Commit a5acbfbd authored by Rafael J. Wysocki's avatar Rafael J. Wysocki

Merge branch 'pm-cpufreq-governor' into pm-cpufreq

parents edd4a893 adaf9fcd
......@@ -19,6 +19,7 @@ config CPU_FREQ
if CPU_FREQ
config CPU_FREQ_GOV_COMMON
select IRQ_WORK
bool
config CPU_FREQ_BOOST_SW
......
......@@ -21,7 +21,7 @@
#include <asm/msr.h>
#include <asm/cpufeature.h>
#include "cpufreq_governor.h"
#include "cpufreq_ondemand.h"
#define MSR_AMD64_FREQ_SENSITIVITY_ACTUAL 0xc0010080
#define MSR_AMD64_FREQ_SENSITIVITY_REFERENCE 0xc0010081
......@@ -45,10 +45,10 @@ static unsigned int amd_powersave_bias_target(struct cpufreq_policy *policy,
long d_actual, d_reference;
struct msr actual, reference;
struct cpu_data_t *data = &per_cpu(cpu_data, policy->cpu);
struct dbs_data *od_data = policy->governor_data;
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *od_data = policy_dbs->dbs_data;
struct od_dbs_tuners *od_tuners = od_data->tuners;
struct od_cpu_dbs_info_s *od_info =
od_data->cdata->get_cpu_dbs_info_s(policy->cpu);
struct od_policy_dbs_info *od_info = to_dbs_info(policy_dbs);
if (!od_info->freq_table)
return freq_next;
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
/*
* Header file for CPUFreq ondemand governor and related code.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "cpufreq_governor.h"
struct od_policy_dbs_info {
struct policy_dbs_info policy_dbs;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_delay_us;
unsigned int freq_hi_delay_us;
unsigned int sample_type:1;
};
static inline struct od_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
{
return container_of(policy_dbs, struct od_policy_dbs_info, policy_dbs);
}
struct od_dbs_tuners {
unsigned int powersave_bias;
};
......@@ -71,7 +71,7 @@ struct sample {
u64 mperf;
u64 tsc;
int freq;
ktime_t time;
u64 time;
};
struct pstate_data {
......@@ -103,13 +103,13 @@ struct _pid {
struct cpudata {
int cpu;
struct timer_list timer;
struct update_util_data update_util;
struct pstate_data pstate;
struct vid_data vid;
struct _pid pid;
ktime_t last_sample_time;
u64 last_sample_time;
u64 prev_aperf;
u64 prev_mperf;
u64 prev_tsc;
......@@ -120,6 +120,7 @@ struct cpudata {
static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
int sample_rate_ms;
s64 sample_rate_ns;
int deadband;
int setpoint;
int p_gain_pct;
......@@ -718,7 +719,7 @@ static void core_set_pstate(struct cpudata *cpudata, int pstate)
if (limits->no_turbo && !limits->turbo_disabled)
val |= (u64)1 << 32;
wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
wrmsrl(MSR_IA32_PERF_CTL, val);
}
static int knl_get_turbo_pstate(void)
......@@ -889,7 +890,7 @@ static inline void intel_pstate_calc_busy(struct cpudata *cpu)
sample->core_pct_busy = (int32_t)core_pct;
}
static inline void intel_pstate_sample(struct cpudata *cpu)
static inline void intel_pstate_sample(struct cpudata *cpu, u64 time)
{
u64 aperf, mperf;
unsigned long flags;
......@@ -906,7 +907,7 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
local_irq_restore(flags);
cpu->last_sample_time = cpu->sample.time;
cpu->sample.time = ktime_get();
cpu->sample.time = time;
cpu->sample.aperf = aperf;
cpu->sample.mperf = mperf;
cpu->sample.tsc = tsc;
......@@ -921,22 +922,6 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
cpu->prev_tsc = tsc;
}
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
int delay;
delay = msecs_to_jiffies(50);
mod_timer_pinned(&cpu->timer, jiffies + delay);
}
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
int delay;
delay = msecs_to_jiffies(pid_params.sample_rate_ms);
mod_timer_pinned(&cpu->timer, jiffies + delay);
}
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
......@@ -976,8 +961,7 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
{
int32_t core_busy, max_pstate, current_pstate, sample_ratio;
s64 duration_us;
u32 sample_time;
u64 duration_ns;
/*
* core_busy is the ratio of actual performance to max
......@@ -996,18 +980,16 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
/*
* Since we have a deferred timer, it will not fire unless
* we are in C0. So, determine if the actual elapsed time
* is significantly greater (3x) than our sample interval. If it
* is, then we were idle for a long enough period of time
* to adjust our busyness.
* Since our utilization update callback will not run unless we are
* in C0, check if the actual elapsed time is significantly greater (3x)
* than our sample interval. If it is, then we were idle for a long
* enough period of time to adjust our busyness.
*/
sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
duration_us = ktime_us_delta(cpu->sample.time,
cpu->last_sample_time);
if (duration_us > sample_time * 3) {
sample_ratio = div_fp(int_tofp(sample_time),
int_tofp(duration_us));
duration_ns = cpu->sample.time - cpu->last_sample_time;
if ((s64)duration_ns > pid_params.sample_rate_ns * 3
&& cpu->last_sample_time > 0) {
sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
int_tofp(duration_ns));
core_busy = mul_fp(core_busy, sample_ratio);
}
......@@ -1037,23 +1019,17 @@ static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
sample->freq);
}
static void intel_hwp_timer_func(unsigned long __data)
{
struct cpudata *cpu = (struct cpudata *) __data;
intel_pstate_sample(cpu);
intel_hwp_set_sample_time(cpu);
}
static void intel_pstate_timer_func(unsigned long __data)
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
unsigned long util, unsigned long max)
{
struct cpudata *cpu = (struct cpudata *) __data;
intel_pstate_sample(cpu);
struct cpudata *cpu = container_of(data, struct cpudata, update_util);
u64 delta_ns = time - cpu->sample.time;
if ((s64)delta_ns >= pid_params.sample_rate_ns) {
intel_pstate_sample(cpu, time);
if (!hwp_active)
intel_pstate_adjust_busy_pstate(cpu);
intel_pstate_set_sample_time(cpu);
}
}
#define ICPU(model, policy) \
......@@ -1101,24 +1077,19 @@ static int intel_pstate_init_cpu(unsigned int cpunum)
cpu->cpu = cpunum;
if (hwp_active)
if (hwp_active) {
intel_pstate_hwp_enable(cpu);
pid_params.sample_rate_ms = 50;
pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
}
intel_pstate_get_cpu_pstates(cpu);
init_timer_deferrable(&cpu->timer);
cpu->timer.data = (unsigned long)cpu;
cpu->timer.expires = jiffies + HZ/100;
if (!hwp_active)
cpu->timer.function = intel_pstate_timer_func;
else
cpu->timer.function = intel_hwp_timer_func;
intel_pstate_busy_pid_reset(cpu);
intel_pstate_sample(cpu);
intel_pstate_sample(cpu, 0);
add_timer_on(&cpu->timer, cpunum);
cpu->update_util.func = intel_pstate_update_util;
cpufreq_set_update_util_data(cpunum, &cpu->update_util);
pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
......@@ -1202,7 +1173,9 @@ static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
del_timer_sync(&all_cpu_data[cpu_num]->timer);
cpufreq_set_update_util_data(cpu_num, NULL);
synchronize_sched();
if (hwp_active)
return;
......@@ -1266,6 +1239,7 @@ static int intel_pstate_msrs_not_valid(void)
static void copy_pid_params(struct pstate_adjust_policy *policy)
{
pid_params.sample_rate_ms = policy->sample_rate_ms;
pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
pid_params.p_gain_pct = policy->p_gain_pct;
pid_params.i_gain_pct = policy->i_gain_pct;
pid_params.d_gain_pct = policy->d_gain_pct;
......@@ -1467,7 +1441,8 @@ static int __init intel_pstate_init(void)
get_online_cpus();
for_each_online_cpu(cpu) {
if (all_cpu_data[cpu]) {
del_timer_sync(&all_cpu_data[cpu]->timer);
cpufreq_set_update_util_data(cpu, NULL);
synchronize_sched();
kfree(all_cpu_data[cpu]);
}
}
......
......@@ -80,7 +80,6 @@ struct cpufreq_policy {
unsigned int last_policy; /* policy before unplug */
struct cpufreq_governor *governor; /* see below */
void *governor_data;
bool governor_enabled; /* governor start/stop flag */
char last_governor[CPUFREQ_NAME_LEN]; /* last governor used */
struct work_struct update; /* if update_policy() needs to be
......@@ -100,10 +99,6 @@ struct cpufreq_policy {
* - Any routine that will write to the policy structure and/or may take away
* the policy altogether (eg. CPU hotplug), will hold this lock in write
* mode before doing so.
*
* Additional rules:
* - Lock should not be held across
* __cpufreq_governor(data, CPUFREQ_GOV_POLICY_EXIT);
*/
struct rw_semaphore rwsem;
......
......@@ -3207,4 +3207,13 @@ static inline unsigned long rlimit_max(unsigned int limit)
return task_rlimit_max(current, limit);
}
#ifdef CONFIG_CPU_FREQ
struct update_util_data {
void (*func)(struct update_util_data *data,
u64 time, unsigned long util, unsigned long max);
};
void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
#endif /* CONFIG_CPU_FREQ */
#endif
......@@ -19,3 +19,4 @@ obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
/*
* Scheduler code and data structures related to cpufreq.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "sched.h"
DEFINE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
/**
* cpufreq_set_update_util_data - Populate the CPU's update_util_data pointer.
* @cpu: The CPU to set the pointer for.
* @data: New pointer value.
*
* Set and publish the update_util_data pointer for the given CPU. That pointer
* points to a struct update_util_data object containing a callback function
* to call from cpufreq_update_util(). That function will be called from an RCU
* read-side critical section, so it must not sleep.
*
* Callers must use RCU-sched callbacks to free any memory that might be
* accessed via the old update_util_data pointer or invoke synchronize_sched()
* right after this function to avoid use-after-free.
*/
void cpufreq_set_update_util_data(int cpu, struct update_util_data *data)
{
if (WARN_ON(data && !data->func))
return;
rcu_assign_pointer(per_cpu(cpufreq_update_util_data, cpu), data);
}
EXPORT_SYMBOL_GPL(cpufreq_set_update_util_data);
......@@ -726,6 +726,10 @@ static void update_curr_dl(struct rq *rq)
if (!dl_task(curr) || !on_dl_rq(dl_se))
return;
/* Kick cpufreq (see the comment in linux/cpufreq.h). */
if (cpu_of(rq) == smp_processor_id())
cpufreq_trigger_update(rq_clock(rq));
/*
* Consumed budget is computed considering the time as
* observed by schedulable tasks (excluding time spent
......
......@@ -2824,7 +2824,8 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
int cpu = cpu_of(rq_of(cfs_rq));
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
/*
* Track task load average for carrying it to new CPU after migrated, and
......@@ -2836,6 +2837,29 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
update_tg_load_avg(cfs_rq, 0);
if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
unsigned long max = rq->cpu_capacity_orig;
/*
* There are a few boundary cases this might miss but it should
* get called often enough that that should (hopefully) not be
* a real problem -- added to that it only calls on the local
* CPU, so if we enqueue remotely we'll miss an update, but
* the next tick/schedule should update.
*
* It will not get called when we go idle, because the idle
* thread is a different class (!fair), nor will the utilization
* number include things like RT tasks.
*
* As is, the util number is not freq-invariant (we'd have to
* implement arch_scale_freq_capacity() for that).
*
* See cpu_util().
*/
cpufreq_update_util(rq_clock(rq),
min(cfs_rq->avg.util_avg, max), max);
}
}
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
......
......@@ -945,6 +945,10 @@ static void update_curr_rt(struct rq *rq)
if (curr->sched_class != &rt_sched_class)
return;
/* Kick cpufreq (see the comment in linux/cpufreq.h). */
if (cpu_of(rq) == smp_processor_id())
cpufreq_trigger_update(rq_clock(rq));
delta_exec = rq_clock_task(rq) - curr->se.exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
......
......@@ -1738,3 +1738,51 @@ static inline u64 irq_time_read(int cpu)
}
#endif /* CONFIG_64BIT */
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
/**
* cpufreq_update_util - Take a note about CPU utilization changes.
* @time: Current time.
* @util: Current utilization.
* @max: Utilization ceiling.
*
* This function is called by the scheduler on every invocation of
* update_load_avg() on the CPU whose utilization is being updated.
*
* It can only be called from RCU-sched read-side critical sections.
*/
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
{
struct update_util_data *data;
data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
if (data)
data->func(data, time, util, max);
}
/**
* cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
* @time: Current time.
*
* The way cpufreq is currently arranged requires it to evaluate the CPU
* performance state (frequency/voltage) on a regular basis to prevent it from
* being stuck in a completely inadequate performance level for too long.
* That is not guaranteed to happen if the updates are only triggered from CFS,
* though, because they may not be coming in if RT or deadline tasks are active
* all the time (or there are RT and DL tasks only).
*
* As a workaround for that issue, this function is called by the RT and DL
* sched classes to trigger extra cpufreq updates to prevent it from stalling,
* but that really is a band-aid. Going forward it should be replaced with
* solutions targeted more specifically at RT and DL tasks.
*/
static inline void cpufreq_trigger_update(u64 time)
{
cpufreq_update_util(time, ULONG_MAX, 0);
}
#else
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
static inline void cpufreq_trigger_update(u64 time) {}
#endif /* CONFIG_CPU_FREQ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment