Commit b770ea52 authored by Arnd Bergmann's avatar Arnd Bergmann

Merge tag 'omap-for-v3.8/gpmc-signed' of...

Merge tag 'omap-for-v3.8/gpmc-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap into next/drivers

From Tony Lindgren <tony@atomide.com>:

omap GPMC (General Purpose Memory Controller) updates via Afzal Mohammed <afzal@ti.com>:

These changes provide a generic gpmc timing calculation method,
migrates existing peripherals that makes use of custom gpmc timing
calculation method to use the new generic one.

The generic timing routine has been tested with onenand, smsc911x,
and tusb6010 devices connected to GPMC in addition to simulating
other devices support in the mainline kernel.

* tag 'omap-for-v3.8/gpmc-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap:
  ARM: OMAP2+: tusb6010: generic timing calculation
  ARM: OMAP2+: smc91x: generic timing calculation
  ARM: OMAP2+: onenand: generic timing calculation
  ARM: OMAP2+: gpmc: generic timing calculation
  ARM: OMAP2+: gpmc: handle additional timings
  ARM: OMAP2+: nand: remove redundant rounding
Signed-off-by: default avatarArnd Bergmann <arnd@arndb.de>
parents cf1fb2df 86983087
GPMC (General Purpose Memory Controller):
=========================================
GPMC is an unified memory controller dedicated to interfacing external
memory devices like
* Asynchronous SRAM like memories and application specific integrated
circuit devices.
* Asynchronous, synchronous, and page mode burst NOR flash devices
NAND flash
* Pseudo-SRAM devices
GPMC is found on Texas Instruments SoC's (OMAP based)
IP details: http://www.ti.com/lit/pdf/spruh73 section 7.1
GPMC generic timing calculation:
================================
GPMC has certain timings that has to be programmed for proper
functioning of the peripheral, while peripheral has another set of
timings. To have peripheral work with gpmc, peripheral timings has to
be translated to the form gpmc can understand. The way it has to be
translated depends on the connected peripheral. Also there is a
dependency for certain gpmc timings on gpmc clock frequency. Hence a
generic timing routine was developed to achieve above requirements.
Generic routine provides a generic method to calculate gpmc timings
from gpmc peripheral timings. struct gpmc_device_timings fields has to
be updated with timings from the datasheet of the peripheral that is
connected to gpmc. A few of the peripheral timings can be fed either
in time or in cycles, provision to handle this scenario has been
provided (refer struct gpmc_device_timings definition). It may so
happen that timing as specified by peripheral datasheet is not present
in timing structure, in this scenario, try to correlate peripheral
timing to the one available. If that doesn't work, try to add a new
field as required by peripheral, educate generic timing routine to
handle it, make sure that it does not break any of the existing.
Then there may be cases where peripheral datasheet doesn't mention
certain fields of struct gpmc_device_timings, zero those entries.
Generic timing routine has been verified to work properly on
multiple onenand's and tusb6010 peripherals.
A word of caution: generic timing routine has been developed based
on understanding of gpmc timings, peripheral timings, available
custom timing routines, a kind of reverse engineering without
most of the datasheets & hardware (to be exact none of those supported
in mainline having custom timing routine) and by simulation.
gpmc timing dependency on peripheral timings:
[<gpmc_timing>: <peripheral timing1>, <peripheral timing2> ...]
1. common
cs_on: t_ceasu
adv_on: t_avdasu, t_ceavd
2. sync common
sync_clk: clk
page_burst_access: t_bacc
clk_activation: t_ces, t_avds
3. read async muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu, t_aavdh
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oez
4. read async non-muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oez
5. read sync muxed
adv_rd_off: t_avdp_r, t_avdh
oe_on: t_oeasu, t_ach, cyc_aavdh_oe
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyz
6. read sync non-muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyz
7. write async muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cycle
8. write async non-muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cycle
9. write sync muxed
adv_wr_off: t_avdp_w, t_avdh
we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyz
10. write sync non-muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_rdyo
we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyz
Note: Many of gpmc timings are dependent on other gpmc timings (a few
gpmc timings purely dependent on other gpmc timings, a reason that
some of the gpmc timings are missing above), and it will result in
indirect dependency of peripheral timings to gpmc timings other than
mentioned above, refer timing routine for more details. To know what
these peripheral timings correspond to, please see explanations in
struct gpmc_device_timings definition. And for gpmc timings refer
IP details (link above).
......@@ -52,27 +52,27 @@ static int omap2_nand_gpmc_retime(
memset(&t, 0, sizeof(t));
t.sync_clk = gpmc_t->sync_clk;
t.cs_on = gpmc_round_ns_to_ticks(gpmc_t->cs_on);
t.adv_on = gpmc_round_ns_to_ticks(gpmc_t->adv_on);
t.cs_on = gpmc_t->cs_on;
t.adv_on = gpmc_t->adv_on;
/* Read */
t.adv_rd_off = gpmc_round_ns_to_ticks(gpmc_t->adv_rd_off);
t.adv_rd_off = gpmc_t->adv_rd_off;
t.oe_on = t.adv_on;
t.access = gpmc_round_ns_to_ticks(gpmc_t->access);
t.oe_off = gpmc_round_ns_to_ticks(gpmc_t->oe_off);
t.cs_rd_off = gpmc_round_ns_to_ticks(gpmc_t->cs_rd_off);
t.rd_cycle = gpmc_round_ns_to_ticks(gpmc_t->rd_cycle);
t.access = gpmc_t->access;
t.oe_off = gpmc_t->oe_off;
t.cs_rd_off = gpmc_t->cs_rd_off;
t.rd_cycle = gpmc_t->rd_cycle;
/* Write */
t.adv_wr_off = gpmc_round_ns_to_ticks(gpmc_t->adv_wr_off);
t.adv_wr_off = gpmc_t->adv_wr_off;
t.we_on = t.oe_on;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = gpmc_round_ns_to_ticks(gpmc_t->wr_data_mux_bus);
t.wr_access = gpmc_round_ns_to_ticks(gpmc_t->wr_access);
t.wr_data_mux_bus = gpmc_t->wr_data_mux_bus;
t.wr_access = gpmc_t->wr_access;
}
t.we_off = gpmc_round_ns_to_ticks(gpmc_t->we_off);
t.cs_wr_off = gpmc_round_ns_to_ticks(gpmc_t->cs_wr_off);
t.wr_cycle = gpmc_round_ns_to_ticks(gpmc_t->wr_cycle);
t.we_off = gpmc_t->we_off;
t.cs_wr_off = gpmc_t->cs_wr_off;
t.wr_cycle = gpmc_t->wr_cycle;
/* Configure GPMC */
if (gpmc_nand_data->devsize == NAND_BUSWIDTH_16)
......
......@@ -33,7 +33,6 @@
static unsigned onenand_flags;
static unsigned latency;
static int fclk_offset;
static struct omap_onenand_platform_data *gpmc_onenand_data;
......@@ -50,6 +49,7 @@ static struct platform_device gpmc_onenand_device = {
static struct gpmc_timings omap2_onenand_calc_async_timings(void)
{
struct gpmc_device_timings dev_t;
struct gpmc_timings t;
const int t_cer = 15;
......@@ -59,35 +59,24 @@ static struct gpmc_timings omap2_onenand_calc_async_timings(void)
const int t_aa = 76;
const int t_oe = 20;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
memset(&t, 0, sizeof(t));
t.sync_clk = 0;
t.cs_on = 0;
t.adv_on = 0;
/* Read */
t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
/* Write */
t.adv_wr_off = t.adv_rd_off;
t.we_on = t.oe_on;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
memset(&dev_t, 0, sizeof(dev_t));
dev_t.mux = true;
dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
dev_t.t_avdp_w = dev_t.t_avdp_r;
dev_t.t_aavdh = t_aavdh * 1000;
dev_t.t_aa = t_aa * 1000;
dev_t.t_ce = t_ce * 1000;
dev_t.t_oe = t_oe * 1000;
dev_t.t_cez_r = t_cez * 1000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.t_wpl = t_wpl * 1000;
dev_t.t_wph = t_wph * 1000;
gpmc_calc_timings(&t, &dev_t);
return t;
}
......@@ -173,18 +162,15 @@ static struct gpmc_timings
omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
int freq)
{
struct gpmc_device_timings dev_t;
struct gpmc_timings t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
u32 reg;
int div, fclk_offset_ns, gpmc_clk_ns;
int ticks_cez;
int cs = cfg->cs;
int div, gpmc_clk_ns;
if (cfg->flags & ONENAND_SYNC_READ)
onenand_flags = ONENAND_FLAG_SYNCREAD;
......@@ -251,77 +237,35 @@ omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
latency = 4;
/* Set synchronous read timings */
memset(&t, 0, sizeof(t));
if (div == 1) {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg |= (1 << 7);
reg |= (1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
} else {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg &= ~(1 << 7);
reg &= ~(1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
}
memset(&dev_t, 0, sizeof(dev_t));
t.sync_clk = min_gpmc_clk_period;
t.cs_on = 0;
t.adv_on = 0;
fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
t.page_burst_access = gpmc_clk_ns;
/* Read */
t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
/* Force at least 1 clk between AVD High to OE Low */
if (t.oe_on <= t.adv_rd_off)
t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
ticks_cez);
/* Write */
dev_t.mux = true;
dev_t.sync_read = true;
if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
t.adv_wr_off = t.adv_rd_off;
t.we_on = 0;
t.we_off = t.cs_rd_off;
t.cs_wr_off = t.cs_rd_off;
t.wr_cycle = t.rd_cycle;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
gpmc_ps_to_ticks(min_gpmc_clk_period +
t_rdyo * 1000));
t.wr_access = t.access;
}
dev_t.sync_write = true;
} else {
t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
t_avdp, t_cer));
t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
dev_t.t_wpl = t_wpl * 1000;
dev_t.t_wph = t_wph * 1000;
dev_t.t_aavdh = t_aavdh * 1000;
}
dev_t.ce_xdelay = true;
dev_t.avd_xdelay = true;
dev_t.oe_xdelay = true;
dev_t.we_xdelay = true;
dev_t.clk = min_gpmc_clk_period;
dev_t.t_bacc = dev_t.clk;
dev_t.t_ces = t_ces * 1000;
dev_t.t_avds = t_avds * 1000;
dev_t.t_avdh = t_avdh * 1000;
dev_t.t_ach = t_ach * 1000;
dev_t.cyc_iaa = (latency + 1);
dev_t.t_cez_r = t_cez * 1000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.cyc_aavdh_oe = 1;
dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
gpmc_calc_timings(&t, &dev_t);
return t;
}
......@@ -338,7 +282,6 @@ static int gpmc_set_sync_mode(int cs, struct gpmc_timings *t)
(sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
(sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
(sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
GPMC_CONFIG1_PAGE_LEN(2) |
(cpu_is_omap34xx() ? 0 :
(GPMC_CONFIG1_WAIT_READ_MON |
......
......@@ -58,6 +58,7 @@ static struct platform_device gpmc_smc91x_device = {
static int smc91c96_gpmc_retime(void)
{
struct gpmc_timings t;
struct gpmc_device_timings dev_t;
const int t3 = 10; /* Figure 12.2 read and 12.4 write */
const int t4_r = 20; /* Figure 12.2 read */
const int t4_w = 5; /* Figure 12.4 write */
......@@ -68,32 +69,6 @@ static int smc91c96_gpmc_retime(void)
const int t20 = 185; /* Figure 12.2 read and 12.4 write */
u32 l;
memset(&t, 0, sizeof(t));
/* Read timings */
t.cs_on = 0;
t.adv_on = t.cs_on;
t.oe_on = t.adv_on + t3;
t.access = t.oe_on + t5;
t.oe_off = t.access;
t.adv_rd_off = t.oe_off + max(t4_r, t6);
t.cs_rd_off = t.oe_off;
t.rd_cycle = t20 - t.oe_on;
/* Write timings */
t.we_on = t.adv_on + t3;
if (cpu_is_omap34xx() && (gpmc_cfg->flags & GPMC_MUX_ADD_DATA)) {
t.wr_data_mux_bus = t.we_on;
t.we_off = t.wr_data_mux_bus + t7;
} else
t.we_off = t.we_on + t7;
if (cpu_is_omap34xx())
t.wr_access = t.we_off;
t.adv_wr_off = t.we_off + max(t4_w, t8);
t.cs_wr_off = t.we_off + t4_w;
t.wr_cycle = t20 - t.we_on;
l = GPMC_CONFIG1_DEVICESIZE_16;
if (gpmc_cfg->flags & GPMC_MUX_ADD_DATA)
l |= GPMC_CONFIG1_MUXADDDATA;
......@@ -115,6 +90,22 @@ static int smc91c96_gpmc_retime(void)
if (gpmc_cfg->flags & GPMC_MUX_ADD_DATA)
return 0;
memset(&dev_t, 0, sizeof(dev_t));
dev_t.t_oeasu = t3 * 1000;
dev_t.t_oe = t5 * 1000;
dev_t.t_cez_r = t4_r * 1000;
dev_t.t_oez = t6 * 1000;
dev_t.t_rd_cycle = (t20 - t3) * 1000;
dev_t.t_weasu = t3 * 1000;
dev_t.t_wpl = t7 * 1000;
dev_t.t_wph = t8 * 1000;
dev_t.t_cez_w = t4_w * 1000;
dev_t.t_wr_cycle = (t20 - t3) * 1000;
gpmc_calc_timings(&t, &dev_t);
return gpmc_cs_set_timings(gpmc_cfg->cs, &t);
}
......
This diff is collapsed.
......@@ -74,6 +74,17 @@
#define GPMC_IRQ_COUNT_EVENT 0x02
/* bool type time settings */
struct gpmc_bool_timings {
bool cycle2cyclediffcsen;
bool cycle2cyclesamecsen;
bool we_extra_delay;
bool oe_extra_delay;
bool adv_extra_delay;
bool cs_extra_delay;
bool time_para_granularity;
};
/*
* Note that all values in this struct are in nanoseconds except sync_clk
* (which is in picoseconds), while the register values are in gpmc_fck cycles.
......@@ -83,34 +94,104 @@ struct gpmc_timings {
u32 sync_clk;
/* Chip-select signal timings corresponding to GPMC_CS_CONFIG2 */
u16 cs_on; /* Assertion time */
u16 cs_rd_off; /* Read deassertion time */
u16 cs_wr_off; /* Write deassertion time */
u32 cs_on; /* Assertion time */
u32 cs_rd_off; /* Read deassertion time */
u32 cs_wr_off; /* Write deassertion time */
/* ADV signal timings corresponding to GPMC_CONFIG3 */
u16 adv_on; /* Assertion time */
u16 adv_rd_off; /* Read deassertion time */
u16 adv_wr_off; /* Write deassertion time */
u32 adv_on; /* Assertion time */
u32 adv_rd_off; /* Read deassertion time */
u32 adv_wr_off; /* Write deassertion time */
/* WE signals timings corresponding to GPMC_CONFIG4 */
u16 we_on; /* WE assertion time */
u16 we_off; /* WE deassertion time */
u32 we_on; /* WE assertion time */
u32 we_off; /* WE deassertion time */
/* OE signals timings corresponding to GPMC_CONFIG4 */
u16 oe_on; /* OE assertion time */
u16 oe_off; /* OE deassertion time */
u32 oe_on; /* OE assertion time */
u32 oe_off; /* OE deassertion time */
/* Access time and cycle time timings corresponding to GPMC_CONFIG5 */
u16 page_burst_access; /* Multiple access word delay */
u16 access; /* Start-cycle to first data valid delay */
u16 rd_cycle; /* Total read cycle time */
u16 wr_cycle; /* Total write cycle time */
u32 page_burst_access; /* Multiple access word delay */
u32 access; /* Start-cycle to first data valid delay */
u32 rd_cycle; /* Total read cycle time */
u32 wr_cycle; /* Total write cycle time */
u32 bus_turnaround;
u32 cycle2cycle_delay;
u32 wait_monitoring;
u32 clk_activation;
/* The following are only on OMAP3430 */
u16 wr_access; /* WRACCESSTIME */
u16 wr_data_mux_bus; /* WRDATAONADMUXBUS */
u32 wr_access; /* WRACCESSTIME */
u32 wr_data_mux_bus; /* WRDATAONADMUXBUS */
struct gpmc_bool_timings bool_timings;
};
/* Device timings in picoseconds */
struct gpmc_device_timings {
u32 t_ceasu; /* address setup to CS valid */
u32 t_avdasu; /* address setup to ADV valid */
/* XXX: try to combine t_avdp_r & t_avdp_w. Issue is
* of tusb using these timings even for sync whilst
* ideally for adv_rd/(wr)_off it should have considered
* t_avdh instead. This indirectly necessitates r/w
* variations of t_avdp as it is possible to have one
* sync & other async
*/
u32 t_avdp_r; /* ADV low time (what about t_cer ?) */
u32 t_avdp_w;
u32 t_aavdh; /* address hold time */
u32 t_oeasu; /* address setup to OE valid */
u32 t_aa; /* access time from ADV assertion */
u32 t_iaa; /* initial access time */
u32 t_oe; /* access time from OE assertion */
u32 t_ce; /* access time from CS asertion */
u32 t_rd_cycle; /* read cycle time */
u32 t_cez_r; /* read CS deassertion to high Z */
u32 t_cez_w; /* write CS deassertion to high Z */
u32 t_oez; /* OE deassertion to high Z */
u32 t_weasu; /* address setup to WE valid */
u32 t_wpl; /* write assertion time */
u32 t_wph; /* write deassertion time */
u32 t_wr_cycle; /* write cycle time */
u32 clk;
u32 t_bacc; /* burst access valid clock to output delay */
u32 t_ces; /* CS setup time to clk */
u32 t_avds; /* ADV setup time to clk */
u32 t_avdh; /* ADV hold time from clk */
u32 t_ach; /* address hold time from clk */
u32 t_rdyo; /* clk to ready valid */
u32 t_ce_rdyz; /* XXX: description ?, or use t_cez instead */
u32 t_ce_avd; /* CS on to ADV on delay */
/* XXX: check the possibility of combining
* cyc_aavhd_oe & cyc_aavdh_we
*/
u8 cyc_aavdh_oe;/* read address hold time in cycles */
u8 cyc_aavdh_we;/* write address hold time in cycles */
u8 cyc_oe; /* access time from OE assertion in cycles */
u8 cyc_wpl; /* write deassertion time in cycles */
u32 cyc_iaa; /* initial access time in cycles */
bool mux; /* address & data muxed */
bool sync_write;/* synchronous write */
bool sync_read; /* synchronous read */
/* extra delays */
bool ce_xdelay;
bool avd_xdelay;
bool oe_xdelay;
bool we_xdelay;
};
extern int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t);
extern void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs);
extern int gpmc_get_client_irq(unsigned irq_config);
......
......@@ -27,180 +27,88 @@ static u8 async_cs, sync_cs;
static unsigned refclk_psec;
/* t2_ps, when quantized to fclk units, must happen no earlier than
* the clock after after t1_NS.
*
* Return a possibly updated value of t2_ps, converted to nsec.
*/
static unsigned
next_clk(unsigned t1_NS, unsigned t2_ps, unsigned fclk_ps)
{
unsigned t1_ps = t1_NS * 1000;
unsigned t1_f, t2_f;
if ((t1_ps + fclk_ps) < t2_ps)
return t2_ps / 1000;
t1_f = (t1_ps + fclk_ps - 1) / fclk_ps;
t2_f = (t2_ps + fclk_ps - 1) / fclk_ps;
if (t1_f >= t2_f)
t2_f = t1_f + 1;
return (t2_f * fclk_ps) / 1000;
}
/* NOTE: timings are from tusb 6010 datasheet Rev 1.8, 12-Sept 2006 */
static int tusb_set_async_mode(unsigned sysclk_ps, unsigned fclk_ps)
static int tusb_set_async_mode(unsigned sysclk_ps)
{
struct gpmc_device_timings dev_t;
struct gpmc_timings t;
unsigned t_acsnh_advnh = sysclk_ps + 3000;
unsigned tmp;
memset(&t, 0, sizeof(t));
/* CS_ON = t_acsnh_acsnl */
t.cs_on = 8;
/* ADV_ON = t_acsnh_advnh - t_advn */
t.adv_on = next_clk(t.cs_on, t_acsnh_advnh - 7000, fclk_ps);
/*
* READ ... from omap2420 TRM fig 12-13
*/
/* ADV_RD_OFF = t_acsnh_advnh */
t.adv_rd_off = next_clk(t.adv_on, t_acsnh_advnh, fclk_ps);
/* OE_ON = t_acsnh_advnh + t_advn_oen (then wait for nRDY) */
t.oe_on = next_clk(t.adv_on, t_acsnh_advnh + 1000, fclk_ps);
/* ACCESS = counters continue only after nRDY */
tmp = t.oe_on * 1000 + 300;
t.access = next_clk(t.oe_on, tmp, fclk_ps);
/* OE_OFF = after data gets sampled */
tmp = t.access * 1000;
t.oe_off = next_clk(t.access, tmp, fclk_ps);
t.cs_rd_off = t.oe_off;
tmp = t.cs_rd_off * 1000 + 7000 /* t_acsn_rdy_z */;
t.rd_cycle = next_clk(t.cs_rd_off, tmp, fclk_ps);
/*
* WRITE ... from omap2420 TRM fig 12-15
*/
/* ADV_WR_OFF = t_acsnh_advnh */
t.adv_wr_off = t.adv_rd_off;
/* WE_ON = t_acsnh_advnh + t_advn_wen (then wait for nRDY) */
t.we_on = next_clk(t.adv_wr_off, t_acsnh_advnh + 1000, fclk_ps);
memset(&dev_t, 0, sizeof(dev_t));
/* WE_OFF = after data gets sampled */
tmp = t.we_on * 1000 + 300;
t.we_off = next_clk(t.we_on, tmp, fclk_ps);
dev_t.mux = true;
t.cs_wr_off = t.we_off;
dev_t.t_ceasu = 8 * 1000;
dev_t.t_avdasu = t_acsnh_advnh - 7000;
dev_t.t_ce_avd = 1000;
dev_t.t_avdp_r = t_acsnh_advnh;
dev_t.t_oeasu = t_acsnh_advnh + 1000;
dev_t.t_oe = 300;
dev_t.t_cez_r = 7000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.t_avdp_w = t_acsnh_advnh;
dev_t.t_weasu = t_acsnh_advnh + 1000;
dev_t.t_wpl = 300;
dev_t.cyc_aavdh_we = 1;
tmp = t.cs_wr_off * 1000 + 7000 /* t_acsn_rdy_z */;
t.wr_cycle = next_clk(t.cs_wr_off, tmp, fclk_ps);
gpmc_calc_timings(&t, &dev_t);
return gpmc_cs_set_timings(async_cs, &t);
}
static int tusb_set_sync_mode(unsigned sysclk_ps, unsigned fclk_ps)
static int tusb_set_sync_mode(unsigned sysclk_ps)
{
struct gpmc_device_timings dev_t;
struct gpmc_timings t;
unsigned t_scsnh_advnh = sysclk_ps + 3000;
unsigned tmp;
memset(&t, 0, sizeof(t));
t.cs_on = 8;
/* ADV_ON = t_acsnh_advnh - t_advn */
t.adv_on = next_clk(t.cs_on, t_scsnh_advnh - 7000, fclk_ps);
/* GPMC_CLK rate = fclk rate / div */
t.sync_clk = 11100 /* 11.1 nsec */;
tmp = (t.sync_clk + fclk_ps - 1) / fclk_ps;
if (tmp > 4)
return -ERANGE;
if (tmp == 0)
tmp = 1;
t.page_burst_access = (fclk_ps * tmp) / 1000;
/*
* READ ... based on omap2420 TRM fig 12-19, 12-20
*/
/* ADV_RD_OFF = t_scsnh_advnh */
t.adv_rd_off = next_clk(t.adv_on, t_scsnh_advnh, fclk_ps);
/* OE_ON = t_scsnh_advnh + t_advn_oen * fclk_ps (then wait for nRDY) */
tmp = (t.adv_rd_off * 1000) + (3 * fclk_ps);
t.oe_on = next_clk(t.adv_on, tmp, fclk_ps);
/* ACCESS = number of clock cycles after t_adv_eon */
tmp = (t.oe_on * 1000) + (5 * fclk_ps);
t.access = next_clk(t.oe_on, tmp, fclk_ps);
/* OE_OFF = after data gets sampled */
tmp = (t.access * 1000) + (1 * fclk_ps);
t.oe_off = next_clk(t.access, tmp, fclk_ps);
t.cs_rd_off = t.oe_off;
tmp = t.cs_rd_off * 1000 + 7000 /* t_scsn_rdy_z */;
t.rd_cycle = next_clk(t.cs_rd_off, tmp, fclk_ps);
/*
* WRITE ... based on omap2420 TRM fig 12-21
*/
/* ADV_WR_OFF = t_scsnh_advnh */
t.adv_wr_off = t.adv_rd_off;
/* WE_ON = t_scsnh_advnh + t_advn_wen * fclk_ps (then wait for nRDY) */
tmp = (t.adv_wr_off * 1000) + (3 * fclk_ps);
t.we_on = next_clk(t.adv_wr_off, tmp, fclk_ps);
/* WE_OFF = number of clock cycles after t_adv_wen */
tmp = (t.we_on * 1000) + (6 * fclk_ps);
t.we_off = next_clk(t.we_on, tmp, fclk_ps);
t.cs_wr_off = t.we_off;
tmp = t.cs_wr_off * 1000 + 7000 /* t_scsn_rdy_z */;
t.wr_cycle = next_clk(t.cs_wr_off, tmp, fclk_ps);
memset(&dev_t, 0, sizeof(dev_t));
dev_t.mux = true;
dev_t.sync_read = true;
dev_t.sync_write = true;
dev_t.clk = 11100;
dev_t.t_bacc = 1000;
dev_t.t_ces = 1000;
dev_t.t_ceasu = 8 * 1000;
dev_t.t_avdasu = t_scsnh_advnh - 7000;
dev_t.t_ce_avd = 1000;
dev_t.t_avdp_r = t_scsnh_advnh;
dev_t.cyc_aavdh_oe = 3;
dev_t.cyc_oe = 5;
dev_t.t_ce_rdyz = 7000;
dev_t.t_avdp_w = t_scsnh_advnh;
dev_t.cyc_aavdh_we = 3;
dev_t.cyc_wpl = 6;
dev_t.t_ce_rdyz = 7000;
gpmc_calc_timings(&t, &dev_t);
return gpmc_cs_set_timings(sync_cs, &t);
}
extern unsigned long gpmc_get_fclk_period(void);
/* tusb driver calls this when it changes the chip's clocking */
int tusb6010_platform_retime(unsigned is_refclk)
{
static const char error[] =
KERN_ERR "tusb6010 %s retime error %d\n";
unsigned fclk_ps = gpmc_get_fclk_period();
unsigned sysclk_ps;
int status;
if (!refclk_psec || fclk_ps == 0)
if (!refclk_psec)
return -ENODEV;
sysclk_ps = is_refclk ? refclk_psec : TUSB6010_OSCCLK_60;
status = tusb_set_async_mode(sysclk_ps, fclk_ps);
status = tusb_set_async_mode(sysclk_ps);
if (status < 0) {
printk(error, "async", status);
goto done;
}
status = tusb_set_sync_mode(sysclk_ps, fclk_ps);
status = tusb_set_sync_mode(sysclk_ps);
if (status < 0)
printk(error, "sync", status);
done:
......@@ -284,7 +192,6 @@ tusb6010_setup_interface(struct musb_hdrc_platform_data *data,
| GPMC_CONFIG1_READTYPE_SYNC
| GPMC_CONFIG1_WRITEMULTIPLE_SUPP
| GPMC_CONFIG1_WRITETYPE_SYNC
| GPMC_CONFIG1_CLKACTIVATIONTIME(1)
| GPMC_CONFIG1_PAGE_LEN(2)
| GPMC_CONFIG1_WAIT_READ_MON
| GPMC_CONFIG1_WAIT_WRITE_MON
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment