Commit 9f36f9c8 authored by Dave Airlie's avatar Dave Airlie

Merge tag 'drm-amdkfd-next-2018-03-27' of git://people.freedesktop.org/~gabbayo/linux into drm-next

- GPUVM support for dGPUs
- KFD events support for dGPUs
- Fix live-lock situation when restoring multiple evicted processes
- Fix VM page table allocation on large-bar systems
- Fix for build failure on frv architecture

* tag 'drm-amdkfd-next-2018-03-27' of git://people.freedesktop.org/~gabbayo/linux:
  drm/amdkfd: Use ordered workqueue to restore processes
  drm/amdgpu: Fix acquiring VM on large-BAR systems
  drm/amdkfd: Add module option for testing large-BAR functionality
  drm/amdkfd: Kmap event page for dGPUs
  drm/amdkfd: Add ioctls for GPUVM memory management
  drm/amdkfd: Add TC flush on VMID deallocation for Hawaii
  drm/amdkfd: Allocate CWSR trap handler memory for dGPUs
  drm/amdkfd: Add per-process IDR for buffer handles
  drm/amdkfd: Aperture setup for dGPUs
  drm/amdkfd: Remove limit on number of GPUs
  drm/amdkfd: Populate DRM render device minor
  drm/amdkfd: Create KFD VMs on demand
  drm/amdgpu: Add kfd2kgd interface to acquire an existing VM
  drm/amdgpu: Add helper to turn an existing VM into a compute VM
  drm/amdgpu: Fix initial validation of PD BO for KFD VMs
  drm/amdgpu: Move KFD-specific fields into struct amdgpu_vm
  drm/amdkfd: fix uninitialized variable use
  drm/amdkfd: add missing include of mm.h
parents cb17aa52 1679ae8f
......@@ -26,6 +26,7 @@
#define AMDGPU_AMDKFD_H_INCLUDED
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mmu_context.h>
#include <kgd_kfd_interface.h>
#include <drm/ttm/ttm_execbuf_util.h>
......@@ -92,27 +93,6 @@ struct amdkfd_process_info {
struct amdgpu_amdkfd_fence *eviction_fence;
};
/* struct amdkfd_vm -
* For Memory Eviction KGD requires a mechanism to keep track of all KFD BOs
* belonging to a KFD process. All the VMs belonging to the same process point
* to the same amdkfd_process_info.
*/
struct amdkfd_vm {
/* Keep base as the first parameter for pointer compatibility between
* amdkfd_vm and amdgpu_vm.
*/
struct amdgpu_vm base;
/* List node in amdkfd_process_info.vm_list_head*/
struct list_head vm_list_node;
struct amdgpu_device *adev;
/* Points to the KFD process VM info*/
struct amdkfd_process_info *process_info;
uint64_t pd_phys_addr;
};
int amdgpu_amdkfd_init(void);
void amdgpu_amdkfd_fini(void);
......@@ -165,6 +145,12 @@ uint64_t amdgpu_amdkfd_get_vram_usage(struct kgd_dev *kgd);
int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm,
void **process_info,
struct dma_fence **ef);
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct kgd_dev *kgd,
struct file *filp,
void **vm, void **process_info,
struct dma_fence **ef);
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
struct amdgpu_vm *vm);
void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm);
uint32_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *vm);
int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
......
......@@ -205,6 +205,7 @@ static const struct kfd2kgd_calls kfd2kgd = {
.get_cu_info = get_cu_info,
.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
.set_vm_context_page_table_base = set_vm_context_page_table_base,
......
......@@ -165,6 +165,7 @@ static const struct kfd2kgd_calls kfd2kgd = {
.get_cu_info = get_cu_info,
.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
.set_vm_context_page_table_base = set_vm_context_page_table_base,
......
......@@ -333,9 +333,9 @@ static int amdgpu_amdkfd_validate(void *param, struct amdgpu_bo *bo)
* again. Page directories are only updated after updating page
* tables.
*/
static int vm_validate_pt_pd_bos(struct amdkfd_vm *vm)
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm)
{
struct amdgpu_bo *pd = vm->base.root.base.bo;
struct amdgpu_bo *pd = vm->root.base.bo;
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
struct amdgpu_vm_parser param;
uint64_t addr, flags = AMDGPU_PTE_VALID;
......@@ -344,7 +344,7 @@ static int vm_validate_pt_pd_bos(struct amdkfd_vm *vm)
param.domain = AMDGPU_GEM_DOMAIN_VRAM;
param.wait = false;
ret = amdgpu_vm_validate_pt_bos(adev, &vm->base, amdgpu_amdkfd_validate,
ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate,
&param);
if (ret) {
pr_err("amdgpu: failed to validate PT BOs\n");
......@@ -357,11 +357,11 @@ static int vm_validate_pt_pd_bos(struct amdkfd_vm *vm)
return ret;
}
addr = amdgpu_bo_gpu_offset(vm->base.root.base.bo);
addr = amdgpu_bo_gpu_offset(vm->root.base.bo);
amdgpu_gmc_get_vm_pde(adev, -1, &addr, &flags);
vm->pd_phys_addr = addr;
if (vm->base.use_cpu_for_update) {
if (vm->use_cpu_for_update) {
ret = amdgpu_bo_kmap(pd, NULL);
if (ret) {
pr_err("amdgpu: failed to kmap PD, ret=%d\n", ret);
......@@ -415,14 +415,12 @@ static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
* 4a. Validate new page tables and directories
*/
static int add_bo_to_vm(struct amdgpu_device *adev, struct kgd_mem *mem,
struct amdgpu_vm *avm, bool is_aql,
struct amdgpu_vm *vm, bool is_aql,
struct kfd_bo_va_list **p_bo_va_entry)
{
int ret;
struct kfd_bo_va_list *bo_va_entry;
struct amdkfd_vm *kvm = container_of(avm,
struct amdkfd_vm, base);
struct amdgpu_bo *pd = avm->root.base.bo;
struct amdgpu_bo *pd = vm->root.base.bo;
struct amdgpu_bo *bo = mem->bo;
uint64_t va = mem->va;
struct list_head *list_bo_va = &mem->bo_va_list;
......@@ -441,10 +439,10 @@ static int add_bo_to_vm(struct amdgpu_device *adev, struct kgd_mem *mem,
return -ENOMEM;
pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
va + bo_size, avm);
va + bo_size, vm);
/* Add BO to VM internal data structures*/
bo_va_entry->bo_va = amdgpu_vm_bo_add(adev, avm, bo);
bo_va_entry->bo_va = amdgpu_vm_bo_add(adev, vm, bo);
if (!bo_va_entry->bo_va) {
ret = -EINVAL;
pr_err("Failed to add BO object to VM. ret == %d\n",
......@@ -467,28 +465,28 @@ static int add_bo_to_vm(struct amdgpu_device *adev, struct kgd_mem *mem,
* fence, so remove it temporarily.
*/
amdgpu_amdkfd_remove_eviction_fence(pd,
kvm->process_info->eviction_fence,
vm->process_info->eviction_fence,
NULL, NULL);
ret = amdgpu_vm_alloc_pts(adev, avm, va, amdgpu_bo_size(bo));
ret = amdgpu_vm_alloc_pts(adev, vm, va, amdgpu_bo_size(bo));
if (ret) {
pr_err("Failed to allocate pts, err=%d\n", ret);
goto err_alloc_pts;
}
ret = vm_validate_pt_pd_bos(kvm);
ret = vm_validate_pt_pd_bos(vm);
if (ret) {
pr_err("validate_pt_pd_bos() failed\n");
goto err_alloc_pts;
}
/* Add the eviction fence back */
amdgpu_bo_fence(pd, &kvm->process_info->eviction_fence->base, true);
amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true);
return 0;
err_alloc_pts:
amdgpu_bo_fence(pd, &kvm->process_info->eviction_fence->base, true);
amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true);
amdgpu_vm_bo_rmv(adev, bo_va_entry->bo_va);
list_del(&bo_va_entry->bo_list);
err_vmadd:
......@@ -703,7 +701,6 @@ static int unmap_bo_from_gpuvm(struct amdgpu_device *adev,
{
struct amdgpu_bo_va *bo_va = entry->bo_va;
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdkfd_vm *kvm = container_of(vm, struct amdkfd_vm, base);
struct amdgpu_bo *pd = vm->root.base.bo;
/* Remove eviction fence from PD (and thereby from PTs too as
......@@ -713,14 +710,14 @@ static int unmap_bo_from_gpuvm(struct amdgpu_device *adev,
* trigger the eviction fence.
*/
amdgpu_amdkfd_remove_eviction_fence(pd,
kvm->process_info->eviction_fence,
vm->process_info->eviction_fence,
NULL, NULL);
amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
/* Add the eviction fence back */
amdgpu_bo_fence(pd, &kvm->process_info->eviction_fence->base, true);
amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true);
sync_vm_fence(adev, sync, bo_va->last_pt_update);
......@@ -780,7 +777,7 @@ static int map_bo_to_gpuvm(struct amdgpu_device *adev,
static int process_validate_vms(struct amdkfd_process_info *process_info)
{
struct amdkfd_vm *peer_vm;
struct amdgpu_vm *peer_vm;
int ret;
list_for_each_entry(peer_vm, &process_info->vm_list_head,
......@@ -796,12 +793,12 @@ static int process_validate_vms(struct amdkfd_process_info *process_info)
static int process_update_pds(struct amdkfd_process_info *process_info,
struct amdgpu_sync *sync)
{
struct amdkfd_vm *peer_vm;
struct amdgpu_vm *peer_vm;
int ret;
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
ret = vm_update_pds(&peer_vm->base, sync);
ret = vm_update_pds(peer_vm, sync);
if (ret)
return ret;
}
......@@ -809,33 +806,16 @@ static int process_update_pds(struct amdkfd_process_info *process_info,
return 0;
}
int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm,
void **process_info,
struct dma_fence **ef)
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
struct dma_fence **ef)
{
struct amdkfd_process_info *info = NULL;
int ret;
struct amdkfd_vm *new_vm;
struct amdkfd_process_info *info;
struct amdgpu_device *adev = get_amdgpu_device(kgd);
new_vm = kzalloc(sizeof(*new_vm), GFP_KERNEL);
if (!new_vm)
return -ENOMEM;
/* Initialize the VM context, allocate the page directory and zero it */
ret = amdgpu_vm_init(adev, &new_vm->base, AMDGPU_VM_CONTEXT_COMPUTE, 0);
if (ret) {
pr_err("Failed init vm ret %d\n", ret);
goto vm_init_fail;
}
new_vm->adev = adev;
if (!*process_info) {
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto alloc_process_info_fail;
}
if (!info)
return -ENOMEM;
mutex_init(&info->lock);
INIT_LIST_HEAD(&info->vm_list_head);
......@@ -846,6 +826,7 @@ int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm,
current->mm);
if (!info->eviction_fence) {
pr_err("Failed to create eviction fence\n");
ret = -ENOMEM;
goto create_evict_fence_fail;
}
......@@ -853,57 +834,137 @@ int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm,
*ef = dma_fence_get(&info->eviction_fence->base);
}
new_vm->process_info = *process_info;
mutex_lock(&new_vm->process_info->lock);
list_add_tail(&new_vm->vm_list_node,
&(new_vm->process_info->vm_list_head));
new_vm->process_info->n_vms++;
mutex_unlock(&new_vm->process_info->lock);
vm->process_info = *process_info;
*vm = (void *) new_vm;
/* Validate page directory and attach eviction fence */
ret = amdgpu_bo_reserve(vm->root.base.bo, true);
if (ret)
goto reserve_pd_fail;
ret = vm_validate_pt_pd_bos(vm);
if (ret) {
pr_err("validate_pt_pd_bos() failed\n");
goto validate_pd_fail;
}
ret = ttm_bo_wait(&vm->root.base.bo->tbo, false, false);
if (ret)
goto wait_pd_fail;
amdgpu_bo_fence(vm->root.base.bo,
&vm->process_info->eviction_fence->base, true);
amdgpu_bo_unreserve(vm->root.base.bo);
/* Update process info */
mutex_lock(&vm->process_info->lock);
list_add_tail(&vm->vm_list_node,
&(vm->process_info->vm_list_head));
vm->process_info->n_vms++;
mutex_unlock(&vm->process_info->lock);
pr_debug("Created process vm %p\n", *vm);
return 0;
wait_pd_fail:
validate_pd_fail:
amdgpu_bo_unreserve(vm->root.base.bo);
reserve_pd_fail:
vm->process_info = NULL;
if (info) {
/* Two fence references: one in info and one in *ef */
dma_fence_put(&info->eviction_fence->base);
dma_fence_put(*ef);
*ef = NULL;
*process_info = NULL;
create_evict_fence_fail:
mutex_destroy(&info->lock);
kfree(info);
}
return ret;
}
create_evict_fence_fail:
mutex_destroy(&info->lock);
kfree(info);
alloc_process_info_fail:
amdgpu_vm_fini(adev, &new_vm->base);
vm_init_fail:
int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm,
void **process_info,
struct dma_fence **ef)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdgpu_vm *new_vm;
int ret;
new_vm = kzalloc(sizeof(*new_vm), GFP_KERNEL);
if (!new_vm)
return -ENOMEM;
/* Initialize AMDGPU part of the VM */
ret = amdgpu_vm_init(adev, new_vm, AMDGPU_VM_CONTEXT_COMPUTE, 0);
if (ret) {
pr_err("Failed init vm ret %d\n", ret);
goto amdgpu_vm_init_fail;
}
/* Initialize KFD part of the VM and process info */
ret = init_kfd_vm(new_vm, process_info, ef);
if (ret)
goto init_kfd_vm_fail;
*vm = (void *) new_vm;
return 0;
init_kfd_vm_fail:
amdgpu_vm_fini(adev, new_vm);
amdgpu_vm_init_fail:
kfree(new_vm);
return ret;
}
void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm)
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct kgd_dev *kgd,
struct file *filp,
void **vm, void **process_info,
struct dma_fence **ef)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdkfd_vm *kfd_vm = (struct amdkfd_vm *) vm;
struct amdgpu_vm *avm = &kfd_vm->base;
struct amdgpu_bo *pd;
struct amdkfd_process_info *process_info;
struct drm_file *drm_priv = filp->private_data;
struct amdgpu_fpriv *drv_priv = drm_priv->driver_priv;
struct amdgpu_vm *avm = &drv_priv->vm;
int ret;
if (WARN_ON(!kgd || !vm))
/* Already a compute VM? */
if (avm->process_info)
return -EINVAL;
/* Convert VM into a compute VM */
ret = amdgpu_vm_make_compute(adev, avm);
if (ret)
return ret;
/* Initialize KFD part of the VM and process info */
ret = init_kfd_vm(avm, process_info, ef);
if (ret)
return ret;
*vm = (void *)avm;
return 0;
}
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdkfd_process_info *process_info = vm->process_info;
struct amdgpu_bo *pd = vm->root.base.bo;
if (!process_info)
return;
pr_debug("Destroying process vm %p\n", vm);
/* Release eviction fence from PD */
pd = avm->root.base.bo;
amdgpu_bo_reserve(pd, false);
amdgpu_bo_fence(pd, NULL, false);
amdgpu_bo_unreserve(pd);
process_info = kfd_vm->process_info;
/* Update process info */
mutex_lock(&process_info->lock);
process_info->n_vms--;
list_del(&kfd_vm->vm_list_node);
list_del(&vm->vm_list_node);
mutex_unlock(&process_info->lock);
/* Release per-process resources */
/* Release per-process resources when last compute VM is destroyed */
if (!process_info->n_vms) {
WARN_ON(!list_empty(&process_info->kfd_bo_list));
......@@ -911,6 +972,17 @@ void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm)
mutex_destroy(&process_info->lock);
kfree(process_info);
}
}
void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdgpu_vm *avm = (struct amdgpu_vm *)vm;
if (WARN_ON(!kgd || !vm))
return;
pr_debug("Destroying process vm %p\n", vm);
/* Release the VM context */
amdgpu_vm_fini(adev, avm);
......@@ -919,7 +991,7 @@ void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm)
uint32_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *vm)
{
struct amdkfd_vm *avm = (struct amdkfd_vm *)vm;
struct amdgpu_vm *avm = (struct amdgpu_vm *)vm;
return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
}
......@@ -930,7 +1002,7 @@ int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
uint64_t *offset, uint32_t flags)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdkfd_vm *kfd_vm = (struct amdkfd_vm *)vm;
struct amdgpu_vm *avm = (struct amdgpu_vm *)vm;
struct amdgpu_bo *bo;
int byte_align;
u32 alloc_domain;
......@@ -1010,8 +1082,8 @@ int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
(*mem)->va = va;
(*mem)->domain = alloc_domain;
(*mem)->mapped_to_gpu_memory = 0;
(*mem)->process_info = kfd_vm->process_info;
add_kgd_mem_to_kfd_bo_list(*mem, kfd_vm->process_info);
(*mem)->process_info = avm->process_info;
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info);
if (offset)
*offset = amdgpu_bo_mmap_offset(bo);
......@@ -1092,7 +1164,7 @@ int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
struct kgd_dev *kgd, struct kgd_mem *mem, void *vm)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdkfd_vm *kfd_vm = (struct amdkfd_vm *)vm;
struct amdgpu_vm *avm = (struct amdgpu_vm *)vm;
int ret;
struct amdgpu_bo *bo;
uint32_t domain;
......@@ -1128,19 +1200,19 @@ int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
if (unlikely(ret))
goto out;
if (check_if_add_bo_to_vm((struct amdgpu_vm *)vm, mem)) {
ret = add_bo_to_vm(adev, mem, (struct amdgpu_vm *)vm, false,
if (check_if_add_bo_to_vm(avm, mem)) {
ret = add_bo_to_vm(adev, mem, avm, false,
&bo_va_entry);
if (ret)
goto add_bo_to_vm_failed;
if (mem->aql_queue) {
ret = add_bo_to_vm(adev, mem, (struct amdgpu_vm *)vm,
ret = add_bo_to_vm(adev, mem, avm,
true, &bo_va_entry_aql);
if (ret)
goto add_bo_to_vm_failed_aql;
}
} else {
ret = vm_validate_pt_pd_bos((struct amdkfd_vm *)vm);
ret = vm_validate_pt_pd_bos(avm);
if (unlikely(ret))
goto add_bo_to_vm_failed;
}
......@@ -1184,7 +1256,7 @@ int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->pin_count)
amdgpu_bo_fence(bo,
&kfd_vm->process_info->eviction_fence->base,
&avm->process_info->eviction_fence->base,
true);
ret = unreserve_bo_and_vms(&ctx, false, false);
......@@ -1209,7 +1281,7 @@ int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct amdkfd_process_info *process_info =
((struct amdkfd_vm *)vm)->process_info;
((struct amdgpu_vm *)vm)->process_info;
unsigned long bo_size = mem->bo->tbo.mem.size;
struct kfd_bo_va_list *entry;
struct bo_vm_reservation_context ctx;
......@@ -1226,7 +1298,7 @@ int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
goto unreserve_out;
}
ret = vm_validate_pt_pd_bos((struct amdkfd_vm *)vm);
ret = vm_validate_pt_pd_bos((struct amdgpu_vm *)vm);
if (unlikely(ret))
goto unreserve_out;
......@@ -1368,7 +1440,7 @@ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
{
struct amdgpu_bo_list_entry *pd_bo_list;
struct amdkfd_process_info *process_info = info;
struct amdkfd_vm *peer_vm;
struct amdgpu_vm *peer_vm;
struct kgd_mem *mem;
struct bo_vm_reservation_context ctx;
struct amdgpu_amdkfd_fence *new_fence;
......@@ -1390,8 +1462,7 @@ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
mutex_lock(&process_info->lock);
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node)
amdgpu_vm_get_pd_bo(&peer_vm->base, &ctx.list,
&pd_bo_list[i++]);
amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]);
/* Reserve all BOs and page tables/directory. Add all BOs from
* kfd_bo_list to ctx.list
......@@ -1422,7 +1493,7 @@ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
/* FIXME: I think this isn't needed */
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
struct amdgpu_bo *bo = peer_vm->base.root.base.bo;
struct amdgpu_bo *bo = peer_vm->root.base.bo;
ttm_bo_wait(&bo->tbo, false, false);
}
......@@ -1491,7 +1562,7 @@ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
/* Attach eviction fence to PD / PT BOs */
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
struct amdgpu_bo *bo = peer_vm->base.root.base.bo;
struct amdgpu_bo *bo = peer_vm->root.base.bo;
amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true);
}
......
......@@ -32,6 +32,7 @@
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_amdkfd.h"
/*
* GPUVM
......@@ -2405,8 +2406,7 @@ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
if (vm->use_cpu_for_update)
flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
else
flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
AMDGPU_GEM_CREATE_SHADOW);
flags |= AMDGPU_GEM_CREATE_SHADOW;
size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level);
r = amdgpu_bo_create(adev, size, align, AMDGPU_GEM_DOMAIN_VRAM, flags,
......@@ -2461,6 +2461,73 @@ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
return r;
}
/**
* amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
*
* This only works on GFX VMs that don't have any BOs added and no
* page tables allocated yet.
*
* Changes the following VM parameters:
* - use_cpu_for_update
* - pte_supports_ats
* - pasid (old PASID is released, because compute manages its own PASIDs)
*
* Reinitializes the page directory to reflect the changed ATS
* setting. May leave behind an unused shadow BO for the page
* directory when switching from SDMA updates to CPU updates.
*
* Returns 0 for success, -errno for errors.
*/
int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
int r;
r = amdgpu_bo_reserve(vm->root.base.bo, true);
if (r)
return r;
/* Sanity checks */
if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
r = -EINVAL;
goto error;
}
/* Check if PD needs to be reinitialized and do it before
* changing any other state, in case it fails.
*/
if (pte_support_ats != vm->pte_support_ats) {
r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
adev->vm_manager.root_level,
pte_support_ats);
if (r)
goto error;
}
/* Update VM state */
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_COMPUTE);
vm->pte_support_ats = pte_support_ats;
DRM_DEBUG_DRIVER("VM update mode is %s\n",
vm->use_cpu_for_update ? "CPU" : "SDMA");
WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
"CPU update of VM recommended only for large BAR system\n");
if (vm->pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
vm->pasid = 0;
}
error:
amdgpu_bo_unreserve(vm->root.base.bo);
return r;
}
/**
* amdgpu_vm_free_levels - free PD/PT levels
*
......@@ -2508,6 +2575,8 @@ void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
u64 fault;
int i, r;
amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
/* Clear pending page faults from IH when the VM is destroyed */
while (kfifo_get(&vm->faults, &fault))
amdgpu_ih_clear_fault(adev, fault);
......
......@@ -207,6 +207,15 @@ struct amdgpu_vm {
/* Limit non-retry fault storms */
unsigned int fault_credit;
/* Points to the KFD process VM info */
struct amdkfd_process_info *process_info;
/* List node in amdkfd_process_info.vm_list_head */
struct list_head vm_list_node;
/* Valid while the PD is reserved or fenced */
uint64_t pd_phys_addr;
};
struct amdgpu_vm_manager {
......@@ -251,6 +260,7 @@ void amdgpu_vm_manager_init(struct amdgpu_device *adev);
void amdgpu_vm_manager_fini(struct amdgpu_device *adev);
int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int vm_context, unsigned int pasid);
int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm);
void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm);
bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
unsigned int pasid);
......
......@@ -24,6 +24,7 @@
#include <linux/export.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
......@@ -825,12 +826,155 @@ static int kfd_ioctl_get_process_apertures(struct file *filp,
return 0;
}
static int kfd_ioctl_get_process_apertures_new(struct file *filp,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_process_apertures_new_args *args = data;
struct kfd_process_device_apertures *pa;
struct kfd_process_device *pdd;
uint32_t nodes = 0;
int ret;
dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
if (args->num_of_nodes == 0) {
/* Return number of nodes, so that user space can alloacate
* sufficient memory
*/
mutex_lock(&p->mutex);
if (!kfd_has_process_device_data(p))
goto out_unlock;
/* Run over all pdd of the process */
pdd = kfd_get_first_process_device_data(p);
do {
args->num_of_nodes++;
pdd = kfd_get_next_process_device_data(p, pdd);
} while (pdd);
goto out_unlock;
}
/* Fill in process-aperture information for all available
* nodes, but not more than args->num_of_nodes as that is
* the amount of memory allocated by user
*/
pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
args->num_of_nodes), GFP_KERNEL);
if (!pa)
return -ENOMEM;
mutex_lock(&p->mutex);
if (!kfd_has_process_device_data(p)) {
args->num_of_nodes = 0;
kfree(pa);
goto out_unlock;
}
/* Run over all pdd of the process */
pdd = kfd_get_first_process_device_data(p);
do {
pa[nodes].gpu_id = pdd->dev->id;
pa[nodes].lds_base = pdd->lds_base;
pa[nodes].lds_limit = pdd->lds_limit;
pa[nodes].gpuvm_base = pdd->gpuvm_base;
pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
pa[nodes].scratch_base = pdd->scratch_base;
pa[nodes].scratch_limit = pdd->scratch_limit;
dev_dbg(kfd_device,
"gpu id %u\n", pdd->dev->id);
dev_dbg(kfd_device,
"lds_base %llX\n", pdd->lds_base);
dev_dbg(kfd_device,
"lds_limit %llX\n", pdd->lds_limit);
dev_dbg(kfd_device,
"gpuvm_base %llX\n", pdd->gpuvm_base);
dev_dbg(kfd_device,
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
dev_dbg(kfd_device,
"scratch_base %llX\n", pdd->scratch_base);
dev_dbg(kfd_device,
"scratch_limit %llX\n", pdd->scratch_limit);
nodes++;
pdd = kfd_get_next_process_device_data(p, pdd);
} while (pdd && (nodes < args->num_of_nodes));
mutex_unlock(&p->mutex);
args->num_of_nodes = nodes;
ret = copy_to_user(
(void __user *)args->kfd_process_device_apertures_ptr,
pa,
(nodes * sizeof(struct kfd_process_device_apertures)));
kfree(pa);
return ret ? -EFAULT : 0;
out_unlock:
mutex_unlock(&p->mutex);
return 0;
}
static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_create_event_args *args = data;
int err;
/* For dGPUs the event page is allocated in user mode. The
* handle is passed to KFD with the first call to this IOCTL
* through the event_page_offset field.
*/
if (args->event_page_offset) {
struct kfd_dev *kfd;
struct kfd_process_device *pdd;
void *mem, *kern_addr;
uint64_t size;
if (p->signal_page) {
pr_err("Event page is already set\n");
return -EINVAL;
}
kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
if (!kfd) {
pr_err("Getting device by id failed in %s\n", __func__);
return -EINVAL;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(kfd, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto out_unlock;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->event_page_offset));
if (!mem) {
pr_err("Can't find BO, offset is 0x%llx\n",
args->event_page_offset);
err = -EINVAL;
goto out_unlock;
}
mutex_unlock(&p->mutex);
err = kfd->kfd2kgd->map_gtt_bo_to_kernel(kfd->kgd,
mem, &kern_addr, &size);
if (err) {
pr_err("Failed to map event page to kernel\n");
return err;
}
err = kfd_event_page_set(p, kern_addr, size);
if (err) {
pr_err("Failed to set event page\n");
return err;
}
}
err = kfd_event_create(filp, p, args->event_type,
args->auto_reset != 0, args->node_id,
&args->event_id, &args->event_trigger_data,
......@@ -838,6 +982,10 @@ static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
&args->event_slot_index);
return err;
out_unlock:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
......@@ -955,6 +1103,371 @@ static int kfd_ioctl_get_tile_config(struct file *filep,
return 0;
}
static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_acquire_vm_args *args = data;
struct kfd_process_device *pdd;
struct kfd_dev *dev;
struct file *drm_file;
int ret;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
drm_file = fget(args->drm_fd);
if (!drm_file)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
ret = -EINVAL;
goto err_unlock;
}
if (pdd->drm_file) {
ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
goto err_unlock;
}
ret = kfd_process_device_init_vm(pdd, drm_file);
if (ret)
goto err_unlock;
/* On success, the PDD keeps the drm_file reference */
mutex_unlock(&p->mutex);
return 0;
err_unlock:
mutex_unlock(&p->mutex);
fput(drm_file);
return ret;
}
bool kfd_dev_is_large_bar(struct kfd_dev *dev)
{
struct kfd_local_mem_info mem_info;
if (debug_largebar) {
pr_debug("Simulate large-bar allocation on non large-bar machine\n");
return true;
}
if (dev->device_info->needs_iommu_device)
return false;
dev->kfd2kgd->get_local_mem_info(dev->kgd, &mem_info);
if (mem_info.local_mem_size_private == 0 &&
mem_info.local_mem_size_public > 0)
return true;
return false;
}
static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
struct kfd_dev *dev;
int idr_handle;
long err;
uint64_t offset = args->mmap_offset;
uint32_t flags = args->flags;
if (args->size == 0)
return -EINVAL;
dev = kfd_device_by_id(args->gpu_id);
if (!dev)
return -EINVAL;
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
!kfd_dev_is_large_bar(dev)) {
pr_err("Alloc host visible vram on small bar is not allowed\n");
return -EINVAL;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto err_unlock;
}
err = dev->kfd2kgd->alloc_memory_of_gpu(
dev->kgd, args->va_addr, args->size,
pdd->vm, (struct kgd_mem **) &mem, &offset,
flags);
if (err)
goto err_unlock;
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
if (idr_handle < 0) {
err = -EFAULT;
goto err_free;
}
mutex_unlock(&p->mutex);
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
args->mmap_offset = offset;
return 0;
err_free:
dev->kfd2kgd->free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
err_unlock:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_free_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
struct kfd_dev *dev;
int ret;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
ret = -EINVAL;
goto err_unlock;
}
mem = kfd_process_device_translate_handle(
pdd, GET_IDR_HANDLE(args->handle));
if (!mem) {
ret = -EINVAL;
goto err_unlock;
}
ret = dev->kfd2kgd->free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
/* If freeing the buffer failed, leave the handle in place for
* clean-up during process tear-down.
*/
if (!ret)
kfd_process_device_remove_obj_handle(
pdd, GET_IDR_HANDLE(args->handle));
err_unlock:
mutex_unlock(&p->mutex);
return ret;
}
static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_map_memory_to_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
struct kfd_dev *dev, *peer;
long err = 0;
int i;
uint32_t *devices_arr = NULL;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc(args->n_devices * sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (!peer) {
pr_debug("Getting device by id failed for 0x%x\n",
devices_arr[i]);
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
peer_pdd = kfd_bind_process_to_device(peer, p);
if (IS_ERR(peer_pdd)) {
err = PTR_ERR(peer_pdd);
goto get_mem_obj_from_handle_failed;
}
err = peer->kfd2kgd->map_memory_to_gpu(
peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
if (err) {
pr_err("Failed to map to gpu %d/%d\n",
i, args->n_devices);
goto map_memory_to_gpu_failed;
}
args->n_success = i+1;
}
mutex_unlock(&p->mutex);
err = dev->kfd2kgd->sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
/* Flush TLBs after waiting for the page table updates to complete */
for (i = 0; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (WARN_ON_ONCE(!peer))
continue;
peer_pdd = kfd_get_process_device_data(peer, p);
if (WARN_ON_ONCE(!peer_pdd))
continue;
kfd_flush_tlb(peer_pdd);
}
kfree(devices_arr);
return err;
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
map_memory_to_gpu_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
sync_memory_failed:
kfree(devices_arr);
return err;
}
static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
struct kfd_dev *dev, *peer;
long err = 0;
uint32_t *devices_arr = NULL, i;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc(args->n_devices * sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
err = PTR_ERR(pdd);
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer = kfd_device_by_id(devices_arr[i]);
if (!peer) {
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
peer_pdd = kfd_get_process_device_data(peer, p);
if (!peer_pdd) {
err = -ENODEV;
goto get_mem_obj_from_handle_failed;
}
err = dev->kfd2kgd->unmap_memory_to_gpu(
peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
if (err) {
pr_err("Failed to unmap from gpu %d/%d\n",
i, args->n_devices);
goto unmap_memory_from_gpu_failed;
}
args->n_success = i+1;
}
kfree(devices_arr);
mutex_unlock(&p->mutex);
return 0;
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
unmap_memory_from_gpu_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
kfree(devices_arr);
return err;
}
#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
.cmd_drv = 0, .name = #ioctl}
......@@ -1017,6 +1530,25 @@ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
kfd_ioctl_set_trap_handler, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
kfd_ioctl_get_process_apertures_new, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
kfd_ioctl_acquire_vm, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
kfd_ioctl_alloc_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
kfd_ioctl_free_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
kfd_ioctl_map_memory_to_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
kfd_ioctl_unmap_memory_from_gpu, 0),
};
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
......
......@@ -882,7 +882,7 @@ static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
crat_table->length = sizeof(struct crat_header);
status = acpi_get_table("DSDT", 0, &acpi_table);
if (status == AE_NOT_FOUND)
if (status != AE_OK)
pr_warn("DSDT table not found for OEM information\n");
else {
crat_table->oem_revision = acpi_table->revision;
......@@ -1117,6 +1117,9 @@ static int kfd_create_vcrat_image_gpu(void *pcrat_image,
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
if (debug_largebar)
local_mem_info.local_mem_size_private = 0;
if (local_mem_info.local_mem_size_private == 0)
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
......
......@@ -142,12 +142,31 @@ static int allocate_vmid(struct device_queue_manager *dqm,
return 0;
}
static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
struct qcm_process_device *qpd)
{
uint32_t len;
if (!qpd->ib_kaddr)
return -ENOMEM;
len = pm_create_release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
qpd->ib_base, (uint32_t *)qpd->ib_kaddr, len);
}
static void deallocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
/* On GFX v7, CP doesn't flush TC at dequeue */
if (q->device->device_info->asic_family == CHIP_HAWAII)
if (flush_texture_cache_nocpsch(q->device, qpd))
pr_err("Failed to flush TC\n");
kfd_flush_tlb(qpd_to_pdd(qpd));
/* Release the vmid mapping */
......@@ -792,11 +811,12 @@ static void uninitialize(struct device_queue_manager *dqm)
static int start_nocpsch(struct device_queue_manager *dqm)
{
init_interrupts(dqm);
return 0;
return pm_init(&dqm->packets, dqm);
}
static int stop_nocpsch(struct device_queue_manager *dqm)
{
pm_uninit(&dqm->packets);
return 0;
}
......
......@@ -52,6 +52,7 @@ struct kfd_event_waiter {
struct kfd_signal_page {
uint64_t *kernel_address;
uint64_t __user *user_address;
bool need_to_free_pages;
};
......@@ -79,6 +80,7 @@ static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
KFD_SIGNAL_EVENT_LIMIT * 8);
page->kernel_address = backing_store;
page->need_to_free_pages = true;
pr_debug("Allocated new event signal page at %p, for process %p\n",
page, p);
......@@ -269,8 +271,9 @@ static void shutdown_signal_page(struct kfd_process *p)
struct kfd_signal_page *page = p->signal_page;
if (page) {
free_pages((unsigned long)page->kernel_address,
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
if (page->need_to_free_pages)
free_pages((unsigned long)page->kernel_address,
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
kfree(page);
}
}
......@@ -292,6 +295,30 @@ static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
return ev->type == KFD_EVENT_TYPE_SIGNAL;
}
int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
uint64_t size)
{
struct kfd_signal_page *page;
if (p->signal_page)
return -EBUSY;
page = kzalloc(sizeof(*page), GFP_KERNEL);
if (!page)
return -ENOMEM;
/* Initialize all events to unsignaled */
memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
KFD_SIGNAL_EVENT_LIMIT * 8);
page->kernel_address = kernel_address;
p->signal_page = page;
p->signal_mapped_size = size;
return 0;
}
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
uint32_t event_type, bool auto_reset, uint32_t node_id,
uint32_t *event_id, uint32_t *event_trigger_data,
......
......@@ -278,21 +278,28 @@
#define MAKE_GPUVM_APP_BASE(gpu_num) \
(((uint64_t)(gpu_num) << 61) + 0x1000000000000L)
#define MAKE_GPUVM_APP_LIMIT(base) \
(((uint64_t)(base) & \
0xFFFFFF0000000000UL) | 0xFFFFFFFFFFL)
#define MAKE_GPUVM_APP_LIMIT(base, size) \
(((uint64_t)(base) & 0xFFFFFF0000000000UL) + (size) - 1)
#define MAKE_SCRATCH_APP_BASE(gpu_num) \
(((uint64_t)(gpu_num) << 61) + 0x100000000L)
#define MAKE_SCRATCH_APP_BASE() \
(((uint64_t)(0x1UL) << 61) + 0x100000000L)
#define MAKE_SCRATCH_APP_LIMIT(base) \
(((uint64_t)base & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
#define MAKE_LDS_APP_BASE(gpu_num) \
(((uint64_t)(gpu_num) << 61) + 0x0)
#define MAKE_LDS_APP_BASE() \
(((uint64_t)(0x1UL) << 61) + 0x0)
#define MAKE_LDS_APP_LIMIT(base) \
(((uint64_t)(base) & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
/* User mode manages most of the SVM aperture address space. The low
* 16MB are reserved for kernel use (CWSR trap handler and kernel IB
* for now).
*/
#define SVM_USER_BASE 0x1000000ull
#define SVM_CWSR_BASE (SVM_USER_BASE - KFD_CWSR_TBA_TMA_SIZE)
#define SVM_IB_BASE (SVM_CWSR_BASE - PAGE_SIZE)
int kfd_init_apertures(struct kfd_process *process)
{
uint8_t id = 0;
......@@ -314,7 +321,7 @@ int kfd_init_apertures(struct kfd_process *process)
return -1;
}
/*
* For 64 bit process aperture will be statically reserved in
* For 64 bit process apertures will be statically reserved in
* the x86_64 non canonical process address space
* amdkfd doesn't currently support apertures for 32 bit process
*/
......@@ -323,23 +330,35 @@ int kfd_init_apertures(struct kfd_process *process)
pdd->gpuvm_base = pdd->gpuvm_limit = 0;
pdd->scratch_base = pdd->scratch_limit = 0;
} else {
/*
* node id couldn't be 0 - the three MSB bits of
* aperture shoudn't be 0
/* Same LDS and scratch apertures can be used
* on all GPUs. This allows using more dGPUs
* than placement options for apertures.
*/
pdd->lds_base = MAKE_LDS_APP_BASE(id + 1);
pdd->lds_base = MAKE_LDS_APP_BASE();
pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
pdd->gpuvm_base = MAKE_GPUVM_APP_BASE(id + 1);
pdd->gpuvm_limit =
MAKE_GPUVM_APP_LIMIT(pdd->gpuvm_base);
pdd->scratch_base = MAKE_SCRATCH_APP_BASE(id + 1);
pdd->scratch_base = MAKE_SCRATCH_APP_BASE();
pdd->scratch_limit =
MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
if (dev->device_info->needs_iommu_device) {
/* APUs: GPUVM aperture in
* non-canonical address space
*/
pdd->gpuvm_base = MAKE_GPUVM_APP_BASE(id + 1);
pdd->gpuvm_limit = MAKE_GPUVM_APP_LIMIT(
pdd->gpuvm_base,
dev->shared_resources.gpuvm_size);
} else {
/* dGPUs: SVM aperture starting at 0
* with small reserved space for kernel
*/
pdd->gpuvm_base = SVM_USER_BASE;
pdd->gpuvm_limit =
dev->shared_resources.gpuvm_size - 1;
pdd->qpd.cwsr_base = SVM_CWSR_BASE;
pdd->qpd.ib_base = SVM_IB_BASE;
}
}
dev_dbg(kfd_device, "node id %u\n", id);
......
......@@ -71,6 +71,11 @@ module_param(send_sigterm, int, 0444);
MODULE_PARM_DESC(send_sigterm,
"Send sigterm to HSA process on unhandled exception (0 = disable, 1 = enable)");
int debug_largebar;
module_param(debug_largebar, int, 0444);
MODULE_PARM_DESC(debug_largebar,
"Debug large-bar flag used to simulate large-bar capability on non-large bar machine (0 = disable, 1 = enable)");
int ignore_crat;
module_param(ignore_crat, int, 0444);
MODULE_PARM_DESC(ignore_crat,
......@@ -128,7 +133,9 @@ static int __init kfd_module_init(void)
if (err < 0)
goto err_topology;
kfd_process_create_wq();
err = kfd_process_create_wq();
if (err < 0)
goto err_create_wq;
kfd_debugfs_init();
......@@ -138,6 +145,8 @@ static int __init kfd_module_init(void)
return 0;
err_create_wq:
kfd_topology_shutdown();
err_topology:
kfd_chardev_exit();
err_ioctl:
......
......@@ -356,6 +356,43 @@ static int pm_create_runlist_ib(struct packet_manager *pm,
return retval;
}
/* pm_create_release_mem - Create a RELEASE_MEM packet and return the size
* of this packet
* @gpu_addr - GPU address of the packet. It's a virtual address.
* @buffer - buffer to fill up with the packet. It's a CPU kernel pointer
* Return - length of the packet
*/
uint32_t pm_create_release_mem(uint64_t gpu_addr, uint32_t *buffer)
{
struct pm4_mec_release_mem *packet;
WARN_ON(!buffer);
packet = (struct pm4_mec_release_mem *)buffer;
memset(buffer, 0, sizeof(*packet));
packet->header.u32All = build_pm4_header(IT_RELEASE_MEM,
sizeof(*packet));
packet->bitfields2.event_type = CACHE_FLUSH_AND_INV_TS_EVENT;
packet->bitfields2.event_index = event_index___release_mem__end_of_pipe;
packet->bitfields2.tcl1_action_ena = 1;
packet->bitfields2.tc_action_ena = 1;
packet->bitfields2.cache_policy = cache_policy___release_mem__lru;
packet->bitfields2.atc = 0;
packet->bitfields3.data_sel = data_sel___release_mem__send_32_bit_low;
packet->bitfields3.int_sel =
int_sel___release_mem__send_interrupt_after_write_confirm;
packet->bitfields4.address_lo_32b = (gpu_addr & 0xffffffff) >> 2;
packet->address_hi = upper_32_bits(gpu_addr);
packet->data_lo = 0;
return sizeof(*packet) / sizeof(unsigned int);
}
int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm)
{
pm->dqm = dqm;
......
......@@ -104,6 +104,12 @@ extern int cwsr_enable;
*/
extern int send_sigterm;
/*
* This kernel module is used to simulate large bar machine on non-large bar
* enabled machines.
*/
extern int debug_largebar;
/*
* Ignore CRAT table during KFD initialization, can be used to work around
* broken CRAT tables on some AMD systems
......@@ -488,8 +494,13 @@ struct qcm_process_device {
/* CWSR memory */
void *cwsr_kaddr;
uint64_t cwsr_base;
uint64_t tba_addr;
uint64_t tma_addr;
/* IB memory */
uint64_t ib_base;
void *ib_kaddr;
};
/* KFD Memory Eviction */
......@@ -504,6 +515,14 @@ struct qcm_process_device {
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
struct dma_fence *fence);
/* 8 byte handle containing GPU ID in the most significant 4 bytes and
* idr_handle in the least significant 4 bytes
*/
#define MAKE_HANDLE(gpu_id, idr_handle) \
(((uint64_t)(gpu_id) << 32) + idr_handle)
#define GET_GPU_ID(handle) (handle >> 32)
#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
enum kfd_pdd_bound {
PDD_UNBOUND = 0,
PDD_BOUND,
......@@ -536,8 +555,12 @@ struct kfd_process_device {
uint64_t scratch_limit;
/* VM context for GPUVM allocations */
struct file *drm_file;
void *vm;
/* GPUVM allocations storage */
struct idr alloc_idr;
/* Flag used to tell the pdd has dequeued from the dqm.
* This is used to prevent dev->dqm->ops.process_termination() from
* being called twice when it is already called in IOMMU callback
......@@ -651,7 +674,7 @@ struct amdkfd_ioctl_desc {
const char *name;
};
void kfd_process_create_wq(void);
int kfd_process_create_wq(void);
void kfd_process_destroy_wq(void);
struct kfd_process *kfd_create_process(struct file *filep);
struct kfd_process *kfd_get_process(const struct task_struct *);
......@@ -661,6 +684,8 @@ void kfd_unref_process(struct kfd_process *p);
void kfd_suspend_all_processes(void);
int kfd_resume_all_processes(void);
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
struct file *drm_file);
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
struct kfd_process *p);
struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
......@@ -671,6 +696,14 @@ struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
int kfd_reserved_mem_mmap(struct kfd_process *process,
struct vm_area_struct *vma);
/* KFD process API for creating and translating handles */
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
void *mem);
void *kfd_process_device_translate_handle(struct kfd_process_device *p,
int handle);
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
int handle);
/* Process device data iterator */
struct kfd_process_device *kfd_get_first_process_device_data(
struct kfd_process *p);
......@@ -816,6 +849,8 @@ int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
void pm_release_ib(struct packet_manager *pm);
uint32_t pm_create_release_mem(uint64_t gpu_addr, uint32_t *buffer);
uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
/* Events */
......@@ -837,6 +872,8 @@ void kfd_signal_iommu_event(struct kfd_dev *dev,
void kfd_signal_hw_exception_event(unsigned int pasid);
int kfd_set_event(struct kfd_process *p, uint32_t event_id);
int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
uint64_t size);
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
uint32_t event_type, bool auto_reset, uint32_t node_id,
uint32_t *event_id, uint32_t *event_trigger_data,
......
......@@ -30,6 +30,7 @@
#include <linux/notifier.h>
#include <linux/compat.h>
#include <linux/mman.h>
#include <linux/file.h>
struct mm_struct;
......@@ -47,22 +48,39 @@ static DEFINE_MUTEX(kfd_processes_mutex);
DEFINE_SRCU(kfd_processes_srcu);
/* For process termination handling */
static struct workqueue_struct *kfd_process_wq;
/* Ordered, single-threaded workqueue for restoring evicted
* processes. Restoring multiple processes concurrently under memory
* pressure can lead to processes blocking each other from validating
* their BOs and result in a live-lock situation where processes
* remain evicted indefinitely.
*/
static struct workqueue_struct *kfd_restore_wq;
static struct kfd_process *find_process(const struct task_struct *thread);
static void kfd_process_ref_release(struct kref *ref);
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep);
static int kfd_process_init_cwsr(struct kfd_process *p, struct file *filep);
static void evict_process_worker(struct work_struct *work);
static void restore_process_worker(struct work_struct *work);
void kfd_process_create_wq(void)
int kfd_process_create_wq(void)
{
if (!kfd_process_wq)
kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
if (!kfd_restore_wq)
kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
if (!kfd_process_wq || !kfd_restore_wq) {
kfd_process_destroy_wq();
return -ENOMEM;
}
return 0;
}
void kfd_process_destroy_wq(void)
......@@ -71,6 +89,116 @@ void kfd_process_destroy_wq(void)
destroy_workqueue(kfd_process_wq);
kfd_process_wq = NULL;
}
if (kfd_restore_wq) {
destroy_workqueue(kfd_restore_wq);
kfd_restore_wq = NULL;
}
}
static void kfd_process_free_gpuvm(struct kgd_mem *mem,
struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
}
/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
* This function should be only called right after the process
* is created and when kfd_processes_mutex is still being held
* to avoid concurrency. Because of that exclusiveness, we do
* not need to take p->mutex.
*/
static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
uint64_t gpu_va, uint32_t size,
uint32_t flags, void **kptr)
{
struct kfd_dev *kdev = pdd->dev;
struct kgd_mem *mem = NULL;
int handle;
int err;
err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
pdd->vm, &mem, NULL, flags);
if (err)
goto err_alloc_mem;
err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
if (err)
goto err_map_mem;
err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
/* Create an obj handle so kfd_process_device_remove_obj_handle
* will take care of the bo removal when the process finishes.
* We do not need to take p->mutex, because the process is just
* created and the ioctls have not had the chance to run.
*/
handle = kfd_process_device_create_obj_handle(pdd, mem);
if (handle < 0) {
err = handle;
goto free_gpuvm;
}
if (kptr) {
err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
(struct kgd_mem *)mem, kptr, NULL);
if (err) {
pr_debug("Map GTT BO to kernel failed\n");
goto free_obj_handle;
}
}
return err;
free_obj_handle:
kfd_process_device_remove_obj_handle(pdd, handle);
free_gpuvm:
sync_memory_failed:
kfd_process_free_gpuvm(mem, pdd);
return err;
err_map_mem:
kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
err_alloc_mem:
*kptr = NULL;
return err;
}
/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
* process for IB usage The memory reserved is for KFD to submit
* IB to AMDGPU from kernel. If the memory is reserved
* successfully, ib_kaddr will have the CPU/kernel
* address. Check ib_kaddr before accessing the memory.
*/
static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
{
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = ALLOC_MEM_FLAGS_GTT |
ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
ALLOC_MEM_FLAGS_WRITABLE |
ALLOC_MEM_FLAGS_EXECUTABLE;
void *kaddr;
int ret;
if (qpd->ib_kaddr || !qpd->ib_base)
return 0;
/* ib_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
&kaddr);
if (ret)
return ret;
qpd->ib_kaddr = kaddr;
return 0;
}
struct kfd_process *kfd_create_process(struct file *filep)
......@@ -149,6 +277,40 @@ void kfd_unref_process(struct kfd_process *p)
kref_put(&p->ref, kfd_process_ref_release);
}
static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
{
struct kfd_process *p = pdd->process;
void *mem;
int id;
/*
* Remove all handles from idr and release appropriate
* local memory object
*/
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
struct kfd_process_device *peer_pdd;
list_for_each_entry(peer_pdd, &p->per_device_data,
per_device_list) {
if (!peer_pdd->vm)
continue;
peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
peer_pdd->dev->kgd, mem, peer_pdd->vm);
}
pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
kfd_process_device_remove_obj_handle(pdd, id);
}
}
static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
{
struct kfd_process_device *pdd;
list_for_each_entry(pdd, &p->per_device_data, per_device_list)
kfd_process_device_free_bos(pdd);
}
static void kfd_process_destroy_pdds(struct kfd_process *p)
{
struct kfd_process_device *pdd, *temp;
......@@ -158,16 +320,20 @@ static void kfd_process_destroy_pdds(struct kfd_process *p)
pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
pdd->dev->id, p->pasid);
if (pdd->vm)
if (pdd->drm_file)
fput(pdd->drm_file);
else if (pdd->vm)
pdd->dev->kfd2kgd->destroy_process_vm(
pdd->dev->kgd, pdd->vm);
list_del(&pdd->per_device_list);
if (pdd->qpd.cwsr_kaddr)
if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
get_order(KFD_CWSR_TBA_TMA_SIZE));
idr_destroy(&pdd->alloc_idr);
kfree(pdd);
}
}
......@@ -184,6 +350,8 @@ static void kfd_process_wq_release(struct work_struct *work)
kfd_iommu_unbind_process(p);
kfd_process_free_outstanding_kfd_bos(p);
kfd_process_destroy_pdds(p);
dma_fence_put(p->ef);
......@@ -271,18 +439,18 @@ static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
.release = kfd_process_notifier_release,
};
static int kfd_process_init_cwsr(struct kfd_process *p, struct file *filep)
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
{
unsigned long offset;
struct kfd_process_device *pdd = NULL;
struct kfd_dev *dev = NULL;
struct qcm_process_device *qpd = NULL;
struct kfd_process_device *pdd;
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
dev = pdd->dev;
qpd = &pdd->qpd;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr)
struct kfd_dev *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
continue;
offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
......@@ -307,6 +475,36 @@ static int kfd_process_init_cwsr(struct kfd_process *p, struct file *filep)
return 0;
}
static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
struct qcm_process_device *qpd = &pdd->qpd;
uint32_t flags = ALLOC_MEM_FLAGS_GTT |
ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
void *kaddr;
int ret;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
return 0;
/* cwsr_base is only set for dGPU */
ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
if (ret)
return ret;
qpd->cwsr_kaddr = kaddr;
qpd->tba_addr = qpd->cwsr_base;
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
return 0;
}
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep)
{
......@@ -361,13 +559,14 @@ static struct kfd_process *create_process(const struct task_struct *thread,
INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
process->last_restore_timestamp = get_jiffies_64();
err = kfd_process_init_cwsr(process, filep);
err = kfd_process_init_cwsr_apu(process, filep);
if (err)
goto err_init_cwsr;
return process;
err_init_cwsr:
kfd_process_free_outstanding_kfd_bos(process);
kfd_process_destroy_pdds(process);
err_init_apertures:
pqm_uninit(&process->pqm);
......@@ -418,18 +617,70 @@ struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
pdd->already_dequeued = false;
list_add(&pdd->per_device_list, &p->per_device_data);
/* Create the GPUVM context for this specific device */
if (dev->kfd2kgd->create_process_vm(dev->kgd, &pdd->vm,
&p->kgd_process_info, &p->ef)) {
/* Init idr used for memory handle translation */
idr_init(&pdd->alloc_idr);
return pdd;
}
/**
* kfd_process_device_init_vm - Initialize a VM for a process-device
*
* @pdd: The process-device
* @drm_file: Optional pointer to a DRM file descriptor
*
* If @drm_file is specified, it will be used to acquire the VM from
* that file descriptor. If successful, the @pdd takes ownership of
* the file descriptor.
*
* If @drm_file is NULL, a new VM is created.
*
* Returns 0 on success, -errno on failure.
*/
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
struct file *drm_file)
{
struct kfd_process *p;
struct kfd_dev *dev;
int ret;
if (pdd->vm)
return drm_file ? -EBUSY : 0;
p = pdd->process;
dev = pdd->dev;
if (drm_file)
ret = dev->kfd2kgd->acquire_process_vm(
dev->kgd, drm_file,
&pdd->vm, &p->kgd_process_info, &p->ef);
else
ret = dev->kfd2kgd->create_process_vm(
dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
if (ret) {
pr_err("Failed to create process VM object\n");
goto err_create_pdd;
return ret;
}
return pdd;
err_create_pdd:
list_del(&pdd->per_device_list);
kfree(pdd);
return NULL;
ret = kfd_process_device_reserve_ib_mem(pdd);
if (ret)
goto err_reserve_ib_mem;
ret = kfd_process_device_init_cwsr_dgpu(pdd);
if (ret)
goto err_init_cwsr;
pdd->drm_file = drm_file;
return 0;
err_init_cwsr:
err_reserve_ib_mem:
kfd_process_device_free_bos(pdd);
if (!drm_file)
dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
pdd->vm = NULL;
return ret;
}
/*
......@@ -455,6 +706,10 @@ struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
if (err)
return ERR_PTR(err);
err = kfd_process_device_init_vm(pdd, NULL);
if (err)
return ERR_PTR(err);
return pdd;
}
......@@ -480,6 +735,37 @@ bool kfd_has_process_device_data(struct kfd_process *p)
return !(list_empty(&p->per_device_data));
}
/* Create specific handle mapped to mem from process local memory idr
* Assumes that the process lock is held.
*/
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
void *mem)
{
return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
}
/* Translate specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle < 0)
return NULL;
return idr_find(&pdd->alloc_idr, handle);
}
/* Remove specific handle from process local memory idr
* Assumes that the process lock is held.
*/
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
int handle)
{
if (handle >= 0)
idr_remove(&pdd->alloc_idr, handle);
}
/* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
{
......@@ -605,7 +891,7 @@ static void evict_process_worker(struct work_struct *work)
dma_fence_signal(p->ef);
dma_fence_put(p->ef);
p->ef = NULL;
schedule_delayed_work(&p->restore_work,
queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
pr_debug("Finished evicting pasid %d\n", p->pasid);
......@@ -654,7 +940,7 @@ static void restore_process_worker(struct work_struct *work)
if (ret) {
pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
p->pasid, PROCESS_BACK_OFF_TIME_MS);
ret = schedule_delayed_work(&p->restore_work,
ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
WARN(!ret, "reschedule restore work failed\n");
return;
......@@ -693,7 +979,7 @@ int kfd_resume_all_processes(void)
int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (!schedule_delayed_work(&p->restore_work, 0)) {
if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
pr_err("Restore process %d failed during resume\n",
p->pasid);
ret = -EFAULT;
......
......@@ -441,6 +441,8 @@ static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
dev->node_props.device_id);
sysfs_show_32bit_prop(buffer, "location_id",
dev->node_props.location_id);
sysfs_show_32bit_prop(buffer, "drm_render_minor",
dev->node_props.drm_render_minor);
if (dev->gpu) {
log_max_watch_addr =
......@@ -1214,6 +1216,8 @@ int kfd_topology_add_device(struct kfd_dev *gpu)
dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd);
dev->node_props.max_engine_clk_ccompute =
cpufreq_quick_get_max(0) / 1000;
dev->node_props.drm_render_minor =
gpu->shared_resources.drm_render_minor;
kfd_fill_mem_clk_max_info(dev);
kfd_fill_iolink_non_crat_info(dev);
......
......@@ -71,6 +71,7 @@ struct kfd_node_properties {
uint32_t location_id;
uint32_t max_engine_clk_fcompute;
uint32_t max_engine_clk_ccompute;
int32_t drm_render_minor;
uint16_t marketing_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
};
......
......@@ -130,6 +130,7 @@ struct tile_config {
/*
* Allocation flag domains
* NOTE: This must match the corresponding definitions in kfd_ioctl.h.
*/
#define ALLOC_MEM_FLAGS_VRAM (1 << 0)
#define ALLOC_MEM_FLAGS_GTT (1 << 1)
......@@ -138,6 +139,7 @@ struct tile_config {
/*
* Allocation flags attributes/access options.
* NOTE: This must match the corresponding definitions in kfd_ioctl.h.
*/
#define ALLOC_MEM_FLAGS_WRITABLE (1 << 31)
#define ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30)
......@@ -336,6 +338,8 @@ struct kfd2kgd_calls {
int (*create_process_vm)(struct kgd_dev *kgd, void **vm,
void **process_info, struct dma_fence **ef);
int (*acquire_process_vm)(struct kgd_dev *kgd, struct file *filp,
void **vm, void **process_info, struct dma_fence **ef);
void (*destroy_process_vm)(struct kgd_dev *kgd, void *vm);
uint32_t (*get_process_page_dir)(void *vm);
void (*set_vm_context_page_table_base)(struct kgd_dev *kgd,
......
......@@ -107,8 +107,6 @@ struct kfd_ioctl_get_clock_counters_args {
__u32 pad;
};
#define NUM_OF_SUPPORTED_GPUS 7
struct kfd_process_device_apertures {
__u64 lds_base; /* from KFD */
__u64 lds_limit; /* from KFD */
......@@ -120,6 +118,12 @@ struct kfd_process_device_apertures {
__u32 pad;
};
/*
* AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use
* AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an
* unlimited number of GPUs.
*/
#define NUM_OF_SUPPORTED_GPUS 7
struct kfd_ioctl_get_process_apertures_args {
struct kfd_process_device_apertures
process_apertures[NUM_OF_SUPPORTED_GPUS];/* from KFD */
......@@ -129,6 +133,19 @@ struct kfd_ioctl_get_process_apertures_args {
__u32 pad;
};
struct kfd_ioctl_get_process_apertures_new_args {
/* User allocated. Pointer to struct kfd_process_device_apertures
* filled in by Kernel
*/
__u64 kfd_process_device_apertures_ptr;
/* to KFD - indicates amount of memory present in
* kfd_process_device_apertures_ptr
* from KFD - Number of entries filled by KFD.
*/
__u32 num_of_nodes;
__u32 pad;
};
#define MAX_ALLOWED_NUM_POINTS 100
#define MAX_ALLOWED_AW_BUFF_SIZE 4096
#define MAX_ALLOWED_WAC_BUFF_SIZE 128
......@@ -269,6 +286,86 @@ struct kfd_ioctl_set_trap_handler_args {
__u32 pad;
};
struct kfd_ioctl_acquire_vm_args {
__u32 drm_fd; /* to KFD */
__u32 gpu_id; /* to KFD */
};
/* Allocation flags: memory types */
#define KFD_IOC_ALLOC_MEM_FLAGS_VRAM (1 << 0)
#define KFD_IOC_ALLOC_MEM_FLAGS_GTT (1 << 1)
#define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR (1 << 2)
#define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL (1 << 3)
/* Allocation flags: attributes/access options */
#define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE (1 << 31)
#define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30)
#define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC (1 << 29)
#define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE (1 << 28)
#define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM (1 << 27)
#define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT (1 << 26)
/* Allocate memory for later SVM (shared virtual memory) mapping.
*
* @va_addr: virtual address of the memory to be allocated
* all later mappings on all GPUs will use this address
* @size: size in bytes
* @handle: buffer handle returned to user mode, used to refer to
* this allocation for mapping, unmapping and freeing
* @mmap_offset: for CPU-mapping the allocation by mmapping a render node
* for userptrs this is overloaded to specify the CPU address
* @gpu_id: device identifier
* @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above
*/
struct kfd_ioctl_alloc_memory_of_gpu_args {
__u64 va_addr; /* to KFD */
__u64 size; /* to KFD */
__u64 handle; /* from KFD */
__u64 mmap_offset; /* to KFD (userptr), from KFD (mmap offset) */
__u32 gpu_id; /* to KFD */
__u32 flags;
};
/* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu
*
* @handle: memory handle returned by alloc
*/
struct kfd_ioctl_free_memory_of_gpu_args {
__u64 handle; /* to KFD */
};
/* Map memory to one or more GPUs
*
* @handle: memory handle returned by alloc
* @device_ids_array_ptr: array of gpu_ids (__u32 per device)
* @n_devices: number of devices in the array
* @n_success: number of devices mapped successfully
*
* @n_success returns information to the caller how many devices from
* the start of the array have mapped the buffer successfully. It can
* be passed into a subsequent retry call to skip those devices. For
* the first call the caller should initialize it to 0.
*
* If the ioctl completes with return code 0 (success), n_success ==
* n_devices.
*/
struct kfd_ioctl_map_memory_to_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
/* Unmap memory from one or more GPUs
*
* same arguments as for mapping
*/
struct kfd_ioctl_unmap_memory_from_gpu_args {
__u64 handle; /* to KFD */
__u64 device_ids_array_ptr; /* to KFD */
__u32 n_devices; /* to KFD */
__u32 n_success; /* to/from KFD */
};
#define AMDKFD_IOCTL_BASE 'K'
#define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr)
#define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type)
......@@ -332,7 +429,26 @@ struct kfd_ioctl_set_trap_handler_args {
#define AMDKFD_IOC_SET_TRAP_HANDLER \
AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args)
#define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW \
AMDKFD_IOWR(0x14, \
struct kfd_ioctl_get_process_apertures_new_args)
#define AMDKFD_IOC_ACQUIRE_VM \
AMDKFD_IOW(0x15, struct kfd_ioctl_acquire_vm_args)
#define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU \
AMDKFD_IOWR(0x16, struct kfd_ioctl_alloc_memory_of_gpu_args)
#define AMDKFD_IOC_FREE_MEMORY_OF_GPU \
AMDKFD_IOW(0x17, struct kfd_ioctl_free_memory_of_gpu_args)
#define AMDKFD_IOC_MAP_MEMORY_TO_GPU \
AMDKFD_IOWR(0x18, struct kfd_ioctl_map_memory_to_gpu_args)
#define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU \
AMDKFD_IOWR(0x19, struct kfd_ioctl_unmap_memory_from_gpu_args)
#define AMDKFD_COMMAND_START 0x01
#define AMDKFD_COMMAND_END 0x14
#define AMDKFD_COMMAND_END 0x1A
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment