Commit ae7d2346 authored by David Jander's avatar David Jander Committed by Mark Brown

spi: Don't use the message queue if possible in spi_sync

The interaction with the controller message queue and its corresponding
auxiliary flags and variables requires the use of the queue_lock which is
costly. Since spi_sync will transfer the complete message anyway, and not
return until it is finished, there is no need to put the message into the
queue if the queue is empty. This can save a lot of overhead.

As an example of how significant this is, when using the MCP2518FD SPI CAN
controller on a i.MX8MM SoC, the time during which the interrupt line
stays active (during 3 relatively short spi_sync messages), is reduced
from 98us to 72us by this patch.
Signed-off-by: default avatarDavid Jander <david@protonic.nl>
Link: https://lore.kernel.org/r/20220621061234.3626638-3-david@protonic.nlSigned-off-by: default avatarMark Brown <broonie@kernel.org>
parent 1714582a
...@@ -1549,6 +1549,80 @@ static void spi_idle_runtime_pm(struct spi_controller *ctlr) ...@@ -1549,6 +1549,80 @@ static void spi_idle_runtime_pm(struct spi_controller *ctlr)
} }
} }
static int __spi_pump_transfer_message(struct spi_controller *ctlr,
struct spi_message *msg, bool was_busy)
{
struct spi_transfer *xfer;
int ret;
if (!was_busy && ctlr->auto_runtime_pm) {
ret = pm_runtime_get_sync(ctlr->dev.parent);
if (ret < 0) {
pm_runtime_put_noidle(ctlr->dev.parent);
dev_err(&ctlr->dev, "Failed to power device: %d\n",
ret);
return ret;
}
}
if (!was_busy)
trace_spi_controller_busy(ctlr);
if (!was_busy && ctlr->prepare_transfer_hardware) {
ret = ctlr->prepare_transfer_hardware(ctlr);
if (ret) {
dev_err(&ctlr->dev,
"failed to prepare transfer hardware: %d\n",
ret);
if (ctlr->auto_runtime_pm)
pm_runtime_put(ctlr->dev.parent);
msg->status = ret;
spi_finalize_current_message(ctlr);
return ret;
}
}
trace_spi_message_start(msg);
if (ctlr->prepare_message) {
ret = ctlr->prepare_message(ctlr, msg);
if (ret) {
dev_err(&ctlr->dev, "failed to prepare message: %d\n",
ret);
msg->status = ret;
spi_finalize_current_message(ctlr);
return ret;
}
msg->prepared = true;
}
ret = spi_map_msg(ctlr, msg);
if (ret) {
msg->status = ret;
spi_finalize_current_message(ctlr);
return ret;
}
if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
xfer->ptp_sts_word_pre = 0;
ptp_read_system_prets(xfer->ptp_sts);
}
}
ret = ctlr->transfer_one_message(ctlr, msg);
if (ret) {
dev_err(&ctlr->dev,
"failed to transfer one message from queue\n");
return ret;
}
return 0;
}
/** /**
* __spi_pump_messages - function which processes spi message queue * __spi_pump_messages - function which processes spi message queue
* @ctlr: controller to process queue for * @ctlr: controller to process queue for
...@@ -1564,7 +1638,6 @@ static void spi_idle_runtime_pm(struct spi_controller *ctlr) ...@@ -1564,7 +1638,6 @@ static void spi_idle_runtime_pm(struct spi_controller *ctlr)
*/ */
static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
{ {
struct spi_transfer *xfer;
struct spi_message *msg; struct spi_message *msg;
bool was_busy = false; bool was_busy = false;
unsigned long flags; unsigned long flags;
...@@ -1599,6 +1672,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) ...@@ -1599,6 +1672,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
!ctlr->unprepare_transfer_hardware) { !ctlr->unprepare_transfer_hardware) {
spi_idle_runtime_pm(ctlr); spi_idle_runtime_pm(ctlr);
ctlr->busy = false; ctlr->busy = false;
ctlr->queue_empty = true;
trace_spi_controller_idle(ctlr); trace_spi_controller_idle(ctlr);
} else { } else {
kthread_queue_work(ctlr->kworker, kthread_queue_work(ctlr->kworker,
...@@ -1625,6 +1699,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) ...@@ -1625,6 +1699,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
spin_lock_irqsave(&ctlr->queue_lock, flags); spin_lock_irqsave(&ctlr->queue_lock, flags);
ctlr->idling = false; ctlr->idling = false;
ctlr->queue_empty = true;
spin_unlock_irqrestore(&ctlr->queue_lock, flags); spin_unlock_irqrestore(&ctlr->queue_lock, flags);
return; return;
} }
...@@ -1641,75 +1716,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) ...@@ -1641,75 +1716,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
spin_unlock_irqrestore(&ctlr->queue_lock, flags); spin_unlock_irqrestore(&ctlr->queue_lock, flags);
mutex_lock(&ctlr->io_mutex); mutex_lock(&ctlr->io_mutex);
ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
if (!was_busy && ctlr->auto_runtime_pm) {
ret = pm_runtime_resume_and_get(ctlr->dev.parent);
if (ret < 0) {
dev_err(&ctlr->dev, "Failed to power device: %d\n",
ret);
mutex_unlock(&ctlr->io_mutex);
return;
}
}
if (!was_busy)
trace_spi_controller_busy(ctlr);
if (!was_busy && ctlr->prepare_transfer_hardware) {
ret = ctlr->prepare_transfer_hardware(ctlr);
if (ret) {
dev_err(&ctlr->dev,
"failed to prepare transfer hardware: %d\n",
ret);
if (ctlr->auto_runtime_pm)
pm_runtime_put(ctlr->dev.parent);
msg->status = ret;
spi_finalize_current_message(ctlr);
mutex_unlock(&ctlr->io_mutex);
return;
}
}
trace_spi_message_start(msg);
if (ctlr->prepare_message) {
ret = ctlr->prepare_message(ctlr, msg);
if (ret) {
dev_err(&ctlr->dev, "failed to prepare message: %d\n",
ret);
msg->status = ret;
spi_finalize_current_message(ctlr);
goto out;
}
msg->prepared = true;
}
ret = spi_map_msg(ctlr, msg);
if (ret) {
msg->status = ret;
spi_finalize_current_message(ctlr);
goto out;
}
if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
xfer->ptp_sts_word_pre = 0;
ptp_read_system_prets(xfer->ptp_sts);
}
}
ret = ctlr->transfer_one_message(ctlr, msg);
if (ret) {
dev_err(&ctlr->dev,
"failed to transfer one message from queue: %d\n",
ret);
goto out;
}
out:
mutex_unlock(&ctlr->io_mutex); mutex_unlock(&ctlr->io_mutex);
/* Prod the scheduler in case transfer_one() was busy waiting */ /* Prod the scheduler in case transfer_one() was busy waiting */
...@@ -1839,6 +1846,7 @@ static int spi_init_queue(struct spi_controller *ctlr) ...@@ -1839,6 +1846,7 @@ static int spi_init_queue(struct spi_controller *ctlr)
{ {
ctlr->running = false; ctlr->running = false;
ctlr->busy = false; ctlr->busy = false;
ctlr->queue_empty = true;
ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
if (IS_ERR(ctlr->kworker)) { if (IS_ERR(ctlr->kworker)) {
...@@ -1936,11 +1944,20 @@ void spi_finalize_current_message(struct spi_controller *ctlr) ...@@ -1936,11 +1944,20 @@ void spi_finalize_current_message(struct spi_controller *ctlr)
mesg->prepared = false; mesg->prepared = false;
if (!mesg->sync) {
/*
* This message was sent via the async message queue. Handle
* the queue and kick the worker thread to do the
* idling/shutdown or send the next message if needed.
*/
spin_lock_irqsave(&ctlr->queue_lock, flags); spin_lock_irqsave(&ctlr->queue_lock, flags);
WARN(ctlr->cur_msg != mesg,
"Finalizing queued message that is not the current head of queue!");
ctlr->cur_msg = NULL; ctlr->cur_msg = NULL;
ctlr->fallback = false; ctlr->fallback = false;
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
spin_unlock_irqrestore(&ctlr->queue_lock, flags); spin_unlock_irqrestore(&ctlr->queue_lock, flags);
}
trace_spi_message_done(mesg); trace_spi_message_done(mesg);
...@@ -2043,6 +2060,7 @@ static int __spi_queued_transfer(struct spi_device *spi, ...@@ -2043,6 +2060,7 @@ static int __spi_queued_transfer(struct spi_device *spi,
msg->status = -EINPROGRESS; msg->status = -EINPROGRESS;
list_add_tail(&msg->queue, &ctlr->queue); list_add_tail(&msg->queue, &ctlr->queue);
ctlr->queue_empty = false;
if (!ctlr->busy && need_pump) if (!ctlr->busy && need_pump)
kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
...@@ -3938,6 +3956,39 @@ static int spi_async_locked(struct spi_device *spi, struct spi_message *message) ...@@ -3938,6 +3956,39 @@ static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
} }
static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
{
bool was_busy;
int ret;
mutex_lock(&ctlr->io_mutex);
/* If another context is idling the device then wait */
while (ctlr->idling)
usleep_range(10000, 11000);
was_busy = READ_ONCE(ctlr->busy);
ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
if (ret)
goto out;
if (!was_busy) {
kfree(ctlr->dummy_rx);
ctlr->dummy_rx = NULL;
kfree(ctlr->dummy_tx);
ctlr->dummy_tx = NULL;
if (ctlr->unprepare_transfer_hardware &&
ctlr->unprepare_transfer_hardware(ctlr))
dev_err(&ctlr->dev,
"failed to unprepare transfer hardware\n");
spi_idle_runtime_pm(ctlr);
}
out:
mutex_unlock(&ctlr->io_mutex);
}
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
/* /*
...@@ -3956,51 +4007,52 @@ static int __spi_sync(struct spi_device *spi, struct spi_message *message) ...@@ -3956,51 +4007,52 @@ static int __spi_sync(struct spi_device *spi, struct spi_message *message)
DECLARE_COMPLETION_ONSTACK(done); DECLARE_COMPLETION_ONSTACK(done);
int status; int status;
struct spi_controller *ctlr = spi->controller; struct spi_controller *ctlr = spi->controller;
unsigned long flags;
status = __spi_validate(spi, message); status = __spi_validate(spi, message);
if (status != 0) if (status != 0)
return status; return status;
message->complete = spi_complete;
message->context = &done;
message->spi = spi; message->spi = spi;
SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
/* /*
* If we're not using the legacy transfer method then we will * Checking queue_empty here only guarantees async/sync message
* try to transfer in the calling context so special case. * ordering when coming from the same context. It does not need to
* This code would be less tricky if we could remove the * guard against reentrancy from a different context. The io_mutex
* support for driver implemented message queues. * will catch those cases.
*/ */
if (ctlr->transfer == spi_queued_transfer) { if (READ_ONCE(ctlr->queue_empty)) {
spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); message->sync = true;
message->actual_length = 0;
message->status = -EINPROGRESS;
trace_spi_message_submit(message); trace_spi_message_submit(message);
status = __spi_queued_transfer(spi, message, false); SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); __spi_transfer_message_noqueue(ctlr, message);
} else {
status = spi_async_locked(spi, message);
}
if (status == 0) { return message->status;
/* Push out the messages in the calling context if we can */
if (ctlr->transfer == spi_queued_transfer) {
SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
spi_sync_immediate);
SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics,
spi_sync_immediate);
__spi_pump_messages(ctlr, false);
} }
/*
* There are messages in the async queue that could have originated
* from the same context, so we need to preserve ordering.
* Therefor we send the message to the async queue and wait until they
* are completed.
*/
message->complete = spi_complete;
message->context = &done;
status = spi_async_locked(spi, message);
if (status == 0) {
wait_for_completion(&done); wait_for_completion(&done);
status = message->status; status = message->status;
} }
message->context = NULL; message->context = NULL;
return status; return status;
} }
......
...@@ -461,6 +461,8 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch ...@@ -461,6 +461,8 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
* @irq_flags: Interrupt enable state during PTP system timestamping * @irq_flags: Interrupt enable state during PTP system timestamping
* @fallback: fallback to pio if dma transfer return failure with * @fallback: fallback to pio if dma transfer return failure with
* SPI_TRANS_FAIL_NO_START. * SPI_TRANS_FAIL_NO_START.
* @queue_empty: signal green light for opportunistically skipping the queue
* for spi_sync transfers.
* *
* Each SPI controller can communicate with one or more @spi_device * Each SPI controller can communicate with one or more @spi_device
* children. These make a small bus, sharing MOSI, MISO and SCK signals * children. These make a small bus, sharing MOSI, MISO and SCK signals
...@@ -677,6 +679,9 @@ struct spi_controller { ...@@ -677,6 +679,9 @@ struct spi_controller {
/* Interrupt enable state during PTP system timestamping */ /* Interrupt enable state during PTP system timestamping */
unsigned long irq_flags; unsigned long irq_flags;
/* Flag for enabling opportunistic skipping of the queue in spi_sync */
bool queue_empty;
}; };
static inline void *spi_controller_get_devdata(struct spi_controller *ctlr) static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
...@@ -986,6 +991,7 @@ struct spi_transfer { ...@@ -986,6 +991,7 @@ struct spi_transfer {
* @state: for use by whichever driver currently owns the message * @state: for use by whichever driver currently owns the message
* @resources: for resource management when the spi message is processed * @resources: for resource management when the spi message is processed
* @prepared: spi_prepare_message was called for the this message * @prepared: spi_prepare_message was called for the this message
* @sync: this message took the direct sync path skipping the async queue
* *
* A @spi_message is used to execute an atomic sequence of data transfers, * A @spi_message is used to execute an atomic sequence of data transfers,
* each represented by a struct spi_transfer. The sequence is "atomic" * each represented by a struct spi_transfer. The sequence is "atomic"
...@@ -1038,6 +1044,9 @@ struct spi_message { ...@@ -1038,6 +1044,9 @@ struct spi_message {
/* spi_prepare_message was called for this message */ /* spi_prepare_message was called for this message */
bool prepared; bool prepared;
/* this message is skipping the async queue */
bool sync;
}; };
static inline void spi_message_init_no_memset(struct spi_message *m) static inline void spi_message_init_no_memset(struct spi_message *m)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment