Commit b0d1fe9b authored by Martin Habets's avatar Martin Habets Committed by David S. Miller

sfc: Cleanups in io.h

Most of the Falcon locking description does not apply to EF10.
Signed-off-by: default avatarMartin Habets <habetsm.xilinx@gmail.com>
Acked-by: default avatarEdward Cree <ecree.xilinx@gmail.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent ae9d445c
...@@ -17,46 +17,22 @@ ...@@ -17,46 +17,22 @@
* *
************************************************************************** **************************************************************************
* *
* Notes on locking strategy for the Falcon architecture: * The EF10 architecture exposes very few registers to the host and
* * most of them are only 32 bits wide. The only exceptions are the MC
* Many CSRs are very wide and cannot be read or written atomically. * doorbell register pair, which has its own latching, and
* Writes from the host are buffered by the Bus Interface Unit (BIU) * TX_DESC_UPD.
* up to 128 bits. Whenever the host writes part of such a register,
* the BIU collects the written value and does not write to the
* underlying register until all 4 dwords have been written. A
* similar buffering scheme applies to host access to the NIC's 64-bit
* SRAM.
*
* Writes to different CSRs and 64-bit SRAM words must be serialised,
* since interleaved access can result in lost writes. We use
* efx_nic::biu_lock for this.
*
* We also serialise reads from 128-bit CSRs and SRAM with the same
* spinlock. This may not be necessary, but it doesn't really matter
* as there are no such reads on the fast path.
* *
* The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are * The TX_DESC_UPD DMA descriptor pointer is 128-bits but is a special
* 128-bit but are special-cased in the BIU to avoid the need for * case in the BIU to avoid the need for locking in the host:
* locking in the host:
* *
* - They are write-only. * - It is write-only.
* - The semantics of writing to these registers are such that * - The semantics of writing to this register is such that
* replacing the low 96 bits with zero does not affect functionality. * replacing the low 96 bits with zero does not affect functionality.
* - If the host writes to the last dword address of such a register * - If the host writes to the last dword address of the register
* (i.e. the high 32 bits) the underlying register will always be * (i.e. the high 32 bits) the underlying register will always be
* written. If the collector and the current write together do not * written. If the collector and the current write together do not
* provide values for all 128 bits of the register, the low 96 bits * provide values for all 128 bits of the register, the low 96 bits
* will be written as zero. * will be written as zero.
* - If the host writes to the address of any other part of such a
* register while the collector already holds values for some other
* register, the write is discarded and the collector maintains its
* current state.
*
* The EF10 architecture exposes very few registers to the host and
* most of them are only 32 bits wide. The only exceptions are the MC
* doorbell register pair, which has its own latching, and
* TX_DESC_UPD, which works in a similar way to the Falcon
* architecture.
*/ */
#if BITS_PER_LONG == 64 #if BITS_PER_LONG == 64
...@@ -125,27 +101,6 @@ static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value, ...@@ -125,27 +101,6 @@ static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
} }
/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
const efx_qword_t *value, unsigned int index)
{
unsigned int addr = index * sizeof(*value);
unsigned long flags __attribute__ ((unused));
netif_vdbg(efx, hw, efx->net_dev,
"writing SRAM address %x with " EFX_QWORD_FMT "\n",
addr, EFX_QWORD_VAL(*value));
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef EFX_USE_QWORD_IO
__raw_writeq((__force u64)value->u64[0], membase + addr);
#else
__raw_writel((__force u32)value->u32[0], membase + addr);
__raw_writel((__force u32)value->u32[1], membase + addr + 4);
#endif
spin_unlock_irqrestore(&efx->biu_lock, flags);
}
/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value, static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
unsigned int reg) unsigned int reg)
...@@ -176,27 +131,6 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, ...@@ -176,27 +131,6 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
EFX_OWORD_VAL(*value)); EFX_OWORD_VAL(*value));
} }
/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index)
{
unsigned int addr = index * sizeof(*value);
unsigned long flags __attribute__ ((unused));
spin_lock_irqsave(&efx->biu_lock, flags);
#ifdef EFX_USE_QWORD_IO
value->u64[0] = (__force __le64)__raw_readq(membase + addr);
#else
value->u32[0] = (__force __le32)__raw_readl(membase + addr);
value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
#endif
spin_unlock_irqrestore(&efx->biu_lock, flags);
netif_vdbg(efx, hw, efx->net_dev,
"read from SRAM address %x, got "EFX_QWORD_FMT"\n",
addr, EFX_QWORD_VAL(*value));
}
/* Read a 32-bit CSR or SRAM */ /* Read a 32-bit CSR or SRAM */
static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg) unsigned int reg)
......
...@@ -272,11 +272,6 @@ void efx_nic_get_regs(struct efx_nic *efx, void *buf) ...@@ -272,11 +272,6 @@ void efx_nic_get_regs(struct efx_nic *efx, void *buf)
case 4: /* 32-bit SRAM */ case 4: /* 32-bit SRAM */
efx_readd(efx, buf, table->offset + 4 * i); efx_readd(efx, buf, table->offset + 4 * i);
break; break;
case 8: /* 64-bit SRAM */
efx_sram_readq(efx,
efx->membase + table->offset,
buf, i);
break;
case 16: /* 128-bit-readable register */ case 16: /* 128-bit-readable register */
efx_reado_table(efx, buf, table->offset, i); efx_reado_table(efx, buf, table->offset, i);
break; break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment