Commit 9e495a26 authored by Sujith Manoharan's avatar Sujith Manoharan Committed by John W. Linville

ath9k: Remove ath9k rate control

There is no benefit in retaining the legacy rate control module
in the driver codebase.

It is known to be buggy and has less than optimal performance
in real-world environments compared with minstrel. The only
reason that it was kept when we made the switch to minstrel
as default was that it showed higher throughput numbers in a
clean/ideal environment.

This is no longer the case and minstrel can push ath9k to
the same throughput levels. In TCP, with 3-stream cards, more than
295 Mbps can be obtained in open air, with 2-stream cards,
210 Mbps is easily reached. To test performance issues,
instead of using a broken rate control module, it is better
to use the fixed-rate interface provided by mac80211 anyway.

The ath9k RC has not received any bug fixes in years and is
just bit-rotting away - this patch removes it.
Signed-off-by: default avatarSujith Manoharan <c_manoha@qca.qualcomm.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent 482b30b6
......@@ -120,18 +120,6 @@ config ATH9K_WOW
This option enables Wake on Wireless LAN support for certain cards.
Currently, AR9462 is supported.
config ATH9K_LEGACY_RATE_CONTROL
bool "Atheros ath9k rate control"
depends on ATH9K
default n
---help---
Say Y, if you want to use the ath9k specific rate control
module instead of minstrel_ht. Be warned that there are various
issues with the ath9k RC and minstrel is a more robust algorithm.
Note that even if this option is selected, "ath9k_rate_control"
has to be passed to mac80211 using the module parameter,
ieee80211_default_rc_algo.
config ATH9K_RFKILL
bool "Atheros ath9k rfkill support" if EXPERT
depends on ATH9K
......
......@@ -8,7 +8,6 @@ ath9k-y += beacon.o \
antenna.o
ath9k-$(CONFIG_ATH9K_BTCOEX_SUPPORT) += mci.o
ath9k-$(CONFIG_ATH9K_LEGACY_RATE_CONTROL) += rc.o
ath9k-$(CONFIG_ATH9K_PCI) += pci.o
ath9k-$(CONFIG_ATH9K_AHB) += ahb.o
ath9k-$(CONFIG_ATH9K_DFS_DEBUGFS) += dfs_debug.o
......
......@@ -30,7 +30,6 @@
#include "spectral.h"
struct ath_node;
struct ath_rate_table;
extern struct ieee80211_ops ath9k_ops;
extern int ath9k_modparam_nohwcrypt;
......@@ -150,6 +149,11 @@ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
#define IS_CCK_RATE(rate) ((rate >= 0x18) && (rate <= 0x1e))
#define IS_OFDM_RATE(rate) ((rate >= 0x8) && (rate <= 0xf))
enum {
WLAN_RC_PHY_OFDM,
WLAN_RC_PHY_CCK,
};
struct ath_txq {
int mac80211_qnum; /* mac80211 queue number, -1 means not mac80211 Q */
u32 axq_qnum; /* ath9k hardware queue number */
......
......@@ -18,7 +18,6 @@
#define DEBUG_H
#include "hw.h"
#include "rc.h"
#include "dfs_debug.h"
struct ath_txq;
......
......@@ -21,6 +21,8 @@
#include "hw.h"
struct ath_softc;
/**
* struct ath_dfs_stats - DFS Statistics per wiphy
* @pulses_total: pulses reported by HW
......
......@@ -23,7 +23,6 @@
#include "hw.h"
#include "hw-ops.h"
#include "rc.h"
#include "ar9003_mac.h"
#include "ar9003_mci.h"
#include "ar9003_phy.h"
......
......@@ -1100,19 +1100,11 @@ static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
pr_err("Unable to register rate control algorithm: %d\n",
error);
goto err_out;
}
error = ath_pci_init();
if (error < 0) {
pr_err("No PCI devices found, driver not installed\n");
error = -ENODEV;
goto err_rate_unregister;
goto err_out;
}
error = ath_ahb_init();
......@@ -1125,9 +1117,6 @@ static int __init ath9k_init(void)
err_pci_exit:
ath_pci_exit();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
......@@ -1138,7 +1127,6 @@ static void __exit ath9k_exit(void)
is_ath9k_unloaded = true;
ath_ahb_exit();
ath_pci_exit();
ath_rate_control_unregister();
pr_info("%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);
/*
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2004-2011 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include "ath9k.h"
static const struct ath_rate_table ar5416_11na_ratetable = {
68,
8, /* MCS start */
{
[0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
5400, 0, 12 }, /* 6 Mb */
[1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
7800, 1, 18 }, /* 9 Mb */
[2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
10000, 2, 24 }, /* 12 Mb */
[3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
13900, 3, 36 }, /* 18 Mb */
[4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
17300, 4, 48 }, /* 24 Mb */
[5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
23000, 5, 72 }, /* 36 Mb */
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
27400, 6, 96 }, /* 48 Mb */
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
29300, 7, 108 }, /* 54 Mb */
[8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
6400, 0, 0 }, /* 6.5 Mb */
[9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
12700, 1, 1 }, /* 13 Mb */
[10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
18800, 2, 2 }, /* 19.5 Mb */
[11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
25000, 3, 3 }, /* 26 Mb */
[12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
36700, 4, 4 }, /* 39 Mb */
[13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
48100, 5, 5 }, /* 52 Mb */
[14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
53500, 6, 6 }, /* 58.5 Mb */
[15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
59000, 7, 7 }, /* 65 Mb */
[16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
65400, 7, 7 }, /* 75 Mb */
[17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
12700, 8, 8 }, /* 13 Mb */
[18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
24800, 9, 9 }, /* 26 Mb */
[19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
36600, 10, 10 }, /* 39 Mb */
[20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
48100, 11, 11 }, /* 52 Mb */
[21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69500, 12, 12 }, /* 78 Mb */
[22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
89500, 13, 13 }, /* 104 Mb */
[23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
98900, 14, 14 }, /* 117 Mb */
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
108300, 15, 15 }, /* 130 Mb */
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
120000, 15, 15 }, /* 144.4 Mb */
[26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
17400, 16, 16 }, /* 19.5 Mb */
[27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
35100, 17, 17 }, /* 39 Mb */
[28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
52600, 18, 18 }, /* 58.5 Mb */
[29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
70400, 19, 19 }, /* 78 Mb */
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
104900, 20, 20 }, /* 117 Mb */
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
115800, 20, 20 }, /* 130 Mb*/
[32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
137200, 21, 21 }, /* 156 Mb */
[33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
151100, 21, 21 }, /* 173.3 Mb */
[34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
152800, 22, 22 }, /* 175.5 Mb */
[35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
168400, 22, 22 }, /* 195 Mb*/
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
168400, 23, 23 }, /* 195 Mb */
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
185000, 23, 23 }, /* 216.7 Mb */
[38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
13200, 0, 0 }, /* 13.5 Mb*/
[39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
25900, 1, 1 }, /* 27.0 Mb*/
[40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
38600, 2, 2 }, /* 40.5 Mb*/
[41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
49800, 3, 3 }, /* 54 Mb */
[42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
72200, 4, 4 }, /* 81 Mb */
[43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
92900, 5, 5 }, /* 108 Mb */
[44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
102700, 6, 6 }, /* 121.5 Mb*/
[45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
112000, 7, 7 }, /* 135 Mb */
[46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
122000, 7, 7 }, /* 150 Mb */
[47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
25800, 8, 8 }, /* 27 Mb */
[48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
49800, 9, 9 }, /* 54 Mb */
[49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
71900, 10, 10 }, /* 81 Mb */
[50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
92500, 11, 11 }, /* 108 Mb */
[51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130300, 12, 12 }, /* 162 Mb */
[52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
162800, 13, 13 }, /* 216 Mb */
[53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
178200, 14, 14 }, /* 243 Mb */
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
192100, 15, 15 }, /* 270 Mb */
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
207000, 15, 15 }, /* 300 Mb */
[56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
36100, 16, 16 }, /* 40.5 Mb */
[57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
72900, 17, 17 }, /* 81 Mb */
[58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
108300, 18, 18 }, /* 121.5 Mb */
[59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
142000, 19, 19 }, /* 162 Mb */
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
205100, 20, 20 }, /* 243 Mb */
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
224700, 20, 20 }, /* 270 Mb */
[62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
263100, 21, 21 }, /* 324 Mb */
[63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
288000, 21, 21 }, /* 360 Mb */
[64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
290700, 22, 22 }, /* 364.5 Mb */
[65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
317200, 22, 22 }, /* 405 Mb */
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
317200, 23, 23 }, /* 405 Mb */
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
346400, 23, 23 }, /* 450 Mb */
},
50, /* probe interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
/* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit */
static const struct ath_rate_table ar5416_11ng_ratetable = {
72,
12, /* MCS start */
{
[0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
900, 0, 2 }, /* 1 Mb */
[1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
1900, 1, 4 }, /* 2 Mb */
[2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
4900, 2, 11 }, /* 5.5 Mb */
[3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
8100, 3, 22 }, /* 11 Mb */
[4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
5400, 4, 12 }, /* 6 Mb */
[5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
7800, 5, 18 }, /* 9 Mb */
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
10100, 6, 24 }, /* 12 Mb */
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
14100, 7, 36 }, /* 18 Mb */
[8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
17700, 8, 48 }, /* 24 Mb */
[9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
23700, 9, 72 }, /* 36 Mb */
[10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
27400, 10, 96 }, /* 48 Mb */
[11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
30900, 11, 108 }, /* 54 Mb */
[12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
6400, 0, 0 }, /* 6.5 Mb */
[13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
12700, 1, 1 }, /* 13 Mb */
[14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
18800, 2, 2 }, /* 19.5 Mb*/
[15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
25000, 3, 3 }, /* 26 Mb */
[16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
36700, 4, 4 }, /* 39 Mb */
[17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
48100, 5, 5 }, /* 52 Mb */
[18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
53500, 6, 6 }, /* 58.5 Mb */
[19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
59000, 7, 7 }, /* 65 Mb */
[20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
65400, 7, 7 }, /* 65 Mb*/
[21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
12700, 8, 8 }, /* 13 Mb */
[22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
24800, 9, 9 }, /* 26 Mb */
[23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
36600, 10, 10 }, /* 39 Mb */
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
48100, 11, 11 }, /* 52 Mb */
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69500, 12, 12 }, /* 78 Mb */
[26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
89500, 13, 13 }, /* 104 Mb */
[27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
98900, 14, 14 }, /* 117 Mb */
[28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
108300, 15, 15 }, /* 130 Mb */
[29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
120000, 15, 15 }, /* 144.4 Mb */
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
17400, 16, 16 }, /* 19.5 Mb */
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
35100, 17, 17 }, /* 39 Mb */
[32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
52600, 18, 18 }, /* 58.5 Mb */
[33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
70400, 19, 19 }, /* 78 Mb */
[34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
104900, 20, 20 }, /* 117 Mb */
[35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
115800, 20, 20 }, /* 130 Mb */
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
137200, 21, 21 }, /* 156 Mb */
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
151100, 21, 21 }, /* 173.3 Mb */
[38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
152800, 22, 22 }, /* 175.5 Mb */
[39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
168400, 22, 22 }, /* 195 Mb */
[40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
168400, 23, 23 }, /* 195 Mb */
[41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
185000, 23, 23 }, /* 216.7 Mb */
[42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
13200, 0, 0 }, /* 13.5 Mb */
[43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
25900, 1, 1 }, /* 27.0 Mb */
[44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
38600, 2, 2 }, /* 40.5 Mb */
[45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
49800, 3, 3 }, /* 54 Mb */
[46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
72200, 4, 4 }, /* 81 Mb */
[47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
92900, 5, 5 }, /* 108 Mb */
[48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
102700, 6, 6 }, /* 121.5 Mb */
[49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
112000, 7, 7 }, /* 135 Mb */
[50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
122000, 7, 7 }, /* 150 Mb */
[51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
25800, 8, 8 }, /* 27 Mb */
[52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
49800, 9, 9 }, /* 54 Mb */
[53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
71900, 10, 10 }, /* 81 Mb */
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
92500, 11, 11 }, /* 108 Mb */
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130300, 12, 12 }, /* 162 Mb */
[56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
162800, 13, 13 }, /* 216 Mb */
[57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
178200, 14, 14 }, /* 243 Mb */
[58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
192100, 15, 15 }, /* 270 Mb */
[59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
207000, 15, 15 }, /* 300 Mb */
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
36100, 16, 16 }, /* 40.5 Mb */
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
72900, 17, 17 }, /* 81 Mb */
[62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
108300, 18, 18 }, /* 121.5 Mb */
[63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
142000, 19, 19 }, /* 162 Mb */
[64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
205100, 20, 20 }, /* 243 Mb */
[65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
224700, 20, 20 }, /* 270 Mb */
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
263100, 21, 21 }, /* 324 Mb */
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
288000, 21, 21 }, /* 360 Mb */
[68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
290700, 22, 22 }, /* 364.5 Mb */
[69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
317200, 22, 22 }, /* 405 Mb */
[70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
317200, 23, 23 }, /* 405 Mb */
[71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
346400, 23, 23 }, /* 450 Mb */
},
50, /* probe interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
static const struct ath_rate_table ar5416_11a_ratetable = {
8,
0,
{
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 0, 12},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 1, 18},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 2, 24},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 3, 36},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 4, 48},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 5, 72},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 6, 96},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 7, 108},
},
50, /* probe interval */
0, /* Phy rates allowed initially */
};
static const struct ath_rate_table ar5416_11g_ratetable = {
12,
0,
{
{ RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
900, 0, 2},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
1900, 1, 4},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
4900, 2, 11},
{ RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
8100, 3, 22},
{ RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
5400, 4, 12},
{ RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
7800, 5, 18},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
10000, 6, 24},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
13900, 7, 36},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
17300, 8, 48},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
23000, 9, 72},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
27400, 10, 96},
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
29300, 11, 108},
},
50, /* probe interval */
0, /* Phy rates allowed initially */
};
static int ath_rc_get_rateindex(struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_rate *rate)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
int rix, i, idx = 0;
if (!(rate->flags & IEEE80211_TX_RC_MCS))
return rate->idx;
for (i = 0; i < ath_rc_priv->max_valid_rate; i++) {
idx = ath_rc_priv->valid_rate_index[i];
if (WLAN_RC_PHY_HT(rate_table->info[idx].phy) &&
rate_table->info[idx].ratecode == rate->idx)
break;
}
rix = idx;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rix++;
return rix;
}
static void ath_rc_sort_validrates(struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u8 i, j, idx, idx_next;
for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) {
idx = ath_rc_priv->valid_rate_index[j];
idx_next = ath_rc_priv->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) {
ath_rc_priv->valid_rate_index[j] = idx_next;
ath_rc_priv->valid_rate_index[j+1] = idx;
}
}
}
}
static inline
int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
u8 cur_valid_txrate,
u8 *next_idx)
{
u8 i;
for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i+1];
return 1;
}
}
/* No more valid rates */
*next_idx = 0;
return 0;
}
/* Return true only for single stream */
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
{
if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
return 0;
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
return 0;
if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
return 0;
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
return 0;
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
return 0;
return 1;
}
static inline int
ath_rc_get_lower_rix(struct ath_rate_priv *ath_rc_priv,
u8 cur_valid_txrate, u8 *next_idx)
{
int8_t i;
for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = ath_rc_priv->valid_rate_index[i-1];
return 1;
}
}
return 0;
}
static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u8 i, hi = 0;
for (i = 0; i < rate_table->rate_cnt; i++) {
if (rate_table->info[i].rate_flags & RC_LEGACY) {
u32 phy = rate_table->info[i].phy;
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, ath_rc_priv->ht_cap, 0))
continue;
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
ath_rc_priv->valid_rate_index[i] = true;
hi = i;
}
}
return hi;
}
static inline bool ath_rc_check_legacy(u8 rate, u8 dot11rate, u16 rate_flags,
u32 phy, u32 capflag)
{
if (rate != dot11rate || WLAN_RC_PHY_HT(phy))
return false;
if ((rate_flags & WLAN_RC_CAP_MODE(capflag)) != WLAN_RC_CAP_MODE(capflag))
return false;
if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
return false;
return true;
}
static inline bool ath_rc_check_ht(u8 rate, u8 dot11rate, u16 rate_flags,
u32 phy, u32 capflag)
{
if (rate != dot11rate || !WLAN_RC_PHY_HT(phy))
return false;
if (!WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
return false;
if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
return false;
return true;
}
static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, bool legacy)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
struct ath_rateset *rateset;
u32 phy, capflag = ath_rc_priv->ht_cap;
u16 rate_flags;
u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
if (legacy)
rateset = &ath_rc_priv->neg_rates;
else
rateset = &ath_rc_priv->neg_ht_rates;
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
phy = rate_table->info[j].phy;
rate_flags = rate_table->info[j].rate_flags;
rate = rateset->rs_rates[i];
dot11rate = rate_table->info[j].dot11rate;
if (legacy &&
!ath_rc_check_legacy(rate, dot11rate,
rate_flags, phy, capflag))
continue;
if (!legacy &&
!ath_rc_check_ht(rate, dot11rate,
rate_flags, phy, capflag))
continue;
if (!ath_rc_valid_phyrate(phy, capflag, 0))
continue;
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
ath_rc_priv->valid_rate_index[j] = true;
hi = max(hi, j);
}
}
return hi;
}
static u8 ath_rc_get_highest_rix(struct ath_rate_priv *ath_rc_priv,
int *is_probing)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
u32 best_thruput, this_thruput, now_msec;
u8 rate, next_rate, best_rate, maxindex, minindex;
int8_t index = 0;
now_msec = jiffies_to_msecs(jiffies);
*is_probing = 0;
best_thruput = 0;
maxindex = ath_rc_priv->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
/*
* Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics.
*/
for (index = maxindex; index >= minindex ; index--) {
u8 per_thres;
rate = ath_rc_priv->valid_rate_index[index];
if (rate > ath_rc_priv->rate_max_phy)
continue;
/*
* For TCP the average collision rate is around 11%,
* so we ignore PERs less than this. This is to
* prevent the rate we are currently using (whose
* PER might be in the 10-15 range because of TCP
* collisions) looking worse than the next lower
* rate whose PER has decayed close to 0. If we
* used to next lower rate, its PER would grow to
* 10-15 and we would be worse off then staying
* at the current rate.
*/
per_thres = ath_rc_priv->per[rate];
if (per_thres < 12)
per_thres = 12;
this_thruput = rate_table->info[rate].user_ratekbps *
(100 - per_thres);
if (best_thruput <= this_thruput) {
best_thruput = this_thruput;
best_rate = rate;
}
}
rate = best_rate;
/*
* Must check the actual rate (ratekbps) to account for
* non-monoticity of 11g's rate table
*/
if (rate >= ath_rc_priv->rate_max_phy) {
rate = ath_rc_priv->rate_max_phy;
/* Probe the next allowed phy state */
if (ath_rc_get_nextvalid_txrate(rate_table,
ath_rc_priv, rate, &next_rate) &&
(now_msec - ath_rc_priv->probe_time >
rate_table->probe_interval) &&
(ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
rate = next_rate;
ath_rc_priv->probe_rate = rate;
ath_rc_priv->probe_time = now_msec;
ath_rc_priv->hw_maxretry_pktcnt = 0;
*is_probing = 1;
}
}
if (rate > (ath_rc_priv->rate_table_size - 1))
rate = ath_rc_priv->rate_table_size - 1;
if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
(ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
return rate;
if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
(ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
return rate;
if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
return rate;
/* This should not happen */
WARN_ON_ONCE(1);
rate = ath_rc_priv->valid_rate_index[0];
return rate;
}
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
struct ieee80211_tx_rate *rate,
struct ieee80211_tx_rate_control *txrc,
u8 tries, u8 rix, int rtsctsenable)
{
rate->count = tries;
rate->idx = rate_table->info[rix].ratecode;
if (txrc->rts || rtsctsenable)
rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
rate->flags |= IEEE80211_TX_RC_MCS;
if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
conf_is_ht40(&txrc->hw->conf))
rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
rate->flags |= IEEE80211_TX_RC_SHORT_GI;
}
}
static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
const struct ath_rate_table *rate_table,
struct ieee80211_tx_info *tx_info)
{
struct ieee80211_bss_conf *bss_conf;
if (!tx_info->control.vif)
return;
/*
* For legacy frames, mac80211 takes care of CTS protection.
*/
if (!(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))
return;
bss_conf = &tx_info->control.vif->bss_conf;
if (!bss_conf->basic_rates)
return;
/*
* For now, use the lowest allowed basic rate for HT frames.
*/
tx_info->control.rts_cts_rate_idx = __ffs(bss_conf->basic_rates);
}
static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
const struct ath_rate_table *rate_table;
struct sk_buff *skb = txrc->skb;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rates = tx_info->control.rates;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
u8 try_per_rate, i = 0, rix;
int is_probe = 0;
if (rate_control_send_low(sta, priv_sta, txrc))
return;
/*
* For Multi Rate Retry we use a different number of
* retry attempt counts. This ends up looking like this:
*
* MRR[0] = 4
* MRR[1] = 4
* MRR[2] = 4
* MRR[3] = 8
*
*/
try_per_rate = 4;
rate_table = ath_rc_priv->rate_table;
rix = ath_rc_get_highest_rix(ath_rc_priv, &is_probe);
if (conf_is_ht(&sc->hw->conf) &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
tx_info->flags |= IEEE80211_TX_CTL_LDPC;
if (conf_is_ht(&sc->hw->conf) &&
(sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
if (is_probe) {
/*
* Set one try for probe rates. For the
* probes don't enable RTS.
*/
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
1, rix, 0);
/*
* Get the next tried/allowed rate.
* No RTS for the next series after the probe rate.
*/
ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
try_per_rate, rix, 0);
tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
} else {
/*
* Set the chosen rate. No RTS for first series entry.
*/
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
try_per_rate, rix, 0);
}
for ( ; i < 4; i++) {
/*
* Use twice the number of tries for the last MRR segment.
*/
if (i + 1 == 4)
try_per_rate = 8;
ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
/*
* All other rates in the series have RTS enabled.
*/
ath_rc_rate_set_series(rate_table, &rates[i], txrc,
try_per_rate, rix, 1);
}
/*
* NB:Change rate series to enable aggregation when operating
* at lower MCS rates. When first rate in series is MCS2
* in HT40 @ 2.4GHz, series should look like:
*
* {MCS2, MCS1, MCS0, MCS0}.
*
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
* look like:
*
* {MCS3, MCS2, MCS1, MCS1}
*
* So, set fourth rate in series to be same as third one for
* above conditions.
*/
if ((sc->hw->conf.chandef.chan->band == IEEE80211_BAND_2GHZ) &&
(conf_is_ht(&sc->hw->conf))) {
u8 dot11rate = rate_table->info[rix].dot11rate;
u8 phy = rate_table->info[rix].phy;
if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
rates[3].idx = rates[2].idx;
rates[3].flags = rates[2].flags;
}
}
/*
* Force hardware to use computed duration for next
* fragment by disabling multi-rate retry, which
* updates duration based on the multi-rate duration table.
*
* FIXME: Fix duration
*/
if (ieee80211_has_morefrags(fc) ||
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
rates[1].count = rates[2].count = rates[3].count = 0;
rates[1].idx = rates[2].idx = rates[3].idx = 0;
rates[0].count = ATH_TXMAXTRY;
}
ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
}
static void ath_rc_update_per(struct ath_softc *sc,
const struct ath_rate_table *rate_table,
struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_info *tx_info,
int tx_rate, int xretries, int retries,
u32 now_msec)
{
int count, n_bad_frames;
u8 last_per;
static const u32 nretry_to_per_lookup[10] = {
100 * 0 / 1,
100 * 1 / 4,
100 * 1 / 2,
100 * 3 / 4,
100 * 4 / 5,
100 * 5 / 6,
100 * 6 / 7,
100 * 7 / 8,
100 * 8 / 9,
100 * 9 / 10
};
last_per = ath_rc_priv->per[tx_rate];
n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
if (xretries) {
if (xretries == 1) {
ath_rc_priv->per[tx_rate] += 30;
if (ath_rc_priv->per[tx_rate] > 100)
ath_rc_priv->per[tx_rate] = 100;
} else {
/* xretries == 2 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
ath_rc_priv->per[tx_rate] =
(u8)(last_per - (last_per >> 3) + (100 >> 3));
}
/* xretries == 1 or 2 */
if (ath_rc_priv->probe_rate == tx_rate)
ath_rc_priv->probe_rate = 0;
} else { /* xretries == 0 */
count = ARRAY_SIZE(nretry_to_per_lookup);
if (retries >= count)
retries = count - 1;
if (n_bad_frames) {
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
* Assuming that n_frames is not 0. The current PER
* from the retries is 100 * retries / (retries+1),
* since the first retries attempts failed, and the
* next one worked. For the one that worked,
* n_bad_frames subframes out of n_frames wored,
* so the PER for that part is
* 100 * n_bad_frames / n_frames, and it contributes
* 100 * n_bad_frames / (n_frames * (retries+1)) to
* the above PER. The expression below is a
* simplified version of the sum of these two terms.
*/
if (tx_info->status.ampdu_len > 0) {
int n_frames, n_bad_tries;
u8 cur_per, new_per;
n_bad_tries = retries * tx_info->status.ampdu_len +
n_bad_frames;
n_frames = tx_info->status.ampdu_len * (retries + 1);
cur_per = (100 * n_bad_tries / n_frames) >> 3;
new_per = (u8)(last_per - (last_per >> 3) + cur_per);
ath_rc_priv->per[tx_rate] = new_per;
}
} else {
ath_rc_priv->per[tx_rate] =
(u8)(last_per - (last_per >> 3) +
(nretry_to_per_lookup[retries] >> 3));
}
/*
* If we got at most one retry then increase the max rate if
* this was a probe. Otherwise, ignore the probe.
*/
if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
/*
* Since we probed with just a single attempt,
* any retries means the probe failed. Also,
* if the attempt worked, but more than half
* the subframes were bad then also consider
* the probe a failure.
*/
ath_rc_priv->probe_rate = 0;
} else {
u8 probe_rate = 0;
ath_rc_priv->rate_max_phy =
ath_rc_priv->probe_rate;
probe_rate = ath_rc_priv->probe_rate;
if (ath_rc_priv->per[probe_rate] > 30)
ath_rc_priv->per[probe_rate] = 20;
ath_rc_priv->probe_rate = 0;
/*
* Since this probe succeeded, we allow the next
* probe twice as soon. This allows the maxRate
* to move up faster if the probes are
* successful.
*/
ath_rc_priv->probe_time =
now_msec - rate_table->probe_interval / 2;
}
}
if (retries > 0) {
/*
* Don't update anything. We don't know if
* this was because of collisions or poor signal.
*/
ath_rc_priv->hw_maxretry_pktcnt = 0;
} else {
/*
* It worked with no retries. First ignore bogus (small)
* rssi_ack values.
*/
if (tx_rate == ath_rc_priv->rate_max_phy &&
ath_rc_priv->hw_maxretry_pktcnt < 255) {
ath_rc_priv->hw_maxretry_pktcnt++;
}
}
}
}
static void ath_rc_update_ht(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct ieee80211_tx_info *tx_info,
int tx_rate, int xretries, int retries)
{
u32 now_msec = jiffies_to_msecs(jiffies);
int rate;
u8 last_per;
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
int size = ath_rc_priv->rate_table_size;
if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
return;
last_per = ath_rc_priv->per[tx_rate];
/* Update PER first */
ath_rc_update_per(sc, rate_table, ath_rc_priv,
tx_info, tx_rate, xretries,
retries, now_msec);
/*
* If this rate looks bad (high PER) then stop using it for
* a while (except if we are probing).
*/
if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
rate_table->info[tx_rate].ratekbps <=
rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
ath_rc_get_lower_rix(ath_rc_priv, (u8)tx_rate,
&ath_rc_priv->rate_max_phy);
/* Don't probe for a little while. */
ath_rc_priv->probe_time = now_msec;
}
/* Make sure the rates below this have lower PER */
/* Monotonicity is kept only for rates below the current rate. */
if (ath_rc_priv->per[tx_rate] < last_per) {
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (ath_rc_priv->per[rate] >
ath_rc_priv->per[rate+1]) {
ath_rc_priv->per[rate] =
ath_rc_priv->per[rate+1];
}
}
}
/* Maintain monotonicity for rates above the current rate */
for (rate = tx_rate; rate < size - 1; rate++) {
if (ath_rc_priv->per[rate+1] <
ath_rc_priv->per[rate])
ath_rc_priv->per[rate+1] =
ath_rc_priv->per[rate];
}
/* Every so often, we reduce the thresholds
* and PER (different for CCK and OFDM). */
if (now_msec - ath_rc_priv->per_down_time >=
rate_table->probe_interval) {
for (rate = 0; rate < size; rate++) {
ath_rc_priv->per[rate] =
7 * ath_rc_priv->per[rate] / 8;
}
ath_rc_priv->per_down_time = now_msec;
}
ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
ath_rc_priv->per[tx_rate]);
}
static void ath_rc_tx_status(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv,
struct sk_buff *skb)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rates = tx_info->status.rates;
struct ieee80211_tx_rate *rate;
int final_ts_idx = 0, xretries = 0, long_retry = 0;
u8 flags;
u32 i = 0, rix;
for (i = 0; i < sc->hw->max_rates; i++) {
rate = &tx_info->status.rates[i];
if (rate->idx < 0 || !rate->count)
break;
final_ts_idx = i;
long_retry = rate->count - 1;
}
if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
xretries = 1;
/*
* If the first rate is not the final index, there
* are intermediate rate failures to be processed.
*/
if (final_ts_idx != 0) {
for (i = 0; i < final_ts_idx ; i++) {
if (rates[i].count != 0 && (rates[i].idx >= 0)) {
flags = rates[i].flags;
/* If HT40 and we have switched mode from
* 40 to 20 => don't update */
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
return;
rix = ath_rc_get_rateindex(ath_rc_priv, &rates[i]);
ath_rc_update_ht(sc, ath_rc_priv, tx_info,
rix, xretries ? 1 : 2,
rates[i].count);
}
}
}
flags = rates[final_ts_idx].flags;
/* If HT40 and we have switched mode from 40 to 20 => don't update */
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
return;
rix = ath_rc_get_rateindex(ath_rc_priv, &rates[final_ts_idx]);
ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
ath_debug_stat_rc(ath_rc_priv, rix);
}
static const
struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
enum ieee80211_band band,
bool is_ht)
{
switch(band) {
case IEEE80211_BAND_2GHZ:
if (is_ht)
return &ar5416_11ng_ratetable;
return &ar5416_11g_ratetable;
case IEEE80211_BAND_5GHZ:
if (is_ht)
return &ar5416_11na_ratetable;
return &ar5416_11a_ratetable;
default:
return NULL;
}
}
static void ath_rc_init(struct ath_softc *sc,
struct ath_rate_priv *ath_rc_priv)
{
const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
u8 i, j, k, hi = 0, hthi = 0;
ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
ath_rc_priv->per[i] = 0;
ath_rc_priv->valid_rate_index[i] = 0;
}
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < RATE_TABLE_SIZE; j++)
ath_rc_priv->valid_phy_rateidx[i][j] = 0;
ath_rc_priv->valid_phy_ratecnt[i] = 0;
}
if (!rateset->rs_nrates) {
hi = ath_rc_init_validrates(ath_rc_priv);
} else {
hi = ath_rc_setvalid_rates(ath_rc_priv, true);
if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG)
hthi = ath_rc_setvalid_rates(ath_rc_priv, false);
hi = max(hi, hthi);
}
ath_rc_priv->rate_table_size = hi + 1;
ath_rc_priv->rate_max_phy = 0;
WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
ath_rc_priv->valid_rate_index[k++] =
ath_rc_priv->valid_phy_rateidx[i][j];
}
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
!ath_rc_priv->valid_phy_ratecnt[i])
continue;
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
}
WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
WARN_ON(k > RATE_TABLE_SIZE);
ath_rc_priv->max_valid_rate = k;
ath_rc_sort_validrates(ath_rc_priv);
ath_rc_priv->rate_max_phy = (k > 4) ?
ath_rc_priv->valid_rate_index[k-4] :
ath_rc_priv->valid_rate_index[k-1];
ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
ath_rc_priv->ht_cap);
}
static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta)
{
u8 caps = 0;
if (sta->ht_cap.ht_supported) {
caps = WLAN_RC_HT_FLAG;
if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
else if (sta->ht_cap.mcs.rx_mask[1])
caps |= WLAN_RC_DS_FLAG;
if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
caps |= WLAN_RC_40_FLAG;
if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
caps |= WLAN_RC_SGI_FLAG;
} else {
if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
caps |= WLAN_RC_SGI_FLAG;
}
}
return caps;
}
static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
u8 tidno)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
struct ath_atx_tid *txtid;
if (!sta->ht_cap.ht_supported)
return false;
txtid = ATH_AN_2_TID(an, tidno);
return !txtid->active;
}
/***********************************/
/* mac80211 Rate Control callbacks */
/***********************************/
static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
if (!priv_sta || !ieee80211_is_data(fc))
return;
/* This packet was aggregated but doesn't carry status info */
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
!(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
return;
if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
return;
ath_rc_tx_status(sc, ath_rc_priv, skb);
/* Check if aggregation has to be enabled for this tid */
if (conf_is_ht(&sc->hw->conf) &&
!(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
if (ieee80211_is_data_qos(fc) &&
skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
u8 *qc, tid;
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
if(ath_tx_aggr_check(sc, sta, tid))
ieee80211_start_tx_ba_session(sta, tid, 0);
}
}
}
static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta)
{
struct ath_softc *sc = priv;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_rate_priv *ath_rc_priv = priv_sta;
int i, j = 0;
u32 rate_flags = ieee80211_chandef_rate_flags(&sc->hw->conf.chandef);
for (i = 0; i < sband->n_bitrates; i++) {
if (sta->supp_rates[sband->band] & BIT(i)) {
if ((rate_flags & sband->bitrates[i].flags)
!= rate_flags)
continue;
ath_rc_priv->neg_rates.rs_rates[j]
= (sband->bitrates[i].bitrate * 2) / 10;
j++;
}
}
ath_rc_priv->neg_rates.rs_nrates = j;
if (sta->ht_cap.ht_supported) {
for (i = 0, j = 0; i < 77; i++) {
if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
if (j == ATH_RATE_MAX)
break;
}
ath_rc_priv->neg_ht_rates.rs_nrates = j;
}
ath_rc_priv->rate_table = ath_choose_rate_table(sc, sband->band,
sta->ht_cap.ht_supported);
if (!ath_rc_priv->rate_table) {
ath_err(common, "No rate table chosen\n");
return;
}
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
ath_rc_init(sc, priv_sta);
}
static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta,
u32 changed)
{
struct ath_softc *sc = priv;
struct ath_rate_priv *ath_rc_priv = priv_sta;
if (changed & IEEE80211_RC_BW_CHANGED) {
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
ath_rc_init(sc, priv_sta);
ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
"Operating Bandwidth changed to: %d\n",
sc->hw->conf.chandef.width);
}
}
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
{
struct ath_rc_stats *stats;
stats = &rc->rcstats[final_rate];
stats->success++;
}
void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
int xretries, int retries, u8 per)
{
struct ath_rc_stats *stats = &rc->rcstats[rix];
stats->xretries += xretries;
stats->retries += retries;
stats->per = per;
}
static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct ath_rate_priv *rc = file->private_data;
char *buf;
unsigned int len = 0, max;
int rix;
ssize_t retval;
if (rc->rate_table == NULL)
return 0;
max = 80 + rc->rate_table_size * 1024 + 1;
buf = kmalloc(max, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
len += sprintf(buf, "%6s %6s %6s "
"%10s %10s %10s %10s\n",
"HT", "MCS", "Rate",
"Success", "Retries", "XRetries", "PER");
for (rix = 0; rix < rc->max_valid_rate; rix++) {
u8 i = rc->valid_rate_index[rix];
u32 ratekbps = rc->rate_table->info[i].ratekbps;
struct ath_rc_stats *stats = &rc->rcstats[i];
char mcs[5];
char htmode[5];
int used_mcs = 0, used_htmode = 0;
if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
used_mcs = scnprintf(mcs, 5, "%d",
rc->rate_table->info[i].ratecode);
if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
used_htmode = scnprintf(htmode, 5, "HT40");
else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
used_htmode = scnprintf(htmode, 5, "HT20");
else
used_htmode = scnprintf(htmode, 5, "????");
}
mcs[used_mcs] = '\0';
htmode[used_htmode] = '\0';
len += scnprintf(buf + len, max - len,
"%6s %6s %3u.%d: "
"%10u %10u %10u %10u\n",
htmode,
mcs,
ratekbps / 1000,
(ratekbps % 1000) / 100,
stats->success,
stats->retries,
stats->xretries,
stats->per);
}
if (len > max)
len = max;
retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return retval;
}
static const struct file_operations fops_rcstat = {
.read = read_file_rcstat,
.open = simple_open,
.owner = THIS_MODULE
};
static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
struct dentry *dir)
{
struct ath_rate_priv *rc = priv_sta;
rc->debugfs_rcstats = debugfs_create_file("rc_stats", S_IRUGO,
dir, rc, &fops_rcstat);
}
static void ath_rate_remove_sta_debugfs(void *priv, void *priv_sta)
{
struct ath_rate_priv *rc = priv_sta;
debugfs_remove(rc->debugfs_rcstats);
}
#endif /* CONFIG_MAC80211_DEBUGFS && CONFIG_ATH9K_DEBUGFS */
static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
return hw->priv;
}
static void ath_rate_free(void *priv)
{
return;
}
static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
return kzalloc(sizeof(struct ath_rate_priv), gfp);
}
static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
void *priv_sta)
{
struct ath_rate_priv *rate_priv = priv_sta;
kfree(rate_priv);
}
static const struct rate_control_ops ath_rate_ops = {
.name = "ath9k_rate_control",
.tx_status = ath_tx_status,
.get_rate = ath_get_rate,
.rate_init = ath_rate_init,
.rate_update = ath_rate_update,
.alloc = ath_rate_alloc,
.free = ath_rate_free,
.alloc_sta = ath_rate_alloc_sta,
.free_sta = ath_rate_free_sta,
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
.add_sta_debugfs = ath_rate_add_sta_debugfs,
.remove_sta_debugfs = ath_rate_remove_sta_debugfs,
#endif
};
int ath_rate_control_register(void)
{
return ieee80211_rate_control_register(&ath_rate_ops);
}
void ath_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&ath_rate_ops);
}
/*
* Copyright (c) 2004 Sam Leffler, Errno Consulting
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef RC_H
#define RC_H
#include "hw.h"
struct ath_softc;
#define ATH_RATE_MAX 30
#define RATE_TABLE_SIZE 72
#define RC_INVALID 0x0000
#define RC_LEGACY 0x0001
#define RC_SS 0x0002
#define RC_DS 0x0004
#define RC_TS 0x0008
#define RC_HT_20 0x0010
#define RC_HT_40 0x0020
#define RC_STREAM_MASK 0xe
#define RC_DS_OR_LATER(f) ((((f) & RC_STREAM_MASK) == RC_DS) || \
(((f) & RC_STREAM_MASK) == (RC_DS | RC_TS)))
#define RC_TS_ONLY(f) (((f) & RC_STREAM_MASK) == RC_TS)
#define RC_SS_OR_LEGACY(f) ((f) & (RC_SS | RC_LEGACY))
#define RC_HT_2040 (RC_HT_20 | RC_HT_40)
#define RC_ALL_STREAM (RC_SS | RC_DS | RC_TS)
#define RC_L_SD (RC_LEGACY | RC_SS | RC_DS)
#define RC_L_SDT (RC_LEGACY | RC_SS | RC_DS | RC_TS)
#define RC_HT_S_20 (RC_HT_20 | RC_SS)
#define RC_HT_D_20 (RC_HT_20 | RC_DS)
#define RC_HT_T_20 (RC_HT_20 | RC_TS)
#define RC_HT_S_40 (RC_HT_40 | RC_SS)
#define RC_HT_D_40 (RC_HT_40 | RC_DS)
#define RC_HT_T_40 (RC_HT_40 | RC_TS)
#define RC_HT_SD_20 (RC_HT_20 | RC_SS | RC_DS)
#define RC_HT_DT_20 (RC_HT_20 | RC_DS | RC_TS)
#define RC_HT_SD_40 (RC_HT_40 | RC_SS | RC_DS)
#define RC_HT_DT_40 (RC_HT_40 | RC_DS | RC_TS)
#define RC_HT_SD_2040 (RC_HT_2040 | RC_SS | RC_DS)
#define RC_HT_SDT_2040 (RC_HT_2040 | RC_SS | RC_DS | RC_TS)
#define RC_HT_SDT_20 (RC_HT_20 | RC_SS | RC_DS | RC_TS)
#define RC_HT_SDT_40 (RC_HT_40 | RC_SS | RC_DS | RC_TS)
#define RC_ALL (RC_LEGACY | RC_HT_2040 | RC_ALL_STREAM)
enum {
WLAN_RC_PHY_OFDM,
WLAN_RC_PHY_CCK,
WLAN_RC_PHY_HT_20_SS,
WLAN_RC_PHY_HT_20_DS,
WLAN_RC_PHY_HT_20_TS,
WLAN_RC_PHY_HT_40_SS,
WLAN_RC_PHY_HT_40_DS,
WLAN_RC_PHY_HT_40_TS,
WLAN_RC_PHY_HT_20_SS_HGI,
WLAN_RC_PHY_HT_20_DS_HGI,
WLAN_RC_PHY_HT_20_TS_HGI,
WLAN_RC_PHY_HT_40_SS_HGI,
WLAN_RC_PHY_HT_40_DS_HGI,
WLAN_RC_PHY_HT_40_TS_HGI,
WLAN_RC_PHY_MAX
};
#define WLAN_RC_PHY_DS(_phy) ((_phy == WLAN_RC_PHY_HT_20_DS) \
|| (_phy == WLAN_RC_PHY_HT_40_DS) \
|| (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_DS_HGI))
#define WLAN_RC_PHY_TS(_phy) ((_phy == WLAN_RC_PHY_HT_20_TS) \
|| (_phy == WLAN_RC_PHY_HT_40_TS) \
|| (_phy == WLAN_RC_PHY_HT_20_TS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_TS_HGI))
#define WLAN_RC_PHY_20(_phy) ((_phy == WLAN_RC_PHY_HT_20_SS) \
|| (_phy == WLAN_RC_PHY_HT_20_DS) \
|| (_phy == WLAN_RC_PHY_HT_20_TS) \
|| (_phy == WLAN_RC_PHY_HT_20_SS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_20_TS_HGI))
#define WLAN_RC_PHY_40(_phy) ((_phy == WLAN_RC_PHY_HT_40_SS) \
|| (_phy == WLAN_RC_PHY_HT_40_DS) \
|| (_phy == WLAN_RC_PHY_HT_40_TS) \
|| (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_DS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_TS_HGI))
#define WLAN_RC_PHY_SGI(_phy) ((_phy == WLAN_RC_PHY_HT_20_SS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_20_TS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_DS_HGI) \
|| (_phy == WLAN_RC_PHY_HT_40_TS_HGI))
#define WLAN_RC_PHY_HT(_phy) (_phy >= WLAN_RC_PHY_HT_20_SS)
#define WLAN_RC_CAP_MODE(capflag) (((capflag & WLAN_RC_HT_FLAG) ? \
((capflag & WLAN_RC_40_FLAG) ? RC_HT_40 : RC_HT_20) : RC_LEGACY))
#define WLAN_RC_CAP_STREAM(capflag) (((capflag & WLAN_RC_TS_FLAG) ? \
(RC_TS) : ((capflag & WLAN_RC_DS_FLAG) ? RC_DS : RC_SS)))
/* Return TRUE if flag supports HT20 && client supports HT20 or
* return TRUE if flag supports HT40 && client supports HT40.
* This is used becos some rates overlap between HT20/HT40.
*/
#define WLAN_RC_PHY_HT_VALID(flag, capflag) \
(((flag & RC_HT_20) && !(capflag & WLAN_RC_40_FLAG)) || \
((flag & RC_HT_40) && (capflag & WLAN_RC_40_FLAG)))
#define WLAN_RC_DS_FLAG (0x01)
#define WLAN_RC_TS_FLAG (0x02)
#define WLAN_RC_40_FLAG (0x04)
#define WLAN_RC_SGI_FLAG (0x08)
#define WLAN_RC_HT_FLAG (0x10)
/**
* struct ath_rate_table - Rate Control table
* @rate_cnt: total number of rates for the given wireless mode
* @mcs_start: MCS rate index offset
* @rate_flags: Rate Control flags
* @phy: CCK/OFDM/HT20/HT40
* @ratekbps: rate in Kbits per second
* @user_ratekbps: user rate in Kbits per second
* @ratecode: rate that goes into HW descriptors
* @dot11rate: value that goes into supported
* rates info element of MLME
* @ctrl_rate: Index of next lower basic rate, used for duration computation
* @cw40index: Index of rates having 40MHz channel width
* @sgi_index: Index of rates having Short Guard Interval
* @ht_index: high throughput rates having 40MHz channel width and
* Short Guard Interval
* @probe_interval: interval for rate control to probe for other rates
* @initial_ratemax: initial ratemax value
*/
struct ath_rate_table {
int rate_cnt;
int mcs_start;
struct {
u16 rate_flags;
u8 phy;
u32 ratekbps;
u32 user_ratekbps;
u8 ratecode;
u8 dot11rate;
} info[RATE_TABLE_SIZE];
u32 probe_interval;
u8 initial_ratemax;
};
struct ath_rateset {
u8 rs_nrates;
u8 rs_rates[ATH_RATE_MAX];
};
struct ath_rc_stats {
u32 success;
u32 retries;
u32 xretries;
u8 per;
};
/**
* struct ath_rate_priv - Rate Control priv data
* @state: RC state
* @probe_rate: rate we are probing at
* @probe_time: msec timestamp for last probe
* @hw_maxretry_pktcnt: num of packets since we got HW max retry error
* @max_valid_rate: maximum number of valid rate
* @per_down_time: msec timestamp for last PER down step
* @valid_phy_ratecnt: valid rate count
* @rate_max_phy: phy index for the max rate
* @per: PER for every valid rate in %
* @probe_interval: interval for ratectrl to probe for other rates
* @ht_cap: HT capabilities
* @neg_rates: Negotatied rates
* @neg_ht_rates: Negotiated HT rates
*/
struct ath_rate_priv {
u8 rate_table_size;
u8 probe_rate;
u8 hw_maxretry_pktcnt;
u8 max_valid_rate;
u8 valid_rate_index[RATE_TABLE_SIZE];
u8 ht_cap;
u8 valid_phy_ratecnt[WLAN_RC_PHY_MAX];
u8 valid_phy_rateidx[WLAN_RC_PHY_MAX][RATE_TABLE_SIZE];
u8 rate_max_phy;
u8 per[RATE_TABLE_SIZE];
u32 probe_time;
u32 per_down_time;
u32 probe_interval;
struct ath_rateset neg_rates;
struct ath_rateset neg_ht_rates;
const struct ath_rate_table *rate_table;
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
struct dentry *debugfs_rcstats;
struct ath_rc_stats rcstats[RATE_TABLE_SIZE];
#endif
};
#if defined(CONFIG_MAC80211_DEBUGFS) && defined(CONFIG_ATH9K_DEBUGFS)
void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate);
void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
int xretries, int retries, u8 per);
#else
static inline void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
{
}
static inline void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
int xretries, int retries, u8 per)
{
}
#endif
#ifdef CONFIG_ATH9K_LEGACY_RATE_CONTROL
int ath_rate_control_register(void);
void ath_rate_control_unregister(void);
#else
static inline int ath_rate_control_register(void)
{
return 0;
}
static inline void ath_rate_control_unregister(void)
{
}
#endif
#endif /* RC_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment