Commit ab405612 authored by Sasha Neftin's avatar Sasha Neftin Committed by Jeff Kirsher

igc: Add NVM support

Add code for NVM support and get MAC address, complete probe
method.
Signed-off-by: default avatarSasha Neftin <sasha.neftin@intel.com>
Signed-off-by: default avatarAlexander Duyck <alexander.h.duyck@intel.com>
Tested-by: default avatarAaron Brown <aaron.f.brown@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent c0071c7a
...@@ -7,4 +7,4 @@ ...@@ -7,4 +7,4 @@
obj-$(CONFIG_IGC) += igc.o obj-$(CONFIG_IGC) += igc.o
igc-objs := igc_main.o igc_mac.o igc_i225.o igc_base.o igc-objs := igc_main.o igc_mac.o igc_i225.o igc_base.o igc_nvm.o
...@@ -131,6 +131,10 @@ enum igc_tx_flags { ...@@ -131,6 +131,10 @@ enum igc_tx_flags {
IGC_TX_FLAGS_CSUM = 0x20, IGC_TX_FLAGS_CSUM = 0x20,
}; };
enum igc_boards {
board_base,
};
/* The largest size we can write to the descriptor is 65535. In order to /* The largest size we can write to the descriptor is 65535. In order to
* maintain a power of two alignment we have to limit ourselves to 32K. * maintain a power of two alignment we have to limit ourselves to 32K.
*/ */
...@@ -342,6 +346,8 @@ struct igc_adapter { ...@@ -342,6 +346,8 @@ struct igc_adapter {
spinlock_t nfc_lock; spinlock_t nfc_lock;
struct igc_mac_addr *mac_table; struct igc_mac_addr *mac_table;
struct igc_info ei;
}; };
/* igc_desc_unused - calculate if we have unused descriptors */ /* igc_desc_unused - calculate if we have unused descriptors */
......
...@@ -53,6 +53,22 @@ static s32 igc_set_pcie_completion_timeout(struct igc_hw *hw) ...@@ -53,6 +53,22 @@ static s32 igc_set_pcie_completion_timeout(struct igc_hw *hw)
return ret_val; return ret_val;
} }
/**
* igc_check_for_link_base - Check for link
* @hw: pointer to the HW structure
*
* If sgmii is enabled, then use the pcs register to determine link, otherwise
* use the generic interface for determining link.
*/
static s32 igc_check_for_link_base(struct igc_hw *hw)
{
s32 ret_val = 0;
ret_val = igc_check_for_copper_link(hw);
return ret_val;
}
/** /**
* igc_reset_hw_base - Reset hardware * igc_reset_hw_base - Reset hardware
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
...@@ -107,12 +123,51 @@ static s32 igc_reset_hw_base(struct igc_hw *hw) ...@@ -107,12 +123,51 @@ static s32 igc_reset_hw_base(struct igc_hw *hw)
return ret_val; return ret_val;
} }
/**
* igc_init_nvm_params_base - Init NVM func ptrs.
* @hw: pointer to the HW structure
*/
static s32 igc_init_nvm_params_base(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 eecd = rd32(IGC_EECD);
u16 size;
size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
IGC_EECD_SIZE_EX_SHIFT);
/* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* Just in case size is out of range, cap it to the largest
* EEPROM size supported
*/
if (size > 15)
size = 15;
nvm->word_size = BIT(size);
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
16 : 8;
if (nvm->word_size == BIT(15))
nvm->page_size = 128;
return 0;
}
/** /**
* igc_init_mac_params_base - Init MAC func ptrs. * igc_init_mac_params_base - Init MAC func ptrs.
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
*/ */
static s32 igc_init_mac_params_base(struct igc_hw *hw) static s32 igc_init_mac_params_base(struct igc_hw *hw)
{ {
struct igc_dev_spec_base *dev_spec = &hw->dev_spec._base;
struct igc_mac_info *mac = &hw->mac; struct igc_mac_info *mac = &hw->mac;
/* Set mta register count */ /* Set mta register count */
...@@ -125,6 +180,10 @@ static s32 igc_init_mac_params_base(struct igc_hw *hw) ...@@ -125,6 +180,10 @@ static s32 igc_init_mac_params_base(struct igc_hw *hw)
mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
/* Allow a single clear of the SW semaphore on I225 */
if (mac->type == igc_i225)
dev_spec->clear_semaphore_once = true;
return 0; return 0;
} }
...@@ -142,10 +201,43 @@ static s32 igc_get_invariants_base(struct igc_hw *hw) ...@@ -142,10 +201,43 @@ static s32 igc_get_invariants_base(struct igc_hw *hw)
if (ret_val) if (ret_val)
goto out; goto out;
/* NVM initialization */
ret_val = igc_init_nvm_params_base(hw);
switch (hw->mac.type) {
case igc_i225:
ret_val = igc_init_nvm_params_i225(hw);
break;
default:
break;
}
if (ret_val)
goto out;
out: out:
return ret_val; return ret_val;
} }
/**
* igc_get_link_up_info_base - Get link speed/duplex info
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* This is a wrapper function, if using the serial gigabit media independent
* interface, use PCS to retrieve the link speed and duplex information.
* Otherwise, use the generic function to get the link speed and duplex info.
*/
static s32 igc_get_link_up_info_base(struct igc_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
ret_val = igc_get_speed_and_duplex_copper(hw, speed, duplex);
return ret_val;
}
/** /**
* igc_init_hw_base - Initialize hardware * igc_init_hw_base - Initialize hardware
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
...@@ -184,6 +276,19 @@ static s32 igc_init_hw_base(struct igc_hw *hw) ...@@ -184,6 +276,19 @@ static s32 igc_init_hw_base(struct igc_hw *hw)
return ret_val; return ret_val;
} }
/**
* igc_read_mac_addr_base - Read device MAC address
* @hw: pointer to the HW structure
*/
static s32 igc_read_mac_addr_base(struct igc_hw *hw)
{
s32 ret_val = 0;
ret_val = igc_read_mac_addr(hw);
return ret_val;
}
/** /**
* igc_rx_fifo_flush_base - Clean rx fifo after Rx enable * igc_rx_fifo_flush_base - Clean rx fifo after Rx enable
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
...@@ -262,6 +367,10 @@ void igc_rx_fifo_flush_base(struct igc_hw *hw) ...@@ -262,6 +367,10 @@ void igc_rx_fifo_flush_base(struct igc_hw *hw)
static struct igc_mac_operations igc_mac_ops_base = { static struct igc_mac_operations igc_mac_ops_base = {
.init_hw = igc_init_hw_base, .init_hw = igc_init_hw_base,
.check_for_link = igc_check_for_link_base,
.rar_set = igc_rar_set,
.read_mac_addr = igc_read_mac_addr_base,
.get_speed_and_duplex = igc_get_link_up_info_base,
}; };
const struct igc_info igc_base_info = { const struct igc_info igc_base_info = {
......
...@@ -35,6 +35,8 @@ ...@@ -35,6 +35,8 @@
*/ */
#define IGC_RAH_AV 0x80000000 /* Receive descriptor valid */ #define IGC_RAH_AV 0x80000000 /* Receive descriptor valid */
#define IGC_RAH_POOL_1 0x00040000 #define IGC_RAH_POOL_1 0x00040000
#define IGC_RAL_MAC_ADDR_LEN 4
#define IGC_RAH_MAC_ADDR_LEN 2
/* Error Codes */ /* Error Codes */
#define IGC_SUCCESS 0 #define IGC_SUCCESS 0
...@@ -57,9 +59,51 @@ ...@@ -57,9 +59,51 @@
#define IGC_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ #define IGC_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
#define IGC_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ #define IGC_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
/* SWFW_SYNC Definitions */
#define IGC_SWFW_EEP_SM 0x1
#define IGC_SWFW_PHY0_SM 0x2
/* NVM Control */
/* Number of milliseconds for NVM auto read done after MAC reset. */ /* Number of milliseconds for NVM auto read done after MAC reset. */
#define AUTO_READ_DONE_TIMEOUT 10 #define AUTO_READ_DONE_TIMEOUT 10
#define IGC_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ #define IGC_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
#define IGC_EECD_REQ 0x00000040 /* NVM Access Request */
#define IGC_EECD_GNT 0x00000080 /* NVM Access Grant */
/* NVM Addressing bits based on type 0=small, 1=large */
#define IGC_EECD_ADDR_BITS 0x00000400
#define IGC_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
#define IGC_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
#define IGC_EECD_SIZE_EX_SHIFT 11
#define IGC_EECD_FLUPD_I225 0x00800000 /* Update FLASH */
#define IGC_EECD_FLUDONE_I225 0x04000000 /* Update FLASH done*/
#define IGC_EECD_FLASH_DETECTED_I225 0x00080000 /* FLASH detected */
#define IGC_FLUDONE_ATTEMPTS 20000
#define IGC_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */
/* Offset to data in NVM read/write registers */
#define IGC_NVM_RW_REG_DATA 16
#define IGC_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
#define IGC_NVM_RW_REG_START 1 /* Start operation */
#define IGC_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
#define IGC_NVM_POLL_READ 0 /* Flag for polling for read complete */
/* NVM Word Offsets */
#define NVM_CHECKSUM_REG 0x003F
/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
#define NVM_SUM 0xBABA
#define NVM_PBA_OFFSET_0 8
#define NVM_PBA_OFFSET_1 9
#define NVM_RESERVED_WORD 0xFFFF
#define NVM_PBA_PTR_GUARD 0xFAFA
#define NVM_WORD_SIZE_BASE_SHIFT 6
/* Collision related configuration parameters */
#define IGC_COLLISION_THRESHOLD 15
#define IGC_CT_SHIFT 4
#define IGC_COLLISION_DISTANCE 63
#define IGC_COLD_SHIFT 12
/* Device Status */ /* Device Status */
#define IGC_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ #define IGC_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
...@@ -70,6 +114,14 @@ ...@@ -70,6 +114,14 @@
#define IGC_STATUS_TXOFF 0x00000010 /* transmission paused */ #define IGC_STATUS_TXOFF 0x00000010 /* transmission paused */
#define IGC_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ #define IGC_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define IGC_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ #define IGC_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define IGC_STATUS_SPEED_2500 0x00400000 /* Speed 2.5Gb/s */
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
#define SPEED_2500 2500
#define HALF_DUPLEX 1
#define FULL_DUPLEX 2
/* Interrupt Cause Read */ /* Interrupt Cause Read */
#define IGC_ICR_TXDW BIT(0) /* Transmit desc written back */ #define IGC_ICR_TXDW BIT(0) /* Transmit desc written back */
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include "igc_regs.h" #include "igc_regs.h"
#include "igc_defines.h" #include "igc_defines.h"
#include "igc_mac.h" #include "igc_mac.h"
#include "igc_nvm.h"
#include "igc_i225.h" #include "igc_i225.h"
#include "igc_base.h" #include "igc_base.h"
...@@ -56,6 +57,8 @@ struct igc_info { ...@@ -56,6 +57,8 @@ struct igc_info {
struct igc_nvm_operations *nvm_ops; struct igc_nvm_operations *nvm_ops;
}; };
extern const struct igc_info igc_base_info;
struct igc_mac_info { struct igc_mac_info {
struct igc_mac_operations ops; struct igc_mac_operations ops;
......
...@@ -5,6 +5,32 @@ ...@@ -5,6 +5,32 @@
#include "igc_hw.h" #include "igc_hw.h"
/**
* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclusive access to the EEPROM.
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -IGC_ERR_NVM (-1).
*/
static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
{
return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}
/**
* igc_release_nvm_i225 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
* then release the semaphores acquired.
*/
static void igc_release_nvm_i225(struct igc_hw *hw)
{
igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}
/** /**
* igc_get_hw_semaphore_i225 - Acquire hardware semaphore * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
...@@ -139,3 +165,326 @@ void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) ...@@ -139,3 +165,326 @@ void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
igc_put_hw_semaphore(hw); igc_put_hw_semaphore(hw);
} }
/**
* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the Shadow Ram to read
* @words: number of words to read
* @data: word read from the Shadow Ram
*
* Reads a 16 bit word from the Shadow Ram using the EERD register.
* Uses necessary synchronization semaphores.
*/
static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = 0;
u16 i, count;
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
status = hw->nvm.ops.acquire(hw);
if (status)
break;
status = igc_read_nvm_eerd(hw, offset, count, data + i);
hw->nvm.ops.release(hw);
if (status)
break;
}
return status;
}
/**
* igc_write_nvm_srwr - Write to Shadow Ram using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow Ram to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow Ram
*
* Writes data to Shadow Ram at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* Shadow Ram will most likely contain an invalid checksum.
*/
static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 attempts = 100000;
u32 i, k, eewr = 0;
s32 ret_val = 0;
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
words == 0) {
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -IGC_ERR_NVM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
(data[i] << IGC_NVM_RW_REG_DATA) |
IGC_NVM_RW_REG_START;
wr32(IGC_SRWR, eewr);
for (k = 0; k < attempts; k++) {
if (IGC_NVM_RW_REG_DONE &
rd32(IGC_SRWR)) {
ret_val = 0;
break;
}
udelay(5);
}
if (ret_val) {
hw_dbg("Shadow RAM write EEWR timed out\n");
break;
}
}
out:
return ret_val;
}
/**
* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow RAM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow RAM
*
* Writes data to Shadow RAM at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* data will not be committed to FLASH and also Shadow RAM will most likely
* contain an invalid checksum.
*
* If error code is returned, data and Shadow RAM may be inconsistent - buffer
* partially written.
*/
static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = 0;
u16 i, count;
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to write in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
status = hw->nvm.ops.acquire(hw);
if (status)
break;
status = igc_write_nvm_srwr(hw, offset, count, data + i);
hw->nvm.ops.release(hw);
if (status)
break;
}
return status;
}
/**
* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
*/
static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
{
s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
u16 *data);
s32 status = 0;
status = hw->nvm.ops.acquire(hw);
if (status)
goto out;
/* Replace the read function with semaphore grabbing with
* the one that skips this for a while.
* We have semaphore taken already here.
*/
read_op_ptr = hw->nvm.ops.read;
hw->nvm.ops.read = igc_read_nvm_eerd;
status = igc_validate_nvm_checksum(hw);
/* Revert original read operation. */
hw->nvm.ops.read = read_op_ptr;
hw->nvm.ops.release(hw);
out:
return status;
}
/**
* igc_pool_flash_update_done_i225 - Pool FLUDONE status
* @hw: pointer to the HW structure
*/
static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
{
s32 ret_val = -IGC_ERR_NVM;
u32 i, reg;
for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
reg = rd32(IGC_EECD);
if (reg & IGC_EECD_FLUDONE_I225) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/**
* igc_update_flash_i225 - Commit EEPROM to the flash
* @hw: pointer to the HW structure
*/
static s32 igc_update_flash_i225(struct igc_hw *hw)
{
s32 ret_val = 0;
u32 flup;
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val == -IGC_ERR_NVM) {
hw_dbg("Flash update time out\n");
goto out;
}
flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
wr32(IGC_EECD, flup);
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val)
hw_dbg("Flash update time out\n");
else
hw_dbg("Flash update complete\n");
out:
return ret_val;
}
/**
* igc_update_nvm_checksum_i225 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM. Next commit EEPROM data onto the Flash.
*/
static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
{
u16 checksum = 0;
s32 ret_val = 0;
u16 i, nvm_data;
/* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
if (ret_val) {
hw_dbg("EEPROM read failed\n");
goto out;
}
ret_val = hw->nvm.ops.acquire(hw);
if (ret_val)
goto out;
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
* because we do not want to take the synchronization
* semaphores twice here.
*/
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
if (ret_val) {
hw->nvm.ops.release(hw);
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
&checksum);
if (ret_val) {
hw->nvm.ops.release(hw);
hw_dbg("NVM Write Error while updating checksum.\n");
goto out;
}
hw->nvm.ops.release(hw);
ret_val = igc_update_flash_i225(hw);
out:
return ret_val;
}
/**
* igc_get_flash_presence_i225 - Check if flash device is detected
* @hw: pointer to the HW structure
*/
bool igc_get_flash_presence_i225(struct igc_hw *hw)
{
bool ret_val = false;
u32 eec = 0;
eec = rd32(IGC_EECD);
if (eec & IGC_EECD_FLASH_DETECTED_I225)
ret_val = true;
return ret_val;
}
/**
* igc_init_nvm_params_i225 - Init NVM func ptrs.
* @hw: pointer to the HW structure
*/
s32 igc_init_nvm_params_i225(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
nvm->ops.acquire = igc_acquire_nvm_i225;
nvm->ops.release = igc_release_nvm_i225;
/* NVM Function Pointers */
if (igc_get_flash_presence_i225(hw)) {
hw->nvm.type = igc_nvm_flash_hw;
nvm->ops.read = igc_read_nvm_srrd_i225;
nvm->ops.write = igc_write_nvm_srwr_i225;
nvm->ops.validate = igc_validate_nvm_checksum_i225;
nvm->ops.update = igc_update_nvm_checksum_i225;
} else {
hw->nvm.type = igc_nvm_invm;
nvm->ops.read = igc_read_nvm_eerd;
nvm->ops.write = NULL;
nvm->ops.validate = NULL;
nvm->ops.update = NULL;
}
return 0;
}
...@@ -7,4 +7,7 @@ ...@@ -7,4 +7,7 @@
s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask); s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask);
void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask); void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask);
s32 igc_init_nvm_params_i225(struct igc_hw *hw);
bool igc_get_flash_presence_i225(struct igc_hw *hw);
#endif #endif
...@@ -274,6 +274,129 @@ void igc_clear_hw_cntrs_base(struct igc_hw *hw) ...@@ -274,6 +274,129 @@ void igc_clear_hw_cntrs_base(struct igc_hw *hw)
rd32(IGC_LENERRS); rd32(IGC_LENERRS);
} }
/**
* igc_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
*/
void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= IGC_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
wr32(IGC_RAL(index), rar_low);
wrfl();
wr32(IGC_RAH(index), rar_high);
wrfl();
}
/**
* igc_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
*/
s32 igc_check_for_copper_link(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = 0;
goto out;
}
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
if (ret_val)
goto out;
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -IGC_ERR_CONFIG;
goto out;
}
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
igc_config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
if (ret_val)
hw_dbg("Error configuring flow control\n");
out:
return ret_val;
}
/**
* igc_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
void igc_config_collision_dist(struct igc_hw *hw)
{
u32 tctl;
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_COLD;
tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
wr32(IGC_TCTL, tctl);
wrfl();
}
/** /**
* igc_get_auto_rd_done - Check for auto read completion * igc_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
...@@ -302,6 +425,53 @@ s32 igc_get_auto_rd_done(struct igc_hw *hw) ...@@ -302,6 +425,53 @@ s32 igc_get_auto_rd_done(struct igc_hw *hw)
return ret_val; return ret_val;
} }
/**
* igc_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
*/
s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
status = rd32(IGC_STATUS);
if (status & IGC_STATUS_SPEED_1000) {
/* For I225, STATUS will indicate 1G speed in both 1 Gbps
* and 2.5 Gbps link modes. An additional bit is used
* to differentiate between 1 Gbps and 2.5 Gbps.
*/
if (hw->mac.type == igc_i225 &&
(status & IGC_STATUS_SPEED_2500)) {
*speed = SPEED_2500;
hw_dbg("2500 Mbs, ");
} else {
*speed = SPEED_1000;
hw_dbg("1000 Mbs, ");
}
} else if (status & IGC_STATUS_SPEED_100) {
*speed = SPEED_100;
hw_dbg("100 Mbs, ");
} else {
*speed = SPEED_10;
hw_dbg("10 Mbs, ");
}
if (status & IGC_STATUS_FD) {
*duplex = FULL_DUPLEX;
hw_dbg("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
hw_dbg("Half Duplex\n");
}
return 0;
}
/** /**
* igc_put_hw_semaphore - Release hardware semaphore * igc_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
......
...@@ -13,10 +13,16 @@ ...@@ -13,10 +13,16 @@
/* forward declaration */ /* forward declaration */
s32 igc_disable_pcie_master(struct igc_hw *hw); s32 igc_disable_pcie_master(struct igc_hw *hw);
s32 igc_check_for_copper_link(struct igc_hw *hw);
void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count); void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count);
s32 igc_setup_link(struct igc_hw *hw); s32 igc_setup_link(struct igc_hw *hw);
void igc_clear_hw_cntrs_base(struct igc_hw *hw); void igc_clear_hw_cntrs_base(struct igc_hw *hw);
s32 igc_get_auto_rd_done(struct igc_hw *hw); s32 igc_get_auto_rd_done(struct igc_hw *hw);
void igc_put_hw_semaphore(struct igc_hw *hw); void igc_put_hw_semaphore(struct igc_hw *hw);
void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index);
void igc_config_collision_dist(struct igc_hw *hw);
s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed,
u16 *duplex);
#endif #endif
...@@ -27,9 +27,13 @@ static const char igc_driver_string[] = DRV_SUMMARY; ...@@ -27,9 +27,13 @@ static const char igc_driver_string[] = DRV_SUMMARY;
static const char igc_copyright[] = static const char igc_copyright[] =
"Copyright(c) 2018 Intel Corporation."; "Copyright(c) 2018 Intel Corporation.";
static const struct igc_info *igc_info_tbl[] = {
[board_base] = &igc_base_info,
};
static const struct pci_device_id igc_pci_tbl[] = { static const struct pci_device_id igc_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM) }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V) }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
/* required last entry */ /* required last entry */
{0, } {0, }
}; };
...@@ -3289,6 +3293,7 @@ static int igc_probe(struct pci_dev *pdev, ...@@ -3289,6 +3293,7 @@ static int igc_probe(struct pci_dev *pdev,
struct igc_adapter *adapter; struct igc_adapter *adapter;
struct net_device *netdev; struct net_device *netdev;
struct igc_hw *hw; struct igc_hw *hw;
const struct igc_info *ei = igc_info_tbl[ent->driver_data];
int err, pci_using_dac; int err, pci_using_dac;
err = pci_enable_device_mem(pdev); err = pci_enable_device_mem(pdev);
...@@ -3370,6 +3375,14 @@ static int igc_probe(struct pci_dev *pdev, ...@@ -3370,6 +3375,14 @@ static int igc_probe(struct pci_dev *pdev,
hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device; hw->subsystem_device_id = pdev->subsystem_device;
/* Copy the default MAC and PHY function pointers */
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
/* Initialize skew-specific constants */
err = ei->get_invariants(hw);
if (err)
goto err_sw_init;
/* setup the private structure */ /* setup the private structure */
err = igc_sw_init(adapter); err = igc_sw_init(adapter);
if (err) if (err)
...@@ -3403,6 +3416,9 @@ static int igc_probe(struct pci_dev *pdev, ...@@ -3403,6 +3416,9 @@ static int igc_probe(struct pci_dev *pdev,
/* carrier off reporting is important to ethtool even BEFORE open */ /* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev); netif_carrier_off(netdev);
/* Check if Media Autosense is enabled */
adapter->ei = *ei;
/* print pcie link status and MAC address */ /* print pcie link status and MAC address */
pcie_print_link_status(pdev); pcie_print_link_status(pdev);
netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Intel Corporation */
#include "igc_mac.h"
#include "igc_nvm.h"
/**
* igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
*/
static s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
{
s32 ret_val = -IGC_ERR_NVM;
u32 attempts = 100000;
u32 i, reg = 0;
for (i = 0; i < attempts; i++) {
if (ee_reg == IGC_NVM_POLL_READ)
reg = rd32(IGC_EERD);
else
reg = rd32(IGC_EEWR);
if (reg & IGC_NVM_RW_REG_DONE) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/**
* igc_acquire_nvm - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -IGC_ERR_NVM (-1).
*/
s32 igc_acquire_nvm(struct igc_hw *hw)
{
s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
u32 eecd = rd32(IGC_EECD);
s32 ret_val = 0;
wr32(IGC_EECD, eecd | IGC_EECD_REQ);
eecd = rd32(IGC_EECD);
while (timeout) {
if (eecd & IGC_EECD_GNT)
break;
udelay(5);
eecd = rd32(IGC_EECD);
timeout--;
}
if (!timeout) {
eecd &= ~IGC_EECD_REQ;
wr32(IGC_EECD, eecd);
hw_dbg("Could not acquire NVM grant\n");
ret_val = -IGC_ERR_NVM;
}
return ret_val;
}
/**
* igc_release_nvm - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
*/
void igc_release_nvm(struct igc_hw *hw)
{
u32 eecd;
eecd = rd32(IGC_EECD);
eecd &= ~IGC_EECD_REQ;
wr32(IGC_EECD, eecd);
}
/**
* igc_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
*/
s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = 0;
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
words == 0) {
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -IGC_ERR_NVM;
goto out;
}
for (i = 0; i < words; i++) {
eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
IGC_NVM_RW_REG_START;
wr32(IGC_EERD, eerd);
ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (rd32(IGC_EERD) >> IGC_NVM_RW_REG_DATA);
}
out:
return ret_val;
}
/**
* igc_read_mac_addr - Read device MAC address
* @hw: pointer to the HW structure
*/
s32 igc_read_mac_addr(struct igc_hw *hw)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = rd32(IGC_RAH(0));
rar_low = rd32(IGC_RAL(0));
for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
for (i = 0; i < ETH_ALEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return 0;
}
/**
* igc_validate_nvm_checksum - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
*/
s32 igc_validate_nvm_checksum(struct igc_hw *hw)
{
u16 checksum = 0;
u16 i, nvm_data;
s32 ret_val = 0;
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16)NVM_SUM) {
hw_dbg("NVM Checksum Invalid\n");
ret_val = -IGC_ERR_NVM;
goto out;
}
out:
return ret_val;
}
/**
* igc_update_nvm_checksum - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
*/
s32 igc_update_nvm_checksum(struct igc_hw *hw)
{
u16 checksum = 0;
u16 i, nvm_data;
s32 ret_val;
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
hw_dbg("NVM Write Error while updating checksum.\n");
out:
return ret_val;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018 Intel Corporation */
#ifndef _IGC_NVM_H_
#define _IGC_NVM_H_
s32 igc_acquire_nvm(struct igc_hw *hw);
void igc_release_nvm(struct igc_hw *hw);
s32 igc_read_mac_addr(struct igc_hw *hw);
s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data);
s32 igc_validate_nvm_checksum(struct igc_hw *hw);
s32 igc_update_nvm_checksum(struct igc_hw *hw);
#endif
...@@ -191,6 +191,9 @@ ...@@ -191,6 +191,9 @@
/* Management registers */ /* Management registers */
#define IGC_MANC 0x05820 /* Management Control - RW */ #define IGC_MANC 0x05820 /* Management Control - RW */
/* Shadow Ram Write Register - RW */
#define IGC_SRWR 0x12018
/* forward declaration */ /* forward declaration */
struct igc_hw; struct igc_hw;
u32 igc_rd32(struct igc_hw *hw, u32 reg); u32 igc_rd32(struct igc_hw *hw, u32 reg);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment