Commit b66db53f authored by Sean Young's avatar Sean Young Committed by Mauro Carvalho Chehab

[media] lirc_serial: port to rc-core

Tested with a homebrew serial ir. Remove last remmants of the nslu2
which could not be enabled, and fix checkpatch warnings.
Signed-off-by: default avatarSean Young <sean@mess.org>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@s-opensource.com>
parent 3f98da96
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
* Copyright (C) 1998 Ben Pfaff <blp@gnu.org> * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
* Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de> * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
* Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support) * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
* Copyright (C) 2016 Sean Young <sean@mess.org> (port to rc-core)
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or * the Free Software Foundation; either version 2 of the License, or
...@@ -18,18 +19,13 @@ ...@@ -18,18 +19,13 @@
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/ */
/* /*
* Steve's changes to improve transmission fidelity: * Steve's changes to improve transmission fidelity:
* - for systems with the rdtsc instruction and the clock counter, a * - for systems with the rdtsc instruction and the clock counter, a
* send_pule that times the pulses directly using the counter. * send_pule that times the pulses directly using the counter.
* This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is * This means that the IR_SERIAL_TRANSMITTER_LATENCY fudge is
* not needed. Measurement shows very stable waveform, even where * not needed. Measurement shows very stable waveform, even where
* PCI activity slows the access to the UART, which trips up other * PCI activity slows the access to the UART, which trips up other
* versions. * versions.
...@@ -52,56 +48,34 @@ ...@@ -52,56 +48,34 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/serial_reg.h> #include <linux/serial_reg.h>
#include <linux/ktime.h>
#include <linux/string.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/poll.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/fcntl.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <media/rc-core.h>
/* From Intel IXP42X Developer's Manual (#252480-005): */ struct serial_ir_hw {
/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
#define UART_IE_IXP42X_UUE 0x40 /* IXP42X UART Unit enable */
#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
#include <media/lirc.h>
#include <media/lirc_dev.h>
#define LIRC_DRIVER_NAME "lirc_serial"
struct lirc_serial {
int signal_pin; int signal_pin;
int signal_pin_change; int signal_pin_change;
u8 on; u8 on;
u8 off; u8 off;
unsigned set_send_carrier:1;
unsigned set_duty_cycle:1;
long (*send_pulse)(unsigned long length); long (*send_pulse)(unsigned long length);
void (*send_space)(long length); void (*send_space)(long length);
int features;
spinlock_t lock; spinlock_t lock;
}; };
#define LIRC_HOMEBREW 0 #define IR_HOMEBREW 0
#define LIRC_IRDEO 1 #define IR_IRDEO 1
#define LIRC_IRDEO_REMOTE 2 #define IR_IRDEO_REMOTE 2
#define LIRC_ANIMAX 3 #define IR_ANIMAX 3
#define LIRC_IGOR 4 #define IR_IGOR 4
#define LIRC_NSLU2 5
/*** module parameters ***/ /* module parameters */
static int type; static int type;
static int io; static int io;
static int irq; static int irq;
...@@ -114,107 +88,89 @@ static bool txsense; /* 0 = active high, 1 = active low */ ...@@ -114,107 +88,89 @@ static bool txsense; /* 0 = active high, 1 = active low */
/* forward declarations */ /* forward declarations */
static long send_pulse_irdeo(unsigned long length); static long send_pulse_irdeo(unsigned long length);
static long send_pulse_homebrew(unsigned long length);
static void send_space_irdeo(long length); static void send_space_irdeo(long length);
#ifdef CONFIG_IR_SERIAL_TRANSMITTER
static long send_pulse_homebrew(unsigned long length);
static void send_space_homebrew(long length); static void send_space_homebrew(long length);
#endif
static struct lirc_serial hardware[] = { static struct serial_ir_hw hardware[] = {
[LIRC_HOMEBREW] = { [IR_HOMEBREW] = {
.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_HOMEBREW].lock), .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_HOMEBREW].lock),
.signal_pin = UART_MSR_DCD, .signal_pin = UART_MSR_DCD,
.signal_pin_change = UART_MSR_DDCD, .signal_pin_change = UART_MSR_DDCD,
.on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR), .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
.off = (UART_MCR_RTS | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_OUT2),
#ifdef CONFIG_IR_SERIAL_TRANSMITTER
.send_pulse = send_pulse_homebrew, .send_pulse = send_pulse_homebrew,
.send_space = send_space_homebrew, .send_space = send_space_homebrew,
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER .set_send_carrier = true,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE | .set_duty_cycle = true,
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
#else
.features = LIRC_CAN_REC_MODE2
#endif #endif
}, },
[LIRC_IRDEO] = { [IR_IRDEO] = {
.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO].lock), .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IRDEO].lock),
.signal_pin = UART_MSR_DSR, .signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR, .signal_pin_change = UART_MSR_DDSR,
.on = UART_MCR_OUT2, .on = UART_MCR_OUT2,
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = send_pulse_irdeo, .send_pulse = send_pulse_irdeo,
.send_space = send_space_irdeo, .send_space = send_space_irdeo,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE | .set_duty_cycle = true,
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
}, },
[LIRC_IRDEO_REMOTE] = { [IR_IRDEO_REMOTE] = {
.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO_REMOTE].lock), .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IRDEO_REMOTE].lock),
.signal_pin = UART_MSR_DSR, .signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR, .signal_pin_change = UART_MSR_DDSR,
.on = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .on = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = send_pulse_irdeo, .send_pulse = send_pulse_irdeo,
.send_space = send_space_irdeo, .send_space = send_space_irdeo,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE | .set_duty_cycle = true,
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
}, },
[LIRC_ANIMAX] = { [IR_ANIMAX] = {
.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_ANIMAX].lock), .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_ANIMAX].lock),
.signal_pin = UART_MSR_DCD, .signal_pin = UART_MSR_DCD,
.signal_pin_change = UART_MSR_DDCD, .signal_pin_change = UART_MSR_DDCD,
.on = 0, .on = 0,
.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
.send_pulse = NULL, .send_pulse = NULL,
.send_space = NULL, .send_space = NULL,
.features = LIRC_CAN_REC_MODE2
}, },
[LIRC_IGOR] = { [IR_IGOR] = {
.lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IGOR].lock), .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IGOR].lock),
.signal_pin = UART_MSR_DSR, .signal_pin = UART_MSR_DSR,
.signal_pin_change = UART_MSR_DDSR, .signal_pin_change = UART_MSR_DDSR,
.on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR), .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
.off = (UART_MCR_RTS | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_OUT2),
#ifdef CONFIG_IR_SERIAL_TRANSMITTER
.send_pulse = send_pulse_homebrew, .send_pulse = send_pulse_homebrew,
.send_space = send_space_homebrew, .send_space = send_space_homebrew,
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER .set_send_carrier = true,
.features = (LIRC_CAN_SET_SEND_DUTY_CYCLE | .set_duty_cycle = true,
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
#else
.features = LIRC_CAN_REC_MODE2
#endif #endif
}, },
}; };
#define RS_ISR_PASS_LIMIT 256 #define RS_ISR_PASS_LIMIT 256
/* struct serial_ir {
* A long pulse code from a remote might take up to 300 bytes. The ktime_t lastkt;
* daemon should read the bytes as soon as they are generated, so take struct rc_dev *rcdev;
* the number of keys you think you can push before the daemon runs struct platform_device *pdev;
* and multiply by 300. The driver will warn you if you overrun this
* buffer. If you have a slow computer or non-busmastering IDE disks,
* maybe you will need to increase this.
*/
/* This MUST be a power of two! It has to be larger than 1 as well. */
#define RBUF_LEN 256
static ktime_t lastkt; unsigned int freq;
unsigned int duty_cycle;
static struct lirc_buffer rbuf; unsigned long period;
unsigned long pulse_width, space_width;
static unsigned int freq = 38000; };
static unsigned int duty_cycle = 50;
/* Initialized in init_timing_params() */ static struct serial_ir serial_ir;
static unsigned long period;
static unsigned long pulse_width;
static unsigned long space_width;
#if defined(__i386__) #if defined(__i386__)
/* /*
...@@ -241,18 +197,18 @@ static unsigned long space_width; ...@@ -241,18 +197,18 @@ static unsigned long space_width;
* changed from 400 to 450 as this works better on slower machines; * changed from 400 to 450 as this works better on slower machines;
* faster machines will use the rdtsc code anyway * faster machines will use the rdtsc code anyway
*/ */
#define LIRC_SERIAL_TRANSMITTER_LATENCY 450 #define IR_SERIAL_TRANSMITTER_LATENCY 450
#else #else
/* does anybody have information on other platforms ? */ /* does anybody have information on other platforms ? */
/* 256 = 1<<8 */ /* 256 = 1<<8 */
#define LIRC_SERIAL_TRANSMITTER_LATENCY 256 #define IR_SERIAL_TRANSMITTER_LATENCY 256
#endif /* __i386__ */ #endif /* __i386__ */
/* /*
* FIXME: should we be using hrtimers instead of this * FIXME: should we be using hrtimers instead of this
* LIRC_SERIAL_TRANSMITTER_LATENCY nonsense? * IR_SERIAL_TRANSMITTER_LATENCY nonsense?
*/ */
/* fetch serial input packet (1 byte) from register offset */ /* fetch serial input packet (1 byte) from register offset */
...@@ -324,8 +280,8 @@ static int init_timing_params(unsigned int new_duty_cycle, ...@@ -324,8 +280,8 @@ static int init_timing_params(unsigned int new_duty_cycle,
{ {
__u64 loops_per_sec, work; __u64 loops_per_sec, work;
duty_cycle = new_duty_cycle; serial_ir.duty_cycle = new_duty_cycle;
freq = new_freq; serial_ir.freq = new_freq;
loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy); loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
loops_per_sec *= HZ; loops_per_sec *= HZ;
...@@ -338,12 +294,12 @@ static int init_timing_params(unsigned int new_duty_cycle, ...@@ -338,12 +294,12 @@ static int init_timing_params(unsigned int new_duty_cycle,
* Carrier period in clocks, approach good up to 32GHz clock, * Carrier period in clocks, approach good up to 32GHz clock,
* gets carrier frequency within 8Hz * gets carrier frequency within 8Hz
*/ */
period = loops_per_sec >> 3; serial_ir.period = loops_per_sec >> 3;
period /= (freq >> 3); serial_ir.pperiod /= (freq >> 3);
/* Derive pulse and space from the period */ /* Derive pulse and space from the period */
pulse_width = period * duty_cycle / 100; serial_ir.ppulse_width = serial_ir.period * serial.ir.duty_cycle / 100;
space_width = period - pulse_width; serial_ir.pspace_width = serial_ir.period - serial_ir.pulse_width;
pr_debug("in init_timing_params, freq=%d, duty_cycle=%d, clk/jiffy=%ld, pulse=%ld, space=%ld, conv_us_to_clocks=%ld\n", pr_debug("in init_timing_params, freq=%d, duty_cycle=%d, clk/jiffy=%ld, pulse=%ld, space=%ld, conv_us_to_clocks=%ld\n",
freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy), freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
pulse_width, space_width, conv_us_to_clocks); pulse_width, space_width, conv_us_to_clocks);
...@@ -358,18 +314,19 @@ static int init_timing_params(unsigned int new_duty_cycle, ...@@ -358,18 +314,19 @@ static int init_timing_params(unsigned int new_duty_cycle,
* IE multiplied by 256. * IE multiplied by 256.
*/ */
if (256 * 1000000L / new_freq * new_duty_cycle / 100 <= if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
LIRC_SERIAL_TRANSMITTER_LATENCY) IR_SERIAL_TRANSMITTER_LATENCY)
return -EINVAL; return -EINVAL;
if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <= if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
LIRC_SERIAL_TRANSMITTER_LATENCY) IR_SERIAL_TRANSMITTER_LATENCY)
return -EINVAL; return -EINVAL;
duty_cycle = new_duty_cycle; serial_ir.duty_cycle = new_duty_cycle;
freq = new_freq; serial_ir.freq = new_freq;
period = 256 * 1000000L / freq; serial_ir.period = 256 * 1000000L / serial_ir.freq;
pulse_width = period * duty_cycle / 100; serial_ir.pulse_width = serial_ir.period * serial_ir.duty_cycle / 100;
space_width = period - pulse_width; serial_ir.space_width = serial_ir.period - serial_ir.pulse_width;
pr_debug("in init_timing_params, freq=%d pulse=%ld, space=%ld\n", pr_debug("in init_timing_params, freq=%d pulse=%ld, space=%ld\n",
freq, pulse_width, space_width); serial_ir.freq, serial_ir.pulse_width,
serial_ir.space_width);
return 0; return 0;
} }
#endif /* USE_RDTSC */ #endif /* USE_RDTSC */
...@@ -386,7 +343,7 @@ static long send_pulse_irdeo(unsigned long length) ...@@ -386,7 +343,7 @@ static long send_pulse_irdeo(unsigned long length)
/* how many bits have to be sent ? */ /* how many bits have to be sent ? */
rawbits = length * 1152 / 10000; rawbits = length * 1152 / 10000;
if (duty_cycle > 50) if (serial_ir.duty_cycle > 50)
chunk = 3; chunk = 3;
else else
chunk = 1; chunk = 1;
...@@ -429,6 +386,15 @@ static long send_pulse_irdeo(unsigned long length) ...@@ -429,6 +386,15 @@ static long send_pulse_irdeo(unsigned long length)
/* To match 8 fractional bits used for pulse/space length */ /* To match 8 fractional bits used for pulse/space length */
static void send_space_irdeo(long length)
{
if (length <= 0)
return;
safe_udelay(length);
}
#ifdef CONFIG_IR_SERIAL_TRANSMITTER
static long send_pulse_homebrew_softcarrier(unsigned long length) static long send_pulse_homebrew_softcarrier(unsigned long length)
{ {
int flag; int flag;
...@@ -440,19 +406,19 @@ static long send_pulse_homebrew_softcarrier(unsigned long length) ...@@ -440,19 +406,19 @@ static long send_pulse_homebrew_softcarrier(unsigned long length)
while (actual < length) { while (actual < length) {
if (flag) { if (flag) {
off(); off();
target += space_width; target += serial_ir.space_width;
} else { } else {
on(); on();
target += pulse_width; target += serial_ir.pulse_width;
} }
d = (target - actual - d = (target - actual -
LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8; IR_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
/* /*
* Note - we've checked in ioctl that the pulse/space * Note - we've checked in ioctl that the pulse/space
* widths are big enough so that d is > 0 * widths are big enough so that d is > 0
*/ */
udelay(d); udelay(d);
actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY; actual += (d << 8) + IR_SERIAL_TRANSMITTER_LATENCY;
flag = !flag; flag = !flag;
} }
return (actual-length) >> 8; return (actual-length) >> 8;
...@@ -471,14 +437,6 @@ static long send_pulse_homebrew(unsigned long length) ...@@ -471,14 +437,6 @@ static long send_pulse_homebrew(unsigned long length)
return 0; return 0;
} }
static void send_space_irdeo(long length)
{
if (length <= 0)
return;
safe_udelay(length);
}
static void send_space_homebrew(long length) static void send_space_homebrew(long length)
{ {
off(); off();
...@@ -486,67 +444,70 @@ static void send_space_homebrew(long length) ...@@ -486,67 +444,70 @@ static void send_space_homebrew(long length)
return; return;
safe_udelay(length); safe_udelay(length);
} }
#endif
static void rbwrite(int l) static void frbwrite(unsigned int l, bool is_pulse)
{
if (lirc_buffer_full(&rbuf)) {
/* no new signals will be accepted */
pr_debug("Buffer overrun\n");
return;
}
lirc_buffer_write(&rbuf, (void *)&l);
}
static void frbwrite(int l)
{ {
/* simple noise filter */ /* simple noise filter */
static int pulse, space; static unsigned int ptr, pulse, space;
static unsigned int ptr; DEFINE_IR_RAW_EVENT(ev);
if (ptr > 0 && (l & PULSE_BIT)) { if (ptr > 0 && is_pulse) {
pulse += l & PULSE_MASK; pulse += l;
if (pulse > 250) { if (pulse > 250000) {
rbwrite(space); ev.duration = space;
rbwrite(pulse | PULSE_BIT); ev.pulse = false;
ir_raw_event_store_with_filter(serial_ir.rcdev, &ev);
ev.duration = pulse;
ev.pulse = true;
ir_raw_event_store_with_filter(serial_ir.rcdev, &ev);
ptr = 0; ptr = 0;
pulse = 0; pulse = 0;
} }
return; return;
} }
if (!(l & PULSE_BIT)) { if (!is_pulse) {
if (ptr == 0) { if (ptr == 0) {
if (l > 20000) { if (l > 20000000) {
space = l; space = l;
ptr++; ptr++;
return; return;
} }
} else { } else {
if (l > 20000) { if (l > 20000000) {
space += pulse; space += pulse;
if (space > PULSE_MASK) if (space > IR_MAX_DURATION)
space = PULSE_MASK; space = IR_MAX_DURATION;
space += l; space += l;
if (space > PULSE_MASK) if (space > IR_MAX_DURATION)
space = PULSE_MASK; space = IR_MAX_DURATION;
pulse = 0; pulse = 0;
return; return;
} }
rbwrite(space);
rbwrite(pulse | PULSE_BIT); ev.duration = space;
ev.pulse = false;
ir_raw_event_store_with_filter(serial_ir.rcdev, &ev);
ev.duration = pulse;
ev.pulse = true;
ir_raw_event_store_with_filter(serial_ir.rcdev, &ev);
ptr = 0; ptr = 0;
pulse = 0; pulse = 0;
} }
} }
rbwrite(l);
ev.duration = l;
ev.pulse = is_pulse;
ir_raw_event_store_with_filter(serial_ir.rcdev, &ev);
} }
static irqreturn_t lirc_irq_handler(int i, void *blah) static irqreturn_t serial_ir_irq_handler(int i, void *blah)
{ {
ktime_t kt; ktime_t kt;
int counter, dcd; int counter, dcd;
u8 status; u8 status;
ktime_t delkt; ktime_t delkt;
int data; unsigned int data;
static int last_dcd = -1; static int last_dcd = -1;
if ((sinp(UART_IIR) & UART_IIR_NO_INT)) { if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
...@@ -559,7 +520,7 @@ static irqreturn_t lirc_irq_handler(int i, void *blah) ...@@ -559,7 +520,7 @@ static irqreturn_t lirc_irq_handler(int i, void *blah)
counter++; counter++;
status = sinp(UART_MSR); status = sinp(UART_MSR);
if (counter > RS_ISR_PASS_LIMIT) { if (counter > RS_ISR_PASS_LIMIT) {
pr_warn("AIEEEE: We're caught!\n"); dev_err(&serial_ir.pdev->dev, "Trapped in interrupt");
break; break;
} }
if ((status & hardware[type].signal_pin_change) if ((status & hardware[type].signal_pin_change)
...@@ -567,47 +528,32 @@ static irqreturn_t lirc_irq_handler(int i, void *blah) ...@@ -567,47 +528,32 @@ static irqreturn_t lirc_irq_handler(int i, void *blah)
/* get current time */ /* get current time */
kt = ktime_get(); kt = ktime_get();
/* New mode, written by Trent Piepho
<xyzzy@u.washington.edu>. */
/* /*
* The old format was not very portable. * The driver needs to know if your receiver is
* We now use an int to pass pulses * active high or active low, or the space/pulse
* and spaces to user space. * sense could be inverted.
*
* If PULSE_BIT is set a pulse has been
* received, otherwise a space has been
* received. The driver needs to know if your
* receiver is active high or active low, or
* the space/pulse sense could be
* inverted. The bits denoted by PULSE_MASK are
* the length in microseconds. Lengths greater
* than or equal to 16 seconds are clamped to
* PULSE_MASK. All other bits are unused.
* This is a much simpler interface for user
* programs, as well as eliminating "out of
* phase" errors with space/pulse
* autodetection.
*/ */
/* calc time since last interrupt in microseconds */ /* calc time since last interrupt in nanoseconds */
dcd = (status & hardware[type].signal_pin) ? 1 : 0; dcd = (status & hardware[type].signal_pin) ? 1 : 0;
if (dcd == last_dcd) { if (dcd == last_dcd) {
pr_warn("ignoring spike: %d %d %llx %llx\n", dev_err(&serial_ir.pdev->dev,
dcd, sense, ktime_to_us(kt), "ignoring spike: %d %d %lldns %lldns\n",
ktime_to_us(lastkt)); dcd, sense, ktime_to_ns(kt),
ktime_to_ns(serial_ir.lastkt));
continue; continue;
} }
delkt = ktime_sub(kt, lastkt); delkt = ktime_sub(kt, serial_ir.lastkt);
if (ktime_compare(delkt, ktime_set(15, 0)) > 0) { if (ktime_compare(delkt, ktime_set(15, 0)) > 0) {
data = PULSE_MASK; /* really long time */ data = IR_MAX_DURATION; /* really long time */
if (!(dcd^sense)) { if (!(dcd^sense)) {
/* sanity check */ /* sanity check */
pr_warn("AIEEEE: %d %d %llx %llx\n", dev_err(&serial_ir.pdev->dev,
dcd, sense, ktime_to_us(kt), "dcd unexpected: %d %d %lldns %lldns\n",
ktime_to_us(lastkt)); dcd, sense, ktime_to_ns(kt),
ktime_to_ns(serial_ir.lastkt));
/* /*
* detecting pulse while this * detecting pulse while this
* MUST be a space! * MUST be a space!
...@@ -615,11 +561,11 @@ static irqreturn_t lirc_irq_handler(int i, void *blah) ...@@ -615,11 +561,11 @@ static irqreturn_t lirc_irq_handler(int i, void *blah)
sense = sense ? 0 : 1; sense = sense ? 0 : 1;
} }
} else } else
data = (int) ktime_to_us(delkt); data = ktime_to_ns(delkt);
frbwrite(dcd^sense ? data : (data|PULSE_BIT)); frbwrite(data, !(dcd ^ sense));
lastkt = kt; serial_ir.lastkt = kt;
last_dcd = dcd; last_dcd = dcd;
wake_up_interruptible(&rbuf.wait_poll); ir_raw_event_handle(serial_ir.rcdev);
} }
} while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */ } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
return IRQ_HANDLED; return IRQ_HANDLED;
...@@ -652,8 +598,6 @@ static int hardware_init_port(void) ...@@ -652,8 +598,6 @@ static int hardware_init_port(void)
return -ENODEV; return -ENODEV;
} }
/* Set DLAB 0. */ /* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
...@@ -677,8 +621,8 @@ static int hardware_init_port(void) ...@@ -677,8 +621,8 @@ static int hardware_init_port(void)
sinp(UART_MSR); sinp(UART_MSR);
switch (type) { switch (type) {
case LIRC_IRDEO: case IR_IRDEO:
case LIRC_IRDEO_REMOTE: case IR_IRDEO_REMOTE:
/* setup port to 7N1 @ 115200 Baud */ /* setup port to 7N1 @ 115200 Baud */
/* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */ /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
...@@ -698,13 +642,13 @@ static int hardware_init_port(void) ...@@ -698,13 +642,13 @@ static int hardware_init_port(void)
return 0; return 0;
} }
static int lirc_serial_probe(struct platform_device *dev) static int serial_ir_probe(struct platform_device *dev)
{ {
int i, nlow, nhigh, result; int i, nlow, nhigh, result;
result = devm_request_irq(&dev->dev, irq, lirc_irq_handler, result = devm_request_irq(&dev->dev, irq, serial_ir_irq_handler,
(share_irq ? IRQF_SHARED : 0), share_irq ? IRQF_SHARED : 0,
LIRC_DRIVER_NAME, &hardware); KBUILD_MODNAME, &hardware);
if (result < 0) { if (result < 0) {
if (result == -EBUSY) if (result == -EBUSY)
dev_err(&dev->dev, "IRQ %d busy\n", irq); dev_err(&dev->dev, "IRQ %d busy\n", irq);
...@@ -714,17 +658,12 @@ static int lirc_serial_probe(struct platform_device *dev) ...@@ -714,17 +658,12 @@ static int lirc_serial_probe(struct platform_device *dev)
} }
/* Reserve io region. */ /* Reserve io region. */
/*
* Future MMAP-Developers: Attention!
* For memory mapped I/O you *might* need to use ioremap() first,
* for the NSLU2 it's done in boot code.
*/
if (((iommap) if (((iommap)
&& (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift, && (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift,
LIRC_DRIVER_NAME) == NULL)) KBUILD_MODNAME) == NULL))
|| ((!iommap) || ((!iommap)
&& (devm_request_region(&dev->dev, io, 8, && (devm_request_region(&dev->dev, io, 8,
LIRC_DRIVER_NAME) == NULL))) { KBUILD_MODNAME) == NULL))) {
dev_err(&dev->dev, "port %04x already in use\n", io); dev_err(&dev->dev, "port %04x already in use\n", io);
dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n"); dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n");
dev_warn(&dev->dev, dev_warn(&dev->dev,
...@@ -738,7 +677,7 @@ static int lirc_serial_probe(struct platform_device *dev) ...@@ -738,7 +677,7 @@ static int lirc_serial_probe(struct platform_device *dev)
return result; return result;
/* Initialize pulse/space widths */ /* Initialize pulse/space widths */
init_timing_params(duty_cycle, freq); init_timing_params(50, 38000);
/* If pin is high, then this must be an active low receiver. */ /* If pin is high, then this must be an active low receiver. */
if (sense == -1) { if (sense == -1) {
...@@ -769,12 +708,12 @@ static int lirc_serial_probe(struct platform_device *dev) ...@@ -769,12 +708,12 @@ static int lirc_serial_probe(struct platform_device *dev)
return 0; return 0;
} }
static int set_use_inc(void *data) static int serial_ir_open(struct rc_dev *rcdev)
{ {
unsigned long flags; unsigned long flags;
/* initialize timestamp */ /* initialize timestamp */
lastkt = ktime_get(); serial_ir.lastkt = ktime_get();
spin_lock_irqsave(&hardware[type].lock, flags); spin_lock_irqsave(&hardware[type].lock, flags);
...@@ -788,8 +727,9 @@ static int set_use_inc(void *data) ...@@ -788,8 +727,9 @@ static int set_use_inc(void *data)
return 0; return 0;
} }
static void set_use_dec(void *data) static void serial_ir_close(struct rc_dev *rcdev)
{ unsigned long flags; {
unsigned long flags;
spin_lock_irqsave(&hardware[type].lock, flags); spin_lock_irqsave(&hardware[type].lock, flags);
...@@ -802,136 +742,44 @@ static void set_use_dec(void *data) ...@@ -802,136 +742,44 @@ static void set_use_dec(void *data)
spin_unlock_irqrestore(&hardware[type].lock, flags); spin_unlock_irqrestore(&hardware[type].lock, flags);
} }
static ssize_t lirc_write(struct file *file, const char __user *buf, static int serial_ir_tx(struct rc_dev *dev, unsigned int *txbuf,
size_t n, loff_t *ppos) unsigned int count)
{ {
int i, count;
unsigned long flags; unsigned long flags;
long delta = 0; long delta = 0;
int *wbuf; int i;
if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
return -EPERM;
count = n / sizeof(int);
if (n % sizeof(int) || count % 2 == 0)
return -EINVAL;
wbuf = memdup_user(buf, n);
if (IS_ERR(wbuf))
return PTR_ERR(wbuf);
spin_lock_irqsave(&hardware[type].lock, flags); spin_lock_irqsave(&hardware[type].lock, flags);
if (type == LIRC_IRDEO) { if (type == IR_IRDEO) {
/* DTR, RTS down */ /* DTR, RTS down */
on(); on();
} }
for (i = 0; i < count; i++) { for (i = 0; i < count; i++) {
if (i%2) if (i%2)
hardware[type].send_space(wbuf[i] - delta); hardware[type].send_space(txbuf[i] - delta);
else else
delta = hardware[type].send_pulse(wbuf[i]); delta = hardware[type].send_pulse(txbuf[i]);
} }
off(); off();
spin_unlock_irqrestore(&hardware[type].lock, flags); spin_unlock_irqrestore(&hardware[type].lock, flags);
kfree(wbuf); return count;
return n;
} }
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) static int serial_ir_tx_duty_cycle(struct rc_dev *dev, u32 cycle)
{ {
int result; return init_timing_params(cycle, serial_ir.freq);
u32 __user *uptr = (u32 __user *)arg;
u32 value;
switch (cmd) {
case LIRC_GET_SEND_MODE:
if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
return -ENOIOCTLCMD;
result = put_user(LIRC_SEND2MODE
(hardware[type].features&LIRC_CAN_SEND_MASK),
uptr);
if (result)
return result;
break;
case LIRC_SET_SEND_MODE:
if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
return -ENOIOCTLCMD;
result = get_user(value, uptr);
if (result)
return result;
/* only LIRC_MODE_PULSE supported */
if (value != LIRC_MODE_PULSE)
return -EINVAL;
break;
case LIRC_GET_LENGTH:
return -ENOIOCTLCMD;
case LIRC_SET_SEND_DUTY_CYCLE:
pr_debug("SET_SEND_DUTY_CYCLE\n");
if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
return -ENOIOCTLCMD;
result = get_user(value, uptr);
if (result)
return result;
if (value <= 0 || value > 100)
return -EINVAL;
return init_timing_params(value, freq);
case LIRC_SET_SEND_CARRIER:
pr_debug("SET_SEND_CARRIER\n");
if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
return -ENOIOCTLCMD;
result = get_user(value, uptr);
if (result)
return result;
if (value > 500000 || value < 20000)
return -EINVAL;
return init_timing_params(duty_cycle, value);
default:
return lirc_dev_fop_ioctl(filep, cmd, arg);
}
return 0;
} }
static const struct file_operations lirc_fops = { static int serial_ir_tx_carrier(struct rc_dev *dev, u32 carrier)
.owner = THIS_MODULE, {
.write = lirc_write, if (carrier > 500000 || carrier < 20000)
.unlocked_ioctl = lirc_ioctl, return -EINVAL;
#ifdef CONFIG_COMPAT
.compat_ioctl = lirc_ioctl,
#endif
.read = lirc_dev_fop_read,
.poll = lirc_dev_fop_poll,
.open = lirc_dev_fop_open,
.release = lirc_dev_fop_close,
.llseek = no_llseek,
};
static struct lirc_driver driver = {
.name = LIRC_DRIVER_NAME,
.minor = -1,
.code_length = 1,
.sample_rate = 0,
.data = NULL,
.add_to_buf = NULL,
.rbuf = &rbuf,
.set_use_inc = set_use_inc,
.set_use_dec = set_use_dec,
.fops = &lirc_fops,
.dev = NULL,
.owner = THIS_MODULE,
};
static struct platform_device *lirc_serial_dev; return init_timing_params(serial_ir.duty_cycle, carrier);
}
static int lirc_serial_suspend(struct platform_device *dev, static int serial_ir_suspend(struct platform_device *dev,
pm_message_t state) pm_message_t state)
{ {
/* Set DLAB 0. */ /* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
...@@ -949,10 +797,7 @@ static int lirc_serial_suspend(struct platform_device *dev, ...@@ -949,10 +797,7 @@ static int lirc_serial_suspend(struct platform_device *dev,
return 0; return 0;
} }
/* twisty maze... need a forward-declaration here... */ static int serial_ir_resume(struct platform_device *dev)
static void lirc_serial_exit(void);
static int lirc_serial_resume(struct platform_device *dev)
{ {
unsigned long flags; unsigned long flags;
int result; int result;
...@@ -963,79 +808,68 @@ static int lirc_serial_resume(struct platform_device *dev) ...@@ -963,79 +808,68 @@ static int lirc_serial_resume(struct platform_device *dev)
spin_lock_irqsave(&hardware[type].lock, flags); spin_lock_irqsave(&hardware[type].lock, flags);
/* Enable Interrupt */ /* Enable Interrupt */
lastkt = ktime_get(); serial_ir.lastkt = ktime_get();
soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI); soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
off(); off();
lirc_buffer_clear(&rbuf);
spin_unlock_irqrestore(&hardware[type].lock, flags); spin_unlock_irqrestore(&hardware[type].lock, flags);
return 0; return 0;
} }
static struct platform_driver lirc_serial_driver = { static struct platform_driver serial_ir_driver = {
.probe = lirc_serial_probe, .probe = serial_ir_probe,
.suspend = lirc_serial_suspend, .suspend = serial_ir_suspend,
.resume = lirc_serial_resume, .resume = serial_ir_resume,
.driver = { .driver = {
.name = "lirc_serial", .name = "serial_ir",
}, },
}; };
static int __init lirc_serial_init(void) static int __init serial_ir_init(void)
{ {
int result; int result;
/* Init read buffer. */ result = platform_driver_register(&serial_ir_driver);
result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN); if (result)
if (result < 0)
return result; return result;
result = platform_driver_register(&lirc_serial_driver); serial_ir.pdev = platform_device_alloc("serial_ir", 0);
if (result) { if (!serial_ir.pdev) {
printk("lirc register returned %d\n", result);
goto exit_buffer_free;
}
lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
if (!lirc_serial_dev) {
result = -ENOMEM; result = -ENOMEM;
goto exit_driver_unregister; goto exit_driver_unregister;
} }
result = platform_device_add(lirc_serial_dev); result = platform_device_add(serial_ir.pdev);
if (result) if (result)
goto exit_device_put; goto exit_device_put;
return 0; return 0;
exit_device_put: exit_device_put:
platform_device_put(lirc_serial_dev); platform_device_put(serial_ir.pdev);
exit_driver_unregister: exit_driver_unregister:
platform_driver_unregister(&lirc_serial_driver); platform_driver_unregister(&serial_ir_driver);
exit_buffer_free:
lirc_buffer_free(&rbuf);
return result; return result;
} }
static void lirc_serial_exit(void) static void serial_ir_exit(void)
{ {
platform_device_unregister(lirc_serial_dev); platform_device_unregister(serial_ir.pdev);
platform_driver_unregister(&lirc_serial_driver); platform_driver_unregister(&serial_ir_driver);
lirc_buffer_free(&rbuf);
} }
static int __init lirc_serial_init_module(void) static int __init serial_ir_init_module(void)
{ {
struct rc_dev *rcdev;
int result; int result;
switch (type) { switch (type) {
case LIRC_HOMEBREW: case IR_HOMEBREW:
case LIRC_IRDEO: case IR_IRDEO:
case LIRC_IRDEO_REMOTE: case IR_IRDEO_REMOTE:
case LIRC_ANIMAX: case IR_ANIMAX:
case LIRC_IGOR: case IR_IGOR:
/* if nothing specified, use ttyS0/com1 and irq 4 */ /* if nothing specified, use ttyS0/com1 and irq 4 */
io = io ? io : 0x3f8; io = io ? io : 0x3f8;
irq = irq ? irq : 4; irq = irq ? irq : 4;
...@@ -1045,11 +879,10 @@ static int __init lirc_serial_init_module(void) ...@@ -1045,11 +879,10 @@ static int __init lirc_serial_init_module(void)
} }
if (!softcarrier) { if (!softcarrier) {
switch (type) { switch (type) {
case LIRC_HOMEBREW: case IR_HOMEBREW:
case LIRC_IGOR: case IR_IGOR:
hardware[type].features &= hardware[type].set_send_carrier = false;
~(LIRC_CAN_SET_SEND_DUTY_CYCLE| hardware[type].set_duty_cycle = false;
LIRC_CAN_SET_SEND_CARRIER);
break; break;
} }
} }
...@@ -1058,73 +891,111 @@ static int __init lirc_serial_init_module(void) ...@@ -1058,73 +891,111 @@ static int __init lirc_serial_init_module(void)
if (sense != -1) if (sense != -1)
sense = !!sense; sense = !!sense;
result = lirc_serial_init(); result = serial_ir_init();
if (result) if (result)
return result; return result;
driver.features = hardware[type].features; rcdev = devm_rc_allocate_device(&serial_ir.pdev->dev);
driver.dev = &lirc_serial_dev->dev; if (!rcdev) {
driver.minor = lirc_register_driver(&driver); result = -ENOMEM;
if (driver.minor < 0) { goto serial_cleanup;
pr_err("register_chrdev failed!\n");
lirc_serial_exit();
return driver.minor;
} }
return 0;
if (hardware[type].send_pulse && hardware[type].send_space)
rcdev->tx_ir = serial_ir_tx;
if (hardware[type].set_send_carrier)
rcdev->s_tx_carrier = serial_ir_tx_carrier;
if (hardware[type].set_duty_cycle)
rcdev->s_tx_duty_cycle = serial_ir_tx_duty_cycle;
switch (type) {
case IR_HOMEBREW:
rcdev->input_name = "Serial IR type home-brew";
break;
case IR_IRDEO:
rcdev->input_name = "Serial IR type IRdeo";
break;
case IR_IRDEO_REMOTE:
rcdev->input_name = "Serial IR type IRdeo remote";
break;
case IR_ANIMAX:
rcdev->input_name = "Serial IR type AnimaX";
break;
case IR_IGOR:
rcdev->input_name = "Serial IR type IgorPlug";
break;
}
rcdev->input_phys = KBUILD_MODNAME "/input0";
rcdev->input_id.bustype = BUS_HOST;
rcdev->input_id.vendor = 0x0001;
rcdev->input_id.product = 0x0001;
rcdev->input_id.version = 0x0100;
rcdev->open = serial_ir_open;
rcdev->close = serial_ir_close;
rcdev->dev.parent = &serial_ir.pdev->dev;
rcdev->driver_type = RC_DRIVER_IR_RAW;
rcdev->allowed_protocols = RC_BIT_ALL;
rcdev->driver_name = KBUILD_MODNAME;
rcdev->map_name = RC_MAP_RC6_MCE;
rcdev->timeout = IR_DEFAULT_TIMEOUT;
rcdev->rx_resolution = 250000;
serial_ir.rcdev = rcdev;
result = rc_register_device(rcdev);
if (!result)
return 0;
serial_cleanup:
serial_ir_exit();
return result;
} }
static void __exit lirc_serial_exit_module(void) static void __exit serial_ir_exit_module(void)
{ {
lirc_unregister_driver(driver.minor); rc_unregister_device(serial_ir.rcdev);
lirc_serial_exit(); serial_ir_exit();
pr_debug("cleaned up module\n");
} }
module_init(serial_ir_init_module);
module_init(lirc_serial_init_module); module_exit(serial_ir_exit_module);
module_exit(lirc_serial_exit_module);
MODULE_DESCRIPTION("Infra-red receiver driver for serial ports."); MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, " MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, Christoph Bartelmus, Andrei Tanas");
"Christoph Bartelmus, Andrei Tanas");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
module_param(type, int, S_IRUGO); module_param(type, int, 0444);
MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo," MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo, 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug");
" 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
" 5 = NSLU2 RX:CTS2/TX:GreenLED)");
module_param(io, int, S_IRUGO); module_param(io, int, 0444);
MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)"); MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
/* some architectures (e.g. intel xscale) have memory mapped registers */ /* some architectures (e.g. intel xscale) have memory mapped registers */
module_param(iommap, bool, S_IRUGO); module_param(iommap, bool, 0444);
MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O" MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O (0 = no memory mapped io)");
" (0 = no memory mapped io)");
/* /*
* some architectures (e.g. intel xscale) align the 8bit serial registers * some architectures (e.g. intel xscale) align the 8bit serial registers
* on 32bit word boundaries. * on 32bit word boundaries.
* See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out() * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out()
*/ */
module_param(ioshift, int, S_IRUGO); module_param(ioshift, int, 0444);
MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)"); MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
module_param(irq, int, S_IRUGO); module_param(irq, int, 0444);
MODULE_PARM_DESC(irq, "Interrupt (4 or 3)"); MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
module_param(share_irq, bool, S_IRUGO); module_param(share_irq, bool, 0444);
MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)"); MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
module_param(sense, int, S_IRUGO); module_param(sense, int, 0444);
MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit" MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit (0 = active high, 1 = active low )");
" (0 = active high, 1 = active low )");
#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER #ifdef CONFIG_IR_SERIAL_TRANSMITTER
module_param(txsense, bool, S_IRUGO); module_param(txsense, bool, 0444);
MODULE_PARM_DESC(txsense, "Sense of transmitter circuit" MODULE_PARM_DESC(txsense, "Sense of transmitter circuit (0 = active high, 1 = active low )");
" (0 = active high, 1 = active low )");
#endif #endif
module_param(softcarrier, bool, S_IRUGO); module_param(softcarrier, bool, 0444);
MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)"); MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment