Commit a1ab41eb authored by Gilad Ben-Yossef's avatar Gilad Ben-Yossef Committed by Greg Kroah-Hartman

staging: ccree: stdint to kernel types conversion

Move from stdint style int_t/uint_t to kernel style u/s types.
Signed-off-by: default avatarGilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent b4573c90
......@@ -18,12 +18,7 @@
#ifndef _CC_CRYPTO_CTX_H_
#define _CC_CRYPTO_CTX_H_
#ifdef __KERNEL__
#include <linux/types.h>
#define INT32_MAX 0x7FFFFFFFL
#else
#include <stdint.h>
#endif
#ifndef max
......@@ -113,7 +108,7 @@ enum drv_engine_type {
DRV_ENGINE_HASH = 3,
DRV_ENGINE_RC4 = 4,
DRV_ENGINE_DOUT = 5,
DRV_ENGINE_RESERVE32B = INT32_MAX,
DRV_ENGINE_RESERVE32B = S32_MAX,
};
enum drv_crypto_alg {
......@@ -126,7 +121,7 @@ enum drv_crypto_alg {
DRV_CRYPTO_ALG_AEAD = 5,
DRV_CRYPTO_ALG_BYPASS = 6,
DRV_CRYPTO_ALG_NUM = 7,
DRV_CRYPTO_ALG_RESERVE32B = INT32_MAX
DRV_CRYPTO_ALG_RESERVE32B = S32_MAX
};
enum drv_crypto_direction {
......@@ -134,7 +129,7 @@ enum drv_crypto_direction {
DRV_CRYPTO_DIRECTION_ENCRYPT = 0,
DRV_CRYPTO_DIRECTION_DECRYPT = 1,
DRV_CRYPTO_DIRECTION_DECRYPT_ENCRYPT = 3,
DRV_CRYPTO_DIRECTION_RESERVE32B = INT32_MAX
DRV_CRYPTO_DIRECTION_RESERVE32B = S32_MAX
};
enum drv_cipher_mode {
......@@ -152,7 +147,7 @@ enum drv_cipher_mode {
DRV_CIPHER_GCTR = 12,
DRV_CIPHER_ESSIV = 13,
DRV_CIPHER_BITLOCKER = 14,
DRV_CIPHER_RESERVE32B = INT32_MAX
DRV_CIPHER_RESERVE32B = S32_MAX
};
enum drv_hash_mode {
......@@ -167,7 +162,7 @@ enum drv_hash_mode {
DRV_HASH_XCBC_MAC = 7,
DRV_HASH_CMAC = 8,
DRV_HASH_MODE_NUM = 9,
DRV_HASH_RESERVE32B = INT32_MAX
DRV_HASH_RESERVE32B = S32_MAX
};
enum drv_hash_hw_mode {
......@@ -178,7 +173,7 @@ enum drv_hash_hw_mode {
DRV_HASH_HW_SHA512 = 4,
DRV_HASH_HW_SHA384 = 12,
DRV_HASH_HW_GHASH = 6,
DRV_HASH_HW_RESERVE32B = INT32_MAX
DRV_HASH_HW_RESERVE32B = S32_MAX
};
enum drv_multi2_mode {
......@@ -186,7 +181,7 @@ enum drv_multi2_mode {
DRV_MULTI2_ECB = 0,
DRV_MULTI2_CBC = 1,
DRV_MULTI2_OFB = 2,
DRV_MULTI2_RESERVE32B = INT32_MAX
DRV_MULTI2_RESERVE32B = S32_MAX
};
......@@ -201,13 +196,13 @@ enum drv_crypto_key_type {
DRV_APPLET_KEY = 4, /* NA */
DRV_PLATFORM_KEY = 5, /* 0x101 */
DRV_CUSTOMER_KEY = 6, /* 0x110 */
DRV_END_OF_KEYS = INT32_MAX,
DRV_END_OF_KEYS = S32_MAX,
};
enum drv_crypto_padding_type {
DRV_PADDING_NONE = 0,
DRV_PADDING_PKCS7 = 1,
DRV_PADDING_RESERVE32B = INT32_MAX
DRV_PADDING_RESERVE32B = S32_MAX
};
/*******************************************************************/
......@@ -223,9 +218,9 @@ struct drv_ctx_generic {
struct drv_ctx_hash {
enum drv_crypto_alg alg; /* DRV_CRYPTO_ALG_HASH */
enum drv_hash_mode mode;
uint8_t digest[CC_DIGEST_SIZE_MAX];
u8 digest[CC_DIGEST_SIZE_MAX];
/* reserve to end of allocated context size */
uint8_t reserved[CC_CTX_SIZE - 2 * sizeof(uint32_t) -
u8 reserved[CC_CTX_SIZE - 2 * sizeof(u32) -
CC_DIGEST_SIZE_MAX];
};
......@@ -234,11 +229,11 @@ struct drv_ctx_hash {
struct drv_ctx_hmac {
enum drv_crypto_alg alg; /* DRV_CRYPTO_ALG_HMAC */
enum drv_hash_mode mode;
uint8_t digest[CC_DIGEST_SIZE_MAX];
uint32_t k0[CC_HMAC_BLOCK_SIZE_MAX/sizeof(uint32_t)];
uint32_t k0_size;
u8 digest[CC_DIGEST_SIZE_MAX];
u32 k0[CC_HMAC_BLOCK_SIZE_MAX/sizeof(u32)];
u32 k0_size;
/* reserve to end of allocated context size */
uint8_t reserved[CC_CTX_SIZE - 3 * sizeof(uint32_t) -
u8 reserved[CC_CTX_SIZE - 3 * sizeof(u32) -
CC_DIGEST_SIZE_MAX - CC_HMAC_BLOCK_SIZE_MAX];
};
......@@ -248,19 +243,19 @@ struct drv_ctx_cipher {
enum drv_crypto_direction direction;
enum drv_crypto_key_type crypto_key_type;
enum drv_crypto_padding_type padding_type;
uint32_t key_size; /* numeric value in bytes */
uint32_t data_unit_size; /* required for XTS */
u32 key_size; /* numeric value in bytes */
u32 data_unit_size; /* required for XTS */
/* block_state is the AES engine block state.
* It is used by the host to pass IV or counter at initialization.
* It is used by SeP for intermediate block chaining state and for
* returning MAC algorithms results. */
uint8_t block_state[CC_AES_BLOCK_SIZE];
uint8_t key[CC_AES_KEY_SIZE_MAX];
uint8_t xex_key[CC_AES_KEY_SIZE_MAX];
u8 block_state[CC_AES_BLOCK_SIZE];
u8 key[CC_AES_KEY_SIZE_MAX];
u8 xex_key[CC_AES_KEY_SIZE_MAX];
/* reserve to end of allocated context size */
uint32_t reserved[CC_DRV_CTX_SIZE_WORDS - 7 -
CC_AES_BLOCK_SIZE/sizeof(uint32_t) - 2 *
(CC_AES_KEY_SIZE_MAX/sizeof(uint32_t))];
u32 reserved[CC_DRV_CTX_SIZE_WORDS - 7 -
CC_AES_BLOCK_SIZE/sizeof(u32) - 2 *
(CC_AES_KEY_SIZE_MAX/sizeof(u32))];
};
/* authentication and encryption with associated data class */
......@@ -268,20 +263,20 @@ struct drv_ctx_aead {
enum drv_crypto_alg alg; /* DRV_CRYPTO_ALG_AES */
enum drv_cipher_mode mode;
enum drv_crypto_direction direction;
uint32_t key_size; /* numeric value in bytes */
uint32_t nonce_size; /* nonce size (octets) */
uint32_t header_size; /* finit additional data size (octets) */
uint32_t text_size; /* finit text data size (octets) */
uint32_t tag_size; /* mac size, element of {4, 6, 8, 10, 12, 14, 16} */
u32 key_size; /* numeric value in bytes */
u32 nonce_size; /* nonce size (octets) */
u32 header_size; /* finit additional data size (octets) */
u32 text_size; /* finit text data size (octets) */
u32 tag_size; /* mac size, element of {4, 6, 8, 10, 12, 14, 16} */
/* block_state1/2 is the AES engine block state */
uint8_t block_state[CC_AES_BLOCK_SIZE];
uint8_t mac_state[CC_AES_BLOCK_SIZE]; /* MAC result */
uint8_t nonce[CC_AES_BLOCK_SIZE]; /* nonce buffer */
uint8_t key[CC_AES_KEY_SIZE_MAX];
u8 block_state[CC_AES_BLOCK_SIZE];
u8 mac_state[CC_AES_BLOCK_SIZE]; /* MAC result */
u8 nonce[CC_AES_BLOCK_SIZE]; /* nonce buffer */
u8 key[CC_AES_KEY_SIZE_MAX];
/* reserve to end of allocated context size */
uint32_t reserved[CC_DRV_CTX_SIZE_WORDS - 8 -
3 * (CC_AES_BLOCK_SIZE/sizeof(uint32_t)) -
CC_AES_KEY_SIZE_MAX/sizeof(uint32_t)];
u32 reserved[CC_DRV_CTX_SIZE_WORDS - 8 -
3 * (CC_AES_BLOCK_SIZE/sizeof(u32)) -
CC_AES_KEY_SIZE_MAX/sizeof(u32)];
};
/*******************************************************************/
......
......@@ -17,18 +17,11 @@
#ifndef __CC_HW_QUEUE_DEFS_H__
#define __CC_HW_QUEUE_DEFS_H__
#include <linux/types.h>
#include "cc_regs.h"
#include "dx_crys_kernel.h"
#ifdef __KERNEL__
#include <linux/types.h>
#define UINT32_MAX 0xFFFFFFFFL
#define INT32_MAX 0x7FFFFFFFL
#define UINT16_MAX 0xFFFFL
#else
#include <stdint.h>
#endif
/******************************************************************************
* DEFINITIONS
******************************************************************************/
......@@ -48,7 +41,7 @@
******************************************************************************/
typedef struct HwDesc {
uint32_t word[HW_DESC_SIZE_WORDS];
u32 word[HW_DESC_SIZE_WORDS];
} HwDesc_s;
typedef enum DescDirection {
......@@ -56,7 +49,7 @@ typedef enum DescDirection {
DESC_DIRECTION_ENCRYPT_ENCRYPT = 0,
DESC_DIRECTION_DECRYPT_DECRYPT = 1,
DESC_DIRECTION_DECRYPT_ENCRYPT = 3,
DESC_DIRECTION_END = INT32_MAX,
DESC_DIRECTION_END = S32_MAX,
}DescDirection_t;
typedef enum DmaMode {
......@@ -66,7 +59,7 @@ typedef enum DmaMode {
DMA_DLLI = 2,
DMA_MLLI = 3,
DmaMode_OPTIONTS,
DmaMode_END = INT32_MAX,
DmaMode_END = S32_MAX,
}DmaMode_t;
typedef enum FlowMode {
......@@ -105,7 +98,7 @@ typedef enum FlowMode {
S_HASH_to_DOUT = 43,
SET_FLOW_ID = 44,
FlowMode_OPTIONTS,
FlowMode_END = INT32_MAX,
FlowMode_END = S32_MAX,
}FlowMode_t;
typedef enum TunnelOp {
......@@ -113,7 +106,7 @@ typedef enum TunnelOp {
TUNNEL_OFF = 0,
TUNNEL_ON = 1,
TunnelOp_OPTIONS,
TunnelOp_END = INT32_MAX,
TunnelOp_END = S32_MAX,
} TunnelOp_t;
typedef enum SetupOp {
......@@ -128,14 +121,14 @@ typedef enum SetupOp {
SETUP_WRITE_STATE2 = 10,
SETUP_WRITE_STATE3 = 11,
setupOp_OPTIONTS,
setupOp_END = INT32_MAX,
setupOp_END = S32_MAX,
}SetupOp_t;
enum AesMacSelector {
AES_SK = 1,
AES_CMAC_INIT = 2,
AES_CMAC_SIZE0 = 3,
AesMacEnd = INT32_MAX,
AesMacEnd = S32_MAX,
};
#define HW_KEY_MASK_CIPHER_DO 0x3
......@@ -156,21 +149,21 @@ typedef enum HwCryptoKey {
KFDE1_KEY = 9, /* 0x1001 */
KFDE2_KEY = 10, /* 0x1010 */
KFDE3_KEY = 11, /* 0x1011 */
END_OF_KEYS = INT32_MAX,
END_OF_KEYS = S32_MAX,
}HwCryptoKey_t;
typedef enum HwAesKeySize {
AES_128_KEY = 0,
AES_192_KEY = 1,
AES_256_KEY = 2,
END_OF_AES_KEYS = INT32_MAX,
END_OF_AES_KEYS = S32_MAX,
}HwAesKeySize_t;
typedef enum HwDesKeySize {
DES_ONE_KEY = 0,
DES_TWO_KEYS = 1,
DES_THREE_KEYS = 2,
END_OF_DES_KEYS = INT32_MAX,
END_OF_DES_KEYS = S32_MAX,
}HwDesKeySize_t;
/*****************************/
......@@ -210,7 +203,7 @@ typedef enum HwDesKeySize {
} while (0)
#define MSB64(_addr) (sizeof(_addr) == 4 ? 0 : ((_addr) >> 32)&UINT16_MAX)
#define MSB64(_addr) (sizeof(_addr) == 4 ? 0 : ((_addr) >> 32)&U16_MAX)
/*!
* This macro sets the DIN field of a HW descriptors
......@@ -223,7 +216,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DIN_TYPE(pDesc, dmaMode, dinAdr, dinSize, axiNs) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (dinAdr)&UINT32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (dinAdr)&U32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD5, DIN_ADDR_HIGH, (pDesc)->word[5], MSB64(dinAdr) ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_DMA_MODE, (pDesc)->word[1], (dmaMode)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_SIZE, (pDesc)->word[1], (dinSize)); \
......@@ -241,7 +234,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DIN_NO_DMA(pDesc, dinAdr, dinSize) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (uint32_t)(dinAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (u32)(dinAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_SIZE, (pDesc)->word[1], (dinSize)); \
} while (0)
......@@ -256,7 +249,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DIN_SRAM(pDesc, dinAdr, dinSize) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (uint32_t)(dinAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (u32)(dinAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_DMA_MODE, (pDesc)->word[1], DMA_SRAM); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_SIZE, (pDesc)->word[1], (dinSize)); \
} while (0)
......@@ -269,7 +262,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DIN_CONST(pDesc, val, dinSize) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (uint32_t)(val)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0, VALUE, (pDesc)->word[0], (u32)(val)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_CONST_VALUE, (pDesc)->word[1], 1); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_DMA_MODE, (pDesc)->word[1], DMA_SRAM); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD1, DIN_SIZE, (pDesc)->word[1], (dinSize)); \
......@@ -296,7 +289,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DOUT_TYPE(pDesc, dmaMode, doutAdr, doutSize, axiNs) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&UINT32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&U32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD5, DOUT_ADDR_HIGH, (pDesc)->word[5], MSB64(doutAdr) ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_DMA_MODE, (pDesc)->word[3], (dmaMode)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_SIZE, (pDesc)->word[3], (doutSize)); \
......@@ -315,7 +308,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DOUT_DLLI(pDesc, doutAdr, doutSize, axiNs ,lastInd) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&UINT32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&U32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD5, DOUT_ADDR_HIGH, (pDesc)->word[5], MSB64(doutAdr) ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_DMA_MODE, (pDesc)->word[3], DMA_DLLI); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_SIZE, (pDesc)->word[3], (doutSize)); \
......@@ -335,7 +328,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DOUT_MLLI(pDesc, doutAdr, doutSize, axiNs ,lastInd) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&UINT32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (doutAdr)&U32_MAX ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD5, DOUT_ADDR_HIGH, (pDesc)->word[5], MSB64(doutAdr) ); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_DMA_MODE, (pDesc)->word[3], DMA_MLLI); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_SIZE, (pDesc)->word[3], (doutSize)); \
......@@ -354,7 +347,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DOUT_NO_DMA(pDesc, doutAdr, doutSize, registerWriteEnable) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (uint32_t)(doutAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (u32)(doutAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_SIZE, (pDesc)->word[3], (doutSize)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_LAST_IND, (pDesc)->word[3], (registerWriteEnable)); \
} while (0)
......@@ -367,7 +360,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_XOR_VAL(pDesc, xorVal) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (uint32_t)(xorVal)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (u32)(xorVal)); \
} while (0)
/*!
......@@ -401,7 +394,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_DOUT_SRAM(pDesc, doutAdr, doutSize) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (uint32_t)(doutAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (u32)(doutAdr)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_DMA_MODE, (pDesc)->word[3], DMA_SRAM); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD3, DOUT_SIZE, (pDesc)->word[3], (doutSize)); \
} while (0)
......@@ -415,7 +408,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_XEX_DATA_UNIT_SIZE(pDesc, dataUnitSize) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (uint32_t)(dataUnitSize)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (u32)(dataUnitSize)); \
} while (0)
/*!
......@@ -426,7 +419,7 @@ typedef enum HwDesKeySize {
*/
#define HW_DESC_SET_MULTI2_NUM_ROUNDS(pDesc, numRounds) \
do { \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (uint32_t)(numRounds)); \
CC_REG_FLD_SET(CRY_KERNEL, DSCRPTR_QUEUE_WORD2, VALUE, (pDesc)->word[2], (u32)(numRounds)); \
} while (0)
/*!
......
......@@ -29,18 +29,18 @@
#define CC_MAX_MLLI_ENTRY_SIZE 0x10000
#define MSB64(_addr) (sizeof(_addr) == 4 ? 0 : ((_addr) >> 32)&UINT16_MAX)
#define MSB64(_addr) (sizeof(_addr) == 4 ? 0 : ((_addr) >> 32)&U16_MAX)
#define LLI_SET_ADDR(lli_p, addr) \
BITFIELD_SET(((uint32_t *)(lli_p))[LLI_WORD0_OFFSET], LLI_LADDR_BIT_OFFSET, LLI_LADDR_BIT_SIZE, (addr & UINT32_MAX)); \
BITFIELD_SET(((uint32_t *)(lli_p))[LLI_WORD1_OFFSET], LLI_HADDR_BIT_OFFSET, LLI_HADDR_BIT_SIZE, MSB64(addr));
BITFIELD_SET(((u32 *)(lli_p))[LLI_WORD0_OFFSET], LLI_LADDR_BIT_OFFSET, LLI_LADDR_BIT_SIZE, (addr & U32_MAX)); \
BITFIELD_SET(((u32 *)(lli_p))[LLI_WORD1_OFFSET], LLI_HADDR_BIT_OFFSET, LLI_HADDR_BIT_SIZE, MSB64(addr));
#define LLI_SET_SIZE(lli_p, size) \
BITFIELD_SET(((uint32_t *)(lli_p))[LLI_WORD1_OFFSET], LLI_SIZE_BIT_OFFSET, LLI_SIZE_BIT_SIZE, size)
BITFIELD_SET(((u32 *)(lli_p))[LLI_WORD1_OFFSET], LLI_SIZE_BIT_OFFSET, LLI_SIZE_BIT_SIZE, size)
/* Size of entry */
#define LLI_ENTRY_WORD_SIZE 2
#define LLI_ENTRY_BYTE_SIZE (LLI_ENTRY_WORD_SIZE * sizeof(uint32_t))
#define LLI_ENTRY_BYTE_SIZE (LLI_ENTRY_WORD_SIZE * sizeof(u32))
/* Word0[31:0] = ADDR[31:0] */
#define LLI_WORD0_OFFSET 0
......
......@@ -35,7 +35,7 @@
/* Read-Modify-Write a field of a register */
#define MODIFY_REGISTER_FLD(unitName, regName, fldName, fldVal) \
do { \
uint32_t regVal; \
u32 regVal; \
regVal = READ_REGISTER(CC_REG_ADDR(unitName, regName)); \
CC_REG_FLD_SET(unitName, regName, fldName, regVal, fldVal); \
WRITE_REGISTER(CC_REG_ADDR(unitName, regName), regVal); \
......@@ -86,7 +86,7 @@ do { \
} while (0)
/* Usage example:
uint32_t reg_shadow = READ_REGISTER(CC_REG_ADDR(CRY_KERNEL,AES_CONTROL));
u32 reg_shadow = READ_REGISTER(CC_REG_ADDR(CRY_KERNEL,AES_CONTROL));
CC_REG_FLD_SET(CRY_KERNEL,AES_CONTROL,NK_KEY0,reg_shadow, 3);
CC_REG_FLD_SET(CRY_KERNEL,AES_CONTROL,NK_KEY1,reg_shadow, 1);
WRITE_REGISTER(CC_REG_ADDR(CRY_KERNEL,AES_CONTROL), reg_shadow);
......
......@@ -48,13 +48,13 @@ enum HashConfig1Padding {
HASH_PADDING_DISABLED = 0,
HASH_PADDING_ENABLED = 1,
HASH_DIGEST_RESULT_LITTLE_ENDIAN = 2,
HASH_CONFIG1_PADDING_RESERVE32 = INT32_MAX,
HASH_CONFIG1_PADDING_RESERVE32 = S32_MAX,
};
enum HashCipherDoPadding {
DO_NOT_PAD = 0,
DO_PAD = 1,
HASH_CIPHER_DO_PADDING_RESERVE32 = INT32_MAX,
HASH_CIPHER_DO_PADDING_RESERVE32 = S32_MAX,
};
typedef struct SepHashPrivateContext {
......@@ -66,11 +66,11 @@ typedef struct SepHashPrivateContext {
This means that this structure size (without the reserved field can be up to 20 bytes ,
in case sha512 is not suppported it is 20 bytes (SEP_HASH_LENGTH_WORDS define to 2 ) and in the other
case it is 28 (SEP_HASH_LENGTH_WORDS define to 4) */
uint32_t reserved[(sizeof(struct drv_ctx_hash)/sizeof(uint32_t)) - SEP_HASH_LENGTH_WORDS - 3];
uint32_t CurrentDigestedLength[SEP_HASH_LENGTH_WORDS];
uint32_t KeyType;
uint32_t dataCompleted;
uint32_t hmacFinalization;
u32 reserved[(sizeof(struct drv_ctx_hash)/sizeof(u32)) - SEP_HASH_LENGTH_WORDS - 3];
u32 CurrentDigestedLength[SEP_HASH_LENGTH_WORDS];
u32 KeyType;
u32 dataCompleted;
u32 hmacFinalization;
/* no space left */
} SepHashPrivateContext_s;
......
......@@ -60,18 +60,18 @@ struct ssi_aead_handle {
struct ssi_aead_ctx {
struct ssi_drvdata *drvdata;
uint8_t ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
uint8_t *enckey;
u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
u8 *enckey;
dma_addr_t enckey_dma_addr;
union {
struct {
uint8_t *padded_authkey;
uint8_t *ipad_opad; /* IPAD, OPAD*/
u8 *padded_authkey;
u8 *ipad_opad; /* IPAD, OPAD*/
dma_addr_t padded_authkey_dma_addr;
dma_addr_t ipad_opad_dma_addr;
} hmac;
struct {
uint8_t *xcbc_keys; /* K1,K2,K3 */
u8 *xcbc_keys; /* K1,K2,K3 */
dma_addr_t xcbc_keys_dma_addr;
} xcbc;
} auth_state;
......@@ -428,7 +428,7 @@ ssi_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *key, unsigned int keyl
dma_addr_t key_dma_addr = 0;
struct ssi_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
uint32_t larval_addr = ssi_ahash_get_larval_digest_sram_addr(
u32 larval_addr = ssi_ahash_get_larval_digest_sram_addr(
ctx->drvdata, ctx->auth_mode);
struct ssi_crypto_req ssi_req = {};
unsigned int blocksize;
......@@ -831,7 +831,7 @@ ssi_aead_process_authenc_data_desc(
* assoc. + iv + data -compact in one table
* if assoclen is ZERO only IV perform */
ssi_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
uint32_t mlli_nents = areq_ctx->assoc.mlli_nents;
u32 mlli_nents = areq_ctx->assoc.mlli_nents;
if (likely(areq_ctx->is_single_pass == true)) {
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT){
......@@ -1386,11 +1386,11 @@ static int validate_data_size(struct ssi_aead_ctx *ctx,
break;
}
if (!IS_ALIGNED(assoclen, sizeof(uint32_t)))
if (!IS_ALIGNED(assoclen, sizeof(u32)))
areq_ctx->is_single_pass = false;
if ((ctx->cipher_mode == DRV_CIPHER_CTR) &&
!IS_ALIGNED(cipherlen, sizeof(uint32_t)))
!IS_ALIGNED(cipherlen, sizeof(u32)))
areq_ctx->is_single_pass = false;
break;
......@@ -1412,7 +1412,7 @@ static int validate_data_size(struct ssi_aead_ctx *ctx,
}
#if SSI_CC_HAS_AES_CCM
static unsigned int format_ccm_a0(uint8_t *pA0Buff, uint32_t headerSize)
static unsigned int format_ccm_a0(u8 *pA0Buff, u32 headerSize)
{
unsigned int len = 0;
if ( headerSize == 0 ) {
......@@ -1597,9 +1597,9 @@ static int config_ccm_adata(struct aead_request *req) {
/* Note: The code assume that req->iv[0] already contains the value of L' of RFC3610 */
unsigned int l = lp + 1; /* This is L' of RFC 3610. */
unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
uint8_t *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
uint8_t *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
uint8_t *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
req->cryptlen :
......
......@@ -57,30 +57,30 @@ enum aead_ccm_header_size {
ccm_header_size_zero = 0,
ccm_header_size_2 = 2,
ccm_header_size_6 = 6,
ccm_header_size_max = INT32_MAX
ccm_header_size_max = S32_MAX
};
struct aead_req_ctx {
/* Allocate cache line although only 4 bytes are needed to
* assure next field falls @ cache line
* Used for both: digest HW compare and CCM/GCM MAC value */
uint8_t mac_buf[MAX_MAC_SIZE] ____cacheline_aligned;
uint8_t ctr_iv[AES_BLOCK_SIZE] ____cacheline_aligned;
u8 mac_buf[MAX_MAC_SIZE] ____cacheline_aligned;
u8 ctr_iv[AES_BLOCK_SIZE] ____cacheline_aligned;
//used in gcm
uint8_t gcm_iv_inc1[AES_BLOCK_SIZE] ____cacheline_aligned;
uint8_t gcm_iv_inc2[AES_BLOCK_SIZE] ____cacheline_aligned;
uint8_t hkey[AES_BLOCK_SIZE] ____cacheline_aligned;
u8 gcm_iv_inc1[AES_BLOCK_SIZE] ____cacheline_aligned;
u8 gcm_iv_inc2[AES_BLOCK_SIZE] ____cacheline_aligned;
u8 hkey[AES_BLOCK_SIZE] ____cacheline_aligned;
struct {
uint8_t lenA[GCM_BLOCK_LEN_SIZE] ____cacheline_aligned;
uint8_t lenC[GCM_BLOCK_LEN_SIZE] ;
u8 lenA[GCM_BLOCK_LEN_SIZE] ____cacheline_aligned;
u8 lenC[GCM_BLOCK_LEN_SIZE] ;
} gcm_len_block;
uint8_t ccm_config[CCM_CONFIG_BUF_SIZE] ____cacheline_aligned;
u8 ccm_config[CCM_CONFIG_BUF_SIZE] ____cacheline_aligned;
unsigned int hw_iv_size ____cacheline_aligned; /*HW actual size input*/
uint8_t backup_mac[MAX_MAC_SIZE]; /*used to prevent cache coherence problem*/
uint8_t *backup_iv; /*store iv for generated IV flow*/
uint8_t *backup_giv; /*store iv for rfc3686(ctr) flow*/
u8 backup_mac[MAX_MAC_SIZE]; /*used to prevent cache coherence problem*/
u8 *backup_iv; /*store iv for generated IV flow*/
u8 *backup_giv; /*store iv for rfc3686(ctr) flow*/
dma_addr_t mac_buf_dma_addr; /* internal ICV DMA buffer */
dma_addr_t ccm_iv0_dma_addr; /* buffer for internal ccm configurations */
dma_addr_t icv_dma_addr; /* Phys. address of ICV */
......@@ -92,7 +92,7 @@ struct aead_req_ctx {
dma_addr_t gcm_block_len_dma_addr; /* Phys. address of gcm block len */
bool is_gcm4543;
uint8_t *icv_virt_addr; /* Virt. address of ICV */
u8 *icv_virt_addr; /* Virt. address of ICV */
struct async_gen_req_ctx gen_ctx;
struct ssi_mlli assoc;
struct ssi_mlli src;
......
......@@ -92,11 +92,11 @@ struct buffer_array {
int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI];
enum dma_buffer_type type[MAX_NUM_OF_BUFFERS_IN_MLLI];
bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI];
uint32_t * mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
u32 * mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
};
#ifdef CC_DMA_48BIT_SIM
dma_addr_t ssi_buff_mgr_update_dma_addr(dma_addr_t orig_addr, uint32_t data_len)
dma_addr_t ssi_buff_mgr_update_dma_addr(dma_addr_t orig_addr, u32 data_len)
{
dma_addr_t tmp_dma_addr;
#ifdef CC_DMA_48BIT_SIM_FULL
......@@ -109,7 +109,7 @@ dma_addr_t ssi_buff_mgr_update_dma_addr(dma_addr_t orig_addr, uint32_t data_len)
(data_len <= CC_MAX_MLLI_ENTRY_SIZE)) {
#endif
tmp_dma_addr = ((orig_addr<<16) | 0xFFFF0000 |
(orig_addr & UINT16_MAX));
(orig_addr & U16_MAX));
SSI_LOG_DEBUG("MAP DMA: orig address=0x%llX "
"dma_address=0x%llX\n",
orig_addr, tmp_dma_addr);
......@@ -134,7 +134,7 @@ dma_addr_t ssi_buff_mgr_restore_dma_addr(dma_addr_t orig_addr)
/*clean the 0xFFFF in the lower bits (set in the add expansion)*/
tmp_dma_addr &= 0xFFFF0000;
/* Set the original 16 bits */
tmp_dma_addr |= (orig_addr & UINT16_MAX);
tmp_dma_addr |= (orig_addr & U16_MAX);
SSI_LOG_DEBUG("Release DMA: orig address=0x%llX "
"dma_address=0x%llX\n",
orig_addr, tmp_dma_addr);
......@@ -151,7 +151,7 @@ dma_addr_t ssi_buff_mgr_restore_dma_addr(dma_addr_t orig_addr)
* @lbytes: [OUT] Returns the amount of bytes at the last entry
*/
static unsigned int ssi_buffer_mgr_get_sgl_nents(
struct scatterlist *sg_list, unsigned int nbytes, uint32_t *lbytes, bool *is_chained)
struct scatterlist *sg_list, unsigned int nbytes, u32 *lbytes, bool *is_chained)
{
unsigned int nents = 0;
while (nbytes != 0) {
......@@ -182,7 +182,7 @@ static unsigned int ssi_buffer_mgr_get_sgl_nents(
*
* @sgl:
*/
void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, uint32_t data_len)
void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, u32 data_len)
{
struct scatterlist *current_sg = sgl;
int sg_index = 0;
......@@ -210,21 +210,21 @@ void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, uint32_t data_len)
*/
void ssi_buffer_mgr_copy_scatterlist_portion(
u8 *dest, struct scatterlist *sg,
uint32_t to_skip, uint32_t end,
u32 to_skip, u32 end,
enum ssi_sg_cpy_direct direct)
{
uint32_t nents, lbytes;
u32 nents, lbytes;
nents = ssi_buffer_mgr_get_sgl_nents(sg, end, &lbytes, NULL);
sg_copy_buffer(sg, nents, (void *)dest, (end - to_skip), 0, (direct == SSI_SG_TO_BUF));
}
static inline int ssi_buffer_mgr_render_buff_to_mlli(
dma_addr_t buff_dma, uint32_t buff_size, uint32_t *curr_nents,
uint32_t **mlli_entry_pp)
dma_addr_t buff_dma, u32 buff_size, u32 *curr_nents,
u32 **mlli_entry_pp)
{
uint32_t *mlli_entry_p = *mlli_entry_pp;
uint32_t new_nents;;
u32 *mlli_entry_p = *mlli_entry_pp;
u32 new_nents;;
/* Verify there is no memory overflow*/
new_nents = (*curr_nents + buff_size/CC_MAX_MLLI_ENTRY_SIZE + 1);
......@@ -261,16 +261,16 @@ static inline int ssi_buffer_mgr_render_buff_to_mlli(
static inline int ssi_buffer_mgr_render_scatterlist_to_mlli(
struct scatterlist *sgl, uint32_t sgl_data_len, uint32_t sglOffset, uint32_t *curr_nents,
uint32_t **mlli_entry_pp)
struct scatterlist *sgl, u32 sgl_data_len, u32 sglOffset, u32 *curr_nents,
u32 **mlli_entry_pp)
{
struct scatterlist *curr_sgl = sgl;
uint32_t *mlli_entry_p = *mlli_entry_pp;
int32_t rc = 0;
u32 *mlli_entry_p = *mlli_entry_pp;
s32 rc = 0;
for ( ; (curr_sgl != NULL) && (sgl_data_len != 0);
curr_sgl = sg_next(curr_sgl)) {
uint32_t entry_data_len =
u32 entry_data_len =
(sgl_data_len > sg_dma_len(curr_sgl) - sglOffset) ?
sg_dma_len(curr_sgl) - sglOffset : sgl_data_len ;
sgl_data_len -= entry_data_len;
......@@ -291,8 +291,8 @@ static int ssi_buffer_mgr_generate_mlli(
struct buffer_array *sg_data,
struct mlli_params *mlli_params)
{
uint32_t *mlli_p;
uint32_t total_nents = 0,prev_total_nents = 0;
u32 *mlli_p;
u32 total_nents = 0,prev_total_nents = 0;
int rc = 0, i;
SSI_LOG_DEBUG("NUM of SG's = %d\n", sg_data->num_of_buffers);
......@@ -310,7 +310,7 @@ static int ssi_buffer_mgr_generate_mlli(
(MAX_NUM_OF_TOTAL_MLLI_ENTRIES*
LLI_ENTRY_BYTE_SIZE));
/* Point to start of MLLI */
mlli_p = (uint32_t *)mlli_params->mlli_virt_addr;
mlli_p = (u32 *)mlli_params->mlli_virt_addr;
/* go over all SG's and link it to one MLLI table */
for (i = 0; i < sg_data->num_of_buffers; i++) {
if (sg_data->type[i] == DMA_SGL_TYPE)
......@@ -353,7 +353,7 @@ static int ssi_buffer_mgr_generate_mlli(
static inline void ssi_buffer_mgr_add_buffer_entry(
struct buffer_array *sgl_data,
dma_addr_t buffer_dma, unsigned int buffer_len,
bool is_last_entry, uint32_t *mlli_nents)
bool is_last_entry, u32 *mlli_nents)
{
unsigned int index = sgl_data->num_of_buffers;
......@@ -379,7 +379,7 @@ static inline void ssi_buffer_mgr_add_scatterlist_entry(
unsigned int data_len,
unsigned int data_offset,
bool is_last_table,
uint32_t *mlli_nents)
u32 *mlli_nents)
{
unsigned int index = sgl_data->num_of_buffers;
......@@ -398,10 +398,10 @@ static inline void ssi_buffer_mgr_add_scatterlist_entry(
}
static int
ssi_buffer_mgr_dma_map_sg(struct device *dev, struct scatterlist *sg, uint32_t nents,
ssi_buffer_mgr_dma_map_sg(struct device *dev, struct scatterlist *sg, u32 nents,
enum dma_data_direction direction)
{
uint32_t i , j;
u32 i , j;
struct scatterlist *l_sg = sg;
for (i = 0; i < nents; i++) {
if (l_sg == NULL) {
......@@ -430,8 +430,8 @@ ssi_buffer_mgr_dma_map_sg(struct device *dev, struct scatterlist *sg, uint32_t n
static int ssi_buffer_mgr_map_scatterlist(
struct device *dev, struct scatterlist *sg,
unsigned int nbytes, int direction,
uint32_t *nents, uint32_t max_sg_nents,
uint32_t *lbytes, uint32_t *mapped_nents)
u32 *nents, u32 max_sg_nents,
u32 *lbytes, u32 *mapped_nents)
{
bool is_chained = false;
......@@ -491,7 +491,7 @@ static int ssi_buffer_mgr_map_scatterlist(
static inline int
ssi_aead_handle_config_buf(struct device *dev,
struct aead_req_ctx *areq_ctx,
uint8_t* config_data,
u8* config_data,
struct buffer_array *sg_data,
unsigned int assoclen)
{
......@@ -526,8 +526,8 @@ ssi_aead_handle_config_buf(struct device *dev,
static inline int ssi_ahash_handle_curr_buf(struct device *dev,
struct ahash_req_ctx *areq_ctx,
uint8_t* curr_buff,
uint32_t curr_buff_cnt,
u8* curr_buff,
u32 curr_buff_cnt,
struct buffer_array *sg_data)
{
SSI_LOG_DEBUG(" handle curr buff %x set to DLLI \n", curr_buff_cnt);
......@@ -612,9 +612,9 @@ int ssi_buffer_mgr_map_blkcipher_request(
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
struct device *dev = &drvdata->plat_dev->dev;
struct buffer_array sg_data;
uint32_t dummy = 0;
u32 dummy = 0;
int rc = 0;
uint32_t mapped_nents = 0;
u32 mapped_nents = 0;
req_ctx->dma_buf_type = SSI_DMA_BUF_DLLI;
mlli_params->curr_pool = NULL;
......@@ -622,7 +622,7 @@ int ssi_buffer_mgr_map_blkcipher_request(
/* Map IV buffer */
if (likely(ivsize != 0) ) {
dump_byte_array("iv", (uint8_t *)info, ivsize);
dump_byte_array("iv", (u8 *)info, ivsize);
req_ctx->gen_ctx.iv_dma_addr =
dma_map_single(dev, (void *)info,
ivsize,
......@@ -710,9 +710,9 @@ void ssi_buffer_mgr_unmap_aead_request(
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
unsigned int hw_iv_size = areq_ctx->hw_iv_size;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
uint32_t dummy;
u32 dummy;
bool chained;
uint32_t size_to_unmap = 0;
u32 size_to_unmap = 0;
if (areq_ctx->mac_buf_dma_addr != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(areq_ctx->mac_buf_dma_addr);
......@@ -796,7 +796,7 @@ void ssi_buffer_mgr_unmap_aead_request(
if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) &&
likely(req->src == req->dst))
{
uint32_t size_to_skip = req->assoclen;
u32 size_to_skip = req->assoclen;
if (areq_ctx->is_gcm4543) {
size_to_skip += crypto_aead_ivsize(tfm);
}
......@@ -814,7 +814,7 @@ static inline int ssi_buffer_mgr_get_aead_icv_nents(
struct scatterlist *sgl,
unsigned int sgl_nents,
unsigned int authsize,
uint32_t last_entry_data_size,
u32 last_entry_data_size,
bool *is_icv_fragmented)
{
unsigned int icv_max_size = 0;
......@@ -914,11 +914,11 @@ static inline int ssi_buffer_mgr_aead_chain_assoc(
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc = 0;
uint32_t mapped_nents = 0;
u32 mapped_nents = 0;
struct scatterlist *current_sg = req->src;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned int sg_index = 0;
uint32_t size_of_assoc = req->assoclen;
u32 size_of_assoc = req->assoclen;
if (areq_ctx->is_gcm4543) {
size_of_assoc += crypto_aead_ivsize(tfm);
......@@ -1004,7 +1004,7 @@ static inline int ssi_buffer_mgr_aead_chain_assoc(
static inline void ssi_buffer_mgr_prepare_aead_data_dlli(
struct aead_request *req,
uint32_t *src_last_bytes, uint32_t *dst_last_bytes)
u32 *src_last_bytes, u32 *dst_last_bytes)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
......@@ -1042,7 +1042,7 @@ static inline int ssi_buffer_mgr_prepare_aead_data_mlli(
struct ssi_drvdata *drvdata,
struct aead_request *req,
struct buffer_array *sg_data,
uint32_t *src_last_bytes, uint32_t *dst_last_bytes,
u32 *src_last_bytes, u32 *dst_last_bytes,
bool is_last_table)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
......@@ -1075,7 +1075,7 @@ static inline int ssi_buffer_mgr_prepare_aead_data_mlli(
/* In ACP platform we already copying ICV
for any INPLACE-DECRYPT operation, hence
we must neglect this code. */
uint32_t size_to_skip = req->assoclen;
u32 size_to_skip = req->assoclen;
if (areq_ctx->is_gcm4543) {
size_to_skip += crypto_aead_ivsize(tfm);
}
......@@ -1122,7 +1122,7 @@ static inline int ssi_buffer_mgr_prepare_aead_data_mlli(
/* Backup happens only when ICV is fragmented, ICV
verification is made by CPU compare in order to simplify
MAC verification upon request completion */
uint32_t size_to_skip = req->assoclen;
u32 size_to_skip = req->assoclen;
if (areq_ctx->is_gcm4543) {
size_to_skip += crypto_aead_ivsize(tfm);
}
......@@ -1190,14 +1190,14 @@ static inline int ssi_buffer_mgr_aead_chain_data(
unsigned int authsize = areq_ctx->req_authsize;
int src_last_bytes = 0, dst_last_bytes = 0;
int rc = 0;
uint32_t src_mapped_nents = 0, dst_mapped_nents = 0;
uint32_t offset = 0;
u32 src_mapped_nents = 0, dst_mapped_nents = 0;
u32 offset = 0;
unsigned int size_for_map = req->assoclen +req->cryptlen; /*non-inplace mode*/
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
uint32_t sg_index = 0;
u32 sg_index = 0;
bool chained = false;
bool is_gcm4543 = areq_ctx->is_gcm4543;
uint32_t size_to_skip = req->assoclen;
u32 size_to_skip = req->assoclen;
if (is_gcm4543) {
size_to_skip += crypto_aead_ivsize(tfm);
}
......@@ -1302,7 +1302,7 @@ static void ssi_buffer_mgr_update_aead_mlli_nents( struct ssi_drvdata *drvdata,
struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
uint32_t curr_mlli_size = 0;
u32 curr_mlli_size = 0;
if (areq_ctx->assoc_buff_type == SSI_DMA_BUF_MLLI) {
areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr;
......@@ -1362,9 +1362,9 @@ int ssi_buffer_mgr_map_aead_request(
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool is_gcm4543 = areq_ctx->is_gcm4543;
uint32_t mapped_nents = 0;
uint32_t dummy = 0; /*used for the assoc data fragments */
uint32_t size_to_map = 0;
u32 mapped_nents = 0;
u32 dummy = 0; /*used for the assoc data fragments */
u32 size_to_map = 0;
mlli_params->curr_pool = NULL;
sg_data.num_of_buffers = 0;
......@@ -1373,7 +1373,7 @@ int ssi_buffer_mgr_map_aead_request(
if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) &&
likely(req->src == req->dst))
{
uint32_t size_to_skip = req->assoclen;
u32 size_to_skip = req->assoclen;
if (is_gcm4543) {
size_to_skip += crypto_aead_ivsize(tfm);
}
......@@ -1568,15 +1568,15 @@ int ssi_buffer_mgr_map_hash_request_final(
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = &drvdata->plat_dev->dev;
uint8_t* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
u8* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
areq_ctx->buff0;
uint32_t *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
u32 *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
&areq_ctx->buff0_cnt;
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
uint32_t dummy = 0;
uint32_t mapped_nents = 0;
u32 dummy = 0;
u32 mapped_nents = 0;
SSI_LOG_DEBUG(" final params : curr_buff=%pK "
"curr_buff_cnt=0x%X nbytes = 0x%X "
......@@ -1660,22 +1660,22 @@ int ssi_buffer_mgr_map_hash_request_update(
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
struct device *dev = &drvdata->plat_dev->dev;
uint8_t* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
u8* curr_buff = areq_ctx->buff_index ? areq_ctx->buff1 :
areq_ctx->buff0;
uint32_t *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
u32 *curr_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff1_cnt :
&areq_ctx->buff0_cnt;
uint8_t* next_buff = areq_ctx->buff_index ? areq_ctx->buff0 :
u8* next_buff = areq_ctx->buff_index ? areq_ctx->buff0 :
areq_ctx->buff1;
uint32_t *next_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
u32 *next_buff_cnt = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
&areq_ctx->buff1_cnt;
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
unsigned int update_data_len;
uint32_t total_in_len = nbytes + *curr_buff_cnt;
u32 total_in_len = nbytes + *curr_buff_cnt;
struct buffer_array sg_data;
struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle;
unsigned int swap_index = 0;
uint32_t dummy = 0;
uint32_t mapped_nents = 0;
u32 dummy = 0;
u32 mapped_nents = 0;
SSI_LOG_DEBUG(" update params : curr_buff=%pK "
"curr_buff_cnt=0x%X nbytes=0x%X "
......@@ -1789,7 +1789,7 @@ void ssi_buffer_mgr_unmap_hash_request(
struct device *dev, void *ctx, struct scatterlist *src, bool do_revert)
{
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
uint32_t *prev_len = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
u32 *prev_len = areq_ctx->buff_index ? &areq_ctx->buff0_cnt :
&areq_ctx->buff1_cnt;
/*In case a pool was set, a table was
......
......@@ -46,9 +46,9 @@ struct ssi_mlli {
struct mlli_params {
struct dma_pool *curr_pool;
uint8_t *mlli_virt_addr;
u8 *mlli_virt_addr;
dma_addr_t mlli_dma_addr;
uint32_t mlli_len;
u32 mlli_len;
};
int ssi_buffer_mgr_init(struct ssi_drvdata *drvdata);
......@@ -81,13 +81,13 @@ int ssi_buffer_mgr_map_hash_request_update(struct ssi_drvdata *drvdata, void *ct
void ssi_buffer_mgr_unmap_hash_request(struct device *dev, void *ctx, struct scatterlist *src, bool do_revert);
void ssi_buffer_mgr_copy_scatterlist_portion(u8 *dest, struct scatterlist *sg, uint32_t to_skip, uint32_t end, enum ssi_sg_cpy_direct direct);
void ssi_buffer_mgr_copy_scatterlist_portion(u8 *dest, struct scatterlist *sg, u32 to_skip, u32 end, enum ssi_sg_cpy_direct direct);
void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, uint32_t data_len);
void ssi_buffer_mgr_zero_sgl(struct scatterlist *sgl, u32 data_len);
#ifdef CC_DMA_48BIT_SIM
dma_addr_t ssi_buff_mgr_update_dma_addr(dma_addr_t orig_addr, uint32_t data_len);
dma_addr_t ssi_buff_mgr_update_dma_addr(dma_addr_t orig_addr, u32 data_len);
dma_addr_t ssi_buff_mgr_restore_dma_addr(dma_addr_t orig_addr);
#define SSI_UPDATE_DMA_ADDR_TO_48BIT(addr,size) addr = \
......
......@@ -45,7 +45,7 @@ struct ssi_blkcipher_handle {
};
struct cc_user_key_info {
uint8_t *key;
u8 *key;
dma_addr_t key_dma_addr;
};
struct cc_hw_key_info {
......@@ -69,7 +69,7 @@ struct ssi_ablkcipher_ctx {
static void ssi_ablkcipher_complete(struct device *dev, void *ssi_req, void __iomem *cc_base);
static int validate_keys_sizes(struct ssi_ablkcipher_ctx *ctx_p, uint32_t size) {
static int validate_keys_sizes(struct ssi_ablkcipher_ctx *ctx_p, u32 size) {
switch (ctx_p->flow_mode){
case S_DIN_to_AES:
switch (size){
......@@ -329,7 +329,7 @@ static int ssi_blkcipher_setkey(struct crypto_tfm *tfm,
SSI_LOG_DEBUG("Setting key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", (uint8_t *)key, keylen);
dump_byte_array("key", (u8 *)key, keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
......@@ -724,7 +724,7 @@ ssi_blkcipher_create_data_desc(
"addr 0x%08X addr 0x%08X\n",
(unsigned int)ctx_p->drvdata->mlli_sram_addr,
(unsigned int)ctx_p->drvdata->mlli_sram_addr +
(uint32_t)LLI_ENTRY_BYTE_SIZE *
(u32)LLI_ENTRY_BYTE_SIZE *
req_ctx->in_nents);
HW_DESC_SET_DOUT_MLLI(&desc[*seq_size],
(ctx_p->drvdata->mlli_sram_addr +
......@@ -750,7 +750,7 @@ static int ssi_blkcipher_complete(struct device *dev,
void __iomem *cc_base)
{
int completion_error = 0;
uint32_t inflight_counter;
u32 inflight_counter;
DECL_CYCLE_COUNT_RESOURCES;
START_CYCLE_COUNT();
......
......@@ -40,11 +40,11 @@
struct blkcipher_req_ctx {
struct async_gen_req_ctx gen_ctx;
enum ssi_req_dma_buf_type dma_buf_type;
uint32_t in_nents;
uint32_t in_mlli_nents;
uint32_t out_nents;
uint32_t out_mlli_nents;
uint8_t *backup_info; /*store iv for generated IV flow*/
u32 in_nents;
u32 in_mlli_nents;
u32 out_nents;
u32 out_mlli_nents;
u8 *backup_info; /*store iv for generated IV flow*/
bool is_giv;
struct mlli_params mlli_params;
};
......
......@@ -73,10 +73,10 @@
#ifdef DX_DUMP_BYTES
void dump_byte_array(const char *name, const uint8_t *the_array, unsigned long size)
void dump_byte_array(const char *name, const u8 *the_array, unsigned long size)
{
int i , line_offset = 0, ret = 0;
const uint8_t *cur_byte;
const u8 *cur_byte;
char line_buf[80];
if (the_array == NULL) {
......@@ -116,8 +116,8 @@ static irqreturn_t cc_isr(int irq, void *dev_id)
{
struct ssi_drvdata *drvdata = (struct ssi_drvdata *)dev_id;
void __iomem *cc_base = drvdata->cc_base;
uint32_t irr;
uint32_t imr;
u32 irr;
u32 imr;
DECL_CYCLE_COUNT_RESOURCES;
/* STAT_OP_TYPE_GENERIC STAT_PHASE_0: Interrupt */
......@@ -154,7 +154,7 @@ static irqreturn_t cc_isr(int irq, void *dev_id)
#endif
/* AXI error interrupt */
if (unlikely((irr & SSI_AXI_ERR_IRQ_MASK) != 0)) {
uint32_t axi_err;
u32 axi_err;
/* Read the AXI error ID */
axi_err = CC_HAL_READ_REGISTER(CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_ERR));
......@@ -224,7 +224,7 @@ static int init_cc_resources(struct platform_device *plat_dev)
void __iomem *cc_base = NULL;
bool irq_registered = false;
struct ssi_drvdata *new_drvdata = kzalloc(sizeof(struct ssi_drvdata), GFP_KERNEL);
uint32_t signature_val;
u32 signature_val;
int rc = 0;
if (unlikely(new_drvdata == NULL)) {
......@@ -304,7 +304,7 @@ static int init_cc_resources(struct platform_device *plat_dev)
signature_val = CC_HAL_READ_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_SIGNATURE));
if (signature_val != DX_DEV_SIGNATURE) {
SSI_LOG_ERR("Invalid CC signature: SIGNATURE=0x%08X != expected=0x%08X\n",
signature_val, (uint32_t)DX_DEV_SIGNATURE);
signature_val, (u32)DX_DEV_SIGNATURE);
rc = -EINVAL;
goto init_cc_res_err;
}
......@@ -479,7 +479,7 @@ static int cc7x_probe(struct platform_device *plat_dev)
{
int rc;
#if defined(CONFIG_ARM) && defined(CC_DEBUG)
uint32_t ctr, cacheline_size;
u32 ctr, cacheline_size;
asm volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (ctr));
cacheline_size = 4 << ((ctr >> 16) & 0xf);
......
......@@ -37,10 +37,6 @@
#include <crypto/hash.h>
#include <linux/version.h>
#ifndef INT32_MAX /* Missing in Linux kernel */
#define INT32_MAX 0x7FFFFFFFL
#endif
/* Registers definitions from shared/hw/ree_include */
#include "dx_reg_base_host.h"
#include "dx_host.h"
......@@ -137,11 +133,11 @@ struct ssi_drvdata {
struct resource *res_irq;
void __iomem *cc_base;
unsigned int irq;
uint32_t irq_mask;
uint32_t fw_ver;
u32 irq_mask;
u32 fw_ver;
/* Calibration time of start/stop
* monitor descriptors */
uint32_t monitor_null_cycles;
u32 monitor_null_cycles;
struct platform_device *plat_dev;
ssi_sram_addr_t mlli_sram_addr;
struct completion icache_setup_completion;
......@@ -157,7 +153,7 @@ struct ssi_drvdata {
#ifdef ENABLE_CYCLE_COUNT
cycles_t isr_exit_cycles; /* Save for isr-to-tasklet latency */
#endif
uint32_t inflight_counter;
u32 inflight_counter;
};
......@@ -196,7 +192,7 @@ struct async_gen_req_ctx {
};
#ifdef DX_DUMP_BYTES
void dump_byte_array(const char *name, const uint8_t *the_array, unsigned long size);
void dump_byte_array(const char *name, const u8 *the_array, unsigned long size);
#else
#define dump_byte_array(name, array, size) do { \
} while (0);
......
......@@ -17,12 +17,6 @@
#ifndef __SSI_FIPS_H__
#define __SSI_FIPS_H__
#ifndef INT32_MAX /* Missing in Linux kernel */
#define INT32_MAX 0x7FFFFFFFL
#endif
/*!
@file
@brief This file contains FIPS related defintions and APIs.
......@@ -32,7 +26,7 @@ typedef enum ssi_fips_state {
CC_FIPS_STATE_NOT_SUPPORTED = 0,
CC_FIPS_STATE_SUPPORTED,
CC_FIPS_STATE_ERROR,
CC_FIPS_STATE_RESERVE32B = INT32_MAX
CC_FIPS_STATE_RESERVE32B = S32_MAX
} ssi_fips_state_t;
......@@ -58,7 +52,7 @@ typedef enum ssi_fips_error {
CC_REE_FIPS_ERROR_HMAC_SHA256_PUT,
CC_REE_FIPS_ERROR_HMAC_SHA512_PUT,
CC_REE_FIPS_ERROR_ROM_CHECKSUM,
CC_REE_FIPS_ERROR_RESERVE32B = INT32_MAX
CC_REE_FIPS_ERROR_RESERVE32B = S32_MAX
} ssi_fips_error_t;
......
......@@ -28,17 +28,17 @@ that executes the KAT.
#include "ssi_request_mgr.h"
static const uint32_t digest_len_init[] = {
static const u32 digest_len_init[] = {
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
static const uint32_t sha1_init[] = {
static const u32 sha1_init[] = {
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha256_init[] = {
static const u32 sha256_init[] = {
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
#if (CC_SUPPORT_SHA > 256)
static const uint32_t digest_len_sha512_init[] = {
static const u32 digest_len_sha512_init[] = {
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
static const uint64_t sha512_init[] = {
static const u64 sha512_init[] = {
SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
#endif
......@@ -47,128 +47,128 @@ static const uint64_t sha512_init[] = {
#define NIST_CIPHER_AES_MAX_VECTOR_SIZE 32
struct fips_cipher_ctx {
uint8_t iv[CC_AES_IV_SIZE];
uint8_t key[AES_512_BIT_KEY_SIZE];
uint8_t din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t dout[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 iv[CC_AES_IV_SIZE];
u8 key[AES_512_BIT_KEY_SIZE];
u8 din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 dout[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
};
typedef struct _FipsCipherData {
uint8_t isAes;
uint8_t key[AES_512_BIT_KEY_SIZE];
u8 isAes;
u8 key[AES_512_BIT_KEY_SIZE];
size_t keySize;
uint8_t iv[CC_AES_IV_SIZE];
u8 iv[CC_AES_IV_SIZE];
enum drv_crypto_direction direction;
enum drv_cipher_mode oprMode;
uint8_t dataIn[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t dataOut[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 dataIn[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 dataOut[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
size_t dataInSize;
} FipsCipherData;
struct fips_cmac_ctx {
uint8_t key[AES_256_BIT_KEY_SIZE];
uint8_t din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 key[AES_256_BIT_KEY_SIZE];
u8 din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsCmacData {
enum drv_crypto_direction direction;
uint8_t key[AES_256_BIT_KEY_SIZE];
u8 key[AES_256_BIT_KEY_SIZE];
size_t key_size;
uint8_t data_in[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
u8 data_in[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 mac_res[CC_DIGEST_SIZE_MAX];
size_t mac_res_size;
} FipsCmacData;
struct fips_hash_ctx {
uint8_t initial_digest[CC_DIGEST_SIZE_MAX];
uint8_t din[NIST_SHA_MSG_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 initial_digest[CC_DIGEST_SIZE_MAX];
u8 din[NIST_SHA_MSG_SIZE];
u8 mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsHashData {
enum drv_hash_mode hash_mode;
uint8_t data_in[NIST_SHA_MSG_SIZE];
u8 data_in[NIST_SHA_MSG_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 mac_res[CC_DIGEST_SIZE_MAX];
} FipsHashData;
/* note that the hmac key length must be equal or less than block size (block size is 64 up to sha256 and 128 for sha384/512) */
struct fips_hmac_ctx {
uint8_t initial_digest[CC_DIGEST_SIZE_MAX];
uint8_t key[CC_HMAC_BLOCK_SIZE_MAX];
uint8_t k0[CC_HMAC_BLOCK_SIZE_MAX];
uint8_t digest_bytes_len[HASH_LEN_SIZE];
uint8_t tmp_digest[CC_DIGEST_SIZE_MAX];
uint8_t din[NIST_HMAC_MSG_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 initial_digest[CC_DIGEST_SIZE_MAX];
u8 key[CC_HMAC_BLOCK_SIZE_MAX];
u8 k0[CC_HMAC_BLOCK_SIZE_MAX];
u8 digest_bytes_len[HASH_LEN_SIZE];
u8 tmp_digest[CC_DIGEST_SIZE_MAX];
u8 din[NIST_HMAC_MSG_SIZE];
u8 mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsHmacData {
enum drv_hash_mode hash_mode;
uint8_t key[CC_HMAC_BLOCK_SIZE_MAX];
u8 key[CC_HMAC_BLOCK_SIZE_MAX];
size_t key_size;
uint8_t data_in[NIST_HMAC_MSG_SIZE];
u8 data_in[NIST_HMAC_MSG_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
u8 mac_res[CC_DIGEST_SIZE_MAX];
} FipsHmacData;
#define FIPS_CCM_B0_A0_ADATA_SIZE (NIST_AESCCM_IV_SIZE + NIST_AESCCM_IV_SIZE + NIST_AESCCM_ADATA_SIZE)
struct fips_ccm_ctx {
uint8_t b0_a0_adata[FIPS_CCM_B0_A0_ADATA_SIZE];
uint8_t iv[NIST_AESCCM_IV_SIZE];
uint8_t ctr_cnt_0[NIST_AESCCM_IV_SIZE];
uint8_t key[CC_AES_KEY_SIZE_MAX];
uint8_t din[NIST_AESCCM_TEXT_SIZE];
uint8_t dout[NIST_AESCCM_TEXT_SIZE];
uint8_t mac_res[NIST_AESCCM_TAG_SIZE];
u8 b0_a0_adata[FIPS_CCM_B0_A0_ADATA_SIZE];
u8 iv[NIST_AESCCM_IV_SIZE];
u8 ctr_cnt_0[NIST_AESCCM_IV_SIZE];
u8 key[CC_AES_KEY_SIZE_MAX];
u8 din[NIST_AESCCM_TEXT_SIZE];
u8 dout[NIST_AESCCM_TEXT_SIZE];
u8 mac_res[NIST_AESCCM_TAG_SIZE];
};
typedef struct _FipsCcmData {
enum drv_crypto_direction direction;
uint8_t key[CC_AES_KEY_SIZE_MAX];
u8 key[CC_AES_KEY_SIZE_MAX];
size_t keySize;
uint8_t nonce[NIST_AESCCM_NONCE_SIZE];
uint8_t adata[NIST_AESCCM_ADATA_SIZE];
u8 nonce[NIST_AESCCM_NONCE_SIZE];
u8 adata[NIST_AESCCM_ADATA_SIZE];
size_t adataSize;
uint8_t dataIn[NIST_AESCCM_TEXT_SIZE];
u8 dataIn[NIST_AESCCM_TEXT_SIZE];
size_t dataInSize;
uint8_t dataOut[NIST_AESCCM_TEXT_SIZE];
uint8_t tagSize;
uint8_t macResOut[NIST_AESCCM_TAG_SIZE];
u8 dataOut[NIST_AESCCM_TEXT_SIZE];
u8 tagSize;
u8 macResOut[NIST_AESCCM_TAG_SIZE];
} FipsCcmData;
struct fips_gcm_ctx {
uint8_t adata[NIST_AESGCM_ADATA_SIZE];
uint8_t key[CC_AES_KEY_SIZE_MAX];
uint8_t hkey[CC_AES_KEY_SIZE_MAX];
uint8_t din[NIST_AESGCM_TEXT_SIZE];
uint8_t dout[NIST_AESGCM_TEXT_SIZE];
uint8_t mac_res[NIST_AESGCM_TAG_SIZE];
uint8_t len_block[AES_BLOCK_SIZE];
uint8_t iv_inc1[AES_BLOCK_SIZE];
uint8_t iv_inc2[AES_BLOCK_SIZE];
u8 adata[NIST_AESGCM_ADATA_SIZE];
u8 key[CC_AES_KEY_SIZE_MAX];
u8 hkey[CC_AES_KEY_SIZE_MAX];
u8 din[NIST_AESGCM_TEXT_SIZE];
u8 dout[NIST_AESGCM_TEXT_SIZE];
u8 mac_res[NIST_AESGCM_TAG_SIZE];
u8 len_block[AES_BLOCK_SIZE];
u8 iv_inc1[AES_BLOCK_SIZE];
u8 iv_inc2[AES_BLOCK_SIZE];
};
typedef struct _FipsGcmData {
enum drv_crypto_direction direction;
uint8_t key[CC_AES_KEY_SIZE_MAX];
u8 key[CC_AES_KEY_SIZE_MAX];
size_t keySize;
uint8_t iv[NIST_AESGCM_IV_SIZE];
uint8_t adata[NIST_AESGCM_ADATA_SIZE];
u8 iv[NIST_AESGCM_IV_SIZE];
u8 adata[NIST_AESGCM_ADATA_SIZE];
size_t adataSize;
uint8_t dataIn[NIST_AESGCM_TEXT_SIZE];
u8 dataIn[NIST_AESGCM_TEXT_SIZE];
size_t dataInSize;
uint8_t dataOut[NIST_AESGCM_TEXT_SIZE];
uint8_t tagSize;
uint8_t macResOut[NIST_AESGCM_TAG_SIZE];
u8 dataOut[NIST_AESGCM_TEXT_SIZE];
u8 tagSize;
u8 macResOut[NIST_AESGCM_TAG_SIZE];
} FipsGcmData;
......
......@@ -68,7 +68,7 @@ extern size_t ssi_fips_max_mem_alloc_size(void);
/* The function called once at driver entry point to check whether TEE FIPS error occured.*/
static enum ssi_fips_error ssi_fips_get_tee_error(struct ssi_drvdata *drvdata)
{
uint32_t regVal;
u32 regVal;
void __iomem *cc_base = drvdata->cc_base;
regVal = CC_HAL_READ_REGISTER(CC_REG_OFFSET(HOST_RGF, GPR_HOST));
......@@ -145,8 +145,8 @@ static void fips_dsr(unsigned long devarg)
{
struct ssi_drvdata *drvdata = (struct ssi_drvdata *)devarg;
void __iomem *cc_base = drvdata->cc_base;
uint32_t irq;
uint32_t teeFipsError = 0;
u32 irq;
u32 teeFipsError = 0;
irq = (drvdata->irq & (SSI_GPR0_IRQ_MASK));
......
......@@ -29,7 +29,7 @@ typedef enum CC_FipsSyncStatus{
CC_FIPS_SYNC_MODULE_ERROR = 0x1,
CC_FIPS_SYNC_REE_STATUS = 0x4,
CC_FIPS_SYNC_TEE_STATUS = 0x8,
CC_FIPS_SYNC_STATUS_RESERVE32B = INT32_MAX
CC_FIPS_SYNC_STATUS_RESERVE32B = S32_MAX
}CCFipsSyncStatus_t;
......
......@@ -42,25 +42,25 @@ struct ssi_hash_handle {
struct completion init_comp;
};
static const uint32_t digest_len_init[] = {
static const u32 digest_len_init[] = {
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
static const uint32_t md5_init[] = {
static const u32 md5_init[] = {
SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha1_init[] = {
static const u32 sha1_init[] = {
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha224_init[] = {
static const u32 sha224_init[] = {
SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
static const uint32_t sha256_init[] = {
static const u32 sha256_init[] = {
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
#if (DX_DEV_SHA_MAX > 256)
static const uint32_t digest_len_sha512_init[] = {
static const u32 digest_len_sha512_init[] = {
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
static const uint64_t sha384_init[] = {
static const u64 sha384_init[] = {
SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4,
SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 };
static const uint64_t sha512_init[] = {
static const u64 sha512_init[] = {
SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
#endif
......@@ -89,7 +89,7 @@ struct ssi_hash_alg {
struct hash_key_req_ctx {
uint32_t keylen;
u32 keylen;
dma_addr_t key_dma_addr;
};
......@@ -98,8 +98,8 @@ struct ssi_hash_ctx {
struct ssi_drvdata *drvdata;
/* holds the origin digest; the digest after "setkey" if HMAC,*
the initial digest if HASH. */
uint8_t digest_buff[SSI_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
uint8_t opad_tmp_keys_buff[SSI_MAX_HASH_OPAD_TMP_KEYS_SIZE] ____cacheline_aligned;
u8 digest_buff[SSI_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
u8 opad_tmp_keys_buff[SSI_MAX_HASH_OPAD_TMP_KEYS_SIZE] ____cacheline_aligned;
dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
dma_addr_t digest_buff_dma_addr;
/* use for hmac with key large then mode block size */
......@@ -120,7 +120,7 @@ static void ssi_hash_create_data_desc(
bool is_not_last_data,
unsigned int *seq_size);
static inline void ssi_set_hash_endianity(uint32_t mode, HwDesc_s *desc)
static inline void ssi_set_hash_endianity(u32 mode, HwDesc_s *desc)
{
if (unlikely((mode == DRV_HASH_MD5) ||
(mode == DRV_HASH_SHA384) ||
......@@ -414,7 +414,7 @@ static void ssi_hash_digest_complete(struct device *dev, void *ssi_req, void __i
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("req=%pK\n", req);
......@@ -430,7 +430,7 @@ static void ssi_hash_complete(struct device *dev, void *ssi_req, void __iomem *c
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("req=%pK\n", req);
......@@ -611,7 +611,7 @@ static int ssi_hash_update(struct ahash_req_ctx *state,
struct device *dev = &ctx->drvdata->plat_dev->dev;
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
uint32_t idx = 0;
u32 idx = 0;
int rc;
SSI_LOG_DEBUG("===== %s-update (%d) ====\n", ctx->is_hmac ?
......@@ -1473,7 +1473,7 @@ static int ssi_mac_update(struct ahash_request *req)
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int rc;
uint32_t idx = 0;
u32 idx = 0;
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (req->nbytes == 0) {
......@@ -1536,10 +1536,10 @@ static int ssi_mac_final(struct ahash_request *req)
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc = 0;
uint32_t keySize, keyLen;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 keySize, keyLen;
u32 digestsize = crypto_ahash_digestsize(tfm);
uint32_t rem_cnt = state->buff_index ? state->buff1_cnt :
u32 rem_cnt = state->buff_index ? state->buff1_cnt :
state->buff0_cnt;
......@@ -1650,8 +1650,8 @@ static int ssi_mac_finup(struct ahash_request *req)
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
int idx = 0;
int rc = 0;
uint32_t key_len = 0;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 key_len = 0;
u32 digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("===== finup xcbc(%d) ====\n", req->nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
......@@ -1719,10 +1719,10 @@ static int ssi_mac_digest(struct ahash_request *req)
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = &ctx->drvdata->plat_dev->dev;
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
struct ssi_crypto_req ssi_req = {};
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
uint32_t keyLen;
u32 keyLen;
int idx = 0;
int rc;
......@@ -1798,7 +1798,7 @@ static int ssi_shash_digest(struct shash_desc *desc,
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
u32 digestsize = crypto_shash_digestsize(tfm);
struct scatterlist src;
if (len == 0) {
......@@ -1817,7 +1817,7 @@ static int ssi_shash_update(struct shash_desc *desc,
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t blocksize = crypto_tfm_alg_blocksize(&tfm->base);
u32 blocksize = crypto_tfm_alg_blocksize(&tfm->base);
struct scatterlist src;
sg_init_one(&src, (const void *)data, len);
......@@ -1831,7 +1831,7 @@ static int ssi_shash_finup(struct shash_desc *desc,
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
u32 digestsize = crypto_shash_digestsize(tfm);
struct scatterlist src;
sg_init_one(&src, (const void *)data, len);
......@@ -1844,7 +1844,7 @@ static int ssi_shash_final(struct shash_desc *desc, u8 *out)
struct ahash_req_ctx *state = shash_desc_ctx(desc);
struct crypto_shash *tfm = desc->tfm;
struct ssi_hash_ctx *ctx = crypto_shash_ctx(tfm);
uint32_t digestsize = crypto_shash_digestsize(tfm);
u32 digestsize = crypto_shash_digestsize(tfm);
return ssi_hash_final(state, ctx, digestsize, NULL, 0, out, NULL);
}
......@@ -1890,7 +1890,7 @@ static int ssi_ahash_digest(struct ahash_request *req)
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_digest(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
......@@ -1910,7 +1910,7 @@ static int ssi_ahash_finup(struct ahash_request *req)
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_finup(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
......@@ -1920,7 +1920,7 @@ static int ssi_ahash_final(struct ahash_request *req)
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(tfm);
uint32_t digestsize = crypto_ahash_digestsize(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
return ssi_hash_final(state, ctx, digestsize, req->src, req->nbytes, req->result, (void *)req);
}
......@@ -2284,7 +2284,7 @@ int ssi_hash_init_sram_digest_consts(struct ssi_drvdata *drvdata)
struct ssi_hash_handle *hash_handle = drvdata->hash_handle;
ssi_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr;
unsigned int larval_seq_len = 0;
HwDesc_s larval_seq[CC_DIGEST_SIZE_MAX/sizeof(uint32_t)];
HwDesc_s larval_seq[CC_DIGEST_SIZE_MAX/sizeof(u32)];
int rc = 0;
#if (DX_DEV_SHA_MAX > 256)
int i;
......@@ -2351,15 +2351,15 @@ int ssi_hash_init_sram_digest_consts(struct ssi_drvdata *drvdata)
#if (DX_DEV_SHA_MAX > 256)
/* We are forced to swap each double-word larval before copying to sram */
for (i = 0; i < ARRAY_SIZE(sha384_init); i++) {
const uint32_t const0 = ((uint32_t *)((uint64_t *)&sha384_init[i]))[1];
const uint32_t const1 = ((uint32_t *)((uint64_t *)&sha384_init[i]))[0];
const u32 const0 = ((u32 *)((u64 *)&sha384_init[i]))[1];
const u32 const1 = ((u32 *)((u64 *)&sha384_init[i]))[0];
ssi_sram_mgr_const2sram_desc(&const0, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
sram_buff_ofs += sizeof(u32);
ssi_sram_mgr_const2sram_desc(&const1, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
sram_buff_ofs += sizeof(u32);
}
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0)) {
......@@ -2369,15 +2369,15 @@ int ssi_hash_init_sram_digest_consts(struct ssi_drvdata *drvdata)
larval_seq_len = 0;
for (i = 0; i < ARRAY_SIZE(sha512_init); i++) {
const uint32_t const0 = ((uint32_t *)((uint64_t *)&sha512_init[i]))[1];
const uint32_t const1 = ((uint32_t *)((uint64_t *)&sha512_init[i]))[0];
const u32 const0 = ((u32 *)((u64 *)&sha512_init[i]))[1];
const u32 const1 = ((u32 *)((u64 *)&sha512_init[i]))[0];
ssi_sram_mgr_const2sram_desc(&const0, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
sram_buff_ofs += sizeof(u32);
ssi_sram_mgr_const2sram_desc(&const1, sram_buff_ofs, 1,
larval_seq, &larval_seq_len);
sram_buff_ofs += sizeof(uint32_t);
sram_buff_ofs += sizeof(u32);
}
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (unlikely(rc != 0)) {
......@@ -2394,7 +2394,7 @@ int ssi_hash_alloc(struct ssi_drvdata *drvdata)
{
struct ssi_hash_handle *hash_handle;
ssi_sram_addr_t sram_buff;
uint32_t sram_size_to_alloc;
u32 sram_size_to_alloc;
int rc = 0;
int alg;
......@@ -2686,9 +2686,9 @@ static void ssi_hash_create_data_desc(struct ahash_req_ctx *areq_ctx,
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
*
* \return uint32_t The address of the inital digest in SRAM
* \return u32 The address of the inital digest in SRAM
*/
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, uint32_t mode)
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, u32 mode)
{
struct ssi_drvdata *_drvdata = (struct ssi_drvdata *)drvdata;
struct ssi_hash_handle *hash_handle = _drvdata->hash_handle;
......@@ -2734,7 +2734,7 @@ ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, uint32_t mo
}
ssi_sram_addr_t
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, uint32_t mode)
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, u32 mode)
{
struct ssi_drvdata *_drvdata = (struct ssi_drvdata *)drvdata;
struct ssi_hash_handle *hash_handle = _drvdata->hash_handle;
......
......@@ -48,26 +48,26 @@ struct aeshash_state {
/* ahash state */
struct ahash_req_ctx {
uint8_t* buff0;
uint8_t* buff1;
uint8_t* digest_result_buff;
u8* buff0;
u8* buff1;
u8* digest_result_buff;
struct async_gen_req_ctx gen_ctx;
enum ssi_req_dma_buf_type data_dma_buf_type;
uint8_t *digest_buff;
uint8_t *opad_digest_buff;
uint8_t *digest_bytes_len;
u8 *digest_buff;
u8 *opad_digest_buff;
u8 *digest_bytes_len;
dma_addr_t opad_digest_dma_addr;
dma_addr_t digest_buff_dma_addr;
dma_addr_t digest_bytes_len_dma_addr;
dma_addr_t digest_result_dma_addr;
uint32_t buff0_cnt;
uint32_t buff1_cnt;
uint32_t buff_index;
uint32_t xcbc_count; /* count xcbc update operatations */
u32 buff0_cnt;
u32 buff1_cnt;
u32 buff_index;
u32 xcbc_count; /* count xcbc update operatations */
struct scatterlist buff_sg[2];
struct scatterlist *curr_sg;
uint32_t in_nents;
uint32_t mlli_nents;
u32 in_nents;
u32 mlli_nents;
struct mlli_params mlli_params;
};
......@@ -81,10 +81,10 @@ int ssi_hash_free(struct ssi_drvdata *drvdata);
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256/SHA384/SHA512
*
* \return uint32_t returns the address of the initial digest length in SRAM
* \return u32 returns the address of the initial digest length in SRAM
*/
ssi_sram_addr_t
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, uint32_t mode);
ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, u32 mode);
/*!
* Gets the address of the initial digest in SRAM
......@@ -93,9 +93,9 @@ ssi_ahash_get_initial_digest_len_sram_addr(void *drvdata, uint32_t mode);
* \param drvdata
* \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256/SHA384/SHA512
*
* \return uint32_t The address of the inital digest in SRAM
* \return u32 The address of the inital digest in SRAM
*/
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, uint32_t mode);
ssi_sram_addr_t ssi_ahash_get_larval_digest_sram_addr(void *drvdata, u32 mode);
#endif /*__SSI_HASH_H__*/
......@@ -43,8 +43,8 @@ struct ssi_ivgen_ctx {
ssi_sram_addr_t pool;
ssi_sram_addr_t ctr_key;
ssi_sram_addr_t ctr_iv;
uint32_t next_iv_ofs;
uint8_t *pool_meta;
u32 next_iv_ofs;
u8 *pool_meta;
dma_addr_t pool_meta_dma;
};
......
......@@ -87,7 +87,7 @@ do { \
*/
#define END_CC_MONITOR_COUNT(cc_base_addr, stat_op_type, stat_phase, monitor_null_cycles, lock_p, is_monitored) \
do { \
uint32_t elapsed_cycles; \
u32 elapsed_cycles; \
if ((is_monitored) == true) { \
elapsed_cycles = READ_REGISTER((cc_base_addr) + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_MEASURE_CNTR)); \
clear_bit(MONITOR_CNTR_BIT, (lock_p)); \
......@@ -111,13 +111,13 @@ struct ssi_request_mgr_handle {
unsigned int min_free_hw_slots;
unsigned int max_used_sw_slots;
struct ssi_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE];
uint32_t req_queue_head;
uint32_t req_queue_tail;
uint32_t axi_completed;
uint32_t q_free_slots;
u32 req_queue_head;
u32 req_queue_tail;
u32 axi_completed;
u32 q_free_slots;
spinlock_t hw_lock;
HwDesc_s compl_desc;
uint8_t *dummy_comp_buff;
u8 *dummy_comp_buff;
dma_addr_t dummy_comp_buff_dma;
HwDesc_s monitor_desc;
volatile unsigned long monitor_lock;
......@@ -147,7 +147,7 @@ void request_mgr_fini(struct ssi_drvdata *drvdata)
if (req_mgr_h->dummy_comp_buff_dma != 0) {
SSI_RESTORE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma);
dma_free_coherent(&drvdata->plat_dev->dev,
sizeof(uint32_t), req_mgr_h->dummy_comp_buff,
sizeof(u32), req_mgr_h->dummy_comp_buff,
req_mgr_h->dummy_comp_buff_dma);
}
......@@ -213,22 +213,22 @@ int request_mgr_init(struct ssi_drvdata *drvdata)
/* Allocate DMA word for "dummy" completion descriptor use */
req_mgr_h->dummy_comp_buff = dma_alloc_coherent(&drvdata->plat_dev->dev,
sizeof(uint32_t), &req_mgr_h->dummy_comp_buff_dma, GFP_KERNEL);
sizeof(u32), &req_mgr_h->dummy_comp_buff_dma, GFP_KERNEL);
if (!req_mgr_h->dummy_comp_buff) {
SSI_LOG_ERR("Not enough memory to allocate DMA (%zu) dropped "
"buffer\n", sizeof(uint32_t));
"buffer\n", sizeof(u32));
rc = -ENOMEM;
goto req_mgr_init_err;
}
SSI_UPDATE_DMA_ADDR_TO_48BIT(req_mgr_h->dummy_comp_buff_dma,
sizeof(uint32_t));
sizeof(u32));
/* Init. "dummy" completion descriptor */
HW_DESC_INIT(&req_mgr_h->compl_desc);
HW_DESC_SET_DIN_CONST(&req_mgr_h->compl_desc, 0, sizeof(uint32_t));
HW_DESC_SET_DIN_CONST(&req_mgr_h->compl_desc, 0, sizeof(u32));
HW_DESC_SET_DOUT_DLLI(&req_mgr_h->compl_desc,
req_mgr_h->dummy_comp_buff_dma,
sizeof(uint32_t), NS_BIT, 1);
sizeof(u32), NS_BIT, 1);
HW_DESC_SET_FLOW_MODE(&req_mgr_h->compl_desc, BYPASS);
HW_DESC_SET_QUEUE_LAST_IND(&req_mgr_h->compl_desc);
......@@ -581,7 +581,7 @@ static void proc_completions(struct ssi_drvdata *drvdata)
#ifdef COMPLETION_DELAY
/* Delay */
{
uint32_t axi_err;
u32 axi_err;
int i;
SSI_LOG_INFO("Delay\n");
for (i=0;i<1000000;i++) {
......@@ -615,7 +615,7 @@ static void comp_handler(unsigned long devarg)
struct ssi_request_mgr_handle * request_mgr_handle =
drvdata->request_mgr_handle;
uint32_t irq;
u32 irq;
DECL_CYCLE_COUNT_RESOURCES;
......
......@@ -85,7 +85,7 @@ int ssi_sram_mgr_init(struct ssi_drvdata *drvdata)
* \param drvdata
* \param size The requested bytes to allocate
*/
ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, uint32_t size)
ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, u32 size)
{
struct ssi_sram_mgr_ctx *smgr_ctx = drvdata->sram_mgr_handle;
ssi_sram_addr_t p;
......@@ -119,17 +119,17 @@ ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, uint32_t size)
* @seq_len: A pointer to the given IN/OUT sequence length
*/
void ssi_sram_mgr_const2sram_desc(
const uint32_t *src, ssi_sram_addr_t dst,
const u32 *src, ssi_sram_addr_t dst,
unsigned int nelement,
HwDesc_s *seq, unsigned int *seq_len)
{
uint32_t i;
u32 i;
unsigned int idx = *seq_len;
for (i = 0; i < nelement; i++, idx++) {
HW_DESC_INIT(&seq[idx]);
HW_DESC_SET_DIN_CONST(&seq[idx], src[i], sizeof(uint32_t));
HW_DESC_SET_DOUT_SRAM(&seq[idx], dst + (i * sizeof(uint32_t)), sizeof(uint32_t));
HW_DESC_SET_DIN_CONST(&seq[idx], src[i], sizeof(u32));
HW_DESC_SET_DOUT_SRAM(&seq[idx], dst + (i * sizeof(u32)), sizeof(u32));
HW_DESC_SET_FLOW_MODE(&seq[idx], BYPASS);
}
......
......@@ -28,7 +28,7 @@ struct ssi_drvdata;
* Address (offset) within CC internal SRAM
*/
typedef uint64_t ssi_sram_addr_t;
typedef u64 ssi_sram_addr_t;
#define NULL_SRAM_ADDR ((ssi_sram_addr_t)-1)
......@@ -59,7 +59,7 @@ void ssi_sram_mgr_fini(struct ssi_drvdata *drvdata);
* \param drvdata
* \param size The requested bytes to allocate
*/
ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, uint32_t size);
ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, u32 size);
/**
* ssi_sram_mgr_const2sram_desc() - Create const descriptors sequence to
......@@ -73,7 +73,7 @@ ssi_sram_addr_t ssi_sram_mgr_alloc(struct ssi_drvdata *drvdata, uint32_t size);
* @seq_len: A pointer to the given IN/OUT sequence length
*/
void ssi_sram_mgr_const2sram_desc(
const uint32_t *src, ssi_sram_addr_t dst,
const u32 *src, ssi_sram_addr_t dst,
unsigned int nelement,
HwDesc_s *seq, unsigned int *seq_len);
......
......@@ -95,7 +95,7 @@ struct sys_dir {
struct kobject *sys_dir_kobj;
struct attribute_group sys_dir_attr_group;
struct attribute **sys_dir_attr_list;
uint32_t num_of_attrs;
u32 num_of_attrs;
struct ssi_drvdata *drvdata; /* Associated driver context */
};
......@@ -137,12 +137,12 @@ static void update_db(struct stat_item *item, unsigned int result)
static void display_db(struct stat_item item[MAX_STAT_OP_TYPES][MAX_STAT_PHASES])
{
unsigned int i, j;
uint64_t avg;
u64 avg;
for (i=STAT_OP_TYPE_ENCODE; i<MAX_STAT_OP_TYPES; i++) {
for (j=0; j<MAX_STAT_PHASES; j++) {
if (item[i][j].count > 0) {
avg = (uint64_t)item[i][j].sum;
avg = (u64)item[i][j].sum;
do_div(avg, item[i][j].count);
SSI_LOG_ERR("%s, %s: min=%d avg=%d max=%d sum=%lld count=%d\n",
stat_name_db[i].op_type_name, stat_name_db[i].stat_phase_name[j],
......@@ -176,8 +176,8 @@ static ssize_t ssi_sys_stat_host_db_show(struct kobject *kobj,
{
int i, j ;
char line[512];
uint32_t min_cyc, max_cyc;
uint64_t avg;
u32 min_cyc, max_cyc;
u64 avg;
ssize_t buf_len, tmp_len=0;
buf_len = scnprintf(buf,PAGE_SIZE,
......@@ -187,7 +187,7 @@ static ssize_t ssi_sys_stat_host_db_show(struct kobject *kobj,
for (i=STAT_OP_TYPE_ENCODE; i<MAX_STAT_OP_TYPES; i++) {
for (j=0; j<MAX_STAT_PHASES-1; j++) {
if (stat_host_db[i][j].count > 0) {
avg = (uint64_t)stat_host_db[i][j].sum;
avg = (u64)stat_host_db[i][j].sum;
do_div(avg, stat_host_db[i][j].count);
min_cyc = stat_host_db[i][j].min;
max_cyc = stat_host_db[i][j].max;
......@@ -216,8 +216,8 @@ static ssize_t ssi_sys_stat_cc_db_show(struct kobject *kobj,
{
int i;
char line[256];
uint32_t min_cyc, max_cyc;
uint64_t avg;
u32 min_cyc, max_cyc;
u64 avg;
ssize_t buf_len,tmp_len=0;
buf_len = scnprintf(buf,PAGE_SIZE,
......@@ -226,7 +226,7 @@ static ssize_t ssi_sys_stat_cc_db_show(struct kobject *kobj,
return buf_len;
for (i=STAT_OP_TYPE_ENCODE; i<MAX_STAT_OP_TYPES; i++) {
if (stat_cc_db[i][STAT_PHASE_6].count > 0) {
avg = (uint64_t)stat_cc_db[i][STAT_PHASE_6].sum;
avg = (u64)stat_cc_db[i][STAT_PHASE_6].sum;
do_div(avg, stat_cc_db[i][STAT_PHASE_6].count);
min_cyc = stat_cc_db[i][STAT_PHASE_6].min;
max_cyc = stat_cc_db[i][STAT_PHASE_6].max;
......@@ -284,7 +284,7 @@ static ssize_t ssi_sys_regdump_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct ssi_drvdata *drvdata = sys_get_drvdata();
uint32_t register_value;
u32 register_value;
void __iomem* cc_base = drvdata->cc_base;
int offset = 0;
......@@ -333,7 +333,7 @@ struct sys_dir {
struct kobject *sys_dir_kobj;
struct attribute_group sys_dir_attr_group;
struct attribute **sys_dir_attr_list;
uint32_t num_of_attrs;
u32 num_of_attrs;
struct ssi_drvdata *drvdata; /* Associated driver context */
};
......@@ -361,7 +361,7 @@ static struct ssi_drvdata *sys_get_drvdata(void)
static int sys_init_dir(struct sys_dir *sys_dir, struct ssi_drvdata *drvdata,
struct kobject *parent_dir_kobj, const char *dir_name,
struct kobj_attribute *attrs, uint32_t num_of_attrs)
struct kobj_attribute *attrs, u32 num_of_attrs)
{
int i;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment