Commit b012b323 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'akpm' (patches from Andrew)

Merge still more updates from Andrew Morton:
 "16 patches.

  Subsystems affected by this patch series: ofs2, nilfs2, mailmap, and
  mm (madvise, mlock, mfence, memory-failure, kasan, debug, kmemleak,
  and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  mm/damon: prevent activated scheme from sleeping by deactivated schemes
  mm/kmemleak: reset tag when compare object pointer
  doc/vm/page_owner.rst: remove content related to -c option
  tools/vm/page_owner_sort.c: remove -c option
  mm, kasan: fix __GFP_BITS_SHIFT definition breaking LOCKDEP
  mm,hwpoison: unmap poisoned page before invalidation
  mailmap: update Kirill's email
  mm: kfence: fix objcgs vector allocation
  mm/munlock: protect the per-CPU pagevec by a local_lock_t
  mm/munlock: update Documentation/vm/unevictable-lru.rst
  mm/munlock: add lru_add_drain() to fix memcg_stat_test
  nilfs2: get rid of nilfs_mapping_init()
  nilfs2: fix lockdep warnings during disk space reclamation
  nilfs2: fix lockdep warnings in page operations for btree nodes
  ocfs2: fix crash when mount with quota enabled
  Revert "mm: madvise: skip unmapped vma holes passed to process_madvise"
parents d0d642a5 78049e94
...@@ -213,6 +213,7 @@ Kees Cook <keescook@chromium.org> <kees@ubuntu.com> ...@@ -213,6 +213,7 @@ Kees Cook <keescook@chromium.org> <kees@ubuntu.com>
Keith Busch <kbusch@kernel.org> <keith.busch@intel.com> Keith Busch <kbusch@kernel.org> <keith.busch@intel.com>
Keith Busch <kbusch@kernel.org> <keith.busch@linux.intel.com> Keith Busch <kbusch@kernel.org> <keith.busch@linux.intel.com>
Kenneth W Chen <kenneth.w.chen@intel.com> Kenneth W Chen <kenneth.w.chen@intel.com>
Kirill Tkhai <kirill.tkhai@openvz.org> <ktkhai@virtuozzo.com>
Konstantin Khlebnikov <koct9i@gmail.com> <khlebnikov@yandex-team.ru> Konstantin Khlebnikov <koct9i@gmail.com> <khlebnikov@yandex-team.ru>
Konstantin Khlebnikov <koct9i@gmail.com> <k.khlebnikov@samsung.com> Konstantin Khlebnikov <koct9i@gmail.com> <k.khlebnikov@samsung.com>
Koushik <raghavendra.koushik@neterion.com> Koushik <raghavendra.koushik@neterion.com>
......
...@@ -125,7 +125,6 @@ Usage ...@@ -125,7 +125,6 @@ Usage
additional function: additional function:
Cull: Cull:
-c Cull by comparing stacktrace instead of total block.
--cull <rules> --cull <rules>
Specify culling rules.Culling syntax is key[,key[,...]].Choose a Specify culling rules.Culling syntax is key[,key[,...]].Choose a
multi-letter key from the **STANDARD FORMAT SPECIFIERS** section. multi-letter key from the **STANDARD FORMAT SPECIFIERS** section.
......
...@@ -52,8 +52,13 @@ The infrastructure may also be able to handle other conditions that make pages ...@@ -52,8 +52,13 @@ The infrastructure may also be able to handle other conditions that make pages
unevictable, either by definition or by circumstance, in the future. unevictable, either by definition or by circumstance, in the future.
The Unevictable Page List The Unevictable LRU Page List
------------------------- -----------------------------
The Unevictable LRU page list is a lie. It was never an LRU-ordered list, but a
companion to the LRU-ordered anonymous and file, active and inactive page lists;
and now it is not even a page list. But following familiar convention, here in
this document and in the source, we often imagine it as a fifth LRU page list.
The Unevictable LRU infrastructure consists of an additional, per-node, LRU list The Unevictable LRU infrastructure consists of an additional, per-node, LRU list
called the "unevictable" list and an associated page flag, PG_unevictable, to called the "unevictable" list and an associated page flag, PG_unevictable, to
...@@ -63,8 +68,8 @@ The PG_unevictable flag is analogous to, and mutually exclusive with, the ...@@ -63,8 +68,8 @@ The PG_unevictable flag is analogous to, and mutually exclusive with, the
PG_active flag in that it indicates on which LRU list a page resides when PG_active flag in that it indicates on which LRU list a page resides when
PG_lru is set. PG_lru is set.
The Unevictable LRU infrastructure maintains unevictable pages on an additional The Unevictable LRU infrastructure maintains unevictable pages as if they were
LRU list for a few reasons: on an additional LRU list for a few reasons:
(1) We get to "treat unevictable pages just like we treat other pages in the (1) We get to "treat unevictable pages just like we treat other pages in the
system - which means we get to use the same code to manipulate them, the system - which means we get to use the same code to manipulate them, the
...@@ -72,13 +77,11 @@ LRU list for a few reasons: ...@@ -72,13 +77,11 @@ LRU list for a few reasons:
of the statistics, etc..." [Rik van Riel] of the statistics, etc..." [Rik van Riel]
(2) We want to be able to migrate unevictable pages between nodes for memory (2) We want to be able to migrate unevictable pages between nodes for memory
defragmentation, workload management and memory hotplug. The linux kernel defragmentation, workload management and memory hotplug. The Linux kernel
can only migrate pages that it can successfully isolate from the LRU can only migrate pages that it can successfully isolate from the LRU
lists. If we were to maintain pages elsewhere than on an LRU-like list, lists (or "Movable" pages: outside of consideration here). If we were to
where they can be found by isolate_lru_page(), we would prevent their maintain pages elsewhere than on an LRU-like list, where they can be
migration, unless we reworked migration code to find the unevictable pages detected by isolate_lru_page(), we would prevent their migration.
itself.
The unevictable list does not differentiate between file-backed and anonymous, The unevictable list does not differentiate between file-backed and anonymous,
swap-backed pages. This differentiation is only important while the pages are, swap-backed pages. This differentiation is only important while the pages are,
...@@ -92,8 +95,8 @@ Memory Control Group Interaction ...@@ -92,8 +95,8 @@ Memory Control Group Interaction
-------------------------------- --------------------------------
The unevictable LRU facility interacts with the memory control group [aka The unevictable LRU facility interacts with the memory control group [aka
memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by
lru_list enum. extending the lru_list enum.
The memory controller data structure automatically gets a per-node unevictable The memory controller data structure automatically gets a per-node unevictable
list as a result of the "arrayification" of the per-node LRU lists (one per list as a result of the "arrayification" of the per-node LRU lists (one per
...@@ -143,7 +146,6 @@ These are currently used in three places in the kernel: ...@@ -143,7 +146,6 @@ These are currently used in three places in the kernel:
and this mark remains for the life of the inode. and this mark remains for the life of the inode.
(2) By SYSV SHM to mark SHM_LOCK'd address spaces until SHM_UNLOCK is called. (2) By SYSV SHM to mark SHM_LOCK'd address spaces until SHM_UNLOCK is called.
Note that SHM_LOCK is not required to page in the locked pages if they're Note that SHM_LOCK is not required to page in the locked pages if they're
swapped out; the application must touch the pages manually if it wants to swapped out; the application must touch the pages manually if it wants to
ensure they're in memory. ensure they're in memory.
...@@ -156,19 +158,19 @@ These are currently used in three places in the kernel: ...@@ -156,19 +158,19 @@ These are currently used in three places in the kernel:
Detecting Unevictable Pages Detecting Unevictable Pages
--------------------------- ---------------------------
The function page_evictable() in vmscan.c determines whether a page is The function page_evictable() in mm/internal.h determines whether a page is
evictable or not using the query function outlined above [see section evictable or not using the query function outlined above [see section
:ref:`Marking address spaces unevictable <mark_addr_space_unevict>`] :ref:`Marking address spaces unevictable <mark_addr_space_unevict>`]
to check the AS_UNEVICTABLE flag. to check the AS_UNEVICTABLE flag.
For address spaces that are so marked after being populated (as SHM regions For address spaces that are so marked after being populated (as SHM regions
might be), the lock action (eg: SHM_LOCK) can be lazy, and need not populate might be), the lock action (e.g. SHM_LOCK) can be lazy, and need not populate
the page tables for the region as does, for example, mlock(), nor need it make the page tables for the region as does, for example, mlock(), nor need it make
any special effort to push any pages in the SHM_LOCK'd area to the unevictable any special effort to push any pages in the SHM_LOCK'd area to the unevictable
list. Instead, vmscan will do this if and when it encounters the pages during list. Instead, vmscan will do this if and when it encounters the pages during
a reclamation scan. a reclamation scan.
On an unlock action (such as SHM_UNLOCK), the unlocker (eg: shmctl()) must scan On an unlock action (such as SHM_UNLOCK), the unlocker (e.g. shmctl()) must scan
the pages in the region and "rescue" them from the unevictable list if no other the pages in the region and "rescue" them from the unevictable list if no other
condition is keeping them unevictable. If an unevictable region is destroyed, condition is keeping them unevictable. If an unevictable region is destroyed,
the pages are also "rescued" from the unevictable list in the process of the pages are also "rescued" from the unevictable list in the process of
...@@ -176,7 +178,7 @@ freeing them. ...@@ -176,7 +178,7 @@ freeing them.
page_evictable() also checks for mlocked pages by testing an additional page page_evictable() also checks for mlocked pages by testing an additional page
flag, PG_mlocked (as wrapped by PageMlocked()), which is set when a page is flag, PG_mlocked (as wrapped by PageMlocked()), which is set when a page is
faulted into a VM_LOCKED vma, or found in a vma being VM_LOCKED. faulted into a VM_LOCKED VMA, or found in a VMA being VM_LOCKED.
Vmscan's Handling of Unevictable Pages Vmscan's Handling of Unevictable Pages
...@@ -186,28 +188,23 @@ If unevictable pages are culled in the fault path, or moved to the unevictable ...@@ -186,28 +188,23 @@ If unevictable pages are culled in the fault path, or moved to the unevictable
list at mlock() or mmap() time, vmscan will not encounter the pages until they list at mlock() or mmap() time, vmscan will not encounter the pages until they
have become evictable again (via munlock() for example) and have been "rescued" have become evictable again (via munlock() for example) and have been "rescued"
from the unevictable list. However, there may be situations where we decide, from the unevictable list. However, there may be situations where we decide,
for the sake of expediency, to leave a unevictable page on one of the regular for the sake of expediency, to leave an unevictable page on one of the regular
active/inactive LRU lists for vmscan to deal with. vmscan checks for such active/inactive LRU lists for vmscan to deal with. vmscan checks for such
pages in all of the shrink_{active|inactive|page}_list() functions and will pages in all of the shrink_{active|inactive|page}_list() functions and will
"cull" such pages that it encounters: that is, it diverts those pages to the "cull" such pages that it encounters: that is, it diverts those pages to the
unevictable list for the node being scanned. unevictable list for the memory cgroup and node being scanned.
There may be situations where a page is mapped into a VM_LOCKED VMA, but the There may be situations where a page is mapped into a VM_LOCKED VMA, but the
page is not marked as PG_mlocked. Such pages will make it all the way to page is not marked as PG_mlocked. Such pages will make it all the way to
shrink_page_list() where they will be detected when vmscan walks the reverse shrink_active_list() or shrink_page_list() where they will be detected when
map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, vmscan walks the reverse map in page_referenced() or try_to_unmap(). The page
shrink_page_list() will cull the page at that point. is culled to the unevictable list when it is released by the shrinker.
To "cull" an unevictable page, vmscan simply puts the page back on the LRU list To "cull" an unevictable page, vmscan simply puts the page back on the LRU list
using putback_lru_page() - the inverse operation to isolate_lru_page() - after using putback_lru_page() - the inverse operation to isolate_lru_page() - after
dropping the page lock. Because the condition which makes the page unevictable dropping the page lock. Because the condition which makes the page unevictable
may change once the page is unlocked, putback_lru_page() will recheck the may change once the page is unlocked, __pagevec_lru_add_fn() will recheck the
unevictable state of a page that it places on the unevictable list. If the unevictable state of a page before placing it on the unevictable list.
page has become unevictable, putback_lru_page() removes it from the list and
retries, including the page_unevictable() test. Because such a race is a rare
event and movement of pages onto the unevictable list should be rare, these
extra evictabilty checks should not occur in the majority of calls to
putback_lru_page().
MLOCKED Pages MLOCKED Pages
...@@ -227,16 +224,25 @@ Nick posted his patch as an alternative to a patch posted by Christoph Lameter ...@@ -227,16 +224,25 @@ Nick posted his patch as an alternative to a patch posted by Christoph Lameter
to achieve the same objective: hiding mlocked pages from vmscan. to achieve the same objective: hiding mlocked pages from vmscan.
In Nick's patch, he used one of the struct page LRU list link fields as a count In Nick's patch, he used one of the struct page LRU list link fields as a count
of VM_LOCKED VMAs that map the page. This use of the link field for a count of VM_LOCKED VMAs that map the page (Rik van Riel had the same idea three years
prevented the management of the pages on an LRU list, and thus mlocked pages earlier). But this use of the link field for a count prevented the management
were not migratable as isolate_lru_page() could not find them, and the LRU list of the pages on an LRU list, and thus mlocked pages were not migratable as
link field was not available to the migration subsystem. isolate_lru_page() could not detect them, and the LRU list link field was not
available to the migration subsystem.
Nick resolved this by putting mlocked pages back on the lru list before Nick resolved this by putting mlocked pages back on the LRU list before
attempting to isolate them, thus abandoning the count of VM_LOCKED VMAs. When attempting to isolate them, thus abandoning the count of VM_LOCKED VMAs. When
Nick's patch was integrated with the Unevictable LRU work, the count was Nick's patch was integrated with the Unevictable LRU work, the count was
replaced by walking the reverse map to determine whether any VM_LOCKED VMAs replaced by walking the reverse map when munlocking, to determine whether any
mapped the page. More on this below. other VM_LOCKED VMAs still mapped the page.
However, walking the reverse map for each page when munlocking was ugly and
inefficient, and could lead to catastrophic contention on a file's rmap lock,
when many processes which had it mlocked were trying to exit. In 5.18, the
idea of keeping mlock_count in Unevictable LRU list link field was revived and
put to work, without preventing the migration of mlocked pages. This is why
the "Unevictable LRU list" cannot be a linked list of pages now; but there was
no use for that linked list anyway - though its size is maintained for meminfo.
Basic Management Basic Management
...@@ -250,22 +256,18 @@ PageMlocked() functions. ...@@ -250,22 +256,18 @@ PageMlocked() functions.
A PG_mlocked page will be placed on the unevictable list when it is added to A PG_mlocked page will be placed on the unevictable list when it is added to
the LRU. Such pages can be "noticed" by memory management in several places: the LRU. Such pages can be "noticed" by memory management in several places:
(1) in the mlock()/mlockall() system call handlers; (1) in the mlock()/mlock2()/mlockall() system call handlers;
(2) in the mmap() system call handler when mmapping a region with the (2) in the mmap() system call handler when mmapping a region with the
MAP_LOCKED flag; MAP_LOCKED flag;
(3) mmapping a region in a task that has called mlockall() with the MCL_FUTURE (3) mmapping a region in a task that has called mlockall() with the MCL_FUTURE
flag flag;
(4) in the fault path, if mlocked pages are "culled" in the fault path, (4) in the fault path and when a VM_LOCKED stack segment is expanded; or
and when a VM_LOCKED stack segment is expanded; or
(5) as mentioned above, in vmscan:shrink_page_list() when attempting to (5) as mentioned above, in vmscan:shrink_page_list() when attempting to
reclaim a page in a VM_LOCKED VMA via try_to_unmap() reclaim a page in a VM_LOCKED VMA by page_referenced() or try_to_unmap().
all of which result in the VM_LOCKED flag being set for the VMA if it doesn't
already have it set.
mlocked pages become unlocked and rescued from the unevictable list when: mlocked pages become unlocked and rescued from the unevictable list when:
...@@ -280,51 +282,53 @@ mlocked pages become unlocked and rescued from the unevictable list when: ...@@ -280,51 +282,53 @@ mlocked pages become unlocked and rescued from the unevictable list when:
(4) before a page is COW'd in a VM_LOCKED VMA. (4) before a page is COW'd in a VM_LOCKED VMA.
mlock()/mlockall() System Call Handling mlock()/mlock2()/mlockall() System Call Handling
--------------------------------------- ------------------------------------------------
Both [do\_]mlock() and [do\_]mlockall() system call handlers call mlock_fixup() mlock(), mlock2() and mlockall() system call handlers proceed to mlock_fixup()
for each VMA in the range specified by the call. In the case of mlockall(), for each VMA in the range specified by the call. In the case of mlockall(),
this is the entire active address space of the task. Note that mlock_fixup() this is the entire active address space of the task. Note that mlock_fixup()
is used for both mlocking and munlocking a range of memory. A call to mlock() is used for both mlocking and munlocking a range of memory. A call to mlock()
an already VM_LOCKED VMA, or to munlock() a VMA that is not VM_LOCKED is an already VM_LOCKED VMA, or to munlock() a VMA that is not VM_LOCKED, is
treated as a no-op, and mlock_fixup() simply returns. treated as a no-op and mlock_fixup() simply returns.
If the VMA passes some filtering as described in "Filtering Special Vmas" If the VMA passes some filtering as described in "Filtering Special VMAs"
below, mlock_fixup() will attempt to merge the VMA with its neighbors or split below, mlock_fixup() will attempt to merge the VMA with its neighbors or split
off a subset of the VMA if the range does not cover the entire VMA. Once the off a subset of the VMA if the range does not cover the entire VMA. Any pages
VMA has been merged or split or neither, mlock_fixup() will call already present in the VMA are then marked as mlocked by mlock_page() via
populate_vma_page_range() to fault in the pages via get_user_pages() and to mlock_pte_range() via walk_page_range() via mlock_vma_pages_range().
mark the pages as mlocked via mlock_vma_page().
Before returning from the system call, do_mlock() or mlockall() will call
__mm_populate() to fault in the remaining pages via get_user_pages() and to
mark those pages as mlocked as they are faulted.
Note that the VMA being mlocked might be mapped with PROT_NONE. In this case, Note that the VMA being mlocked might be mapped with PROT_NONE. In this case,
get_user_pages() will be unable to fault in the pages. That's okay. If pages get_user_pages() will be unable to fault in the pages. That's okay. If pages
do end up getting faulted into this VM_LOCKED VMA, we'll handle them in the do end up getting faulted into this VM_LOCKED VMA, they will be handled in the
fault path or in vmscan. fault path - which is also how mlock2()'s MLOCK_ONFAULT areas are handled.
Also note that a page returned by get_user_pages() could be truncated or For each PTE (or PMD) being faulted into a VMA, the page add rmap function
migrated out from under us, while we're trying to mlock it. To detect this, calls mlock_vma_page(), which calls mlock_page() when the VMA is VM_LOCKED
populate_vma_page_range() checks page_mapping() after acquiring the page lock. (unless it is a PTE mapping of a part of a transparent huge page). Or when
If the page is still associated with its mapping, we'll go ahead and call it is a newly allocated anonymous page, lru_cache_add_inactive_or_unevictable()
mlock_vma_page(). If the mapping is gone, we just unlock the page and move on. calls mlock_new_page() instead: similar to mlock_page(), but can make better
In the worst case, this will result in a page mapped in a VM_LOCKED VMA judgments, since this page is held exclusively and known not to be on LRU yet.
remaining on a normal LRU list without being PageMlocked(). Again, vmscan will
detect and cull such pages. mlock_page() sets PageMlocked immediately, then places the page on the CPU's
mlock pagevec, to batch up the rest of the work to be done under lru_lock by
mlock_vma_page() will call TestSetPageMlocked() for each page returned by __mlock_page(). __mlock_page() sets PageUnevictable, initializes mlock_count
get_user_pages(). We use TestSetPageMlocked() because the page might already and moves the page to unevictable state ("the unevictable LRU", but with
be mlocked by another task/VMA and we don't want to do extra work. We mlock_count in place of LRU threading). Or if the page was already PageLRU
especially do not want to count an mlocked page more than once in the and PageUnevictable and PageMlocked, it simply increments the mlock_count.
statistics. If the page was already mlocked, mlock_vma_page() need do nothing
more. But in practice that may not work ideally: the page may not yet be on an LRU, or
it may have been temporarily isolated from LRU. In such cases the mlock_count
If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the field cannot be touched, but will be set to 0 later when __pagevec_lru_add_fn()
page from the LRU, as it is likely on the appropriate active or inactive list returns the page to "LRU". Races prohibit mlock_count from being set to 1 then:
at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will put rather than risk stranding a page indefinitely as unevictable, always err with
back the page - by calling putback_lru_page() - which will notice that the page mlock_count on the low side, so that when munlocked the page will be rescued to
is now mlocked and divert the page to the node's unevictable list. If an evictable LRU, then perhaps be mlocked again later if vmscan finds it in a
mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle VM_LOCKED VMA.
it later if and when it attempts to reclaim the page.
Filtering Special VMAs Filtering Special VMAs
...@@ -339,68 +343,48 @@ mlock_fixup() filters several classes of "special" VMAs: ...@@ -339,68 +343,48 @@ mlock_fixup() filters several classes of "special" VMAs:
so there is no sense in attempting to visit them. so there is no sense in attempting to visit them.
2) VMAs mapping hugetlbfs page are already effectively pinned into memory. We 2) VMAs mapping hugetlbfs page are already effectively pinned into memory. We
neither need nor want to mlock() these pages. However, to preserve the neither need nor want to mlock() these pages. But __mm_populate() includes
prior behavior of mlock() - before the unevictable/mlock changes - hugetlbfs ranges, allocating the huge pages and populating the PTEs.
mlock_fixup() will call make_pages_present() in the hugetlbfs VMA range to
allocate the huge pages and populate the ptes.
3) VMAs with VM_DONTEXPAND are generally userspace mappings of kernel pages, 3) VMAs with VM_DONTEXPAND are generally userspace mappings of kernel pages,
such as the VDSO page, relay channel pages, etc. These pages such as the VDSO page, relay channel pages, etc. These pages are inherently
are inherently unevictable and are not managed on the LRU lists. unevictable and are not managed on the LRU lists. __mm_populate() includes
mlock_fixup() treats these VMAs the same as hugetlbfs VMAs. It calls these ranges, populating the PTEs if not already populated.
make_pages_present() to populate the ptes.
4) VMAs with VM_MIXEDMAP set are not marked VM_LOCKED, but __mm_populate()
includes these ranges, populating the PTEs if not already populated.
Note that for all of these special VMAs, mlock_fixup() does not set the Note that for all of these special VMAs, mlock_fixup() does not set the
VM_LOCKED flag. Therefore, we won't have to deal with them later during VM_LOCKED flag. Therefore, we won't have to deal with them later during
munlock(), munmap() or task exit. Neither does mlock_fixup() account these munlock(), munmap() or task exit. Neither does mlock_fixup() account these
VMAs against the task's "locked_vm". VMAs against the task's "locked_vm".
.. _munlock_munlockall_handling:
munlock()/munlockall() System Call Handling munlock()/munlockall() System Call Handling
------------------------------------------- -------------------------------------------
The munlock() and munlockall() system calls are handled by the same functions - The munlock() and munlockall() system calls are handled by the same
do_mlock[all]() - as the mlock() and mlockall() system calls with the unlock vs mlock_fixup() function as mlock(), mlock2() and mlockall() system calls are.
lock operation indicated by an argument. So, these system calls are also If called to munlock an already munlocked VMA, mlock_fixup() simply returns.
handled by mlock_fixup(). Again, if called for an already munlocked VMA, Because of the VMA filtering discussed above, VM_LOCKED will not be set in
mlock_fixup() simply returns. Because of the VMA filtering discussed above, any "special" VMAs. So, those VMAs will be ignored for munlock.
VM_LOCKED will not be set in any "special" VMAs. So, these VMAs will be
ignored for munlock.
If the VMA is VM_LOCKED, mlock_fixup() again attempts to merge or split off the If the VMA is VM_LOCKED, mlock_fixup() again attempts to merge or split off the
specified range. The range is then munlocked via the function specified range. All pages in the VMA are then munlocked by munlock_page() via
populate_vma_page_range() - the same function used to mlock a VMA range - mlock_pte_range() via walk_page_range() via mlock_vma_pages_range() - the same
passing a flag to indicate that munlock() is being performed. function used when mlocking a VMA range, with new flags for the VMA indicating
that it is munlock() being performed.
Because the VMA access protections could have been changed to PROT_NONE after
faulting in and mlocking pages, get_user_pages() was unreliable for visiting munlock_page() uses the mlock pagevec to batch up work to be done under
these pages for munlocking. Because we don't want to leave pages mlocked, lru_lock by __munlock_page(). __munlock_page() decrements the page's
get_user_pages() was enhanced to accept a flag to ignore the permissions when mlock_count, and when that reaches 0 it clears PageMlocked and clears
fetching the pages - all of which should be resident as a result of previous PageUnevictable, moving the page from unevictable state to inactive LRU.
mlocking.
But in practice that may not work ideally: the page may not yet have reached
For munlock(), populate_vma_page_range() unlocks individual pages by calling "the unevictable LRU", or it may have been temporarily isolated from it. In
munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked those cases its mlock_count field is unusable and must be assumed to be 0: so
flag using TestClearPageMlocked(). As with mlock_vma_page(), that the page will be rescued to an evictable LRU, then perhaps be mlocked
munlock_vma_page() use the Test*PageMlocked() function to handle the case where again later if vmscan finds it in a VM_LOCKED VMA.
the page might have already been unlocked by another task. If the page was
mlocked, munlock_vma_page() updates that zone statistics for the number of
mlocked pages. Note, however, that at this point we haven't checked whether
the page is mapped by other VM_LOCKED VMAs.
We can't call page_mlock(), the function that walks the reverse map to
check for other VM_LOCKED VMAs, without first isolating the page from the LRU.
page_mlock() is a variant of try_to_unmap() and thus requires that the page
not be on an LRU list [more on these below]. However, the call to
isolate_lru_page() could fail, in which case we can't call page_mlock(). So,
we go ahead and clear PG_mlocked up front, as this might be the only chance we
have. If we can successfully isolate the page, we go ahead and call
page_mlock(), which will restore the PG_mlocked flag and update the zone
page statistics if it finds another VMA holding the page mlocked. If we fail
to isolate the page, we'll have left a potentially mlocked page on the LRU.
This is fine, because we'll catch it later if and if vmscan tries to reclaim
the page. This should be relatively rare.
Migrating MLOCKED Pages Migrating MLOCKED Pages
...@@ -410,33 +394,38 @@ A page that is being migrated has been isolated from the LRU lists and is held ...@@ -410,33 +394,38 @@ A page that is being migrated has been isolated from the LRU lists and is held
locked across unmapping of the page, updating the page's address space entry locked across unmapping of the page, updating the page's address space entry
and copying the contents and state, until the page table entry has been and copying the contents and state, until the page table entry has been
replaced with an entry that refers to the new page. Linux supports migration replaced with an entry that refers to the new page. Linux supports migration
of mlocked pages and other unevictable pages. This involves simply moving the of mlocked pages and other unevictable pages. PG_mlocked is cleared from the
PG_mlocked and PG_unevictable states from the old page to the new page. the old page when it is unmapped from the last VM_LOCKED VMA, and set when the
new page is mapped in place of migration entry in a VM_LOCKED VMA. If the page
was unevictable because mlocked, PG_unevictable follows PG_mlocked; but if the
page was unevictable for other reasons, PG_unevictable is copied explicitly.
Note that page migration can race with mlocking or munlocking of the same page. Note that page migration can race with mlocking or munlocking of the same page.
This has been discussed from the mlock/munlock perspective in the respective There is mostly no problem since page migration requires unmapping all PTEs of
sections above. Both processes (migration and m[un]locking) hold the page the old page (including munlock where VM_LOCKED), then mapping in the new page
locked. This provides the first level of synchronization. Page migration (including mlock where VM_LOCKED). The page table locks provide sufficient
zeros out the page_mapping of the old page before unlocking it, so m[un]lock synchronization.
can skip these pages by testing the page mapping under page lock.
To complete page migration, we place the new and old pages back onto the LRU However, since mlock_vma_pages_range() starts by setting VM_LOCKED on a VMA,
after dropping the page lock. The "unneeded" page - old page on success, new before mlocking any pages already present, if one of those pages were migrated
page on failure - will be freed when the reference count held by the migration before mlock_pte_range() reached it, it would get counted twice in mlock_count.
process is released. To ensure that we don't strand pages on the unevictable To prevent that, mlock_vma_pages_range() temporarily marks the VMA as VM_IO,
list because of a race between munlock and migration, page migration uses the so that mlock_vma_page() will skip it.
putback_lru_page() function to add migrated pages back to the LRU.
To complete page migration, we place the old and new pages back onto the LRU
afterwards. The "unneeded" page - old page on success, new page on failure -
is freed when the reference count held by the migration process is released.
Compacting MLOCKED Pages Compacting MLOCKED Pages
------------------------ ------------------------
The unevictable LRU can be scanned for compactable regions and the default The memory map can be scanned for compactable regions and the default behavior
behavior is to do so. /proc/sys/vm/compact_unevictable_allowed controls is to let unevictable pages be moved. /proc/sys/vm/compact_unevictable_allowed
this behavior (see Documentation/admin-guide/sysctl/vm.rst). Once scanning of the controls this behavior (see Documentation/admin-guide/sysctl/vm.rst). The work
unevictable LRU is enabled, the work of compaction is mostly handled by of compaction is mostly handled by the page migration code and the same work
the page migration code and the same work flow as described in MIGRATING flow as described in Migrating MLOCKED Pages will apply.
MLOCKED PAGES will apply.
MLOCKING Transparent Huge Pages MLOCKING Transparent Huge Pages
------------------------------- -------------------------------
...@@ -445,51 +434,44 @@ A transparent huge page is represented by a single entry on an LRU list. ...@@ -445,51 +434,44 @@ A transparent huge page is represented by a single entry on an LRU list.
Therefore, we can only make unevictable an entire compound page, not Therefore, we can only make unevictable an entire compound page, not
individual subpages. individual subpages.
If a user tries to mlock() part of a huge page, we want the rest of the If a user tries to mlock() part of a huge page, and no user mlock()s the
page to be reclaimable. whole of the huge page, we want the rest of the page to be reclaimable.
We cannot just split the page on partial mlock() as split_huge_page() can We cannot just split the page on partial mlock() as split_huge_page() can
fail and new intermittent failure mode for the syscall is undesirable. fail and a new intermittent failure mode for the syscall is undesirable.
We handle this by keeping PTE-mapped huge pages on normal LRU lists: the We handle this by keeping PTE-mlocked huge pages on evictable LRU lists:
PMD on border of VM_LOCKED VMA will be split into PTE table. the PMD on the border of a VM_LOCKED VMA will be split into a PTE table.
This way the huge page is accessible for vmscan. Under memory pressure the This way the huge page is accessible for vmscan. Under memory pressure the
page will be split, subpages which belong to VM_LOCKED VMAs will be moved page will be split, subpages which belong to VM_LOCKED VMAs will be moved
to unevictable LRU and the rest can be reclaimed. to the unevictable LRU and the rest can be reclaimed.
/proc/meminfo's Unevictable and Mlocked amounts do not include those parts
of a transparent huge page which are mapped only by PTEs in VM_LOCKED VMAs.
See also comment in follow_trans_huge_pmd().
mmap(MAP_LOCKED) System Call Handling mmap(MAP_LOCKED) System Call Handling
------------------------------------- -------------------------------------
In addition the mlock()/mlockall() system calls, an application can request In addition to the mlock(), mlock2() and mlockall() system calls, an application
that a region of memory be mlocked supplying the MAP_LOCKED flag to the mmap() can request that a region of memory be mlocked by supplying the MAP_LOCKED flag
call. There is one important and subtle difference here, though. mmap() + mlock() to the mmap() call. There is one important and subtle difference here, though.
will fail if the range cannot be faulted in (e.g. because mm_populate fails) mmap() + mlock() will fail if the range cannot be faulted in (e.g. because
and returns with ENOMEM while mmap(MAP_LOCKED) will not fail. The mmaped mm_populate fails) and returns with ENOMEM while mmap(MAP_LOCKED) will not fail.
area will still have properties of the locked area - aka. pages will not get The mmaped area will still have properties of the locked area - pages will not
swapped out - but major page faults to fault memory in might still happen. get swapped out - but major page faults to fault memory in might still happen.
Furthermore, any mmap() call or brk() call that expands the heap by a Furthermore, any mmap() call or brk() call that expands the heap by a task
task that has previously called mlockall() with the MCL_FUTURE flag will result that has previously called mlockall() with the MCL_FUTURE flag will result
in the newly mapped memory being mlocked. Before the unevictable/mlock in the newly mapped memory being mlocked. Before the unevictable/mlock
changes, the kernel simply called make_pages_present() to allocate pages and changes, the kernel simply called make_pages_present() to allocate pages
populate the page table. and populate the page table.
To mlock a range of memory under the unevictable/mlock infrastructure, the To mlock a range of memory under the unevictable/mlock infrastructure,
mmap() handler and task address space expansion functions call the mmap() handler and task address space expansion functions call
populate_vma_page_range() specifying the vma and the address range to mlock. populate_vma_page_range() specifying the vma and the address range to mlock.
The callers of populate_vma_page_range() will have already added the memory range
to be mlocked to the task's "locked_vm". To account for filtered VMAs,
populate_vma_page_range() returns the number of pages NOT mlocked. All of the
callers then subtract a non-negative return value from the task's locked_vm. A
negative return value represent an error - for example, from get_user_pages()
attempting to fault in a VMA with PROT_NONE access. In this case, we leave the
memory range accounted as locked_vm, as the protections could be changed later
and pages allocated into that region.
munmap()/exit()/exec() System Call Handling munmap()/exit()/exec() System Call Handling
------------------------------------------- -------------------------------------------
...@@ -500,81 +482,53 @@ munlock the pages if we're removing the last VM_LOCKED VMA that maps the pages. ...@@ -500,81 +482,53 @@ munlock the pages if we're removing the last VM_LOCKED VMA that maps the pages.
Before the unevictable/mlock changes, mlocking did not mark the pages in any Before the unevictable/mlock changes, mlocking did not mark the pages in any
way, so unmapping them required no processing. way, so unmapping them required no processing.
To munlock a range of memory under the unevictable/mlock infrastructure, the For each PTE (or PMD) being unmapped from a VMA, page_remove_rmap() calls
munmap() handler and task address space call tear down function munlock_vma_page(), which calls munlock_page() when the VMA is VM_LOCKED
munlock_vma_pages_all(). The name reflects the observation that one always (unless it was a PTE mapping of a part of a transparent huge page).
specifies the entire VMA range when munlock()ing during unmap of a region.
Because of the VMA filtering when mlocking() regions, only "normal" VMAs that munlock_page() uses the mlock pagevec to batch up work to be done under
actually contain mlocked pages will be passed to munlock_vma_pages_all(). lru_lock by __munlock_page(). __munlock_page() decrements the page's
mlock_count, and when that reaches 0 it clears PageMlocked and clears
munlock_vma_pages_all() clears the VM_LOCKED VMA flag and, like mlock_fixup() PageUnevictable, moving the page from unevictable state to inactive LRU.
for the munlock case, calls __munlock_vma_pages_range() to walk the page table
for the VMA's memory range and munlock_vma_page() each resident page mapped by But in practice that may not work ideally: the page may not yet have reached
the VMA. This effectively munlocks the page, only if this is the last "the unevictable LRU", or it may have been temporarily isolated from it. In
VM_LOCKED VMA that maps the page. those cases its mlock_count field is unusable and must be assumed to be 0: so
that the page will be rescued to an evictable LRU, then perhaps be mlocked
again later if vmscan finds it in a VM_LOCKED VMA.
try_to_unmap()
--------------
Truncating MLOCKED Pages
Pages can, of course, be mapped into multiple VMAs. Some of these VMAs may ------------------------
have VM_LOCKED flag set. It is possible for a page mapped into one or more
VM_LOCKED VMAs not to have the PG_mlocked flag set and therefore reside on one File truncation or hole punching forcibly unmaps the deleted pages from
of the active or inactive LRU lists. This could happen if, for example, a task userspace; truncation even unmaps and deletes any private anonymous pages
in the process of munlocking the page could not isolate the page from the LRU. which had been Copied-On-Write from the file pages now being truncated.
As a result, vmscan/shrink_page_list() might encounter such a page as described
in section "vmscan's handling of unevictable pages". To handle this situation, Mlocked pages can be munlocked and deleted in this way: like with munmap(),
try_to_unmap() checks for VM_LOCKED VMAs while it is walking a page's reverse for each PTE (or PMD) being unmapped from a VMA, page_remove_rmap() calls
map. munlock_vma_page(), which calls munlock_page() when the VMA is VM_LOCKED
(unless it was a PTE mapping of a part of a transparent huge page).
try_to_unmap() is always called, by either vmscan for reclaim or for page
migration, with the argument page locked and isolated from the LRU. Separate However, if there is a racing munlock(), since mlock_vma_pages_range() starts
functions handle anonymous and mapped file and KSM pages, as these types of munlocking by clearing VM_LOCKED from a VMA, before munlocking all the pages
pages have different reverse map lookup mechanisms, with different locking. present, if one of those pages were unmapped by truncation or hole punch before
In each case, whether rmap_walk_anon() or rmap_walk_file() or rmap_walk_ksm(), mlock_pte_range() reached it, it would not be recognized as mlocked by this VMA,
it will call try_to_unmap_one() for every VMA which might contain the page. and would not be counted out of mlock_count. In this rare case, a page may
still appear as PageMlocked after it has been fully unmapped: and it is left to
When trying to reclaim, if try_to_unmap_one() finds the page in a VM_LOCKED release_pages() (or __page_cache_release()) to clear it and update statistics
VMA, it will then mlock the page via mlock_vma_page() instead of unmapping it, before freeing (this event is counted in /proc/vmstat unevictable_pgs_cleared,
and return SWAP_MLOCK to indicate that the page is unevictable: and the scan which is usually 0).
stops there.
mlock_vma_page() is called while holding the page table's lock (in addition
to the page lock, and the rmap lock): to serialize against concurrent mlock or
munlock or munmap system calls, mm teardown (munlock_vma_pages_all), reclaim,
holepunching, and truncation of file pages and their anonymous COWed pages.
page_mlock() Reverse Map Scan
---------------------------------
When munlock_vma_page() [see section :ref:`munlock()/munlockall() System Call
Handling <munlock_munlockall_handling>` above] tries to munlock a
page, it needs to determine whether or not the page is mapped by any
VM_LOCKED VMA without actually attempting to unmap all PTEs from the
page. For this purpose, the unevictable/mlock infrastructure
introduced a variant of try_to_unmap() called page_mlock().
page_mlock() walks the respective reverse maps looking for VM_LOCKED VMAs. When
such a VMA is found the page is mlocked via mlock_vma_page(). This undoes the
pre-clearing of the page's PG_mlocked done by munlock_vma_page.
Note that page_mlock()'s reverse map walk must visit every VMA in a page's
reverse map to determine that a page is NOT mapped into any VM_LOCKED VMA.
However, the scan can terminate when it encounters a VM_LOCKED VMA.
Although page_mlock() might be called a great many times when munlocking a
large region or tearing down a large address space that has been mlocked via
mlockall(), overall this is a fairly rare event.
Page Reclaim in shrink_*_list() Page Reclaim in shrink_*_list()
------------------------------- -------------------------------
shrink_active_list() culls any obviously unevictable pages - i.e. vmscan's shrink_active_list() culls any obviously unevictable pages -
!page_evictable(page) - diverting these to the unevictable list. i.e. !page_evictable(page) pages - diverting those to the unevictable list.
However, shrink_active_list() only sees unevictable pages that made it onto the However, shrink_active_list() only sees unevictable pages that made it onto the
active/inactive lru lists. Note that these pages do not have PageUnevictable active/inactive LRU lists. Note that these pages do not have PageUnevictable
set - otherwise they would be on the unevictable list and shrink_active_list set - otherwise they would be on the unevictable list and shrink_active_list()
would never see them. would never see them.
Some examples of these unevictable pages on the LRU lists are: Some examples of these unevictable pages on the LRU lists are:
...@@ -586,20 +540,15 @@ Some examples of these unevictable pages on the LRU lists are: ...@@ -586,20 +540,15 @@ Some examples of these unevictable pages on the LRU lists are:
when an application accesses the page the first time after SHM_LOCK'ing when an application accesses the page the first time after SHM_LOCK'ing
the segment. the segment.
(3) mlocked pages that could not be isolated from the LRU and moved to the (3) pages still mapped into VM_LOCKED VMAs, which should be marked mlocked,
unevictable list in mlock_vma_page(). but events left mlock_count too low, so they were munlocked too early.
shrink_inactive_list() also diverts any unevictable pages that it finds on the
inactive lists to the appropriate node's unevictable list.
shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd vmscan's shrink_inactive_list() and shrink_page_list() also divert obviously
after shrink_active_list() had moved them to the inactive list, or pages mapped unevictable pages found on the inactive lists to the appropriate memory cgroup
into VM_LOCKED VMAs that munlock_vma_page() couldn't isolate from the LRU to and node unevictable list.
recheck via page_mlock(). shrink_inactive_list() won't notice the latter,
but will pass on to shrink_page_list().
shrink_page_list() again culls obviously unevictable pages that it could rmap's page_referenced_one(), called via vmscan's shrink_active_list() or
encounter for similar reason to shrink_inactive_list(). Pages mapped into shrink_page_list(), and rmap's try_to_unmap_one() called via shrink_page_list(),
VM_LOCKED VMAs but without PG_mlocked set will make it all the way to check for (3) pages still mapped into VM_LOCKED VMAs, and call mlock_vma_page()
try_to_unmap(). shrink_page_list() will divert them to the unevictable list to correct them. Such pages are culled to the unevictable list when released
when try_to_unmap() returns SWAP_MLOCK, as discussed above. by the shrinker.
...@@ -20,6 +20,23 @@ ...@@ -20,6 +20,23 @@
#include "page.h" #include "page.h"
#include "btnode.h" #include "btnode.h"
/**
* nilfs_init_btnc_inode - initialize B-tree node cache inode
* @btnc_inode: inode to be initialized
*
* nilfs_init_btnc_inode() sets up an inode for B-tree node cache.
*/
void nilfs_init_btnc_inode(struct inode *btnc_inode)
{
struct nilfs_inode_info *ii = NILFS_I(btnc_inode);
btnc_inode->i_mode = S_IFREG;
ii->i_flags = 0;
memset(&ii->i_bmap_data, 0, sizeof(struct nilfs_bmap));
mapping_set_gfp_mask(btnc_inode->i_mapping, GFP_NOFS);
}
void nilfs_btnode_cache_clear(struct address_space *btnc) void nilfs_btnode_cache_clear(struct address_space *btnc)
{ {
invalidate_mapping_pages(btnc, 0, -1); invalidate_mapping_pages(btnc, 0, -1);
...@@ -29,7 +46,7 @@ void nilfs_btnode_cache_clear(struct address_space *btnc) ...@@ -29,7 +46,7 @@ void nilfs_btnode_cache_clear(struct address_space *btnc)
struct buffer_head * struct buffer_head *
nilfs_btnode_create_block(struct address_space *btnc, __u64 blocknr) nilfs_btnode_create_block(struct address_space *btnc, __u64 blocknr)
{ {
struct inode *inode = NILFS_BTNC_I(btnc); struct inode *inode = btnc->host;
struct buffer_head *bh; struct buffer_head *bh;
bh = nilfs_grab_buffer(inode, btnc, blocknr, BIT(BH_NILFS_Node)); bh = nilfs_grab_buffer(inode, btnc, blocknr, BIT(BH_NILFS_Node));
...@@ -57,7 +74,7 @@ int nilfs_btnode_submit_block(struct address_space *btnc, __u64 blocknr, ...@@ -57,7 +74,7 @@ int nilfs_btnode_submit_block(struct address_space *btnc, __u64 blocknr,
struct buffer_head **pbh, sector_t *submit_ptr) struct buffer_head **pbh, sector_t *submit_ptr)
{ {
struct buffer_head *bh; struct buffer_head *bh;
struct inode *inode = NILFS_BTNC_I(btnc); struct inode *inode = btnc->host;
struct page *page; struct page *page;
int err; int err;
...@@ -157,7 +174,7 @@ int nilfs_btnode_prepare_change_key(struct address_space *btnc, ...@@ -157,7 +174,7 @@ int nilfs_btnode_prepare_change_key(struct address_space *btnc,
struct nilfs_btnode_chkey_ctxt *ctxt) struct nilfs_btnode_chkey_ctxt *ctxt)
{ {
struct buffer_head *obh, *nbh; struct buffer_head *obh, *nbh;
struct inode *inode = NILFS_BTNC_I(btnc); struct inode *inode = btnc->host;
__u64 oldkey = ctxt->oldkey, newkey = ctxt->newkey; __u64 oldkey = ctxt->oldkey, newkey = ctxt->newkey;
int err; int err;
......
...@@ -30,6 +30,7 @@ struct nilfs_btnode_chkey_ctxt { ...@@ -30,6 +30,7 @@ struct nilfs_btnode_chkey_ctxt {
struct buffer_head *newbh; struct buffer_head *newbh;
}; };
void nilfs_init_btnc_inode(struct inode *btnc_inode);
void nilfs_btnode_cache_clear(struct address_space *); void nilfs_btnode_cache_clear(struct address_space *);
struct buffer_head *nilfs_btnode_create_block(struct address_space *btnc, struct buffer_head *nilfs_btnode_create_block(struct address_space *btnc,
__u64 blocknr); __u64 blocknr);
......
...@@ -58,7 +58,8 @@ static void nilfs_btree_free_path(struct nilfs_btree_path *path) ...@@ -58,7 +58,8 @@ static void nilfs_btree_free_path(struct nilfs_btree_path *path)
static int nilfs_btree_get_new_block(const struct nilfs_bmap *btree, static int nilfs_btree_get_new_block(const struct nilfs_bmap *btree,
__u64 ptr, struct buffer_head **bhp) __u64 ptr, struct buffer_head **bhp)
{ {
struct address_space *btnc = &NILFS_BMAP_I(btree)->i_btnode_cache; struct inode *btnc_inode = NILFS_BMAP_I(btree)->i_assoc_inode;
struct address_space *btnc = btnc_inode->i_mapping;
struct buffer_head *bh; struct buffer_head *bh;
bh = nilfs_btnode_create_block(btnc, ptr); bh = nilfs_btnode_create_block(btnc, ptr);
...@@ -470,7 +471,8 @@ static int __nilfs_btree_get_block(const struct nilfs_bmap *btree, __u64 ptr, ...@@ -470,7 +471,8 @@ static int __nilfs_btree_get_block(const struct nilfs_bmap *btree, __u64 ptr,
struct buffer_head **bhp, struct buffer_head **bhp,
const struct nilfs_btree_readahead_info *ra) const struct nilfs_btree_readahead_info *ra)
{ {
struct address_space *btnc = &NILFS_BMAP_I(btree)->i_btnode_cache; struct inode *btnc_inode = NILFS_BMAP_I(btree)->i_assoc_inode;
struct address_space *btnc = btnc_inode->i_mapping;
struct buffer_head *bh, *ra_bh; struct buffer_head *bh, *ra_bh;
sector_t submit_ptr = 0; sector_t submit_ptr = 0;
int ret; int ret;
...@@ -1741,6 +1743,10 @@ nilfs_btree_prepare_convert_and_insert(struct nilfs_bmap *btree, __u64 key, ...@@ -1741,6 +1743,10 @@ nilfs_btree_prepare_convert_and_insert(struct nilfs_bmap *btree, __u64 key,
dat = nilfs_bmap_get_dat(btree); dat = nilfs_bmap_get_dat(btree);
} }
ret = nilfs_attach_btree_node_cache(&NILFS_BMAP_I(btree)->vfs_inode);
if (ret < 0)
return ret;
ret = nilfs_bmap_prepare_alloc_ptr(btree, dreq, dat); ret = nilfs_bmap_prepare_alloc_ptr(btree, dreq, dat);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -1913,7 +1919,7 @@ static int nilfs_btree_prepare_update_v(struct nilfs_bmap *btree, ...@@ -1913,7 +1919,7 @@ static int nilfs_btree_prepare_update_v(struct nilfs_bmap *btree,
path[level].bp_ctxt.newkey = path[level].bp_newreq.bpr_ptr; path[level].bp_ctxt.newkey = path[level].bp_newreq.bpr_ptr;
path[level].bp_ctxt.bh = path[level].bp_bh; path[level].bp_ctxt.bh = path[level].bp_bh;
ret = nilfs_btnode_prepare_change_key( ret = nilfs_btnode_prepare_change_key(
&NILFS_BMAP_I(btree)->i_btnode_cache, NILFS_BMAP_I(btree)->i_assoc_inode->i_mapping,
&path[level].bp_ctxt); &path[level].bp_ctxt);
if (ret < 0) { if (ret < 0) {
nilfs_dat_abort_update(dat, nilfs_dat_abort_update(dat,
...@@ -1939,7 +1945,7 @@ static void nilfs_btree_commit_update_v(struct nilfs_bmap *btree, ...@@ -1939,7 +1945,7 @@ static void nilfs_btree_commit_update_v(struct nilfs_bmap *btree,
if (buffer_nilfs_node(path[level].bp_bh)) { if (buffer_nilfs_node(path[level].bp_bh)) {
nilfs_btnode_commit_change_key( nilfs_btnode_commit_change_key(
&NILFS_BMAP_I(btree)->i_btnode_cache, NILFS_BMAP_I(btree)->i_assoc_inode->i_mapping,
&path[level].bp_ctxt); &path[level].bp_ctxt);
path[level].bp_bh = path[level].bp_ctxt.bh; path[level].bp_bh = path[level].bp_ctxt.bh;
} }
...@@ -1958,7 +1964,7 @@ static void nilfs_btree_abort_update_v(struct nilfs_bmap *btree, ...@@ -1958,7 +1964,7 @@ static void nilfs_btree_abort_update_v(struct nilfs_bmap *btree,
&path[level].bp_newreq.bpr_req); &path[level].bp_newreq.bpr_req);
if (buffer_nilfs_node(path[level].bp_bh)) if (buffer_nilfs_node(path[level].bp_bh))
nilfs_btnode_abort_change_key( nilfs_btnode_abort_change_key(
&NILFS_BMAP_I(btree)->i_btnode_cache, NILFS_BMAP_I(btree)->i_assoc_inode->i_mapping,
&path[level].bp_ctxt); &path[level].bp_ctxt);
} }
...@@ -2134,7 +2140,8 @@ static void nilfs_btree_add_dirty_buffer(struct nilfs_bmap *btree, ...@@ -2134,7 +2140,8 @@ static void nilfs_btree_add_dirty_buffer(struct nilfs_bmap *btree,
static void nilfs_btree_lookup_dirty_buffers(struct nilfs_bmap *btree, static void nilfs_btree_lookup_dirty_buffers(struct nilfs_bmap *btree,
struct list_head *listp) struct list_head *listp)
{ {
struct address_space *btcache = &NILFS_BMAP_I(btree)->i_btnode_cache; struct inode *btnc_inode = NILFS_BMAP_I(btree)->i_assoc_inode;
struct address_space *btcache = btnc_inode->i_mapping;
struct list_head lists[NILFS_BTREE_LEVEL_MAX]; struct list_head lists[NILFS_BTREE_LEVEL_MAX];
struct pagevec pvec; struct pagevec pvec;
struct buffer_head *bh, *head; struct buffer_head *bh, *head;
...@@ -2188,12 +2195,12 @@ static int nilfs_btree_assign_p(struct nilfs_bmap *btree, ...@@ -2188,12 +2195,12 @@ static int nilfs_btree_assign_p(struct nilfs_bmap *btree,
path[level].bp_ctxt.newkey = blocknr; path[level].bp_ctxt.newkey = blocknr;
path[level].bp_ctxt.bh = *bh; path[level].bp_ctxt.bh = *bh;
ret = nilfs_btnode_prepare_change_key( ret = nilfs_btnode_prepare_change_key(
&NILFS_BMAP_I(btree)->i_btnode_cache, NILFS_BMAP_I(btree)->i_assoc_inode->i_mapping,
&path[level].bp_ctxt); &path[level].bp_ctxt);
if (ret < 0) if (ret < 0)
return ret; return ret;
nilfs_btnode_commit_change_key( nilfs_btnode_commit_change_key(
&NILFS_BMAP_I(btree)->i_btnode_cache, NILFS_BMAP_I(btree)->i_assoc_inode->i_mapping,
&path[level].bp_ctxt); &path[level].bp_ctxt);
*bh = path[level].bp_ctxt.bh; *bh = path[level].bp_ctxt.bh;
} }
...@@ -2398,6 +2405,10 @@ int nilfs_btree_init(struct nilfs_bmap *bmap) ...@@ -2398,6 +2405,10 @@ int nilfs_btree_init(struct nilfs_bmap *bmap)
if (nilfs_btree_root_broken(nilfs_btree_get_root(bmap), bmap->b_inode)) if (nilfs_btree_root_broken(nilfs_btree_get_root(bmap), bmap->b_inode))
ret = -EIO; ret = -EIO;
else
ret = nilfs_attach_btree_node_cache(
&NILFS_BMAP_I(bmap)->vfs_inode);
return ret; return ret;
} }
......
...@@ -497,7 +497,9 @@ int nilfs_dat_read(struct super_block *sb, size_t entry_size, ...@@ -497,7 +497,9 @@ int nilfs_dat_read(struct super_block *sb, size_t entry_size,
di = NILFS_DAT_I(dat); di = NILFS_DAT_I(dat);
lockdep_set_class(&di->mi.mi_sem, &dat_lock_key); lockdep_set_class(&di->mi.mi_sem, &dat_lock_key);
nilfs_palloc_setup_cache(dat, &di->palloc_cache); nilfs_palloc_setup_cache(dat, &di->palloc_cache);
nilfs_mdt_setup_shadow_map(dat, &di->shadow); err = nilfs_mdt_setup_shadow_map(dat, &di->shadow);
if (err)
goto failed;
err = nilfs_read_inode_common(dat, raw_inode); err = nilfs_read_inode_common(dat, raw_inode);
if (err) if (err)
......
...@@ -126,9 +126,10 @@ int nilfs_gccache_submit_read_data(struct inode *inode, sector_t blkoff, ...@@ -126,9 +126,10 @@ int nilfs_gccache_submit_read_data(struct inode *inode, sector_t blkoff,
int nilfs_gccache_submit_read_node(struct inode *inode, sector_t pbn, int nilfs_gccache_submit_read_node(struct inode *inode, sector_t pbn,
__u64 vbn, struct buffer_head **out_bh) __u64 vbn, struct buffer_head **out_bh)
{ {
struct inode *btnc_inode = NILFS_I(inode)->i_assoc_inode;
int ret; int ret;
ret = nilfs_btnode_submit_block(&NILFS_I(inode)->i_btnode_cache, ret = nilfs_btnode_submit_block(btnc_inode->i_mapping,
vbn ? : pbn, pbn, REQ_OP_READ, 0, vbn ? : pbn, pbn, REQ_OP_READ, 0,
out_bh, &pbn); out_bh, &pbn);
if (ret == -EEXIST) /* internal code (cache hit) */ if (ret == -EEXIST) /* internal code (cache hit) */
...@@ -170,7 +171,7 @@ int nilfs_init_gcinode(struct inode *inode) ...@@ -170,7 +171,7 @@ int nilfs_init_gcinode(struct inode *inode)
ii->i_flags = 0; ii->i_flags = 0;
nilfs_bmap_init_gc(ii->i_bmap); nilfs_bmap_init_gc(ii->i_bmap);
return 0; return nilfs_attach_btree_node_cache(inode);
} }
/** /**
...@@ -185,7 +186,7 @@ void nilfs_remove_all_gcinodes(struct the_nilfs *nilfs) ...@@ -185,7 +186,7 @@ void nilfs_remove_all_gcinodes(struct the_nilfs *nilfs)
ii = list_first_entry(head, struct nilfs_inode_info, i_dirty); ii = list_first_entry(head, struct nilfs_inode_info, i_dirty);
list_del_init(&ii->i_dirty); list_del_init(&ii->i_dirty);
truncate_inode_pages(&ii->vfs_inode.i_data, 0); truncate_inode_pages(&ii->vfs_inode.i_data, 0);
nilfs_btnode_cache_clear(&ii->i_btnode_cache); nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
iput(&ii->vfs_inode); iput(&ii->vfs_inode);
} }
} }
...@@ -29,12 +29,16 @@ ...@@ -29,12 +29,16 @@
* @cno: checkpoint number * @cno: checkpoint number
* @root: pointer on NILFS root object (mounted checkpoint) * @root: pointer on NILFS root object (mounted checkpoint)
* @for_gc: inode for GC flag * @for_gc: inode for GC flag
* @for_btnc: inode for B-tree node cache flag
* @for_shadow: inode for shadowed page cache flag
*/ */
struct nilfs_iget_args { struct nilfs_iget_args {
u64 ino; u64 ino;
__u64 cno; __u64 cno;
struct nilfs_root *root; struct nilfs_root *root;
int for_gc; bool for_gc;
bool for_btnc;
bool for_shadow;
}; };
static int nilfs_iget_test(struct inode *inode, void *opaque); static int nilfs_iget_test(struct inode *inode, void *opaque);
...@@ -312,7 +316,8 @@ static int nilfs_insert_inode_locked(struct inode *inode, ...@@ -312,7 +316,8 @@ static int nilfs_insert_inode_locked(struct inode *inode,
unsigned long ino) unsigned long ino)
{ {
struct nilfs_iget_args args = { struct nilfs_iget_args args = {
.ino = ino, .root = root, .cno = 0, .for_gc = 0 .ino = ino, .root = root, .cno = 0, .for_gc = false,
.for_btnc = false, .for_shadow = false
}; };
return insert_inode_locked4(inode, ino, nilfs_iget_test, &args); return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
...@@ -525,6 +530,19 @@ static int nilfs_iget_test(struct inode *inode, void *opaque) ...@@ -525,6 +530,19 @@ static int nilfs_iget_test(struct inode *inode, void *opaque)
return 0; return 0;
ii = NILFS_I(inode); ii = NILFS_I(inode);
if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
if (!args->for_btnc)
return 0;
} else if (args->for_btnc) {
return 0;
}
if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
if (!args->for_shadow)
return 0;
} else if (args->for_shadow) {
return 0;
}
if (!test_bit(NILFS_I_GCINODE, &ii->i_state)) if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
return !args->for_gc; return !args->for_gc;
...@@ -536,15 +554,17 @@ static int nilfs_iget_set(struct inode *inode, void *opaque) ...@@ -536,15 +554,17 @@ static int nilfs_iget_set(struct inode *inode, void *opaque)
struct nilfs_iget_args *args = opaque; struct nilfs_iget_args *args = opaque;
inode->i_ino = args->ino; inode->i_ino = args->ino;
if (args->for_gc) { NILFS_I(inode)->i_cno = args->cno;
NILFS_I(inode)->i_root = args->root;
if (args->root && args->ino == NILFS_ROOT_INO)
nilfs_get_root(args->root);
if (args->for_gc)
NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE); NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
NILFS_I(inode)->i_cno = args->cno; if (args->for_btnc)
NILFS_I(inode)->i_root = NULL; NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
} else { if (args->for_shadow)
if (args->root && args->ino == NILFS_ROOT_INO) NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
nilfs_get_root(args->root);
NILFS_I(inode)->i_root = args->root;
}
return 0; return 0;
} }
...@@ -552,7 +572,8 @@ struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root, ...@@ -552,7 +572,8 @@ struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
unsigned long ino) unsigned long ino)
{ {
struct nilfs_iget_args args = { struct nilfs_iget_args args = {
.ino = ino, .root = root, .cno = 0, .for_gc = 0 .ino = ino, .root = root, .cno = 0, .for_gc = false,
.for_btnc = false, .for_shadow = false
}; };
return ilookup5(sb, ino, nilfs_iget_test, &args); return ilookup5(sb, ino, nilfs_iget_test, &args);
...@@ -562,7 +583,8 @@ struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root, ...@@ -562,7 +583,8 @@ struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
unsigned long ino) unsigned long ino)
{ {
struct nilfs_iget_args args = { struct nilfs_iget_args args = {
.ino = ino, .root = root, .cno = 0, .for_gc = 0 .ino = ino, .root = root, .cno = 0, .for_gc = false,
.for_btnc = false, .for_shadow = false
}; };
return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
...@@ -593,7 +615,8 @@ struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino, ...@@ -593,7 +615,8 @@ struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
__u64 cno) __u64 cno)
{ {
struct nilfs_iget_args args = { struct nilfs_iget_args args = {
.ino = ino, .root = NULL, .cno = cno, .for_gc = 1 .ino = ino, .root = NULL, .cno = cno, .for_gc = true,
.for_btnc = false, .for_shadow = false
}; };
struct inode *inode; struct inode *inode;
int err; int err;
...@@ -613,6 +636,113 @@ struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino, ...@@ -613,6 +636,113 @@ struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
return inode; return inode;
} }
/**
* nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
* @inode: inode object
*
* nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
* or does nothing if the inode already has it. This function allocates
* an additional inode to maintain page cache of B-tree nodes one-on-one.
*
* Return Value: On success, 0 is returned. On errors, one of the following
* negative error code is returned.
*
* %-ENOMEM - Insufficient memory available.
*/
int nilfs_attach_btree_node_cache(struct inode *inode)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct inode *btnc_inode;
struct nilfs_iget_args args;
if (ii->i_assoc_inode)
return 0;
args.ino = inode->i_ino;
args.root = ii->i_root;
args.cno = ii->i_cno;
args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
args.for_btnc = true;
args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
nilfs_iget_set, &args);
if (unlikely(!btnc_inode))
return -ENOMEM;
if (btnc_inode->i_state & I_NEW) {
nilfs_init_btnc_inode(btnc_inode);
unlock_new_inode(btnc_inode);
}
NILFS_I(btnc_inode)->i_assoc_inode = inode;
NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
ii->i_assoc_inode = btnc_inode;
return 0;
}
/**
* nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
* @inode: inode object
*
* nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
* holder inode bound to @inode, or does nothing if @inode doesn't have it.
*/
void nilfs_detach_btree_node_cache(struct inode *inode)
{
struct nilfs_inode_info *ii = NILFS_I(inode);
struct inode *btnc_inode = ii->i_assoc_inode;
if (btnc_inode) {
NILFS_I(btnc_inode)->i_assoc_inode = NULL;
ii->i_assoc_inode = NULL;
iput(btnc_inode);
}
}
/**
* nilfs_iget_for_shadow - obtain inode for shadow mapping
* @inode: inode object that uses shadow mapping
*
* nilfs_iget_for_shadow() allocates a pair of inodes that holds page
* caches for shadow mapping. The page cache for data pages is set up
* in one inode and the one for b-tree node pages is set up in the
* other inode, which is attached to the former inode.
*
* Return Value: On success, a pointer to the inode for data pages is
* returned. On errors, one of the following negative error code is returned
* in a pointer type.
*
* %-ENOMEM - Insufficient memory available.
*/
struct inode *nilfs_iget_for_shadow(struct inode *inode)
{
struct nilfs_iget_args args = {
.ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
.for_btnc = false, .for_shadow = true
};
struct inode *s_inode;
int err;
s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
nilfs_iget_set, &args);
if (unlikely(!s_inode))
return ERR_PTR(-ENOMEM);
if (!(s_inode->i_state & I_NEW))
return inode;
NILFS_I(s_inode)->i_flags = 0;
memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
err = nilfs_attach_btree_node_cache(s_inode);
if (unlikely(err)) {
iget_failed(s_inode);
return ERR_PTR(err);
}
unlock_new_inode(s_inode);
return s_inode;
}
void nilfs_write_inode_common(struct inode *inode, void nilfs_write_inode_common(struct inode *inode,
struct nilfs_inode *raw_inode, int has_bmap) struct nilfs_inode *raw_inode, int has_bmap)
{ {
...@@ -760,7 +890,8 @@ static void nilfs_clear_inode(struct inode *inode) ...@@ -760,7 +890,8 @@ static void nilfs_clear_inode(struct inode *inode)
if (test_bit(NILFS_I_BMAP, &ii->i_state)) if (test_bit(NILFS_I_BMAP, &ii->i_state))
nilfs_bmap_clear(ii->i_bmap); nilfs_bmap_clear(ii->i_bmap);
nilfs_btnode_cache_clear(&ii->i_btnode_cache); if (!test_bit(NILFS_I_BTNC, &ii->i_state))
nilfs_detach_btree_node_cache(inode);
if (ii->i_root && inode->i_ino == NILFS_ROOT_INO) if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
nilfs_put_root(ii->i_root); nilfs_put_root(ii->i_root);
......
...@@ -471,9 +471,18 @@ int nilfs_mdt_init(struct inode *inode, gfp_t gfp_mask, size_t objsz) ...@@ -471,9 +471,18 @@ int nilfs_mdt_init(struct inode *inode, gfp_t gfp_mask, size_t objsz)
void nilfs_mdt_clear(struct inode *inode) void nilfs_mdt_clear(struct inode *inode)
{ {
struct nilfs_mdt_info *mdi = NILFS_MDT(inode); struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
struct nilfs_shadow_map *shadow = mdi->mi_shadow;
if (mdi->mi_palloc_cache) if (mdi->mi_palloc_cache)
nilfs_palloc_destroy_cache(inode); nilfs_palloc_destroy_cache(inode);
if (shadow) {
struct inode *s_inode = shadow->inode;
shadow->inode = NULL;
iput(s_inode);
mdi->mi_shadow = NULL;
}
} }
/** /**
...@@ -507,12 +516,15 @@ int nilfs_mdt_setup_shadow_map(struct inode *inode, ...@@ -507,12 +516,15 @@ int nilfs_mdt_setup_shadow_map(struct inode *inode,
struct nilfs_shadow_map *shadow) struct nilfs_shadow_map *shadow)
{ {
struct nilfs_mdt_info *mi = NILFS_MDT(inode); struct nilfs_mdt_info *mi = NILFS_MDT(inode);
struct inode *s_inode;
INIT_LIST_HEAD(&shadow->frozen_buffers); INIT_LIST_HEAD(&shadow->frozen_buffers);
address_space_init_once(&shadow->frozen_data);
nilfs_mapping_init(&shadow->frozen_data, inode); s_inode = nilfs_iget_for_shadow(inode);
address_space_init_once(&shadow->frozen_btnodes); if (IS_ERR(s_inode))
nilfs_mapping_init(&shadow->frozen_btnodes, inode); return PTR_ERR(s_inode);
shadow->inode = s_inode;
mi->mi_shadow = shadow; mi->mi_shadow = shadow;
return 0; return 0;
} }
...@@ -526,14 +538,15 @@ int nilfs_mdt_save_to_shadow_map(struct inode *inode) ...@@ -526,14 +538,15 @@ int nilfs_mdt_save_to_shadow_map(struct inode *inode)
struct nilfs_mdt_info *mi = NILFS_MDT(inode); struct nilfs_mdt_info *mi = NILFS_MDT(inode);
struct nilfs_inode_info *ii = NILFS_I(inode); struct nilfs_inode_info *ii = NILFS_I(inode);
struct nilfs_shadow_map *shadow = mi->mi_shadow; struct nilfs_shadow_map *shadow = mi->mi_shadow;
struct inode *s_inode = shadow->inode;
int ret; int ret;
ret = nilfs_copy_dirty_pages(&shadow->frozen_data, inode->i_mapping); ret = nilfs_copy_dirty_pages(s_inode->i_mapping, inode->i_mapping);
if (ret) if (ret)
goto out; goto out;
ret = nilfs_copy_dirty_pages(&shadow->frozen_btnodes, ret = nilfs_copy_dirty_pages(NILFS_I(s_inode)->i_assoc_inode->i_mapping,
&ii->i_btnode_cache); ii->i_assoc_inode->i_mapping);
if (ret) if (ret)
goto out; goto out;
...@@ -549,7 +562,7 @@ int nilfs_mdt_freeze_buffer(struct inode *inode, struct buffer_head *bh) ...@@ -549,7 +562,7 @@ int nilfs_mdt_freeze_buffer(struct inode *inode, struct buffer_head *bh)
struct page *page; struct page *page;
int blkbits = inode->i_blkbits; int blkbits = inode->i_blkbits;
page = grab_cache_page(&shadow->frozen_data, bh->b_page->index); page = grab_cache_page(shadow->inode->i_mapping, bh->b_page->index);
if (!page) if (!page)
return -ENOMEM; return -ENOMEM;
...@@ -581,7 +594,7 @@ nilfs_mdt_get_frozen_buffer(struct inode *inode, struct buffer_head *bh) ...@@ -581,7 +594,7 @@ nilfs_mdt_get_frozen_buffer(struct inode *inode, struct buffer_head *bh)
struct page *page; struct page *page;
int n; int n;
page = find_lock_page(&shadow->frozen_data, bh->b_page->index); page = find_lock_page(shadow->inode->i_mapping, bh->b_page->index);
if (page) { if (page) {
if (page_has_buffers(page)) { if (page_has_buffers(page)) {
n = bh_offset(bh) >> inode->i_blkbits; n = bh_offset(bh) >> inode->i_blkbits;
...@@ -622,10 +635,11 @@ void nilfs_mdt_restore_from_shadow_map(struct inode *inode) ...@@ -622,10 +635,11 @@ void nilfs_mdt_restore_from_shadow_map(struct inode *inode)
nilfs_palloc_clear_cache(inode); nilfs_palloc_clear_cache(inode);
nilfs_clear_dirty_pages(inode->i_mapping, true); nilfs_clear_dirty_pages(inode->i_mapping, true);
nilfs_copy_back_pages(inode->i_mapping, &shadow->frozen_data); nilfs_copy_back_pages(inode->i_mapping, shadow->inode->i_mapping);
nilfs_clear_dirty_pages(&ii->i_btnode_cache, true); nilfs_clear_dirty_pages(ii->i_assoc_inode->i_mapping, true);
nilfs_copy_back_pages(&ii->i_btnode_cache, &shadow->frozen_btnodes); nilfs_copy_back_pages(ii->i_assoc_inode->i_mapping,
NILFS_I(shadow->inode)->i_assoc_inode->i_mapping);
nilfs_bmap_restore(ii->i_bmap, &shadow->bmap_store); nilfs_bmap_restore(ii->i_bmap, &shadow->bmap_store);
...@@ -640,10 +654,11 @@ void nilfs_mdt_clear_shadow_map(struct inode *inode) ...@@ -640,10 +654,11 @@ void nilfs_mdt_clear_shadow_map(struct inode *inode)
{ {
struct nilfs_mdt_info *mi = NILFS_MDT(inode); struct nilfs_mdt_info *mi = NILFS_MDT(inode);
struct nilfs_shadow_map *shadow = mi->mi_shadow; struct nilfs_shadow_map *shadow = mi->mi_shadow;
struct inode *shadow_btnc_inode = NILFS_I(shadow->inode)->i_assoc_inode;
down_write(&mi->mi_sem); down_write(&mi->mi_sem);
nilfs_release_frozen_buffers(shadow); nilfs_release_frozen_buffers(shadow);
truncate_inode_pages(&shadow->frozen_data, 0); truncate_inode_pages(shadow->inode->i_mapping, 0);
truncate_inode_pages(&shadow->frozen_btnodes, 0); truncate_inode_pages(shadow_btnc_inode->i_mapping, 0);
up_write(&mi->mi_sem); up_write(&mi->mi_sem);
} }
...@@ -18,14 +18,12 @@ ...@@ -18,14 +18,12 @@
/** /**
* struct nilfs_shadow_map - shadow mapping of meta data file * struct nilfs_shadow_map - shadow mapping of meta data file
* @bmap_store: shadow copy of bmap state * @bmap_store: shadow copy of bmap state
* @frozen_data: shadowed dirty data pages * @inode: holder of page caches used in shadow mapping
* @frozen_btnodes: shadowed dirty b-tree nodes' pages
* @frozen_buffers: list of frozen buffers * @frozen_buffers: list of frozen buffers
*/ */
struct nilfs_shadow_map { struct nilfs_shadow_map {
struct nilfs_bmap_store bmap_store; struct nilfs_bmap_store bmap_store;
struct address_space frozen_data; struct inode *inode;
struct address_space frozen_btnodes;
struct list_head frozen_buffers; struct list_head frozen_buffers;
}; };
......
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
* @i_xattr: <TODO> * @i_xattr: <TODO>
* @i_dir_start_lookup: page index of last successful search * @i_dir_start_lookup: page index of last successful search
* @i_cno: checkpoint number for GC inode * @i_cno: checkpoint number for GC inode
* @i_btnode_cache: cached pages of b-tree nodes * @i_assoc_inode: associated inode (B-tree node cache holder or back pointer)
* @i_dirty: list for connecting dirty files * @i_dirty: list for connecting dirty files
* @xattr_sem: semaphore for extended attributes processing * @xattr_sem: semaphore for extended attributes processing
* @i_bh: buffer contains disk inode * @i_bh: buffer contains disk inode
...@@ -43,7 +43,7 @@ struct nilfs_inode_info { ...@@ -43,7 +43,7 @@ struct nilfs_inode_info {
__u64 i_xattr; /* sector_t ??? */ __u64 i_xattr; /* sector_t ??? */
__u32 i_dir_start_lookup; __u32 i_dir_start_lookup;
__u64 i_cno; /* check point number for GC inode */ __u64 i_cno; /* check point number for GC inode */
struct address_space i_btnode_cache; struct inode *i_assoc_inode;
struct list_head i_dirty; /* List for connecting dirty files */ struct list_head i_dirty; /* List for connecting dirty files */
#ifdef CONFIG_NILFS_XATTR #ifdef CONFIG_NILFS_XATTR
...@@ -75,13 +75,6 @@ NILFS_BMAP_I(const struct nilfs_bmap *bmap) ...@@ -75,13 +75,6 @@ NILFS_BMAP_I(const struct nilfs_bmap *bmap)
return container_of(bmap, struct nilfs_inode_info, i_bmap_data); return container_of(bmap, struct nilfs_inode_info, i_bmap_data);
} }
static inline struct inode *NILFS_BTNC_I(struct address_space *btnc)
{
struct nilfs_inode_info *ii =
container_of(btnc, struct nilfs_inode_info, i_btnode_cache);
return &ii->vfs_inode;
}
/* /*
* Dynamic state flags of NILFS on-memory inode (i_state) * Dynamic state flags of NILFS on-memory inode (i_state)
*/ */
...@@ -98,6 +91,8 @@ enum { ...@@ -98,6 +91,8 @@ enum {
NILFS_I_INODE_SYNC, /* dsync is not allowed for inode */ NILFS_I_INODE_SYNC, /* dsync is not allowed for inode */
NILFS_I_BMAP, /* has bmap and btnode_cache */ NILFS_I_BMAP, /* has bmap and btnode_cache */
NILFS_I_GCINODE, /* inode for GC, on memory only */ NILFS_I_GCINODE, /* inode for GC, on memory only */
NILFS_I_BTNC, /* inode for btree node cache */
NILFS_I_SHADOW, /* inode for shadowed page cache */
}; };
/* /*
...@@ -267,6 +262,9 @@ struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root, ...@@ -267,6 +262,9 @@ struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
unsigned long ino); unsigned long ino);
extern struct inode *nilfs_iget_for_gc(struct super_block *sb, extern struct inode *nilfs_iget_for_gc(struct super_block *sb,
unsigned long ino, __u64 cno); unsigned long ino, __u64 cno);
int nilfs_attach_btree_node_cache(struct inode *inode);
void nilfs_detach_btree_node_cache(struct inode *inode);
struct inode *nilfs_iget_for_shadow(struct inode *inode);
extern void nilfs_update_inode(struct inode *, struct buffer_head *, int); extern void nilfs_update_inode(struct inode *, struct buffer_head *, int);
extern void nilfs_truncate(struct inode *); extern void nilfs_truncate(struct inode *);
extern void nilfs_evict_inode(struct inode *); extern void nilfs_evict_inode(struct inode *);
......
...@@ -436,22 +436,12 @@ unsigned int nilfs_page_count_clean_buffers(struct page *page, ...@@ -436,22 +436,12 @@ unsigned int nilfs_page_count_clean_buffers(struct page *page,
return nc; return nc;
} }
void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
{
mapping->host = inode;
mapping->flags = 0;
mapping_set_gfp_mask(mapping, GFP_NOFS);
mapping->private_data = NULL;
mapping->a_ops = &empty_aops;
}
/* /*
* NILFS2 needs clear_page_dirty() in the following two cases: * NILFS2 needs clear_page_dirty() in the following two cases:
* *
* 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty
* page dirty flags when it copies back pages from the shadow cache * flag of pages when it copies back pages from shadow cache to the
* (gcdat->{i_mapping,i_btnode_cache}) to its original cache * original cache.
* (dat->{i_mapping,i_btnode_cache}).
* *
* 2) Some B-tree operations like insertion or deletion may dispose buffers * 2) Some B-tree operations like insertion or deletion may dispose buffers
* in dirty state, and this needs to cancel the dirty state of their pages. * in dirty state, and this needs to cancel the dirty state of their pages.
......
...@@ -43,7 +43,6 @@ int nilfs_copy_dirty_pages(struct address_space *, struct address_space *); ...@@ -43,7 +43,6 @@ int nilfs_copy_dirty_pages(struct address_space *, struct address_space *);
void nilfs_copy_back_pages(struct address_space *, struct address_space *); void nilfs_copy_back_pages(struct address_space *, struct address_space *);
void nilfs_clear_dirty_page(struct page *, bool); void nilfs_clear_dirty_page(struct page *, bool);
void nilfs_clear_dirty_pages(struct address_space *, bool); void nilfs_clear_dirty_pages(struct address_space *, bool);
void nilfs_mapping_init(struct address_space *mapping, struct inode *inode);
unsigned int nilfs_page_count_clean_buffers(struct page *, unsigned int, unsigned int nilfs_page_count_clean_buffers(struct page *, unsigned int,
unsigned int); unsigned int);
unsigned long nilfs_find_uncommitted_extent(struct inode *inode, unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
......
...@@ -733,15 +733,18 @@ static void nilfs_lookup_dirty_node_buffers(struct inode *inode, ...@@ -733,15 +733,18 @@ static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
struct list_head *listp) struct list_head *listp)
{ {
struct nilfs_inode_info *ii = NILFS_I(inode); struct nilfs_inode_info *ii = NILFS_I(inode);
struct address_space *mapping = &ii->i_btnode_cache; struct inode *btnc_inode = ii->i_assoc_inode;
struct pagevec pvec; struct pagevec pvec;
struct buffer_head *bh, *head; struct buffer_head *bh, *head;
unsigned int i; unsigned int i;
pgoff_t index = 0; pgoff_t index = 0;
if (!btnc_inode)
return;
pagevec_init(&pvec); pagevec_init(&pvec);
while (pagevec_lookup_tag(&pvec, mapping, &index, while (pagevec_lookup_tag(&pvec, btnc_inode->i_mapping, &index,
PAGECACHE_TAG_DIRTY)) { PAGECACHE_TAG_DIRTY)) {
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
bh = head = page_buffers(pvec.pages[i]); bh = head = page_buffers(pvec.pages[i]);
...@@ -2410,7 +2413,7 @@ nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) ...@@ -2410,7 +2413,7 @@ nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
continue; continue;
list_del_init(&ii->i_dirty); list_del_init(&ii->i_dirty);
truncate_inode_pages(&ii->vfs_inode.i_data, 0); truncate_inode_pages(&ii->vfs_inode.i_data, 0);
nilfs_btnode_cache_clear(&ii->i_btnode_cache); nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
iput(&ii->vfs_inode); iput(&ii->vfs_inode);
} }
} }
......
...@@ -157,7 +157,8 @@ struct inode *nilfs_alloc_inode(struct super_block *sb) ...@@ -157,7 +157,8 @@ struct inode *nilfs_alloc_inode(struct super_block *sb)
ii->i_bh = NULL; ii->i_bh = NULL;
ii->i_state = 0; ii->i_state = 0;
ii->i_cno = 0; ii->i_cno = 0;
nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode); ii->i_assoc_inode = NULL;
ii->i_bmap = &ii->i_bmap_data;
return &ii->vfs_inode; return &ii->vfs_inode;
} }
...@@ -1377,8 +1378,6 @@ static void nilfs_inode_init_once(void *obj) ...@@ -1377,8 +1378,6 @@ static void nilfs_inode_init_once(void *obj)
#ifdef CONFIG_NILFS_XATTR #ifdef CONFIG_NILFS_XATTR
init_rwsem(&ii->xattr_sem); init_rwsem(&ii->xattr_sem);
#endif #endif
address_space_init_once(&ii->i_btnode_cache);
ii->i_bmap = &ii->i_bmap_data;
inode_init_once(&ii->vfs_inode); inode_init_once(&ii->vfs_inode);
} }
......
...@@ -337,7 +337,6 @@ void ocfs2_unlock_global_qf(struct ocfs2_mem_dqinfo *oinfo, int ex) ...@@ -337,7 +337,6 @@ void ocfs2_unlock_global_qf(struct ocfs2_mem_dqinfo *oinfo, int ex)
/* Read information header from global quota file */ /* Read information header from global quota file */
int ocfs2_global_read_info(struct super_block *sb, int type) int ocfs2_global_read_info(struct super_block *sb, int type)
{ {
struct inode *gqinode = NULL;
unsigned int ino[OCFS2_MAXQUOTAS] = { USER_QUOTA_SYSTEM_INODE, unsigned int ino[OCFS2_MAXQUOTAS] = { USER_QUOTA_SYSTEM_INODE,
GROUP_QUOTA_SYSTEM_INODE }; GROUP_QUOTA_SYSTEM_INODE };
struct ocfs2_global_disk_dqinfo dinfo; struct ocfs2_global_disk_dqinfo dinfo;
...@@ -346,29 +345,31 @@ int ocfs2_global_read_info(struct super_block *sb, int type) ...@@ -346,29 +345,31 @@ int ocfs2_global_read_info(struct super_block *sb, int type)
u64 pcount; u64 pcount;
int status; int status;
oinfo->dqi_gi.dqi_sb = sb;
oinfo->dqi_gi.dqi_type = type;
ocfs2_qinfo_lock_res_init(&oinfo->dqi_gqlock, oinfo);
oinfo->dqi_gi.dqi_entry_size = sizeof(struct ocfs2_global_disk_dqblk);
oinfo->dqi_gi.dqi_ops = &ocfs2_global_ops;
oinfo->dqi_gqi_bh = NULL;
oinfo->dqi_gqi_count = 0;
/* Read global header */ /* Read global header */
gqinode = ocfs2_get_system_file_inode(OCFS2_SB(sb), ino[type], oinfo->dqi_gqinode = ocfs2_get_system_file_inode(OCFS2_SB(sb), ino[type],
OCFS2_INVALID_SLOT); OCFS2_INVALID_SLOT);
if (!gqinode) { if (!oinfo->dqi_gqinode) {
mlog(ML_ERROR, "failed to get global quota inode (type=%d)\n", mlog(ML_ERROR, "failed to get global quota inode (type=%d)\n",
type); type);
status = -EINVAL; status = -EINVAL;
goto out_err; goto out_err;
} }
oinfo->dqi_gi.dqi_sb = sb;
oinfo->dqi_gi.dqi_type = type;
oinfo->dqi_gi.dqi_entry_size = sizeof(struct ocfs2_global_disk_dqblk);
oinfo->dqi_gi.dqi_ops = &ocfs2_global_ops;
oinfo->dqi_gqi_bh = NULL;
oinfo->dqi_gqi_count = 0;
oinfo->dqi_gqinode = gqinode;
status = ocfs2_lock_global_qf(oinfo, 0); status = ocfs2_lock_global_qf(oinfo, 0);
if (status < 0) { if (status < 0) {
mlog_errno(status); mlog_errno(status);
goto out_err; goto out_err;
} }
status = ocfs2_extent_map_get_blocks(gqinode, 0, &oinfo->dqi_giblk, status = ocfs2_extent_map_get_blocks(oinfo->dqi_gqinode, 0, &oinfo->dqi_giblk,
&pcount, NULL); &pcount, NULL);
if (status < 0) if (status < 0)
goto out_unlock; goto out_unlock;
......
...@@ -702,8 +702,6 @@ static int ocfs2_local_read_info(struct super_block *sb, int type) ...@@ -702,8 +702,6 @@ static int ocfs2_local_read_info(struct super_block *sb, int type)
info->dqi_priv = oinfo; info->dqi_priv = oinfo;
oinfo->dqi_type = type; oinfo->dqi_type = type;
INIT_LIST_HEAD(&oinfo->dqi_chunk); INIT_LIST_HEAD(&oinfo->dqi_chunk);
oinfo->dqi_gqinode = NULL;
ocfs2_qinfo_lock_res_init(&oinfo->dqi_gqlock, oinfo);
oinfo->dqi_rec = NULL; oinfo->dqi_rec = NULL;
oinfo->dqi_lqi_bh = NULL; oinfo->dqi_lqi_bh = NULL;
oinfo->dqi_libh = NULL; oinfo->dqi_libh = NULL;
......
...@@ -264,9 +264,7 @@ struct vm_area_struct; ...@@ -264,9 +264,7 @@ struct vm_area_struct;
#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
/* Room for N __GFP_FOO bits */ /* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT (24 + \ #define __GFP_BITS_SHIFT (27 + IS_ENABLED(CONFIG_LOCKDEP))
3 * IS_ENABLED(CONFIG_KASAN_HW_TAGS) + \
IS_ENABLED(CONFIG_LOCKDEP))
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
/** /**
......
...@@ -1019,12 +1019,15 @@ static int kdamond_wait_activation(struct damon_ctx *ctx) ...@@ -1019,12 +1019,15 @@ static int kdamond_wait_activation(struct damon_ctx *ctx)
struct damos *s; struct damos *s;
unsigned long wait_time; unsigned long wait_time;
unsigned long min_wait_time = 0; unsigned long min_wait_time = 0;
bool init_wait_time = false;
while (!kdamond_need_stop(ctx)) { while (!kdamond_need_stop(ctx)) {
damon_for_each_scheme(s, ctx) { damon_for_each_scheme(s, ctx) {
wait_time = damos_wmark_wait_us(s); wait_time = damos_wmark_wait_us(s);
if (!min_wait_time || wait_time < min_wait_time) if (!init_wait_time || wait_time < min_wait_time) {
init_wait_time = true;
min_wait_time = wait_time; min_wait_time = wait_time;
}
} }
if (!min_wait_time) if (!min_wait_time)
return 0; return 0;
......
...@@ -1404,6 +1404,7 @@ long populate_vma_page_range(struct vm_area_struct *vma, ...@@ -1404,6 +1404,7 @@ long populate_vma_page_range(struct vm_area_struct *vma,
struct mm_struct *mm = vma->vm_mm; struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE; unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags; int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start)); VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end)); VM_BUG_ON(!PAGE_ALIGNED(end));
...@@ -1438,8 +1439,10 @@ long populate_vma_page_range(struct vm_area_struct *vma, ...@@ -1438,8 +1439,10 @@ long populate_vma_page_range(struct vm_area_struct *vma,
* We made sure addr is within a VMA, so the following will * We made sure addr is within a VMA, so the following will
* not result in a stack expansion that recurses back here. * not result in a stack expansion that recurses back here.
*/ */
return __get_user_pages(mm, start, nr_pages, gup_flags, ret = __get_user_pages(mm, start, nr_pages, gup_flags,
NULL, NULL, locked); NULL, NULL, locked);
lru_add_drain();
return ret;
} }
/* /*
...@@ -1471,6 +1474,7 @@ long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, ...@@ -1471,6 +1474,7 @@ long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
struct mm_struct *mm = vma->vm_mm; struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE; unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags; int gup_flags;
long ret;
VM_BUG_ON(!PAGE_ALIGNED(start)); VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end)); VM_BUG_ON(!PAGE_ALIGNED(end));
...@@ -1498,8 +1502,10 @@ long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, ...@@ -1498,8 +1502,10 @@ long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
if (check_vma_flags(vma, gup_flags)) if (check_vma_flags(vma, gup_flags))
return -EINVAL; return -EINVAL;
return __get_user_pages(mm, start, nr_pages, gup_flags, ret = __get_user_pages(mm, start, nr_pages, gup_flags,
NULL, NULL, locked); NULL, NULL, locked);
lru_add_drain();
return ret;
} }
/* /*
......
...@@ -456,7 +456,8 @@ static inline void munlock_vma_page(struct page *page, ...@@ -456,7 +456,8 @@ static inline void munlock_vma_page(struct page *page,
} }
void mlock_new_page(struct page *page); void mlock_new_page(struct page *page);
bool need_mlock_page_drain(int cpu); bool need_mlock_page_drain(int cpu);
void mlock_page_drain(int cpu); void mlock_page_drain_local(void);
void mlock_page_drain_remote(int cpu);
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
...@@ -539,7 +540,8 @@ static inline void munlock_vma_page(struct page *page, ...@@ -539,7 +540,8 @@ static inline void munlock_vma_page(struct page *page,
struct vm_area_struct *vma, bool compound) { } struct vm_area_struct *vma, bool compound) { }
static inline void mlock_new_page(struct page *page) { } static inline void mlock_new_page(struct page *page) { }
static inline bool need_mlock_page_drain(int cpu) { return false; } static inline bool need_mlock_page_drain(int cpu) { return false; }
static inline void mlock_page_drain(int cpu) { } static inline void mlock_page_drain_local(void) { }
static inline void mlock_page_drain_remote(int cpu) { }
static inline void vunmap_range_noflush(unsigned long start, unsigned long end) static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
{ {
} }
......
...@@ -566,6 +566,8 @@ static unsigned long kfence_init_pool(void) ...@@ -566,6 +566,8 @@ static unsigned long kfence_init_pool(void)
* enters __slab_free() slow-path. * enters __slab_free() slow-path.
*/ */
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
struct slab *slab = page_slab(&pages[i]);
if (!i || (i % 2)) if (!i || (i % 2))
continue; continue;
...@@ -573,7 +575,11 @@ static unsigned long kfence_init_pool(void) ...@@ -573,7 +575,11 @@ static unsigned long kfence_init_pool(void)
if (WARN_ON(compound_head(&pages[i]) != &pages[i])) if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
return addr; return addr;
__SetPageSlab(&pages[i]); __folio_set_slab(slab_folio(slab));
#ifdef CONFIG_MEMCG
slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
MEMCG_DATA_OBJCGS;
#endif
} }
/* /*
...@@ -1033,6 +1039,9 @@ void __kfence_free(void *addr) ...@@ -1033,6 +1039,9 @@ void __kfence_free(void *addr)
{ {
struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
#ifdef CONFIG_MEMCG
KFENCE_WARN_ON(meta->objcg);
#endif
/* /*
* If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
* the object, as the object page may be recycled for other-typed * the object, as the object page may be recycled for other-typed
......
...@@ -89,6 +89,9 @@ struct kfence_metadata { ...@@ -89,6 +89,9 @@ struct kfence_metadata {
struct kfence_track free_track; struct kfence_track free_track;
/* For updating alloc_covered on frees. */ /* For updating alloc_covered on frees. */
u32 alloc_stack_hash; u32 alloc_stack_hash;
#ifdef CONFIG_MEMCG
struct obj_cgroup *objcg;
#endif
}; };
extern struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; extern struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
......
...@@ -796,6 +796,8 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) ...@@ -796,6 +796,8 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
unsigned long flags; unsigned long flags;
struct kmemleak_object *object; struct kmemleak_object *object;
struct kmemleak_scan_area *area = NULL; struct kmemleak_scan_area *area = NULL;
unsigned long untagged_ptr;
unsigned long untagged_objp;
object = find_and_get_object(ptr, 1); object = find_and_get_object(ptr, 1);
if (!object) { if (!object) {
...@@ -804,6 +806,9 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) ...@@ -804,6 +806,9 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
return; return;
} }
untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
if (scan_area_cache) if (scan_area_cache)
area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
...@@ -815,8 +820,8 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) ...@@ -815,8 +820,8 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
goto out_unlock; goto out_unlock;
} }
if (size == SIZE_MAX) { if (size == SIZE_MAX) {
size = object->pointer + object->size - ptr; size = untagged_objp + object->size - untagged_ptr;
} else if (ptr + size > object->pointer + object->size) { } else if (untagged_ptr + size > untagged_objp + object->size) {
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
dump_object_info(object); dump_object_info(object);
kmem_cache_free(scan_area_cache, area); kmem_cache_free(scan_area_cache, area);
......
...@@ -1464,16 +1464,9 @@ SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, ...@@ -1464,16 +1464,9 @@ SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
while (iov_iter_count(&iter)) { while (iov_iter_count(&iter)) {
iovec = iov_iter_iovec(&iter); iovec = iov_iter_iovec(&iter);
/*
* do_madvise returns ENOMEM if unmapped holes are present
* in the passed VMA. process_madvise() is expected to skip
* unmapped holes passed to it in the 'struct iovec' list
* and not fail because of them. Thus treat -ENOMEM return
* from do_madvise as valid and continue processing.
*/
ret = do_madvise(mm, (unsigned long)iovec.iov_base, ret = do_madvise(mm, (unsigned long)iovec.iov_base,
iovec.iov_len, behavior); iovec.iov_len, behavior);
if (ret < 0 && ret != -ENOMEM) if (ret < 0)
break; break;
iov_iter_advance(&iter, iovec.iov_len); iov_iter_advance(&iter, iovec.iov_len);
} }
......
...@@ -3918,14 +3918,18 @@ static vm_fault_t __do_fault(struct vm_fault *vmf) ...@@ -3918,14 +3918,18 @@ static vm_fault_t __do_fault(struct vm_fault *vmf)
return ret; return ret;
if (unlikely(PageHWPoison(vmf->page))) { if (unlikely(PageHWPoison(vmf->page))) {
struct page *page = vmf->page;
vm_fault_t poisonret = VM_FAULT_HWPOISON; vm_fault_t poisonret = VM_FAULT_HWPOISON;
if (ret & VM_FAULT_LOCKED) { if (ret & VM_FAULT_LOCKED) {
if (page_mapped(page))
unmap_mapping_pages(page_mapping(page),
page->index, 1, false);
/* Retry if a clean page was removed from the cache. */ /* Retry if a clean page was removed from the cache. */
if (invalidate_inode_page(vmf->page)) if (invalidate_inode_page(page))
poisonret = 0; poisonret = VM_FAULT_NOPAGE;
unlock_page(vmf->page); unlock_page(page);
} }
put_page(vmf->page); put_page(page);
vmf->page = NULL; vmf->page = NULL;
return poisonret; return poisonret;
} }
......
...@@ -246,7 +246,7 @@ static bool remove_migration_pte(struct folio *folio, ...@@ -246,7 +246,7 @@ static bool remove_migration_pte(struct folio *folio,
set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
} }
if (vma->vm_flags & VM_LOCKED) if (vma->vm_flags & VM_LOCKED)
mlock_page_drain(smp_processor_id()); mlock_page_drain_local();
trace_remove_migration_pte(pvmw.address, pte_val(pte), trace_remove_migration_pte(pvmw.address, pte_val(pte),
compound_order(new)); compound_order(new));
......
...@@ -28,7 +28,14 @@ ...@@ -28,7 +28,14 @@
#include "internal.h" #include "internal.h"
static DEFINE_PER_CPU(struct pagevec, mlock_pvec); struct mlock_pvec {
local_lock_t lock;
struct pagevec vec;
};
static DEFINE_PER_CPU(struct mlock_pvec, mlock_pvec) = {
.lock = INIT_LOCAL_LOCK(lock),
};
bool can_do_mlock(void) bool can_do_mlock(void)
{ {
...@@ -203,18 +210,30 @@ static void mlock_pagevec(struct pagevec *pvec) ...@@ -203,18 +210,30 @@ static void mlock_pagevec(struct pagevec *pvec)
pagevec_reinit(pvec); pagevec_reinit(pvec);
} }
void mlock_page_drain(int cpu) void mlock_page_drain_local(void)
{
struct pagevec *pvec;
local_lock(&mlock_pvec.lock);
pvec = this_cpu_ptr(&mlock_pvec.vec);
if (pagevec_count(pvec))
mlock_pagevec(pvec);
local_unlock(&mlock_pvec.lock);
}
void mlock_page_drain_remote(int cpu)
{ {
struct pagevec *pvec; struct pagevec *pvec;
pvec = &per_cpu(mlock_pvec, cpu); WARN_ON_ONCE(cpu_online(cpu));
pvec = &per_cpu(mlock_pvec.vec, cpu);
if (pagevec_count(pvec)) if (pagevec_count(pvec))
mlock_pagevec(pvec); mlock_pagevec(pvec);
} }
bool need_mlock_page_drain(int cpu) bool need_mlock_page_drain(int cpu)
{ {
return pagevec_count(&per_cpu(mlock_pvec, cpu)); return pagevec_count(&per_cpu(mlock_pvec.vec, cpu));
} }
/** /**
...@@ -223,7 +242,10 @@ bool need_mlock_page_drain(int cpu) ...@@ -223,7 +242,10 @@ bool need_mlock_page_drain(int cpu)
*/ */
void mlock_folio(struct folio *folio) void mlock_folio(struct folio *folio)
{ {
struct pagevec *pvec = &get_cpu_var(mlock_pvec); struct pagevec *pvec;
local_lock(&mlock_pvec.lock);
pvec = this_cpu_ptr(&mlock_pvec.vec);
if (!folio_test_set_mlocked(folio)) { if (!folio_test_set_mlocked(folio)) {
int nr_pages = folio_nr_pages(folio); int nr_pages = folio_nr_pages(folio);
...@@ -236,7 +258,7 @@ void mlock_folio(struct folio *folio) ...@@ -236,7 +258,7 @@ void mlock_folio(struct folio *folio)
if (!pagevec_add(pvec, mlock_lru(&folio->page)) || if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
folio_test_large(folio) || lru_cache_disabled()) folio_test_large(folio) || lru_cache_disabled())
mlock_pagevec(pvec); mlock_pagevec(pvec);
put_cpu_var(mlock_pvec); local_unlock(&mlock_pvec.lock);
} }
/** /**
...@@ -245,9 +267,11 @@ void mlock_folio(struct folio *folio) ...@@ -245,9 +267,11 @@ void mlock_folio(struct folio *folio)
*/ */
void mlock_new_page(struct page *page) void mlock_new_page(struct page *page)
{ {
struct pagevec *pvec = &get_cpu_var(mlock_pvec); struct pagevec *pvec;
int nr_pages = thp_nr_pages(page); int nr_pages = thp_nr_pages(page);
local_lock(&mlock_pvec.lock);
pvec = this_cpu_ptr(&mlock_pvec.vec);
SetPageMlocked(page); SetPageMlocked(page);
mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
...@@ -256,7 +280,7 @@ void mlock_new_page(struct page *page) ...@@ -256,7 +280,7 @@ void mlock_new_page(struct page *page)
if (!pagevec_add(pvec, mlock_new(page)) || if (!pagevec_add(pvec, mlock_new(page)) ||
PageHead(page) || lru_cache_disabled()) PageHead(page) || lru_cache_disabled())
mlock_pagevec(pvec); mlock_pagevec(pvec);
put_cpu_var(mlock_pvec); local_unlock(&mlock_pvec.lock);
} }
/** /**
...@@ -265,8 +289,10 @@ void mlock_new_page(struct page *page) ...@@ -265,8 +289,10 @@ void mlock_new_page(struct page *page)
*/ */
void munlock_page(struct page *page) void munlock_page(struct page *page)
{ {
struct pagevec *pvec = &get_cpu_var(mlock_pvec); struct pagevec *pvec;
local_lock(&mlock_pvec.lock);
pvec = this_cpu_ptr(&mlock_pvec.vec);
/* /*
* TestClearPageMlocked(page) must be left to __munlock_page(), * TestClearPageMlocked(page) must be left to __munlock_page(),
* which will check whether the page is multiply mlocked. * which will check whether the page is multiply mlocked.
...@@ -276,7 +302,7 @@ void munlock_page(struct page *page) ...@@ -276,7 +302,7 @@ void munlock_page(struct page *page)
if (!pagevec_add(pvec, page) || if (!pagevec_add(pvec, page) ||
PageHead(page) || lru_cache_disabled()) PageHead(page) || lru_cache_disabled())
mlock_pagevec(pvec); mlock_pagevec(pvec);
put_cpu_var(mlock_pvec); local_unlock(&mlock_pvec.lock);
} }
static int mlock_pte_range(pmd_t *pmd, unsigned long addr, static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
......
...@@ -8367,6 +8367,7 @@ static int page_alloc_cpu_dead(unsigned int cpu) ...@@ -8367,6 +8367,7 @@ static int page_alloc_cpu_dead(unsigned int cpu)
struct zone *zone; struct zone *zone;
lru_add_drain_cpu(cpu); lru_add_drain_cpu(cpu);
mlock_page_drain_remote(cpu);
drain_pages(cpu); drain_pages(cpu);
/* /*
......
...@@ -1683,7 +1683,7 @@ static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, ...@@ -1683,7 +1683,7 @@ static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
*/ */
page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
if (vma->vm_flags & VM_LOCKED) if (vma->vm_flags & VM_LOCKED)
mlock_page_drain(smp_processor_id()); mlock_page_drain_local();
folio_put(folio); folio_put(folio);
} }
...@@ -1961,7 +1961,7 @@ static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, ...@@ -1961,7 +1961,7 @@ static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
*/ */
page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
if (vma->vm_flags & VM_LOCKED) if (vma->vm_flags & VM_LOCKED)
mlock_page_drain(smp_processor_id()); mlock_page_drain_local();
folio_put(folio); folio_put(folio);
} }
......
...@@ -624,7 +624,6 @@ void lru_add_drain_cpu(int cpu) ...@@ -624,7 +624,6 @@ void lru_add_drain_cpu(int cpu)
pagevec_lru_move_fn(pvec, lru_lazyfree_fn); pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
activate_page_drain(cpu); activate_page_drain(cpu);
mlock_page_drain(cpu);
} }
/** /**
...@@ -706,6 +705,7 @@ void lru_add_drain(void) ...@@ -706,6 +705,7 @@ void lru_add_drain(void)
local_lock(&lru_pvecs.lock); local_lock(&lru_pvecs.lock);
lru_add_drain_cpu(smp_processor_id()); lru_add_drain_cpu(smp_processor_id());
local_unlock(&lru_pvecs.lock); local_unlock(&lru_pvecs.lock);
mlock_page_drain_local();
} }
/* /*
...@@ -720,6 +720,7 @@ static void lru_add_and_bh_lrus_drain(void) ...@@ -720,6 +720,7 @@ static void lru_add_and_bh_lrus_drain(void)
lru_add_drain_cpu(smp_processor_id()); lru_add_drain_cpu(smp_processor_id());
local_unlock(&lru_pvecs.lock); local_unlock(&lru_pvecs.lock);
invalidate_bh_lrus_cpu(); invalidate_bh_lrus_cpu();
mlock_page_drain_local();
} }
void lru_add_drain_cpu_zone(struct zone *zone) void lru_add_drain_cpu_zone(struct zone *zone)
...@@ -728,6 +729,7 @@ void lru_add_drain_cpu_zone(struct zone *zone) ...@@ -728,6 +729,7 @@ void lru_add_drain_cpu_zone(struct zone *zone)
lru_add_drain_cpu(smp_processor_id()); lru_add_drain_cpu(smp_processor_id());
drain_local_pages(zone); drain_local_pages(zone);
local_unlock(&lru_pvecs.lock); local_unlock(&lru_pvecs.lock);
mlock_page_drain_local();
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
......
...@@ -441,7 +441,6 @@ static void usage(void) ...@@ -441,7 +441,6 @@ static void usage(void)
"-n\t\tSort by task command name.\n" "-n\t\tSort by task command name.\n"
"-a\t\tSort by memory allocate time.\n" "-a\t\tSort by memory allocate time.\n"
"-r\t\tSort by memory release time.\n" "-r\t\tSort by memory release time.\n"
"-c\t\tCull by comparing stacktrace instead of total block.\n"
"-f\t\tFilter out the information of blocks whose memory has been released.\n" "-f\t\tFilter out the information of blocks whose memory has been released.\n"
"--pid <PID>\tSelect by pid. This selects the information of blocks whose process ID number equals to <PID>.\n" "--pid <PID>\tSelect by pid. This selects the information of blocks whose process ID number equals to <PID>.\n"
"--tgid <TGID>\tSelect by tgid. This selects the information of blocks whose Thread Group ID number equals to <TGID>.\n" "--tgid <TGID>\tSelect by tgid. This selects the information of blocks whose Thread Group ID number equals to <TGID>.\n"
...@@ -466,14 +465,11 @@ int main(int argc, char **argv) ...@@ -466,14 +465,11 @@ int main(int argc, char **argv)
{ 0, 0, 0, 0}, { 0, 0, 0, 0},
}; };
while ((opt = getopt_long(argc, argv, "acfmnprstP", longopts, NULL)) != -1) while ((opt = getopt_long(argc, argv, "afmnprstP", longopts, NULL)) != -1)
switch (opt) { switch (opt) {
case 'a': case 'a':
cmp = compare_ts; cmp = compare_ts;
break; break;
case 'c':
cull = cull | CULL_STACKTRACE;
break;
case 'f': case 'f':
filter = filter | FILTER_UNRELEASE; filter = filter | FILTER_UNRELEASE;
break; break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment