ret = stm32_cryp_hw_init(cryp); ret = stm32_cryp_hw_init(cryp);
out: out:
if (ret) if (ret)
...@@ -711,7 +1007,7 @@ static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine, ...@@ -711,7 +1007,7 @@ static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
struct ablkcipher_request, struct ablkcipher_request,
base); base);
return stm32_cryp_prepare_req(engine, req); return stm32_cryp_prepare_req(req, NULL);
} }
static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq) static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
...@@ -729,6 +1025,34 @@ static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq) ...@@ -729,6 +1025,34 @@ static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
return stm32_cryp_cpu_start(cryp); return stm32_cryp_cpu_start(cryp);
} }
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request,
base);
return stm32_cryp_prepare_req(NULL, req);
}
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request,
base);
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct stm32_cryp *cryp = ctx->cryp;
if (!cryp)
return -ENODEV;
if (unlikely(!cryp->areq->assoclen &&
!stm32_cryp_get_input_text_len(cryp))) {
/* No input data to process: get tag and finish */
stm32_cryp_finish_req(cryp, 0);
return 0;
}
return stm32_cryp_cpu_start(cryp);
}
static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst, static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
unsigned int n) unsigned int n)
{ {
...@@ -761,6 +1085,111 @@ static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src, ...@@ -761,6 +1085,111 @@ static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
return (u32 *)((u8 *)src + n); return (u32 *)((u8 *)src + n);
} }
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
{
u32 cfg, size_bit, *dst, d32;
u8 *d8;
unsigned int i, j;
int ret = 0;
/* Update Config */
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_FINAL;
cfg &= ~CR_DEC_NOT_ENC;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
if (is_gcm(cryp)) {
/* GCM: write aad and payload size (in bits) */
size_bit = cryp->areq->assoclen * 8;
if (cryp->caps->swap_final)
size_bit = cpu_to_be32(size_bit);
stm32_cryp_write(cryp, CRYP_DIN, 0);
stm32_cryp_write(cryp, CRYP_DIN, size_bit);
size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
cryp->areq->cryptlen - AES_BLOCK_SIZE;
size_bit *= 8;
if (cryp->caps->swap_final)
size_bit = cpu_to_be32(size_bit);
stm32_cryp_write(cryp, CRYP_DIN, 0);
stm32_cryp_write(cryp, CRYP_DIN, size_bit);
} else {
/* CCM: write CTR0 */
u8 iv[AES_BLOCK_SIZE];
u32 *iv32 = (u32 *)iv;
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
for (i = 0; i < AES_BLOCK_32; i++) {
if (!cryp->caps->padding_wa)
*iv32 = cpu_to_be32(*iv32);
stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
}
}
/* Wait for output data */
ret = stm32_cryp_wait_output(cryp);
if (ret) {
dev_err(cryp->dev, "Timeout (read tag)\n");
return ret;
}
if (is_encrypt(cryp)) {
/* Get and write tag */
dst = sg_virt(cryp->out_sg) + _walked_out;
for (i = 0; i < AES_BLOCK_32; i++) {
if (cryp->total_out >= sizeof(u32)) {
/* Read a full u32 */
*dst = stm32_cryp_read(cryp, CRYP_DOUT);
dst = stm32_cryp_next_out(cryp, dst,
sizeof(u32));
cryp->total_out -= sizeof(u32);
} else if (!cryp->total_out) {
/* Empty fifo out (data from input padding) */
stm32_cryp_read(cryp, CRYP_DOUT);
} else {
/* Read less than an u32 */
d32 = stm32_cryp_read(cryp, CRYP_DOUT);
d8 = (u8 *)&d32;
for (j = 0; j < cryp->total_out; j++) {
*((u8 *)dst) = *(d8++);
dst = stm32_cryp_next_out(cryp, dst, 1);
}
cryp->total_out = 0;
}
}
} else {
/* Get and check tag */
u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
scatterwalk_map_and_copy(in_tag, cryp->in_sg,
cryp->total_in_save - cryp->authsize,
cryp->authsize, 0);
for (i = 0; i < AES_BLOCK_32; i++)
out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
if (crypto_memneq(in_tag, out_tag, cryp->authsize))
ret = -EBADMSG;
}
/* Disable cryp */
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
return ret;
}
static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp) static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
{ {
u32 cr; u32 cr;
...@@ -793,17 +1222,24 @@ static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp) ...@@ -793,17 +1222,24 @@ static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
unsigned int i, j; unsigned int i, j;
u32 d32, *dst; u32 d32, *dst;
u8 *d8; u8 *d8;
size_t tag_size;
/* Do no read tag now (if any) */
if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
tag_size = cryp->authsize;
else
tag_size = 0;
dst = sg_virt(cryp->out_sg) + _walked_out; dst = sg_virt(cryp->out_sg) + _walked_out;
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) { for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
if (likely(cryp->total_out >= sizeof(u32))) { if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
/* Read a full u32 */ /* Read a full u32 */
*dst = stm32_cryp_read(cryp, CRYP_DOUT); *dst = stm32_cryp_read(cryp, CRYP_DOUT);
dst = stm32_cryp_next_out(cryp, dst, sizeof(u32)); dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
cryp->total_out -= sizeof(u32); cryp->total_out -= sizeof(u32);
} else if (!cryp->total_out) { } else if (cryp->total_out == tag_size) {
/* Empty fifo out (data from input padding) */ /* Empty fifo out (data from input padding) */
d32 = stm32_cryp_read(cryp, CRYP_DOUT); d32 = stm32_cryp_read(cryp, CRYP_DOUT);
} else { } else {
...@@ -811,15 +1247,15 @@ static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp) ...@@ -811,15 +1247,15 @@ static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
d32 = stm32_cryp_read(cryp, CRYP_DOUT); d32 = stm32_cryp_read(cryp, CRYP_DOUT);
d8 = (u8 *)&d32; d8 = (u8 *)&d32;
for (j = 0; j < cryp->total_out; j++) { for (j = 0; j < cryp->total_out - tag_size; j++) {
*((u8 *)dst) = *(d8++); *((u8 *)dst) = *(d8++);
dst = stm32_cryp_next_out(cryp, dst, 1); dst = stm32_cryp_next_out(cryp, dst, 1);
} }
cryp->total_out = 0; cryp->total_out = tag_size;
} }
} }
return !cryp->total_out || !cryp->total_in; return !(cryp->total_out - tag_size) || !cryp->total_in;
} }
static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp) static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
...@@ -827,31 +1263,217 @@ static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp) ...@@ -827,31 +1263,217 @@ static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
unsigned int i, j; unsigned int i, j;
u32 *src; u32 *src;
u8 d8[4]; u8 d8[4];
size_t tag_size;
/* Do no write tag (if any) */
if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
tag_size = cryp->authsize;
else
tag_size = 0;
src = sg_virt(cryp->in_sg) + _walked_in; src = sg_virt(cryp->in_sg) + _walked_in;
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) { for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
if (likely(cryp->total_in >= sizeof(u32))) { if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
/* Write a full u32 */ /* Write a full u32 */
stm32_cryp_write(cryp, CRYP_DIN, *src); stm32_cryp_write(cryp, CRYP_DIN, *src);
src = stm32_cryp_next_in(cryp, src, sizeof(u32)); src = stm32_cryp_next_in(cryp, src, sizeof(u32));
cryp->total_in -= sizeof(u32); cryp->total_in -= sizeof(u32);
} else if (!cryp->total_in) { } else if (cryp->total_in == tag_size) {
/* Write padding data */ /* Write padding data */
stm32_cryp_write(cryp, CRYP_DIN, 0); stm32_cryp_write(cryp, CRYP_DIN, 0);
} else { } else {
/* Write less than an u32 */ /* Write less than an u32 */
memset(d8, 0, sizeof(u32)); memset(d8, 0, sizeof(u32));
for (j = 0; j < cryp->total_in; j++) { for (j = 0; j < cryp->total_in - tag_size; j++) {
d8[j] = *((u8 *)src); d8[j] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1); src = stm32_cryp_next_in(cryp, src, 1);
} }
stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8); stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
cryp->total_in = 0; cryp->total_in = tag_size;
}
}
}
static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
{
int err;
u32 cfg, tmp[AES_BLOCK_32];
size_t total_in_ori = cryp->total_in;
struct scatterlist *out_sg_ori = cryp->out_sg;
unsigned int i;
/* 'Special workaround' procedure described in the datasheet */
/* a) disable ip */
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* b) Update IV1R */
stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
/* c) change mode to CTR */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CTR;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* a) enable IP */
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* b) pad and write the last block */
stm32_cryp_irq_write_block(cryp);
cryp->total_in = total_in_ori;
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (write gcm header)\n");
return stm32_cryp_finish_req(cryp, err);
}
/* c) get and store encrypted data */
stm32_cryp_irq_read_data(cryp);
scatterwalk_map_and_copy(tmp, out_sg_ori,
cryp->total_in_save - total_in_ori,
total_in_ori, 0);
/* d) change mode back to AES GCM */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_GCM;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* e) change phase to Final */
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_FINAL;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* f) write padded data */
for (i = 0; i < AES_BLOCK_32; i++) {
if (cryp->total_in)
stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
else
stm32_cryp_write(cryp, CRYP_DIN, 0);
cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
}
/* g) Empty fifo out */
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (write gcm header)\n");
return stm32_cryp_finish_req(cryp, err);
}
for (i = 0; i < AES_BLOCK_32; i++)
stm32_cryp_read(cryp, CRYP_DOUT);
/* h) run the he normal Final phase */
stm32_cryp_finish_req(cryp, 0);
}
static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
{
u32 cfg, payload_bytes;
/* disable ip, set NPBLB and reneable ip */
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
cryp->total_in;
cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
}
static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
{
int err = 0;
u32 cfg, iv1tmp;
u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
size_t last_total_out, total_in_ori = cryp->total_in;
struct scatterlist *out_sg_ori = cryp->out_sg;
unsigned int i;
/* 'Special workaround' procedure described in the datasheet */
cryp->flags |= FLG_CCM_PADDED_WA;
/* a) disable ip */
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* b) get IV1 from CRYP_CSGCMCCM7 */
iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
/* c) Load CRYP_CSGCMCCMxR */
for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
/* d) Write IV1R */
stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
/* e) change mode to CTR */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CTR;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* a) enable IP */
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* b) pad and write the last block */
stm32_cryp_irq_write_block(cryp);
cryp->total_in = total_in_ori;
err = stm32_cryp_wait_output(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
return stm32_cryp_finish_req(cryp, err);
} }
/* c) get and store decrypted data */
last_total_out = cryp->total_out;
stm32_cryp_irq_read_data(cryp);
memset(tmp, 0, sizeof(tmp));
scatterwalk_map_and_copy(tmp, out_sg_ori,
cryp->total_out_save - last_total_out,
last_total_out, 0);
/* d) Load again CRYP_CSGCMCCMxR */
for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
/* e) change mode back to AES CCM */
cfg &= ~CR_ALGO_MASK;
cfg |= CR_AES_CCM;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* f) change phase to header */
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_HEADER;
stm32_cryp_write(cryp, CRYP_CR, cfg);
/* g) XOR and write padded data */
for (i = 0; i < ARRAY_SIZE(tmp); i++) {
tmp[i] ^= cstmp1[i];
tmp[i] ^= cstmp2[i];
stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
} }
/* h) wait for completion */
err = stm32_cryp_wait_busy(cryp);
if (err)
dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
/* i) run the he normal Final phase */
stm32_cryp_finish_req(cryp, err);
} }
static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp) static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
...@@ -861,29 +1483,221 @@ static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp) ...@@ -861,29 +1483,221 @@ static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
return; return;
} }
if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
(stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
is_encrypt(cryp))) {
/* Padding for AES GCM encryption */
if (cryp->caps->padding_wa)
/* Special case 1 */
return stm32_cryp_irq_write_gcm_padded_data(cryp);
/* Setting padding bytes (NBBLB) */
stm32_cryp_irq_set_npblb(cryp);
}
if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
(stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
is_decrypt(cryp))) {
/* Padding for AES CCM decryption */
if (cryp->caps->padding_wa)
/* Special case 2 */
return stm32_cryp_irq_write_ccm_padded_data(cryp);
/* Setting padding bytes (NBBLB) */
stm32_cryp_irq_set_npblb(cryp);
}
if (is_aes(cryp) && is_ctr(cryp)) if (is_aes(cryp) && is_ctr(cryp))
stm32_cryp_check_ctr_counter(cryp); stm32_cryp_check_ctr_counter(cryp);
stm32_cryp_irq_write_block(cryp); stm32_cryp_irq_write_block(cryp);
} }
static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
{
int err;
unsigned int i, j;
u32 cfg, *src;
src = sg_virt(cryp->in_sg) + _walked_in;
for (i = 0; i < AES_BLOCK_32; i++) {
stm32_cryp_write(cryp, CRYP_DIN, *src);
src = stm32_cryp_next_in(cryp, src, sizeof(u32));
cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
/* Check if whole header written */
if ((cryp->total_in_save - cryp->total_in) ==
cryp->areq->assoclen) {
/* Write padding if needed */
for (j = i + 1; j < AES_BLOCK_32; j++)
stm32_cryp_write(cryp, CRYP_DIN, 0);
/* Wait for completion */
err = stm32_cryp_wait_busy(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (gcm header)\n");
return stm32_cryp_finish_req(cryp, err);
}
if (stm32_cryp_get_input_text_len(cryp)) {
/* Phase 3 : payload */
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_PAYLOAD;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
} else {
/* Phase 4 : tag */
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
stm32_cryp_finish_req(cryp, 0);
}
break;
}
if (!cryp->total_in)
break;
}
}
static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
{
int err;
unsigned int i = 0, j, k;
u32 alen, cfg, *src;
u8 d8[4];
src = sg_virt(cryp->in_sg) + _walked_in;
alen = cryp->areq->assoclen;
if (!_walked_in) {
if (cryp->areq->assoclen <= 65280) {
/* Write first u32 of B1 */
d8[0] = (alen >> 8) & 0xFF;
d8[1] = alen & 0xFF;
d8[2] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1);
d8[3] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1);
stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
i++;
cryp->total_in -= min_t(size_t, 2, cryp->total_in);
} else {
/* Build the two first u32 of B1 */
d8[0] = 0xFF;
d8[1] = 0xFE;
d8[2] = alen & 0xFF000000;
d8[3] = alen & 0x00FF0000;
stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
i++;
d8[0] = alen & 0x0000FF00;
d8[1] = alen & 0x000000FF;
d8[2] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1);
d8[3] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1);
stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
i++;
cryp->total_in -= min_t(size_t, 2, cryp->total_in);
}
}
/* Write next u32 */
for (; i < AES_BLOCK_32; i++) {
/* Build an u32 */
memset(d8, 0, sizeof(u32));
for (k = 0; k < sizeof(u32); k++) {
d8[k] = *((u8 *)src);
src = stm32_cryp_next_in(cryp, src, 1);
cryp->total_in -= min_t(size_t, 1, cryp->total_in);
if ((cryp->total_in_save - cryp->total_in) == alen)
break;
}
stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
if ((cryp->total_in_save - cryp->total_in) == alen) {
/* Write padding if needed */
for (j = i + 1; j < AES_BLOCK_32; j++)
stm32_cryp_write(cryp, CRYP_DIN, 0);
/* Wait for completion */
err = stm32_cryp_wait_busy(cryp);
if (err) {
dev_err(cryp->dev, "Timeout (ccm header)\n");
return stm32_cryp_finish_req(cryp, err);
}
if (stm32_cryp_get_input_text_len(cryp)) {
/* Phase 3 : payload */
cfg = stm32_cryp_read(cryp, CRYP_CR);
cfg &= ~CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
cfg &= ~CR_PH_MASK;
cfg |= CR_PH_PAYLOAD;
cfg |= CR_CRYPEN;
stm32_cryp_write(cryp, CRYP_CR, cfg);
} else {
/* Phase 4 : tag */
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
stm32_cryp_finish_req(cryp, 0);
}
break;
}
}
}
static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg) static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
{ {
struct stm32_cryp *cryp = arg; struct stm32_cryp *cryp = arg;
u32 ph;
if (cryp->irq_status & MISR_OUT) if (cryp->irq_status & MISR_OUT)
/* Output FIFO IRQ: read data */ /* Output FIFO IRQ: read data */
if (unlikely(stm32_cryp_irq_read_data(cryp))) { if (unlikely(stm32_cryp_irq_read_data(cryp))) {
/* All bytes processed, finish */ /* All bytes processed, finish */
stm32_cryp_write(cryp, CRYP_IMSCR, 0); stm32_cryp_write(cryp, CRYP_IMSCR, 0);
stm32_cryp_finish_req(cryp); stm32_cryp_finish_req(cryp, 0);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
if (cryp->irq_status & MISR_IN) { if (cryp->irq_status & MISR_IN) {
if (is_gcm(cryp)) {
ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
if (unlikely(ph == CR_PH_HEADER))
/* Write Header */
stm32_cryp_irq_write_gcm_header(cryp);
else
/* Input FIFO IRQ: write data */
stm32_cryp_irq_write_data(cryp);
cryp->gcm_ctr++;
} else if (is_ccm(cryp)) {
ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
if (unlikely(ph == CR_PH_HEADER))
/* Write Header */
stm32_cryp_irq_write_ccm_header(cryp);
else
/* Input FIFO IRQ: write data */
stm32_cryp_irq_write_data(cryp);
} else {
/* Input FIFO IRQ: write data */ /* Input FIFO IRQ: write data */
stm32_cryp_irq_write_data(cryp); stm32_cryp_irq_write_data(cryp);
} }
}
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -1044,8 +1858,56 @@ static struct crypto_alg crypto_algs[] = { ...@@ -1044,8 +1858,56 @@ static struct crypto_alg crypto_algs[] = {
}, },
}; };
static struct aead_alg aead_algs[] = {
{
.setkey = stm32_cryp_aes_aead_setkey,
.setauthsize = stm32_cryp_aes_gcm_setauthsize,
.encrypt = stm32_cryp_aes_gcm_encrypt,
.decrypt = stm32_cryp_aes_gcm_decrypt,
.init = stm32_cryp_aes_aead_init,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "stm32-gcm-aes",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
},
{
.setkey = stm32_cryp_aes_aead_setkey,
.setauthsize = stm32_cryp_aes_ccm_setauthsize,
.encrypt = stm32_cryp_aes_ccm_encrypt,
.decrypt = stm32_cryp_aes_ccm_decrypt,
.init = stm32_cryp_aes_aead_init,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "stm32-ccm-aes",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
},
};
static const struct stm32_cryp_caps f7_data = {
.swap_final = true,
.padding_wa = true,
};
static const struct of_device_id stm32_dt_ids[] = { static const struct of_device_id stm32_dt_ids[] = {
{ .compatible = "st,stm32f756-cryp", }, { .compatible = "st,stm32f756-cryp", .data = &f7_data},
{}, {},
}; };
MODULE_DEVICE_TABLE(of, stm32_dt_ids); MODULE_DEVICE_TABLE(of, stm32_dt_ids);
...@@ -1062,6 +1924,10 @@ static int stm32_cryp_probe(struct platform_device *pdev) ...@@ -1062,6 +1924,10 @@ static int stm32_cryp_probe(struct platform_device *pdev)
if (!cryp) if (!cryp)
return -ENOMEM; return -ENOMEM;
cryp->caps = of_device_get_match_data(dev);
if (!cryp->caps)
return -ENODEV;
cryp->dev = dev; cryp->dev = dev;
mutex_init(&cryp->lock); mutex_init(&cryp->lock);
...@@ -1130,10 +1996,16 @@ static int stm32_cryp_probe(struct platform_device *pdev) ...@@ -1130,10 +1996,16 @@ static int stm32_cryp_probe(struct platform_device *pdev)
goto err_algs; goto err_algs;
} }
ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
if (ret)
goto err_aead_algs;
dev_info(dev, "Initialized\n"); dev_info(dev, "Initialized\n");
return 0; return 0;
err_aead_algs:
crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
err_algs: err_algs:
err_engine2: err_engine2:
crypto_engine_exit(cryp->engine); crypto_engine_exit(cryp->engine);
...@@ -1154,6 +2026,7 @@ static int stm32_cryp_remove(struct platform_device *pdev) ...@@ -1154,6 +2026,7 @@ static int stm32_cryp_remove(struct platform_device *pdev)
if (!cryp) if (!cryp)
return -ENODEV; return -ENODEV;
crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs)); crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
crypto_engine_exit(cryp->engine); crypto_engine_exit(cryp->engine);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment