Commit b5784d42 authored by Gerald Schaefer's avatar Gerald Schaefer Committed by Greg Kroah-Hartman

mm/hugetlb: fix memory offline with hugepage size > memory block size

commit 2247bb33 upstream.

Patch series "mm/hugetlb: memory offline issues with hugepages", v4.

This addresses several issues with hugepages and memory offline.  While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.

The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.

This patch (of 3):

dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.

When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly.  In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().

To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page().  This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely.  Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.

Changes for v4.4 stable:
  - make it apply w/o commit c1470b33 "mm/hugetlb: fix incorrect
    hugepages count during mem hotplug"

Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.comSigned-off-by: default avatarGerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: default avatarMichal Hocko <mhocko@suse.com>
Acked-by: default avatarNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: default avatarGerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 89758797
...@@ -1416,12 +1416,13 @@ static void dissolve_free_huge_page(struct page *page) ...@@ -1416,12 +1416,13 @@ static void dissolve_free_huge_page(struct page *page)
{ {
spin_lock(&hugetlb_lock); spin_lock(&hugetlb_lock);
if (PageHuge(page) && !page_count(page)) { if (PageHuge(page) && !page_count(page)) {
struct hstate *h = page_hstate(page); struct page *head = compound_head(page);
int nid = page_to_nid(page); struct hstate *h = page_hstate(head);
list_del(&page->lru); int nid = page_to_nid(head);
list_del(&head->lru);
h->free_huge_pages--; h->free_huge_pages--;
h->free_huge_pages_node[nid]--; h->free_huge_pages_node[nid]--;
update_and_free_page(h, page); update_and_free_page(h, head);
} }
spin_unlock(&hugetlb_lock); spin_unlock(&hugetlb_lock);
} }
...@@ -1429,7 +1430,8 @@ static void dissolve_free_huge_page(struct page *page) ...@@ -1429,7 +1430,8 @@ static void dissolve_free_huge_page(struct page *page)
/* /*
* Dissolve free hugepages in a given pfn range. Used by memory hotplug to * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
* make specified memory blocks removable from the system. * make specified memory blocks removable from the system.
* Note that start_pfn should aligned with (minimum) hugepage size. * Note that this will dissolve a free gigantic hugepage completely, if any
* part of it lies within the given range.
*/ */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{ {
...@@ -1438,7 +1440,6 @@ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) ...@@ -1438,7 +1440,6 @@ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
if (!hugepages_supported()) if (!hugepages_supported())
return; return;
VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
dissolve_free_huge_page(pfn_to_page(pfn)); dissolve_free_huge_page(pfn_to_page(pfn));
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment