Commit bf597e99 authored by Daniel Walker's avatar Daniel Walker Committed by Greg Kroah-Hartman

staging: dream: smd: remove all smd related code

Part of this code is already in my MSM tree. I'll move the rest
forward through my tree also.
Signed-off-by: default avatarDaniel Walker <dwalker@codeaurora.org>
CC: Pavel Machek <pavel@ucw.cz>
CC: linux-arm-msm@vger.kernel.org
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent e64354c0
......@@ -3,7 +3,6 @@ config DREAM
depends on MACH_TROUT
if DREAM
source "drivers/staging/dream/smd/Kconfig"
source "drivers/staging/dream/camera/Kconfig"
......
EXTRA_CFLAGS=-Idrivers/staging/dream/include
obj-$(CONFIG_MSM_ADSP) += qdsp5/ smd/
obj-$(CONFIG_MSM_ADSP) += qdsp5/
obj-$(CONFIG_MSM_CAMERA) += camera/
obj-$(CONFIG_INPUT_GPIO) += gpio_axis.o gpio_event.o gpio_input.o gpio_matrix.o gpio_output.o
config MSM_SMD
depends on ARCH_MSM
default y
bool "MSM Shared Memory Driver (SMD)"
help
Support for the shared memory interface between the apps
processor and the baseband processor. Provides access to
the "shared heap", as well as virtual serial channels
used to communicate with various services on the baseband
processor.
config MSM_ONCRPCROUTER
depends on MSM_SMD
default y
bool "MSM ONCRPC router support"
help
Support for the MSM ONCRPC router for communication between
the ARM9 and ARM11
config MSM_RPCSERVERS
depends on MSM_ONCRPCROUTER
default y
bool "Kernel side RPC server bundle"
help
none
EXTRA_CFLAGS=-Idrivers/staging/dream/include
obj-$(CONFIG_MSM_SMD) += smd.o smd_tty.o smd_qmi.o
obj-$(CONFIG_MSM_ONCRPCROUTER) += smd_rpcrouter.o
obj-$(CONFIG_MSM_ONCRPCROUTER) += smd_rpcrouter_device.o
obj-$(CONFIG_MSM_ONCRPCROUTER) += smd_rpcrouter_servers.o
obj-$(CONFIG_MSM_RPCSERVERS) += rpc_server_dog_keepalive.o
obj-$(CONFIG_MSM_RPCSERVERS) += rpc_server_time_remote.o
/* arch/arm/mach-msm/rpc_server_dog_keepalive.c
*
* Copyright (C) 2007 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <mach/msm_rpcrouter.h>
/* dog_keepalive server definitions */
#define DOG_KEEPALIVE_PROG 0x30000015
#if CONFIG_MSM_AMSS_VERSION==6210
#define DOG_KEEPALIVE_VERS 0
#define RPC_DOG_KEEPALIVE_BEACON 1
#elif (CONFIG_MSM_AMSS_VERSION==6220) || (CONFIG_MSM_AMSS_VERSION==6225)
#define DOG_KEEPALIVE_VERS 0x731fa727
#define RPC_DOG_KEEPALIVE_BEACON 2
#elif CONFIG_MSM_AMSS_VERSION==6350
#define DOG_KEEPALIVE_VERS 0x00010000
#define RPC_DOG_KEEPALIVE_BEACON 2
#else
#error "Unsupported AMSS version"
#endif
#define RPC_DOG_KEEPALIVE_NULL 0
/* TODO: Remove server registration with _VERS when modem is upated with _COMP*/
static int handle_rpc_call(struct msm_rpc_server *server,
struct rpc_request_hdr *req, unsigned len)
{
switch (req->procedure) {
case RPC_DOG_KEEPALIVE_NULL:
return 0;
case RPC_DOG_KEEPALIVE_BEACON:
printk(KERN_INFO "DOG KEEPALIVE PING\n");
return 0;
default:
return -ENODEV;
}
}
static struct msm_rpc_server rpc_server = {
.prog = DOG_KEEPALIVE_PROG,
.vers = DOG_KEEPALIVE_VERS,
.rpc_call = handle_rpc_call,
};
static int __init rpc_server_init(void)
{
/* Dual server registration to support backwards compatibility vers */
return msm_rpc_create_server(&rpc_server);
}
module_init(rpc_server_init);
/* arch/arm/mach-msm/rpc_server_time_remote.c
*
* Copyright (C) 2007 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <mach/msm_rpcrouter.h>
/* time_remote_mtoa server definitions. */
#define TIME_REMOTE_MTOA_PROG 0x3000005d
#if CONFIG_MSM_AMSS_VERSION==6210
#define TIME_REMOTE_MTOA_VERS 0
#elif (CONFIG_MSM_AMSS_VERSION==6220) || (CONFIG_MSM_AMSS_VERSION==6225)
#define TIME_REMOTE_MTOA_VERS 0x9202a8e4
#elif CONFIG_MSM_AMSS_VERSION==6350
#define TIME_REMOTE_MTOA_VERS 0x00010000
#else
#error "Unknown AMSS version"
#endif
#define RPC_TIME_REMOTE_MTOA_NULL 0
#define RPC_TIME_TOD_SET_APPS_BASES 2
struct rpc_time_tod_set_apps_bases_args {
uint32_t tick;
uint64_t stamp;
};
static int handle_rpc_call(struct msm_rpc_server *server,
struct rpc_request_hdr *req, unsigned len)
{
switch (req->procedure) {
case RPC_TIME_REMOTE_MTOA_NULL:
return 0;
case RPC_TIME_TOD_SET_APPS_BASES: {
struct rpc_time_tod_set_apps_bases_args *args;
args = (struct rpc_time_tod_set_apps_bases_args *)(req + 1);
args->tick = be32_to_cpu(args->tick);
args->stamp = be64_to_cpu(args->stamp);
printk(KERN_INFO "RPC_TIME_TOD_SET_APPS_BASES:\n"
"\ttick = %d\n"
"\tstamp = %lld\n",
args->tick, args->stamp);
return 0;
}
default:
return -ENODEV;
}
}
static struct msm_rpc_server rpc_server = {
.prog = TIME_REMOTE_MTOA_PROG,
.vers = TIME_REMOTE_MTOA_VERS,
.rpc_call = handle_rpc_call,
};
static int __init rpc_server_init(void)
{
/* Dual server registration to support backwards compatibility vers */
return msm_rpc_create_server(&rpc_server);
}
module_init(rpc_server_init);
/* arch/arm/mach-msm/smd.c
*
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <mach/msm_smd.h>
#include <mach/msm_iomap.h>
#include <mach/system.h>
#include "smd_private.h"
#include "../../../../arch/arm/mach-msm/proc_comm.h"
void (*msm_hw_reset_hook)(void);
#define MODULE_NAME "msm_smd"
enum {
MSM_SMD_DEBUG = 1U << 0,
MSM_SMSM_DEBUG = 1U << 0,
};
static int msm_smd_debug_mask;
module_param_named(debug_mask, msm_smd_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
void *smem_find(unsigned id, unsigned size);
static void smd_diag(void);
static unsigned last_heap_free = 0xffffffff;
#define MSM_A2M_INT(n) (MSM_CSR_BASE + 0x400 + (n) * 4)
static inline void notify_other_smsm(void)
{
writel(1, MSM_A2M_INT(5));
}
static inline void notify_other_smd(void)
{
writel(1, MSM_A2M_INT(0));
}
static void smd_diag(void)
{
char *x;
x = smem_find(ID_DIAG_ERR_MSG, SZ_DIAG_ERR_MSG);
if (x != 0) {
x[SZ_DIAG_ERR_MSG - 1] = 0;
pr_info("smem: DIAG '%s'\n", x);
}
}
/* call when SMSM_RESET flag is set in the A9's smsm_state */
static void handle_modem_crash(void)
{
pr_err("ARM9 has CRASHED\n");
smd_diag();
/* hard reboot if possible */
if (msm_hw_reset_hook)
msm_hw_reset_hook();
/* in this case the modem or watchdog should reboot us */
for (;;)
;
}
extern int (*msm_check_for_modem_crash)(void);
static int check_for_modem_crash(void)
{
struct smsm_shared *smsm;
smsm = smem_find(ID_SHARED_STATE, 2 * sizeof(struct smsm_shared));
/* if the modem's not ready yet, we have to hope for the best */
if (!smsm)
return 0;
if (smsm[1].state & SMSM_RESET) {
handle_modem_crash();
return -1;
} else {
return 0;
}
}
#define SMD_SS_CLOSED 0x00000000
#define SMD_SS_OPENING 0x00000001
#define SMD_SS_OPENED 0x00000002
#define SMD_SS_FLUSHING 0x00000003
#define SMD_SS_CLOSING 0x00000004
#define SMD_SS_RESET 0x00000005
#define SMD_SS_RESET_OPENING 0x00000006
#define SMD_BUF_SIZE 8192
#define SMD_CHANNELS 64
#define SMD_HEADER_SIZE 20
/* the spinlock is used to synchronize between the
** irq handler and code that mutates the channel
** list or fiddles with channel state
*/
static DEFINE_SPINLOCK(smd_lock);
static DEFINE_SPINLOCK(smem_lock);
/* the mutex is used during open() and close()
** operations to avoid races while creating or
** destroying smd_channel structures
*/
static DEFINE_MUTEX(smd_creation_mutex);
static int smd_initialized;
struct smd_alloc_elm {
char name[20];
uint32_t cid;
uint32_t ctype;
uint32_t ref_count;
};
struct smd_half_channel {
unsigned state;
unsigned char fDSR;
unsigned char fCTS;
unsigned char fCD;
unsigned char fRI;
unsigned char fHEAD;
unsigned char fTAIL;
unsigned char fSTATE;
unsigned char fUNUSED;
unsigned tail;
unsigned head;
unsigned char data[SMD_BUF_SIZE];
};
struct smd_shared {
struct smd_half_channel ch0;
struct smd_half_channel ch1;
};
struct smd_channel {
volatile struct smd_half_channel *send;
volatile struct smd_half_channel *recv;
struct list_head ch_list;
unsigned current_packet;
unsigned n;
void *priv;
void (*notify)(void *priv, unsigned flags);
int (*read)(smd_channel_t *ch, void *data, int len);
int (*write)(smd_channel_t *ch, const void *data, int len);
int (*read_avail)(smd_channel_t *ch);
int (*write_avail)(smd_channel_t *ch);
void (*update_state)(smd_channel_t *ch);
unsigned last_state;
char name[32];
struct platform_device pdev;
};
static LIST_HEAD(smd_ch_closed_list);
static LIST_HEAD(smd_ch_list);
static unsigned char smd_ch_allocated[64];
static struct work_struct probe_work;
static void smd_alloc_channel(const char *name, uint32_t cid, uint32_t type);
static void smd_channel_probe_worker(struct work_struct *work)
{
struct smd_alloc_elm *shared;
unsigned n;
shared = smem_find(ID_CH_ALLOC_TBL, sizeof(*shared) * 64);
for (n = 0; n < 64; n++) {
if (smd_ch_allocated[n])
continue;
if (!shared[n].ref_count)
continue;
if (!shared[n].name[0])
continue;
smd_alloc_channel(shared[n].name,
shared[n].cid,
shared[n].ctype);
smd_ch_allocated[n] = 1;
}
}
static char *chstate(unsigned n)
{
switch (n) {
case SMD_SS_CLOSED:
return "CLOSED";
case SMD_SS_OPENING:
return "OPENING";
case SMD_SS_OPENED:
return "OPENED";
case SMD_SS_FLUSHING:
return "FLUSHING";
case SMD_SS_CLOSING:
return "CLOSING";
case SMD_SS_RESET:
return "RESET";
case SMD_SS_RESET_OPENING:
return "ROPENING";
default:
return "UNKNOWN";
}
}
/* how many bytes are available for reading */
static int smd_stream_read_avail(struct smd_channel *ch)
{
return (ch->recv->head - ch->recv->tail) & (SMD_BUF_SIZE - 1);
}
/* how many bytes we are free to write */
static int smd_stream_write_avail(struct smd_channel *ch)
{
return (SMD_BUF_SIZE - 1) -
((ch->send->head - ch->send->tail) & (SMD_BUF_SIZE - 1));
}
static int smd_packet_read_avail(struct smd_channel *ch)
{
if (ch->current_packet) {
int n = smd_stream_read_avail(ch);
if (n > ch->current_packet)
n = ch->current_packet;
return n;
} else {
return 0;
}
}
static int smd_packet_write_avail(struct smd_channel *ch)
{
int n = smd_stream_write_avail(ch);
return n > SMD_HEADER_SIZE ? n - SMD_HEADER_SIZE : 0;
}
static int ch_is_open(struct smd_channel *ch)
{
return (ch->recv->state == SMD_SS_OPENED) &&
(ch->send->state == SMD_SS_OPENED);
}
/* provide a pointer and length to readable data in the fifo */
static unsigned ch_read_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->recv->head;
unsigned tail = ch->recv->tail;
*ptr = (void *) (ch->recv->data + tail);
if (tail <= head)
return head - tail;
else
return SMD_BUF_SIZE - tail;
}
/* advance the fifo read pointer after data from ch_read_buffer is consumed */
static void ch_read_done(struct smd_channel *ch, unsigned count)
{
BUG_ON(count > smd_stream_read_avail(ch));
ch->recv->tail = (ch->recv->tail + count) & (SMD_BUF_SIZE - 1);
ch->recv->fTAIL = 1;
}
/* basic read interface to ch_read_{buffer,done} used
** by smd_*_read() and update_packet_state()
** will read-and-discard if the _data pointer is null
*/
static int ch_read(struct smd_channel *ch, void *_data, int len)
{
void *ptr;
unsigned n;
unsigned char *data = _data;
int orig_len = len;
while (len > 0) {
n = ch_read_buffer(ch, &ptr);
if (n == 0)
break;
if (n > len)
n = len;
if (_data)
memcpy(data, ptr, n);
data += n;
len -= n;
ch_read_done(ch, n);
}
return orig_len - len;
}
static void update_stream_state(struct smd_channel *ch)
{
/* streams have no special state requiring updating */
}
static void update_packet_state(struct smd_channel *ch)
{
unsigned hdr[5];
int r;
/* can't do anything if we're in the middle of a packet */
if (ch->current_packet != 0)
return;
/* don't bother unless we can get the full header */
if (smd_stream_read_avail(ch) < SMD_HEADER_SIZE)
return;
r = ch_read(ch, hdr, SMD_HEADER_SIZE);
BUG_ON(r != SMD_HEADER_SIZE);
ch->current_packet = hdr[0];
}
/* provide a pointer and length to next free space in the fifo */
static unsigned ch_write_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->send->head;
unsigned tail = ch->send->tail;
*ptr = (void *) (ch->send->data + head);
if (head < tail) {
return tail - head - 1;
} else {
if (tail == 0)
return SMD_BUF_SIZE - head - 1;
else
return SMD_BUF_SIZE - head;
}
}
/* advace the fifo write pointer after freespace
* from ch_write_buffer is filled
*/
static void ch_write_done(struct smd_channel *ch, unsigned count)
{
BUG_ON(count > smd_stream_write_avail(ch));
ch->send->head = (ch->send->head + count) & (SMD_BUF_SIZE - 1);
ch->send->fHEAD = 1;
}
static void hc_set_state(volatile struct smd_half_channel *hc, unsigned n)
{
if (n == SMD_SS_OPENED) {
hc->fDSR = 1;
hc->fCTS = 1;
hc->fCD = 1;
} else {
hc->fDSR = 0;
hc->fCTS = 0;
hc->fCD = 0;
}
hc->state = n;
hc->fSTATE = 1;
notify_other_smd();
}
static void do_smd_probe(void)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
if (shared->heap_info.free_offset != last_heap_free) {
last_heap_free = shared->heap_info.free_offset;
schedule_work(&probe_work);
}
}
static void smd_state_change(struct smd_channel *ch,
unsigned last, unsigned next)
{
ch->last_state = next;
pr_info("SMD: ch %d %s -> %s\n", ch->n,
chstate(last), chstate(next));
switch (next) {
case SMD_SS_OPENING:
ch->recv->tail = 0;
case SMD_SS_OPENED:
if (ch->send->state != SMD_SS_OPENED)
hc_set_state(ch->send, SMD_SS_OPENED);
ch->notify(ch->priv, SMD_EVENT_OPEN);
break;
case SMD_SS_FLUSHING:
case SMD_SS_RESET:
/* we should force them to close? */
default:
ch->notify(ch->priv, SMD_EVENT_CLOSE);
}
}
static irqreturn_t smd_irq_handler(int irq, void *data)
{
unsigned long flags;
struct smd_channel *ch;
int do_notify = 0;
unsigned ch_flags;
unsigned tmp;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, &smd_ch_list, ch_list) {
ch_flags = 0;
if (ch_is_open(ch)) {
if (ch->recv->fHEAD) {
ch->recv->fHEAD = 0;
ch_flags |= 1;
do_notify |= 1;
}
if (ch->recv->fTAIL) {
ch->recv->fTAIL = 0;
ch_flags |= 2;
do_notify |= 1;
}
if (ch->recv->fSTATE) {
ch->recv->fSTATE = 0;
ch_flags |= 4;
do_notify |= 1;
}
}
tmp = ch->recv->state;
if (tmp != ch->last_state)
smd_state_change(ch, ch->last_state, tmp);
if (ch_flags) {
ch->update_state(ch);
ch->notify(ch->priv, SMD_EVENT_DATA);
}
}
if (do_notify)
notify_other_smd();
spin_unlock_irqrestore(&smd_lock, flags);
do_smd_probe();
return IRQ_HANDLED;
}
static void smd_fake_irq_handler(unsigned long arg)
{
smd_irq_handler(0, NULL);
}
static DECLARE_TASKLET(smd_fake_irq_tasklet, smd_fake_irq_handler, 0);
void smd_sleep_exit(void)
{
unsigned long flags;
struct smd_channel *ch;
unsigned tmp;
int need_int = 0;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, &smd_ch_list, ch_list) {
if (ch_is_open(ch)) {
if (ch->recv->fHEAD) {
if (msm_smd_debug_mask & MSM_SMD_DEBUG)
pr_info("smd_sleep_exit ch %d fHEAD "
"%x %x %x\n",
ch->n, ch->recv->fHEAD,
ch->recv->head, ch->recv->tail);
need_int = 1;
break;
}
if (ch->recv->fTAIL) {
if (msm_smd_debug_mask & MSM_SMD_DEBUG)
pr_info("smd_sleep_exit ch %d fTAIL "
"%x %x %x\n",
ch->n, ch->recv->fTAIL,
ch->send->head, ch->send->tail);
need_int = 1;
break;
}
if (ch->recv->fSTATE) {
if (msm_smd_debug_mask & MSM_SMD_DEBUG)
pr_info("smd_sleep_exit ch %d fSTATE %x"
"\n", ch->n, ch->recv->fSTATE);
need_int = 1;
break;
}
tmp = ch->recv->state;
if (tmp != ch->last_state) {
if (msm_smd_debug_mask & MSM_SMD_DEBUG)
pr_info("smd_sleep_exit ch %d "
"state %x != %x\n",
ch->n, tmp, ch->last_state);
need_int = 1;
break;
}
}
}
spin_unlock_irqrestore(&smd_lock, flags);
do_smd_probe();
if (need_int) {
if (msm_smd_debug_mask & MSM_SMD_DEBUG)
pr_info("smd_sleep_exit need interrupt\n");
tasklet_schedule(&smd_fake_irq_tasklet);
}
}
void smd_kick(smd_channel_t *ch)
{
unsigned long flags;
unsigned tmp;
spin_lock_irqsave(&smd_lock, flags);
ch->update_state(ch);
tmp = ch->recv->state;
if (tmp != ch->last_state) {
ch->last_state = tmp;
if (tmp == SMD_SS_OPENED)
ch->notify(ch->priv, SMD_EVENT_OPEN);
else
ch->notify(ch->priv, SMD_EVENT_CLOSE);
}
ch->notify(ch->priv, SMD_EVENT_DATA);
notify_other_smd();
spin_unlock_irqrestore(&smd_lock, flags);
}
static int smd_is_packet(int chn)
{
if ((chn > 4) || (chn == 1))
return 1;
else
return 0;
}
static int smd_stream_write(smd_channel_t *ch, const void *_data, int len)
{
void *ptr;
const unsigned char *buf = _data;
unsigned xfer;
int orig_len = len;
if (len < 0)
return -EINVAL;
while ((xfer = ch_write_buffer(ch, &ptr)) != 0) {
if (!ch_is_open(ch))
break;
if (xfer > len)
xfer = len;
memcpy(ptr, buf, xfer);
ch_write_done(ch, xfer);
len -= xfer;
buf += xfer;
if (len == 0)
break;
}
notify_other_smd();
return orig_len - len;
}
static int smd_packet_write(smd_channel_t *ch, const void *_data, int len)
{
unsigned hdr[5];
if (len < 0)
return -EINVAL;
if (smd_stream_write_avail(ch) < (len + SMD_HEADER_SIZE))
return -ENOMEM;
hdr[0] = len;
hdr[1] = hdr[2] = hdr[3] = hdr[4] = 0;
smd_stream_write(ch, hdr, sizeof(hdr));
smd_stream_write(ch, _data, len);
return len;
}
static int smd_stream_read(smd_channel_t *ch, void *data, int len)
{
int r;
if (len < 0)
return -EINVAL;
r = ch_read(ch, data, len);
if (r > 0)
notify_other_smd();
return r;
}
static int smd_packet_read(smd_channel_t *ch, void *data, int len)
{
unsigned long flags;
int r;
if (len < 0)
return -EINVAL;
if (len > ch->current_packet)
len = ch->current_packet;
r = ch_read(ch, data, len);
if (r > 0)
notify_other_smd();
spin_lock_irqsave(&smd_lock, flags);
ch->current_packet -= r;
update_packet_state(ch);
spin_unlock_irqrestore(&smd_lock, flags);
return r;
}
static void smd_alloc_channel(const char *name, uint32_t cid, uint32_t type)
{
struct smd_channel *ch;
struct smd_shared *shared;
shared = smem_alloc(ID_SMD_CHANNELS + cid, sizeof(*shared));
if (!shared) {
pr_err("smd_alloc_channel() cid %d does not exist\n", cid);
return;
}
ch = kzalloc(sizeof(struct smd_channel), GFP_KERNEL);
if (ch == 0) {
pr_err("smd_alloc_channel() out of memory\n");
return;
}
ch->send = &shared->ch0;
ch->recv = &shared->ch1;
ch->n = cid;
if (smd_is_packet(cid)) {
ch->read = smd_packet_read;
ch->write = smd_packet_write;
ch->read_avail = smd_packet_read_avail;
ch->write_avail = smd_packet_write_avail;
ch->update_state = update_packet_state;
} else {
ch->read = smd_stream_read;
ch->write = smd_stream_write;
ch->read_avail = smd_stream_read_avail;
ch->write_avail = smd_stream_write_avail;
ch->update_state = update_stream_state;
}
memcpy(ch->name, "SMD_", 4);
memcpy(ch->name + 4, name, 20);
ch->name[23] = 0;
ch->pdev.name = ch->name;
ch->pdev.id = -1;
pr_info("smd_alloc_channel() '%s' cid=%d, shared=%p\n",
ch->name, ch->n, shared);
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
platform_device_register(&ch->pdev);
}
static void do_nothing_notify(void *priv, unsigned flags)
{
}
struct smd_channel *smd_get_channel(const char *name)
{
struct smd_channel *ch;
mutex_lock(&smd_creation_mutex);
list_for_each_entry(ch, &smd_ch_closed_list, ch_list) {
if (!strcmp(name, ch->name)) {
list_del(&ch->ch_list);
mutex_unlock(&smd_creation_mutex);
return ch;
}
}
mutex_unlock(&smd_creation_mutex);
return NULL;
}
int smd_open(const char *name, smd_channel_t **_ch,
void *priv, void (*notify)(void *, unsigned))
{
struct smd_channel *ch;
unsigned long flags;
if (smd_initialized == 0) {
pr_info("smd_open() before smd_init()\n");
return -ENODEV;
}
ch = smd_get_channel(name);
if (!ch)
return -ENODEV;
if (notify == 0)
notify = do_nothing_notify;
ch->notify = notify;
ch->current_packet = 0;
ch->last_state = SMD_SS_CLOSED;
ch->priv = priv;
*_ch = ch;
spin_lock_irqsave(&smd_lock, flags);
list_add(&ch->ch_list, &smd_ch_list);
/* If the remote side is CLOSING, we need to get it to
* move to OPENING (which we'll do by moving from CLOSED to
* OPENING) and then get it to move from OPENING to
* OPENED (by doing the same state change ourselves).
*
* Otherwise, it should be OPENING and we can move directly
* to OPENED so that it will follow.
*/
if (ch->recv->state == SMD_SS_CLOSING) {
ch->send->head = 0;
hc_set_state(ch->send, SMD_SS_OPENING);
} else {
hc_set_state(ch->send, SMD_SS_OPENED);
}
spin_unlock_irqrestore(&smd_lock, flags);
smd_kick(ch);
return 0;
}
int smd_close(smd_channel_t *ch)
{
unsigned long flags;
pr_info("smd_close(%p)\n", ch);
if (ch == 0)
return -1;
spin_lock_irqsave(&smd_lock, flags);
ch->notify = do_nothing_notify;
list_del(&ch->ch_list);
hc_set_state(ch->send, SMD_SS_CLOSED);
spin_unlock_irqrestore(&smd_lock, flags);
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
return 0;
}
int smd_read(smd_channel_t *ch, void *data, int len)
{
return ch->read(ch, data, len);
}
int smd_write(smd_channel_t *ch, const void *data, int len)
{
return ch->write(ch, data, len);
}
int smd_read_avail(smd_channel_t *ch)
{
return ch->read_avail(ch);
}
int smd_write_avail(smd_channel_t *ch)
{
return ch->write_avail(ch);
}
int smd_wait_until_readable(smd_channel_t *ch, int bytes)
{
return -1;
}
int smd_wait_until_writable(smd_channel_t *ch, int bytes)
{
return -1;
}
int smd_cur_packet_size(smd_channel_t *ch)
{
return ch->current_packet;
}
/* ------------------------------------------------------------------------- */
void *smem_alloc(unsigned id, unsigned size)
{
return smem_find(id, size);
}
static void *_smem_find(unsigned id, unsigned *size)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
struct smem_heap_entry *toc = shared->heap_toc;
if (id >= SMEM_NUM_ITEMS)
return 0;
if (toc[id].allocated) {
*size = toc[id].size;
return (void *) (MSM_SHARED_RAM_BASE + toc[id].offset);
}
return 0;
}
void *smem_find(unsigned id, unsigned size_in)
{
unsigned size;
void *ptr;
ptr = _smem_find(id, &size);
if (!ptr)
return 0;
size_in = ALIGN(size_in, 8);
if (size_in != size) {
pr_err("smem_find(%d, %d): wrong size %d\n",
id, size_in, size);
return 0;
}
return ptr;
}
static irqreturn_t smsm_irq_handler(int irq, void *data)
{
unsigned long flags;
struct smsm_shared *smsm;
spin_lock_irqsave(&smem_lock, flags);
smsm = smem_alloc(ID_SHARED_STATE,
2 * sizeof(struct smsm_shared));
if (smsm == 0) {
pr_info("<SM NO STATE>\n");
} else {
unsigned apps = smsm[0].state;
unsigned modm = smsm[1].state;
if (msm_smd_debug_mask & MSM_SMSM_DEBUG)
pr_info("<SM %08x %08x>\n", apps, modm);
if (modm & SMSM_RESET) {
handle_modem_crash();
} else {
apps |= SMSM_INIT;
if (modm & SMSM_SMDINIT)
apps |= SMSM_SMDINIT;
if (modm & SMSM_RPCINIT)
apps |= SMSM_RPCINIT;
}
if (smsm[0].state != apps) {
if (msm_smd_debug_mask & MSM_SMSM_DEBUG)
pr_info("<SM %08x NOTIFY>\n", apps);
smsm[0].state = apps;
do_smd_probe();
notify_other_smsm();
}
}
spin_unlock_irqrestore(&smem_lock, flags);
return IRQ_HANDLED;
}
int smsm_change_state(uint32_t clear_mask, uint32_t set_mask)
{
unsigned long flags;
struct smsm_shared *smsm;
spin_lock_irqsave(&smem_lock, flags);
smsm = smem_alloc(ID_SHARED_STATE,
2 * sizeof(struct smsm_shared));
if (smsm) {
if (smsm[1].state & SMSM_RESET)
handle_modem_crash();
smsm[0].state = (smsm[0].state & ~clear_mask) | set_mask;
if (msm_smd_debug_mask & MSM_SMSM_DEBUG)
pr_info("smsm_change_state %x\n",
smsm[0].state);
notify_other_smsm();
}
spin_unlock_irqrestore(&smem_lock, flags);
if (smsm == NULL) {
pr_err("smsm_change_state <SM NO STATE>\n");
return -EIO;
}
return 0;
}
uint32_t smsm_get_state(void)
{
unsigned long flags;
struct smsm_shared *smsm;
uint32_t rv;
spin_lock_irqsave(&smem_lock, flags);
smsm = smem_alloc(ID_SHARED_STATE,
2 * sizeof(struct smsm_shared));
if (smsm)
rv = smsm[1].state;
else
rv = 0;
if (rv & SMSM_RESET)
handle_modem_crash();
spin_unlock_irqrestore(&smem_lock, flags);
if (smsm == NULL)
pr_err("smsm_get_state <SM NO STATE>\n");
return rv;
}
int smsm_set_sleep_duration(uint32_t delay)
{
uint32_t *ptr;
ptr = smem_alloc(SMEM_SMSM_SLEEP_DELAY, sizeof(*ptr));
if (ptr == NULL) {
pr_err("smsm_set_sleep_duration <SM NO SLEEP_DELAY>\n");
return -EIO;
}
if (msm_smd_debug_mask & MSM_SMSM_DEBUG)
pr_info("smsm_set_sleep_duration %d -> %d\n",
*ptr, delay);
*ptr = delay;
return 0;
}
int smsm_set_interrupt_info(struct smsm_interrupt_info *info)
{
struct smsm_interrupt_info *ptr;
ptr = smem_alloc(SMEM_SMSM_INT_INFO, sizeof(*ptr));
if (ptr == NULL) {
pr_err("smsm_set_sleep_duration <SM NO INT_INFO>\n");
return -EIO;
}
if (msm_smd_debug_mask & MSM_SMSM_DEBUG)
pr_info("smsm_set_interrupt_info %x %x -> %x %x\n",
ptr->aArm_en_mask, ptr->aArm_interrupts_pending,
info->aArm_en_mask, info->aArm_interrupts_pending);
*ptr = *info;
return 0;
}
#define MAX_NUM_SLEEP_CLIENTS 64
#define MAX_SLEEP_NAME_LEN 8
#define NUM_GPIO_INT_REGISTERS 6
#define GPIO_SMEM_NUM_GROUPS 2
#define GPIO_SMEM_MAX_PC_INTERRUPTS 8
struct tramp_gpio_save {
unsigned int enable;
unsigned int detect;
unsigned int polarity;
};
struct tramp_gpio_smem {
uint16_t num_fired[GPIO_SMEM_NUM_GROUPS];
uint16_t fired[GPIO_SMEM_NUM_GROUPS][GPIO_SMEM_MAX_PC_INTERRUPTS];
uint32_t enabled[NUM_GPIO_INT_REGISTERS];
uint32_t detection[NUM_GPIO_INT_REGISTERS];
uint32_t polarity[NUM_GPIO_INT_REGISTERS];
};
void smsm_print_sleep_info(void)
{
unsigned long flags;
uint32_t *ptr;
struct tramp_gpio_smem *gpio;
struct smsm_interrupt_info *int_info;
spin_lock_irqsave(&smem_lock, flags);
ptr = smem_alloc(SMEM_SMSM_SLEEP_DELAY, sizeof(*ptr));
if (ptr)
pr_info("SMEM_SMSM_SLEEP_DELAY: %x\n", *ptr);
ptr = smem_alloc(SMEM_SMSM_LIMIT_SLEEP, sizeof(*ptr));
if (ptr)
pr_info("SMEM_SMSM_LIMIT_SLEEP: %x\n", *ptr);
ptr = smem_alloc(SMEM_SLEEP_POWER_COLLAPSE_DISABLED, sizeof(*ptr));
if (ptr)
pr_info("SMEM_SLEEP_POWER_COLLAPSE_DISABLED: %x\n", *ptr);
int_info = smem_alloc(SMEM_SMSM_INT_INFO, sizeof(*int_info));
if (int_info)
pr_info("SMEM_SMSM_INT_INFO %x %x %x\n",
int_info->aArm_en_mask,
int_info->aArm_interrupts_pending,
int_info->aArm_wakeup_reason);
gpio = smem_alloc(SMEM_GPIO_INT, sizeof(*gpio));
if (gpio) {
int i;
for (i = 0; i < NUM_GPIO_INT_REGISTERS; i++)
pr_info("SMEM_GPIO_INT: %d: e %x d %x p %x\n",
i, gpio->enabled[i], gpio->detection[i],
gpio->polarity[i]);
for (i = 0; i < GPIO_SMEM_NUM_GROUPS; i++)
pr_info("SMEM_GPIO_INT: %d: f %d: %d %d...\n",
i, gpio->num_fired[i], gpio->fired[i][0],
gpio->fired[i][1]);
}
spin_unlock_irqrestore(&smem_lock, flags);
}
int smd_core_init(void)
{
int r;
pr_info("smd_core_init()\n");
r = request_irq(INT_A9_M2A_0, smd_irq_handler,
IRQF_TRIGGER_RISING, "smd_dev", 0);
if (r < 0)
return r;
r = enable_irq_wake(INT_A9_M2A_0);
if (r < 0)
pr_err("smd_core_init: enable_irq_wake failed for A9_M2A_0\n");
r = request_irq(INT_A9_M2A_5, smsm_irq_handler,
IRQF_TRIGGER_RISING, "smsm_dev", 0);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
return r;
}
r = enable_irq_wake(INT_A9_M2A_5);
if (r < 0)
pr_err("smd_core_init: enable_irq_wake failed for A9_M2A_5\n");
/* we may have missed a signal while booting -- fake
* an interrupt to make sure we process any existing
* state
*/
smsm_irq_handler(0, 0);
pr_info("smd_core_init() done\n");
return 0;
}
#if defined(CONFIG_DEBUG_FS)
static int dump_ch(char *buf, int max, int n,
struct smd_half_channel *s,
struct smd_half_channel *r)
{
return scnprintf(
buf, max,
"ch%02d:"
" %8s(%04d/%04d) %c%c%c%c%c%c%c <->"
" %8s(%04d/%04d) %c%c%c%c%c%c%c\n", n,
chstate(s->state), s->tail, s->head,
s->fDSR ? 'D' : 'd',
s->fCTS ? 'C' : 'c',
s->fCD ? 'C' : 'c',
s->fRI ? 'I' : 'i',
s->fHEAD ? 'W' : 'w',
s->fTAIL ? 'R' : 'r',
s->fSTATE ? 'S' : 's',
chstate(r->state), r->tail, r->head,
r->fDSR ? 'D' : 'd',
r->fCTS ? 'R' : 'r',
r->fCD ? 'C' : 'c',
r->fRI ? 'I' : 'i',
r->fHEAD ? 'W' : 'w',
r->fTAIL ? 'R' : 'r',
r->fSTATE ? 'S' : 's'
);
}
static int debug_read_stat(char *buf, int max)
{
struct smsm_shared *smsm;
char *msg;
int i = 0;
smsm = smem_find(ID_SHARED_STATE,
2 * sizeof(struct smsm_shared));
msg = smem_find(ID_DIAG_ERR_MSG, SZ_DIAG_ERR_MSG);
if (smsm) {
if (smsm[1].state & SMSM_RESET)
i += scnprintf(buf + i, max - i,
"smsm: ARM9 HAS CRASHED\n");
i += scnprintf(buf + i, max - i, "smsm: a9: %08x a11: %08x\n",
smsm[0].state, smsm[1].state);
} else {
i += scnprintf(buf + i, max - i, "smsm: cannot find\n");
}
if (msg) {
msg[SZ_DIAG_ERR_MSG - 1] = 0;
i += scnprintf(buf + i, max - i, "diag: '%s'\n", msg);
}
return i;
}
static int debug_read_mem(char *buf, int max)
{
unsigned n;
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
struct smem_heap_entry *toc = shared->heap_toc;
int i = 0;
i += scnprintf(buf + i, max - i,
"heap: init=%d free=%d remain=%d\n",
shared->heap_info.initialized,
shared->heap_info.free_offset,
shared->heap_info.heap_remaining);
for (n = 0; n < SMEM_NUM_ITEMS; n++) {
if (toc[n].allocated == 0)
continue;
i += scnprintf(buf + i, max - i,
"%04d: offsed %08x size %08x\n",
n, toc[n].offset, toc[n].size);
}
return i;
}
static int debug_read_ch(char *buf, int max)
{
struct smd_shared *shared;
int n, i = 0;
for (n = 0; n < SMD_CHANNELS; n++) {
shared = smem_find(ID_SMD_CHANNELS + n,
sizeof(struct smd_shared));
if (shared == 0)
continue;
i += dump_ch(buf + i, max - i, n, &shared->ch0, &shared->ch1);
}
return i;
}
static int debug_read_version(char *buf, int max)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
unsigned version = shared->version[VERSION_MODEM];
return sprintf(buf, "%d.%d\n", version >> 16, version & 0xffff);
}
static int debug_read_build_id(char *buf, int max)
{
unsigned size;
void *data;
data = _smem_find(SMEM_HW_SW_BUILD_ID, &size);
if (!data)
return 0;
if (size >= max)
size = max;
memcpy(buf, data, size);
return size;
}
static int debug_read_alloc_tbl(char *buf, int max)
{
struct smd_alloc_elm *shared;
int n, i = 0;
shared = smem_find(ID_CH_ALLOC_TBL, sizeof(*shared) * 64);
for (n = 0; n < 64; n++) {
if (shared[n].ref_count == 0)
continue;
i += scnprintf(buf + i, max - i,
"%03d: %20s cid=%02d ctype=%d ref_count=%d\n",
n, shared[n].name, shared[n].cid,
shared[n].ctype, shared[n].ref_count);
}
return i;
}
static int debug_boom(char *buf, int max)
{
unsigned ms = 5000;
msm_proc_comm(PCOM_RESET_MODEM, &ms, 0);
return 0;
}
#define DEBUG_BUFMAX 4096
static char debug_buffer[DEBUG_BUFMAX];
static ssize_t debug_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int (*fill)(char *buf, int max) = file->private_data;
int bsize = fill(debug_buffer, DEBUG_BUFMAX);
return simple_read_from_buffer(buf, count, ppos, debug_buffer, bsize);
}
static int debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations debug_ops = {
.read = debug_read,
.open = debug_open,
};
static void debug_create(const char *name, mode_t mode,
struct dentry *dent,
int (*fill)(char *buf, int max))
{
debugfs_create_file(name, mode, dent, fill, &debug_ops);
}
static void smd_debugfs_init(void)
{
struct dentry *dent;
dent = debugfs_create_dir("smd", 0);
if (IS_ERR(dent))
return;
debug_create("ch", 0444, dent, debug_read_ch);
debug_create("stat", 0444, dent, debug_read_stat);
debug_create("mem", 0444, dent, debug_read_mem);
debug_create("version", 0444, dent, debug_read_version);
debug_create("tbl", 0444, dent, debug_read_alloc_tbl);
debug_create("build", 0444, dent, debug_read_build_id);
debug_create("boom", 0444, dent, debug_boom);
}
#else
static void smd_debugfs_init(void) {}
#endif
static int __init msm_smd_probe(struct platform_device *pdev)
{
pr_info("smd_init()\n");
INIT_WORK(&probe_work, smd_channel_probe_worker);
if (smd_core_init()) {
pr_err("smd_core_init() failed\n");
return -1;
}
do_smd_probe();
msm_check_for_modem_crash = check_for_modem_crash;
smd_debugfs_init();
smd_initialized = 1;
return 0;
}
static struct platform_driver msm_smd_driver = {
.probe = msm_smd_probe,
.driver = {
.name = MODULE_NAME,
.owner = THIS_MODULE,
},
};
static int __init msm_smd_init(void)
{
return platform_driver_register(&msm_smd_driver);
}
module_init(msm_smd_init);
MODULE_DESCRIPTION("MSM Shared Memory Core");
MODULE_AUTHOR("Brian Swetland <swetland@google.com>");
MODULE_LICENSE("GPL");
/* arch/arm/mach-msm/smd_private.h
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007 QUALCOMM Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ARCH_ARM_MACH_MSM_MSM_SMD_PRIVATE_H_
#define _ARCH_ARM_MACH_MSM_MSM_SMD_PRIVATE_H_
struct smem_heap_info {
unsigned initialized;
unsigned free_offset;
unsigned heap_remaining;
unsigned reserved;
};
struct smem_heap_entry {
unsigned allocated;
unsigned offset;
unsigned size;
unsigned reserved;
};
struct smem_proc_comm {
unsigned command;
unsigned status;
unsigned data1;
unsigned data2;
};
#define PC_APPS 0
#define PC_MODEM 1
#define VERSION_QDSP6 4
#define VERSION_APPS_SBL 6
#define VERSION_MODEM_SBL 7
#define VERSION_APPS 8
#define VERSION_MODEM 9
struct smem_shared {
struct smem_proc_comm proc_comm[4];
unsigned version[32];
struct smem_heap_info heap_info;
struct smem_heap_entry heap_toc[128];
};
struct smsm_shared {
unsigned host;
unsigned state;
};
struct smsm_interrupt_info {
uint32_t aArm_en_mask;
uint32_t aArm_interrupts_pending;
uint32_t aArm_wakeup_reason;
};
#define SZ_DIAG_ERR_MSG 0xC8
#define ID_DIAG_ERR_MSG SMEM_DIAG_ERR_MESSAGE
#define ID_SMD_CHANNELS SMEM_SMD_BASE_ID
#define ID_SHARED_STATE SMEM_SMSM_SHARED_STATE
#define ID_CH_ALLOC_TBL SMEM_CHANNEL_ALLOC_TBL
#define SMSM_INIT 0x000001
#define SMSM_SMDINIT 0x000008
#define SMSM_RPCINIT 0x000020
#define SMSM_RESET 0x000040
#define SMSM_RSA 0x0080
#define SMSM_RUN 0x000100
#define SMSM_PWRC 0x0200
#define SMSM_TIMEWAIT 0x0400
#define SMSM_TIMEINIT 0x0800
#define SMSM_PWRC_EARLY_EXIT 0x1000
#define SMSM_WFPI 0x2000
#define SMSM_SLEEP 0x4000
#define SMSM_SLEEPEXIT 0x8000
#define SMSM_OEMSBL_RELEASE 0x10000
#define SMSM_PWRC_SUSPEND 0x200000
#define SMSM_WKUP_REASON_RPC 0x00000001
#define SMSM_WKUP_REASON_INT 0x00000002
#define SMSM_WKUP_REASON_GPIO 0x00000004
#define SMSM_WKUP_REASON_TIMER 0x00000008
#define SMSM_WKUP_REASON_ALARM 0x00000010
#define SMSM_WKUP_REASON_RESET 0x00000020
void *smem_alloc(unsigned id, unsigned size);
int smsm_change_state(uint32_t clear_mask, uint32_t set_mask);
uint32_t smsm_get_state(void);
int smsm_set_sleep_duration(uint32_t delay);
int smsm_set_interrupt_info(struct smsm_interrupt_info *info);
void smsm_print_sleep_info(void);
#define SMEM_NUM_SMD_CHANNELS 64
typedef enum {
/* fixed items */
SMEM_PROC_COMM = 0,
SMEM_HEAP_INFO,
SMEM_ALLOCATION_TABLE,
SMEM_VERSION_INFO,
SMEM_HW_RESET_DETECT,
SMEM_AARM_WARM_BOOT,
SMEM_DIAG_ERR_MESSAGE,
SMEM_SPINLOCK_ARRAY,
SMEM_MEMORY_BARRIER_LOCATION,
/* dynamic items */
SMEM_AARM_PARTITION_TABLE,
SMEM_AARM_BAD_BLOCK_TABLE,
SMEM_RESERVE_BAD_BLOCKS,
SMEM_WM_UUID,
SMEM_CHANNEL_ALLOC_TBL,
SMEM_SMD_BASE_ID,
SMEM_SMEM_LOG_IDX = SMEM_SMD_BASE_ID + SMEM_NUM_SMD_CHANNELS,
SMEM_SMEM_LOG_EVENTS,
SMEM_SMEM_STATIC_LOG_IDX,
SMEM_SMEM_STATIC_LOG_EVENTS,
SMEM_SMEM_SLOW_CLOCK_SYNC,
SMEM_SMEM_SLOW_CLOCK_VALUE,
SMEM_BIO_LED_BUF,
SMEM_SMSM_SHARED_STATE,
SMEM_SMSM_INT_INFO,
SMEM_SMSM_SLEEP_DELAY,
SMEM_SMSM_LIMIT_SLEEP,
SMEM_SLEEP_POWER_COLLAPSE_DISABLED,
SMEM_KEYPAD_KEYS_PRESSED,
SMEM_KEYPAD_STATE_UPDATED,
SMEM_KEYPAD_STATE_IDX,
SMEM_GPIO_INT,
SMEM_MDDI_LCD_IDX,
SMEM_MDDI_HOST_DRIVER_STATE,
SMEM_MDDI_LCD_DISP_STATE,
SMEM_LCD_CUR_PANEL,
SMEM_MARM_BOOT_SEGMENT_INFO,
SMEM_AARM_BOOT_SEGMENT_INFO,
SMEM_SLEEP_STATIC,
SMEM_SCORPION_FREQUENCY,
SMEM_SMD_PROFILES,
SMEM_TSSC_BUSY,
SMEM_HS_SUSPEND_FILTER_INFO,
SMEM_BATT_INFO,
SMEM_APPS_BOOT_MODE,
SMEM_VERSION_FIRST,
SMEM_VERSION_LAST = SMEM_VERSION_FIRST + 24,
SMEM_OSS_RRCASN1_BUF1,
SMEM_OSS_RRCASN1_BUF2,
SMEM_ID_VENDOR0,
SMEM_ID_VENDOR1,
SMEM_ID_VENDOR2,
SMEM_HW_SW_BUILD_ID,
SMEM_NUM_ITEMS,
} smem_mem_type;
#endif
/* arch/arm/mach-msm/smd_qmi.c
*
* QMI Control Driver -- Manages network data connections.
*
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/miscdevice.h>
#include <linux/workqueue.h>
#include <linux/uaccess.h>
#include <mach/msm_smd.h>
#define QMI_CTL 0x00
#define QMI_WDS 0x01
#define QMI_DMS 0x02
#define QMI_NAS 0x03
#define QMI_RESULT_SUCCESS 0x0000
#define QMI_RESULT_FAILURE 0x0001
struct qmi_msg {
unsigned char service;
unsigned char client_id;
unsigned short txn_id;
unsigned short type;
unsigned short size;
unsigned char *tlv;
};
#define qmi_ctl_client_id 0
#define STATE_OFFLINE 0
#define STATE_QUERYING 1
#define STATE_ONLINE 2
struct qmi_ctxt {
struct miscdevice misc;
struct mutex lock;
unsigned char ctl_txn_id;
unsigned char wds_client_id;
unsigned short wds_txn_id;
unsigned wds_busy;
unsigned wds_handle;
unsigned state_dirty;
unsigned state;
unsigned char addr[4];
unsigned char mask[4];
unsigned char gateway[4];
unsigned char dns1[4];
unsigned char dns2[4];
smd_channel_t *ch;
const char *ch_name;
struct work_struct open_work;
struct work_struct read_work;
};
static struct qmi_ctxt *qmi_minor_to_ctxt(unsigned n);
static void qmi_read_work(struct work_struct *ws);
static void qmi_open_work(struct work_struct *work);
void qmi_ctxt_init(struct qmi_ctxt *ctxt, unsigned n)
{
mutex_init(&ctxt->lock);
INIT_WORK(&ctxt->read_work, qmi_read_work);
INIT_WORK(&ctxt->open_work, qmi_open_work);
ctxt->ctl_txn_id = 1;
ctxt->wds_txn_id = 1;
ctxt->wds_busy = 1;
ctxt->state = STATE_OFFLINE;
}
static struct workqueue_struct *qmi_wq;
static int verbose = 0;
/* anyone waiting for a state change waits here */
static DECLARE_WAIT_QUEUE_HEAD(qmi_wait_queue);
static void qmi_dump_msg(struct qmi_msg *msg, const char *prefix)
{
unsigned sz, n;
unsigned char *x;
if (!verbose)
return;
printk(KERN_INFO
"qmi: %s: svc=%02x cid=%02x tid=%04x type=%04x size=%04x\n",
prefix, msg->service, msg->client_id,
msg->txn_id, msg->type, msg->size);
x = msg->tlv;
sz = msg->size;
while (sz >= 3) {
sz -= 3;
n = x[1] | (x[2] << 8);
if (n > sz)
break;
printk(KERN_INFO "qmi: %s: tlv: %02x %04x { ",
prefix, x[0], n);
x += 3;
sz -= n;
while (n-- > 0)
printk("%02x ", *x++);
printk("}\n");
}
}
int qmi_add_tlv(struct qmi_msg *msg,
unsigned type, unsigned size, const void *data)
{
unsigned char *x = msg->tlv + msg->size;
x[0] = type;
x[1] = size;
x[2] = size >> 8;
memcpy(x + 3, data, size);
msg->size += (size + 3);
return 0;
}
/* Extract a tagged item from a qmi message buffer,
** taking care not to overrun the buffer.
*/
static int qmi_get_tlv(struct qmi_msg *msg,
unsigned type, unsigned size, void *data)
{
unsigned char *x = msg->tlv;
unsigned len = msg->size;
unsigned n;
while (len >= 3) {
len -= 3;
/* size of this item */
n = x[1] | (x[2] << 8);
if (n > len)
break;
if (x[0] == type) {
if (n != size)
return -1;
memcpy(data, x + 3, size);
return 0;
}
x += (n + 3);
len -= n;
}
return -1;
}
static unsigned qmi_get_status(struct qmi_msg *msg, unsigned *error)
{
unsigned short status[2];
if (qmi_get_tlv(msg, 0x02, sizeof(status), status)) {
*error = 0;
return QMI_RESULT_FAILURE;
} else {
*error = status[1];
return status[0];
}
}
/* 0x01 <qmux-header> <payload> */
#define QMUX_HEADER 13
/* should be >= HEADER + FOOTER */
#define QMUX_OVERHEAD 16
static int qmi_send(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned char *data;
unsigned hlen;
unsigned len;
int r;
qmi_dump_msg(msg, "send");
if (msg->service == QMI_CTL)
hlen = QMUX_HEADER - 1;
else
hlen = QMUX_HEADER;
/* QMUX length is total header + total payload - IFC selector */
len = hlen + msg->size - 1;
if (len > 0xffff)
return -1;
data = msg->tlv - hlen;
/* prepend encap and qmux header */
*data++ = 0x01; /* ifc selector */
/* qmux header */
*data++ = len;
*data++ = len >> 8;
*data++ = 0x00; /* flags: client */
*data++ = msg->service;
*data++ = msg->client_id;
/* qmi header */
*data++ = 0x00; /* flags: send */
*data++ = msg->txn_id;
if (msg->service != QMI_CTL)
*data++ = msg->txn_id >> 8;
*data++ = msg->type;
*data++ = msg->type >> 8;
*data++ = msg->size;
*data++ = msg->size >> 8;
/* len + 1 takes the interface selector into account */
r = smd_write(ctxt->ch, msg->tlv - hlen, len + 1);
if (r != len)
return -1;
else
return 0;
}
static void qmi_process_ctl_msg(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned err;
if (msg->type == 0x0022) {
unsigned char n[2];
if (qmi_get_status(msg, &err))
return;
if (qmi_get_tlv(msg, 0x01, sizeof(n), n))
return;
if (n[0] == QMI_WDS) {
printk(KERN_INFO
"qmi: ctl: wds use client_id 0x%02x\n", n[1]);
ctxt->wds_client_id = n[1];
ctxt->wds_busy = 0;
}
}
}
static int qmi_network_get_profile(struct qmi_ctxt *ctxt);
static void swapaddr(unsigned char *src, unsigned char *dst)
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
}
static unsigned char zero[4];
static void qmi_read_runtime_profile(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned char tmp[4];
unsigned r;
r = qmi_get_tlv(msg, 0x1e, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->addr);
r = qmi_get_tlv(msg, 0x21, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->mask);
r = qmi_get_tlv(msg, 0x20, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->gateway);
r = qmi_get_tlv(msg, 0x15, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->dns1);
r = qmi_get_tlv(msg, 0x16, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->dns2);
}
static void qmi_process_unicast_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
unsigned err;
switch (msg->type) {
case 0x0021:
if (qmi_get_status(msg, &err)) {
printk(KERN_ERR
"qmi: wds: network stop failed (%04x)\n", err);
} else {
printk(KERN_INFO
"qmi: wds: network stopped\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
}
break;
case 0x0020:
if (qmi_get_status(msg, &err)) {
printk(KERN_ERR
"qmi: wds: network start failed (%04x)\n", err);
} else if (qmi_get_tlv(msg, 0x01, sizeof(ctxt->wds_handle), &ctxt->wds_handle)) {
printk(KERN_INFO
"qmi: wds no handle?\n");
} else {
printk(KERN_INFO
"qmi: wds: got handle 0x%08x\n",
ctxt->wds_handle);
}
break;
case 0x002D:
printk("qmi: got network profile\n");
if (ctxt->state == STATE_QUERYING) {
qmi_read_runtime_profile(ctxt, msg);
ctxt->state = STATE_ONLINE;
ctxt->state_dirty = 1;
}
break;
default:
printk(KERN_ERR "qmi: unknown msg type 0x%04x\n", msg->type);
}
ctxt->wds_busy = 0;
}
static void qmi_process_broadcast_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
if (msg->type == 0x0022) {
unsigned char n[2];
if (qmi_get_tlv(msg, 0x01, sizeof(n), n))
return;
switch (n[0]) {
case 1:
printk(KERN_INFO "qmi: wds: DISCONNECTED\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
break;
case 2:
printk(KERN_INFO "qmi: wds: CONNECTED\n");
ctxt->state = STATE_QUERYING;
ctxt->state_dirty = 1;
qmi_network_get_profile(ctxt);
break;
case 3:
printk(KERN_INFO "qmi: wds: SUSPENDED\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
}
} else {
printk(KERN_ERR "qmi: unknown bcast msg type 0x%04x\n", msg->type);
}
}
static void qmi_process_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
printk(KERN_INFO "wds: %04x @ %02x\n", msg->type, msg->client_id);
if (msg->client_id == ctxt->wds_client_id) {
qmi_process_unicast_wds_msg(ctxt, msg);
} else if (msg->client_id == 0xff) {
qmi_process_broadcast_wds_msg(ctxt, msg);
} else {
printk(KERN_ERR
"qmi_process_wds_msg client id 0x%02x unknown\n",
msg->client_id);
}
}
static void qmi_process_qmux(struct qmi_ctxt *ctxt,
unsigned char *buf, unsigned sz)
{
struct qmi_msg msg;
/* require a full header */
if (sz < 5)
return;
/* require a size that matches the buffer size */
if (sz != (buf[0] | (buf[1] << 8)))
return;
/* only messages from a service (bit7=1) are allowed */
if (buf[2] != 0x80)
return;
msg.service = buf[3];
msg.client_id = buf[4];
/* annoyingly, CTL messages have a shorter TID */
if (buf[3] == 0) {
if (sz < 7)
return;
msg.txn_id = buf[6];
buf += 7;
sz -= 7;
} else {
if (sz < 8)
return;
msg.txn_id = buf[6] | (buf[7] << 8);
buf += 8;
sz -= 8;
}
/* no type and size!? */
if (sz < 4)
return;
sz -= 4;
msg.type = buf[0] | (buf[1] << 8);
msg.size = buf[2] | (buf[3] << 8);
msg.tlv = buf + 4;
if (sz != msg.size)
return;
qmi_dump_msg(&msg, "recv");
mutex_lock(&ctxt->lock);
switch (msg.service) {
case QMI_CTL:
qmi_process_ctl_msg(ctxt, &msg);
break;
case QMI_WDS:
qmi_process_wds_msg(ctxt, &msg);
break;
default:
printk(KERN_ERR "qmi: msg from unknown svc 0x%02x\n",
msg.service);
break;
}
mutex_unlock(&ctxt->lock);
wake_up(&qmi_wait_queue);
}
#define QMI_MAX_PACKET (256 + QMUX_OVERHEAD)
static void qmi_read_work(struct work_struct *ws)
{
struct qmi_ctxt *ctxt = container_of(ws, struct qmi_ctxt, read_work);
struct smd_channel *ch = ctxt->ch;
unsigned char buf[QMI_MAX_PACKET];
int sz;
for (;;) {
sz = smd_cur_packet_size(ch);
if (sz == 0)
break;
if (sz < smd_read_avail(ch))
break;
if (sz > QMI_MAX_PACKET) {
smd_read(ch, 0, sz);
continue;
}
if (smd_read(ch, buf, sz) != sz) {
printk(KERN_ERR "qmi: not enough data?!\n");
continue;
}
/* interface selector must be 1 */
if (buf[0] != 0x01)
continue;
qmi_process_qmux(ctxt, buf + 1, sz - 1);
}
}
static int qmi_request_wds_cid(struct qmi_ctxt *ctxt);
static void qmi_open_work(struct work_struct *ws)
{
struct qmi_ctxt *ctxt = container_of(ws, struct qmi_ctxt, open_work);
mutex_lock(&ctxt->lock);
qmi_request_wds_cid(ctxt);
mutex_unlock(&ctxt->lock);
}
static void qmi_notify(void *priv, unsigned event)
{
struct qmi_ctxt *ctxt = priv;
switch (event) {
case SMD_EVENT_DATA: {
int sz;
sz = smd_cur_packet_size(ctxt->ch);
if ((sz > 0) && (sz <= smd_read_avail(ctxt->ch)))
queue_work(qmi_wq, &ctxt->read_work);
break;
}
case SMD_EVENT_OPEN:
printk(KERN_INFO "qmi: smd opened\n");
queue_work(qmi_wq, &ctxt->open_work);
break;
case SMD_EVENT_CLOSE:
printk(KERN_INFO "qmi: smd closed\n");
break;
}
}
static int qmi_request_wds_cid(struct qmi_ctxt *ctxt)
{
unsigned char data[64 + QMUX_OVERHEAD];
struct qmi_msg msg;
unsigned char n;
msg.service = QMI_CTL;
msg.client_id = qmi_ctl_client_id;
msg.txn_id = ctxt->ctl_txn_id;
msg.type = 0x0022;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->ctl_txn_id += 2;
n = QMI_WDS;
qmi_add_tlv(&msg, 0x01, 0x01, &n);
return qmi_send(ctxt, &msg);
}
static int qmi_network_get_profile(struct qmi_ctxt *ctxt)
{
unsigned char data[96 + QMUX_OVERHEAD];
struct qmi_msg msg;
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x002D;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
return qmi_send(ctxt, &msg);
}
static int qmi_network_up(struct qmi_ctxt *ctxt, char *apn)
{
unsigned char data[96 + QMUX_OVERHEAD];
struct qmi_msg msg;
char *auth_type;
char *user;
char *pass;
for (user = apn; *user; user++) {
if (*user == ' ') {
*user++ = 0;
break;
}
}
for (pass = user; *pass; pass++) {
if (*pass == ' ') {
*pass++ = 0;
break;
}
}
for (auth_type = pass; *auth_type; auth_type++) {
if (*auth_type == ' ') {
*auth_type++ = 0;
break;
}
}
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x0020;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
qmi_add_tlv(&msg, 0x14, strlen(apn), apn);
if (*auth_type)
qmi_add_tlv(&msg, 0x16, strlen(auth_type), auth_type);
if (*user) {
if (!*auth_type) {
unsigned char x;
x = 3;
qmi_add_tlv(&msg, 0x16, 1, &x);
}
qmi_add_tlv(&msg, 0x17, strlen(user), user);
if (*pass)
qmi_add_tlv(&msg, 0x18, strlen(pass), pass);
}
return qmi_send(ctxt, &msg);
}
static int qmi_network_down(struct qmi_ctxt *ctxt)
{
unsigned char data[16 + QMUX_OVERHEAD];
struct qmi_msg msg;
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x0021;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
qmi_add_tlv(&msg, 0x01, sizeof(ctxt->wds_handle), &ctxt->wds_handle);
return qmi_send(ctxt, &msg);
}
static int qmi_print_state(struct qmi_ctxt *ctxt, char *buf, int max)
{
int i;
char *statename;
if (ctxt->state == STATE_ONLINE) {
statename = "up";
} else if (ctxt->state == STATE_OFFLINE) {
statename = "down";
} else {
statename = "busy";
}
i = scnprintf(buf, max, "STATE=%s\n", statename);
i += scnprintf(buf + i, max - i, "CID=%d\n", ctxt->wds_client_id);
if (ctxt->state != STATE_ONLINE)
return i;
i += scnprintf(buf + i, max - i, "ADDR=%d.%d.%d.%d\n",
ctxt->addr[0], ctxt->addr[1], ctxt->addr[2], ctxt->addr[3]);
i += scnprintf(buf + i, max - i, "MASK=%d.%d.%d.%d\n",
ctxt->mask[0], ctxt->mask[1], ctxt->mask[2], ctxt->mask[3]);
i += scnprintf(buf + i, max - i, "GATEWAY=%d.%d.%d.%d\n",
ctxt->gateway[0], ctxt->gateway[1], ctxt->gateway[2],
ctxt->gateway[3]);
i += scnprintf(buf + i, max - i, "DNS1=%d.%d.%d.%d\n",
ctxt->dns1[0], ctxt->dns1[1], ctxt->dns1[2], ctxt->dns1[3]);
i += scnprintf(buf + i, max - i, "DNS2=%d.%d.%d.%d\n",
ctxt->dns2[0], ctxt->dns2[1], ctxt->dns2[2], ctxt->dns2[3]);
return i;
}
static ssize_t qmi_read(struct file *fp, char __user *buf,
size_t count, loff_t *pos)
{
struct qmi_ctxt *ctxt = fp->private_data;
char msg[256];
int len;
int r;
mutex_lock(&ctxt->lock);
for (;;) {
if (ctxt->state_dirty) {
ctxt->state_dirty = 0;
len = qmi_print_state(ctxt, msg, 256);
break;
}
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, ctxt->state_dirty);
if (r < 0)
return r;
mutex_lock(&ctxt->lock);
}
mutex_unlock(&ctxt->lock);
if (len > count)
len = count;
if (copy_to_user(buf, msg, len))
return -EFAULT;
return len;
}
static ssize_t qmi_write(struct file *fp, const char __user *buf,
size_t count, loff_t *pos)
{
struct qmi_ctxt *ctxt = fp->private_data;
unsigned char cmd[64];
int len;
int r;
if (count < 1)
return 0;
len = count > 63 ? 63 : count;
if (copy_from_user(cmd, buf, len))
return -EFAULT;
cmd[len] = 0;
/* lazy */
if (cmd[len-1] == '\n') {
cmd[len-1] = 0;
len--;
}
if (!strncmp(cmd, "verbose", 7)) {
verbose = 1;
} else if (!strncmp(cmd, "terse", 5)) {
verbose = 0;
} else if (!strncmp(cmd, "poll", 4)) {
ctxt->state_dirty = 1;
wake_up(&qmi_wait_queue);
} else if (!strncmp(cmd, "down", 4)) {
retry_down:
mutex_lock(&ctxt->lock);
if (ctxt->wds_busy) {
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, !ctxt->wds_busy);
if (r < 0)
return r;
goto retry_down;
}
ctxt->wds_busy = 1;
qmi_network_down(ctxt);
mutex_unlock(&ctxt->lock);
} else if (!strncmp(cmd, "up:", 3)) {
retry_up:
mutex_lock(&ctxt->lock);
if (ctxt->wds_busy) {
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, !ctxt->wds_busy);
if (r < 0)
return r;
goto retry_up;
}
ctxt->wds_busy = 1;
qmi_network_up(ctxt, cmd+3);
mutex_unlock(&ctxt->lock);
} else {
return -EINVAL;
}
return count;
}
static int qmi_open(struct inode *ip, struct file *fp)
{
struct qmi_ctxt *ctxt = qmi_minor_to_ctxt(MINOR(ip->i_rdev));
int r = 0;
if (!ctxt) {
printk(KERN_ERR "unknown qmi misc %d\n", MINOR(ip->i_rdev));
return -ENODEV;
}
fp->private_data = ctxt;
mutex_lock(&ctxt->lock);
if (ctxt->ch == 0)
r = smd_open(ctxt->ch_name, &ctxt->ch, ctxt, qmi_notify);
if (r == 0)
wake_up(&qmi_wait_queue);
mutex_unlock(&ctxt->lock);
return r;
}
static int qmi_release(struct inode *ip, struct file *fp)
{
return 0;
}
static struct file_operations qmi_fops = {
.owner = THIS_MODULE,
.read = qmi_read,
.write = qmi_write,
.open = qmi_open,
.release = qmi_release,
};
static struct qmi_ctxt qmi_device0 = {
.ch_name = "SMD_DATA5_CNTL",
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi0",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt qmi_device1 = {
.ch_name = "SMD_DATA6_CNTL",
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi1",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt qmi_device2 = {
.ch_name = "SMD_DATA7_CNTL",
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi2",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt *qmi_minor_to_ctxt(unsigned n)
{
if (n == qmi_device0.misc.minor)
return &qmi_device0;
if (n == qmi_device1.misc.minor)
return &qmi_device1;
if (n == qmi_device2.misc.minor)
return &qmi_device2;
return 0;
}
static int __init qmi_init(void)
{
int ret;
qmi_wq = create_singlethread_workqueue("qmi");
if (qmi_wq == 0)
return -ENOMEM;
qmi_ctxt_init(&qmi_device0, 0);
qmi_ctxt_init(&qmi_device1, 1);
qmi_ctxt_init(&qmi_device2, 2);
ret = misc_register(&qmi_device0.misc);
if (ret == 0)
ret = misc_register(&qmi_device1.misc);
if (ret == 0)
ret = misc_register(&qmi_device2.misc);
return ret;
}
module_init(qmi_init);
/* arch/arm/mach-msm/smd_rpcrouter.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2009 QUALCOMM Incorporated.
* Author: San Mehat <san@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* TODO: handle cases where smd_write() will tempfail due to full fifo */
/* TODO: thread priority? schedule a work to bump it? */
/* TODO: maybe make server_list_lock a mutex */
/* TODO: pool fragments to avoid kmalloc/kfree churn */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/cdev.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <mach/msm_smd.h>
#include "smd_rpcrouter.h"
#define TRACE_R2R_MSG 0
#define TRACE_R2R_RAW 0
#define TRACE_RPC_MSG 0
#define TRACE_NOTIFY_MSG 0
#define MSM_RPCROUTER_DEBUG 0
#define MSM_RPCROUTER_DEBUG_PKT 0
#define MSM_RPCROUTER_R2R_DEBUG 0
#define DUMP_ALL_RECEIVED_HEADERS 0
#define DIAG(x...) printk("[RR] ERROR " x)
#if MSM_RPCROUTER_DEBUG
#define D(x...) printk(x)
#else
#define D(x...) do {} while (0)
#endif
#if TRACE_R2R_MSG
#define RR(x...) printk("[RR] "x)
#else
#define RR(x...) do {} while (0)
#endif
#if TRACE_RPC_MSG
#define IO(x...) printk("[RPC] "x)
#else
#define IO(x...) do {} while (0)
#endif
#if TRACE_NOTIFY_MSG
#define NTFY(x...) printk(KERN_ERR "[NOTIFY] "x)
#else
#define NTFY(x...) do {} while (0)
#endif
static LIST_HEAD(local_endpoints);
static LIST_HEAD(remote_endpoints);
static LIST_HEAD(server_list);
static smd_channel_t *smd_channel;
static int initialized;
static wait_queue_head_t newserver_wait;
static wait_queue_head_t smd_wait;
static DEFINE_SPINLOCK(local_endpoints_lock);
static DEFINE_SPINLOCK(remote_endpoints_lock);
static DEFINE_SPINLOCK(server_list_lock);
static DEFINE_SPINLOCK(smd_lock);
static struct workqueue_struct *rpcrouter_workqueue;
static int rpcrouter_need_len;
static atomic_t next_xid = ATOMIC_INIT(1);
static uint8_t next_pacmarkid;
static void do_read_data(struct work_struct *work);
static void do_create_pdevs(struct work_struct *work);
static void do_create_rpcrouter_pdev(struct work_struct *work);
static DECLARE_WORK(work_read_data, do_read_data);
static DECLARE_WORK(work_create_pdevs, do_create_pdevs);
static DECLARE_WORK(work_create_rpcrouter_pdev, do_create_rpcrouter_pdev);
#define RR_STATE_IDLE 0
#define RR_STATE_HEADER 1
#define RR_STATE_BODY 2
#define RR_STATE_ERROR 3
struct rr_context {
struct rr_packet *pkt;
uint8_t *ptr;
uint32_t state; /* current assembly state */
uint32_t count; /* bytes needed in this state */
};
static struct rr_context the_rr_context;
static struct platform_device rpcrouter_pdev = {
.name = "oncrpc_router",
.id = -1,
};
static int rpcrouter_send_control_msg(union rr_control_msg *msg)
{
struct rr_header hdr;
unsigned long flags;
int need;
if (!(msg->cmd == RPCROUTER_CTRL_CMD_HELLO) && !initialized) {
printk(KERN_ERR "rpcrouter_send_control_msg(): Warning, "
"router not initialized\n");
return -EINVAL;
}
hdr.version = RPCROUTER_VERSION;
hdr.type = msg->cmd;
hdr.src_pid = RPCROUTER_PID_LOCAL;
hdr.src_cid = RPCROUTER_ROUTER_ADDRESS;
hdr.confirm_rx = 0;
hdr.size = sizeof(*msg);
hdr.dst_pid = 0;
hdr.dst_cid = RPCROUTER_ROUTER_ADDRESS;
/* TODO: what if channel is full? */
need = sizeof(hdr) + hdr.size;
spin_lock_irqsave(&smd_lock, flags);
while (smd_write_avail(smd_channel) < need) {
spin_unlock_irqrestore(&smd_lock, flags);
msleep(250);
spin_lock_irqsave(&smd_lock, flags);
}
smd_write(smd_channel, &hdr, sizeof(hdr));
smd_write(smd_channel, msg, hdr.size);
spin_unlock_irqrestore(&smd_lock, flags);
return 0;
}
static struct rr_server *rpcrouter_create_server(uint32_t pid,
uint32_t cid,
uint32_t prog,
uint32_t ver)
{
struct rr_server *server;
unsigned long flags;
int rc;
server = kmalloc(sizeof(struct rr_server), GFP_KERNEL);
if (!server)
return ERR_PTR(-ENOMEM);
memset(server, 0, sizeof(struct rr_server));
server->pid = pid;
server->cid = cid;
server->prog = prog;
server->vers = ver;
spin_lock_irqsave(&server_list_lock, flags);
list_add_tail(&server->list, &server_list);
spin_unlock_irqrestore(&server_list_lock, flags);
if (pid == RPCROUTER_PID_REMOTE) {
rc = msm_rpcrouter_create_server_cdev(server);
if (rc < 0)
goto out_fail;
}
return server;
out_fail:
spin_lock_irqsave(&server_list_lock, flags);
list_del(&server->list);
spin_unlock_irqrestore(&server_list_lock, flags);
kfree(server);
return ERR_PTR(rc);
}
static void rpcrouter_destroy_server(struct rr_server *server)
{
unsigned long flags;
spin_lock_irqsave(&server_list_lock, flags);
list_del(&server->list);
spin_unlock_irqrestore(&server_list_lock, flags);
device_destroy(msm_rpcrouter_class, server->device_number);
kfree(server);
}
static struct rr_server *rpcrouter_lookup_server(uint32_t prog, uint32_t ver)
{
struct rr_server *server;
unsigned long flags;
spin_lock_irqsave(&server_list_lock, flags);
list_for_each_entry(server, &server_list, list) {
if (server->prog == prog
&& server->vers == ver) {
spin_unlock_irqrestore(&server_list_lock, flags);
return server;
}
}
spin_unlock_irqrestore(&server_list_lock, flags);
return NULL;
}
static struct rr_server *rpcrouter_lookup_server_by_dev(dev_t dev)
{
struct rr_server *server;
unsigned long flags;
spin_lock_irqsave(&server_list_lock, flags);
list_for_each_entry(server, &server_list, list) {
if (server->device_number == dev) {
spin_unlock_irqrestore(&server_list_lock, flags);
return server;
}
}
spin_unlock_irqrestore(&server_list_lock, flags);
return NULL;
}
struct msm_rpc_endpoint *msm_rpcrouter_create_local_endpoint(dev_t dev)
{
struct msm_rpc_endpoint *ept;
unsigned long flags;
ept = kmalloc(sizeof(struct msm_rpc_endpoint), GFP_KERNEL);
if (!ept)
return NULL;
memset(ept, 0, sizeof(struct msm_rpc_endpoint));
/* mark no reply outstanding */
ept->reply_pid = 0xffffffff;
ept->cid = (uint32_t) ept;
ept->pid = RPCROUTER_PID_LOCAL;
ept->dev = dev;
if ((dev != msm_rpcrouter_devno) && (dev != MKDEV(0, 0))) {
struct rr_server *srv;
/*
* This is a userspace client which opened
* a program/ver devicenode. Bind the client
* to that destination
*/
srv = rpcrouter_lookup_server_by_dev(dev);
/* TODO: bug? really? */
BUG_ON(!srv);
ept->dst_pid = srv->pid;
ept->dst_cid = srv->cid;
ept->dst_prog = cpu_to_be32(srv->prog);
ept->dst_vers = cpu_to_be32(srv->vers);
D("Creating local ept %p @ %08x:%08x\n", ept, srv->prog, srv->vers);
} else {
/* mark not connected */
ept->dst_pid = 0xffffffff;
D("Creating a master local ept %p\n", ept);
}
init_waitqueue_head(&ept->wait_q);
INIT_LIST_HEAD(&ept->read_q);
spin_lock_init(&ept->read_q_lock);
INIT_LIST_HEAD(&ept->incomplete);
spin_lock_irqsave(&local_endpoints_lock, flags);
list_add_tail(&ept->list, &local_endpoints);
spin_unlock_irqrestore(&local_endpoints_lock, flags);
return ept;
}
int msm_rpcrouter_destroy_local_endpoint(struct msm_rpc_endpoint *ept)
{
int rc;
union rr_control_msg msg;
msg.cmd = RPCROUTER_CTRL_CMD_REMOVE_CLIENT;
msg.cli.pid = ept->pid;
msg.cli.cid = ept->cid;
RR("x REMOVE_CLIENT id=%d:%08x\n", ept->pid, ept->cid);
rc = rpcrouter_send_control_msg(&msg);
if (rc < 0)
return rc;
list_del(&ept->list);
kfree(ept);
return 0;
}
static int rpcrouter_create_remote_endpoint(uint32_t cid)
{
struct rr_remote_endpoint *new_c;
unsigned long flags;
new_c = kmalloc(sizeof(struct rr_remote_endpoint), GFP_KERNEL);
if (!new_c)
return -ENOMEM;
memset(new_c, 0, sizeof(struct rr_remote_endpoint));
new_c->cid = cid;
new_c->pid = RPCROUTER_PID_REMOTE;
init_waitqueue_head(&new_c->quota_wait);
spin_lock_init(&new_c->quota_lock);
spin_lock_irqsave(&remote_endpoints_lock, flags);
list_add_tail(&new_c->list, &remote_endpoints);
spin_unlock_irqrestore(&remote_endpoints_lock, flags);
return 0;
}
static struct msm_rpc_endpoint *rpcrouter_lookup_local_endpoint(uint32_t cid)
{
struct msm_rpc_endpoint *ept;
unsigned long flags;
spin_lock_irqsave(&local_endpoints_lock, flags);
list_for_each_entry(ept, &local_endpoints, list) {
if (ept->cid == cid) {
spin_unlock_irqrestore(&local_endpoints_lock, flags);
return ept;
}
}
spin_unlock_irqrestore(&local_endpoints_lock, flags);
return NULL;
}
static struct rr_remote_endpoint *rpcrouter_lookup_remote_endpoint(uint32_t cid)
{
struct rr_remote_endpoint *ept;
unsigned long flags;
spin_lock_irqsave(&remote_endpoints_lock, flags);
list_for_each_entry(ept, &remote_endpoints, list) {
if (ept->cid == cid) {
spin_unlock_irqrestore(&remote_endpoints_lock, flags);
return ept;
}
}
spin_unlock_irqrestore(&remote_endpoints_lock, flags);
return NULL;
}
static int process_control_msg(union rr_control_msg *msg, int len)
{
union rr_control_msg ctl;
struct rr_server *server;
struct rr_remote_endpoint *r_ept;
int rc = 0;
unsigned long flags;
if (len != sizeof(*msg)) {
printk(KERN_ERR "rpcrouter: r2r msg size %d != %d\n",
len, sizeof(*msg));
return -EINVAL;
}
switch (msg->cmd) {
case RPCROUTER_CTRL_CMD_HELLO:
RR("o HELLO\n");
RR("x HELLO\n");
memset(&ctl, 0, sizeof(ctl));
ctl.cmd = RPCROUTER_CTRL_CMD_HELLO;
rpcrouter_send_control_msg(&ctl);
initialized = 1;
/* Send list of servers one at a time */
ctl.cmd = RPCROUTER_CTRL_CMD_NEW_SERVER;
/* TODO: long time to hold a spinlock... */
spin_lock_irqsave(&server_list_lock, flags);
list_for_each_entry(server, &server_list, list) {
ctl.srv.pid = server->pid;
ctl.srv.cid = server->cid;
ctl.srv.prog = server->prog;
ctl.srv.vers = server->vers;
RR("x NEW_SERVER id=%d:%08x prog=%08x:%08x\n",
server->pid, server->cid,
server->prog, server->vers);
rpcrouter_send_control_msg(&ctl);
}
spin_unlock_irqrestore(&server_list_lock, flags);
queue_work(rpcrouter_workqueue, &work_create_rpcrouter_pdev);
break;
case RPCROUTER_CTRL_CMD_RESUME_TX:
RR("o RESUME_TX id=%d:%08x\n", msg->cli.pid, msg->cli.cid);
r_ept = rpcrouter_lookup_remote_endpoint(msg->cli.cid);
if (!r_ept) {
printk(KERN_ERR
"rpcrouter: Unable to resume client\n");
break;
}
spin_lock_irqsave(&r_ept->quota_lock, flags);
r_ept->tx_quota_cntr = 0;
spin_unlock_irqrestore(&r_ept->quota_lock, flags);
wake_up(&r_ept->quota_wait);
break;
case RPCROUTER_CTRL_CMD_NEW_SERVER:
RR("o NEW_SERVER id=%d:%08x prog=%08x:%08x\n",
msg->srv.pid, msg->srv.cid, msg->srv.prog, msg->srv.vers);
server = rpcrouter_lookup_server(msg->srv.prog, msg->srv.vers);
if (!server) {
server = rpcrouter_create_server(
msg->srv.pid, msg->srv.cid,
msg->srv.prog, msg->srv.vers);
if (!server)
return -ENOMEM;
/*
* XXX: Verify that its okay to add the
* client to our remote client list
* if we get a NEW_SERVER notification
*/
if (!rpcrouter_lookup_remote_endpoint(msg->srv.cid)) {
rc = rpcrouter_create_remote_endpoint(
msg->srv.cid);
if (rc < 0)
printk(KERN_ERR
"rpcrouter:Client create"
"error (%d)\n", rc);
}
schedule_work(&work_create_pdevs);
wake_up(&newserver_wait);
} else {
if ((server->pid == msg->srv.pid) &&
(server->cid == msg->srv.cid)) {
printk(KERN_ERR "rpcrouter: Duplicate svr\n");
} else {
server->pid = msg->srv.pid;
server->cid = msg->srv.cid;
}
}
break;
case RPCROUTER_CTRL_CMD_REMOVE_SERVER:
RR("o REMOVE_SERVER prog=%08x:%d\n",
msg->srv.prog, msg->srv.vers);
server = rpcrouter_lookup_server(msg->srv.prog, msg->srv.vers);
if (server)
rpcrouter_destroy_server(server);
break;
case RPCROUTER_CTRL_CMD_REMOVE_CLIENT:
RR("o REMOVE_CLIENT id=%d:%08x\n", msg->cli.pid, msg->cli.cid);
if (msg->cli.pid != RPCROUTER_PID_REMOTE) {
printk(KERN_ERR
"rpcrouter: Denying remote removal of "
"local client\n");
break;
}
r_ept = rpcrouter_lookup_remote_endpoint(msg->cli.cid);
if (r_ept) {
spin_lock_irqsave(&remote_endpoints_lock, flags);
list_del(&r_ept->list);
spin_unlock_irqrestore(&remote_endpoints_lock, flags);
kfree(r_ept);
}
/* Notify local clients of this event */
printk(KERN_ERR "rpcrouter: LOCAL NOTIFICATION NOT IMP\n");
rc = -ENOSYS;
break;
default:
RR("o UNKNOWN(%08x)\n", msg->cmd);
rc = -ENOSYS;
}
return rc;
}
static void do_create_rpcrouter_pdev(struct work_struct *work)
{
platform_device_register(&rpcrouter_pdev);
}
static void do_create_pdevs(struct work_struct *work)
{
unsigned long flags;
struct rr_server *server;
/* TODO: race if destroyed while being registered */
spin_lock_irqsave(&server_list_lock, flags);
list_for_each_entry(server, &server_list, list) {
if (server->pid == RPCROUTER_PID_REMOTE) {
if (server->pdev_name[0] == 0) {
spin_unlock_irqrestore(&server_list_lock,
flags);
msm_rpcrouter_create_server_pdev(server);
schedule_work(&work_create_pdevs);
return;
}
}
}
spin_unlock_irqrestore(&server_list_lock, flags);
}
static void rpcrouter_smdnotify(void *_dev, unsigned event)
{
if (event != SMD_EVENT_DATA)
return;
wake_up(&smd_wait);
}
static void *rr_malloc(unsigned sz)
{
void *ptr = kmalloc(sz, GFP_KERNEL);
if (ptr)
return ptr;
printk(KERN_ERR "rpcrouter: kmalloc of %d failed, retrying...\n", sz);
do {
ptr = kmalloc(sz, GFP_KERNEL);
} while (!ptr);
return ptr;
}
/* TODO: deal with channel teardown / restore */
static int rr_read(void *data, int len)
{
int rc;
unsigned long flags;
// printk("rr_read() %d\n", len);
for(;;) {
spin_lock_irqsave(&smd_lock, flags);
if (smd_read_avail(smd_channel) >= len) {
rc = smd_read(smd_channel, data, len);
spin_unlock_irqrestore(&smd_lock, flags);
if (rc == len)
return 0;
else
return -EIO;
}
rpcrouter_need_len = len;
spin_unlock_irqrestore(&smd_lock, flags);
// printk("rr_read: waiting (%d)\n", len);
wait_event(smd_wait, smd_read_avail(smd_channel) >= len);
}
return 0;
}
static uint32_t r2r_buf[RPCROUTER_MSGSIZE_MAX];
static void do_read_data(struct work_struct *work)
{
struct rr_header hdr;
struct rr_packet *pkt;
struct rr_fragment *frag;
struct msm_rpc_endpoint *ept;
uint32_t pm, mid;
unsigned long flags;
if (rr_read(&hdr, sizeof(hdr)))
goto fail_io;
#if TRACE_R2R_RAW
RR("- ver=%d type=%d src=%d:%08x crx=%d siz=%d dst=%d:%08x\n",
hdr.version, hdr.type, hdr.src_pid, hdr.src_cid,
hdr.confirm_rx, hdr.size, hdr.dst_pid, hdr.dst_cid);
#endif
if (hdr.version != RPCROUTER_VERSION) {
DIAG("version %d != %d\n", hdr.version, RPCROUTER_VERSION);
goto fail_data;
}
if (hdr.size > RPCROUTER_MSGSIZE_MAX) {
DIAG("msg size %d > max %d\n", hdr.size, RPCROUTER_MSGSIZE_MAX);
goto fail_data;
}
if (hdr.dst_cid == RPCROUTER_ROUTER_ADDRESS) {
if (rr_read(r2r_buf, hdr.size))
goto fail_io;
process_control_msg((void*) r2r_buf, hdr.size);
goto done;
}
if (hdr.size < sizeof(pm)) {
DIAG("runt packet (no pacmark)\n");
goto fail_data;
}
if (rr_read(&pm, sizeof(pm)))
goto fail_io;
hdr.size -= sizeof(pm);
frag = rr_malloc(hdr.size + sizeof(*frag));
frag->next = NULL;
frag->length = hdr.size;
if (rr_read(frag->data, hdr.size))
goto fail_io;
ept = rpcrouter_lookup_local_endpoint(hdr.dst_cid);
if (!ept) {
DIAG("no local ept for cid %08x\n", hdr.dst_cid);
kfree(frag);
goto done;
}
/* See if there is already a partial packet that matches our mid
* and if so, append this fragment to that packet.
*/
mid = PACMARK_MID(pm);
list_for_each_entry(pkt, &ept->incomplete, list) {
if (pkt->mid == mid) {
pkt->last->next = frag;
pkt->last = frag;
pkt->length += frag->length;
if (PACMARK_LAST(pm)) {
list_del(&pkt->list);
goto packet_complete;
}
goto done;
}
}
/* This mid is new -- create a packet for it, and put it on
* the incomplete list if this fragment is not a last fragment,
* otherwise put it on the read queue.
*/
pkt = rr_malloc(sizeof(struct rr_packet));
pkt->first = frag;
pkt->last = frag;
memcpy(&pkt->hdr, &hdr, sizeof(hdr));
pkt->mid = mid;
pkt->length = frag->length;
if (!PACMARK_LAST(pm)) {
list_add_tail(&pkt->list, &ept->incomplete);
goto done;
}
packet_complete:
spin_lock_irqsave(&ept->read_q_lock, flags);
list_add_tail(&pkt->list, &ept->read_q);
wake_up(&ept->wait_q);
spin_unlock_irqrestore(&ept->read_q_lock, flags);
done:
if (hdr.confirm_rx) {
union rr_control_msg msg;
msg.cmd = RPCROUTER_CTRL_CMD_RESUME_TX;
msg.cli.pid = hdr.dst_pid;
msg.cli.cid = hdr.dst_cid;
RR("x RESUME_TX id=%d:%08x\n", msg.cli.pid, msg.cli.cid);
rpcrouter_send_control_msg(&msg);
}
queue_work(rpcrouter_workqueue, &work_read_data);
return;
fail_io:
fail_data:
printk(KERN_ERR "rpc_router has died\n");
}
void msm_rpc_setup_req(struct rpc_request_hdr *hdr, uint32_t prog,
uint32_t vers, uint32_t proc)
{
memset(hdr, 0, sizeof(struct rpc_request_hdr));
hdr->xid = cpu_to_be32(atomic_add_return(1, &next_xid));
hdr->rpc_vers = cpu_to_be32(2);
hdr->prog = cpu_to_be32(prog);
hdr->vers = cpu_to_be32(vers);
hdr->procedure = cpu_to_be32(proc);
}
struct msm_rpc_endpoint *msm_rpc_open(void)
{
struct msm_rpc_endpoint *ept;
ept = msm_rpcrouter_create_local_endpoint(MKDEV(0, 0));
if (ept == NULL)
return ERR_PTR(-ENOMEM);
return ept;
}
int msm_rpc_close(struct msm_rpc_endpoint *ept)
{
return msm_rpcrouter_destroy_local_endpoint(ept);
}
EXPORT_SYMBOL(msm_rpc_close);
int msm_rpc_write(struct msm_rpc_endpoint *ept, void *buffer, int count)
{
struct rr_header hdr;
uint32_t pacmark;
struct rpc_request_hdr *rq = buffer;
struct rr_remote_endpoint *r_ept;
unsigned long flags;
int needed;
DEFINE_WAIT(__wait);
/* TODO: fragmentation for large outbound packets */
if (count > (RPCROUTER_MSGSIZE_MAX - sizeof(uint32_t)) || !count)
return -EINVAL;
/* snoop the RPC packet and enforce permissions */
/* has to have at least the xid and type fields */
if (count < (sizeof(uint32_t) * 2)) {
printk(KERN_ERR "rr_write: rejecting runt packet\n");
return -EINVAL;
}
if (rq->type == 0) {
/* RPC CALL */
if (count < (sizeof(uint32_t) * 6)) {
printk(KERN_ERR
"rr_write: rejecting runt call packet\n");
return -EINVAL;
}
if (ept->dst_pid == 0xffffffff) {
printk(KERN_ERR "rr_write: not connected\n");
return -ENOTCONN;
}
#if CONFIG_MSM_AMSS_VERSION >= 6350
if ((ept->dst_prog != rq->prog) ||
!msm_rpc_is_compatible_version(
be32_to_cpu(ept->dst_vers),
be32_to_cpu(rq->vers))) {
#else
if (ept->dst_prog != rq->prog || ept->dst_vers != rq->vers) {
#endif
printk(KERN_ERR
"rr_write: cannot write to %08x:%d "
"(bound to %08x:%d)\n",
be32_to_cpu(rq->prog), be32_to_cpu(rq->vers),
be32_to_cpu(ept->dst_prog),
be32_to_cpu(ept->dst_vers));
return -EINVAL;
}
hdr.dst_pid = ept->dst_pid;
hdr.dst_cid = ept->dst_cid;
IO("CALL on ept %p to %08x:%08x @ %d:%08x (%d bytes) (xid %x proc %x)\n",
ept,
be32_to_cpu(rq->prog), be32_to_cpu(rq->vers),
ept->dst_pid, ept->dst_cid, count,
be32_to_cpu(rq->xid), be32_to_cpu(rq->procedure));
} else {
/* RPC REPLY */
/* TODO: locking */
if (ept->reply_pid == 0xffffffff) {
printk(KERN_ERR
"rr_write: rejecting unexpected reply\n");
return -EINVAL;
}
if (ept->reply_xid != rq->xid) {
printk(KERN_ERR
"rr_write: rejecting packet w/ bad xid\n");
return -EINVAL;
}
hdr.dst_pid = ept->reply_pid;
hdr.dst_cid = ept->reply_cid;
/* consume this reply */
ept->reply_pid = 0xffffffff;
IO("REPLY on ept %p to xid=%d @ %d:%08x (%d bytes)\n",
ept,
be32_to_cpu(rq->xid), hdr.dst_pid, hdr.dst_cid, count);
}
r_ept = rpcrouter_lookup_remote_endpoint(hdr.dst_cid);
if (!r_ept) {
printk(KERN_ERR
"msm_rpc_write(): No route to ept "
"[PID %x CID %x]\n", hdr.dst_pid, hdr.dst_cid);
return -EHOSTUNREACH;
}
/* Create routing header */
hdr.type = RPCROUTER_CTRL_CMD_DATA;
hdr.version = RPCROUTER_VERSION;
hdr.src_pid = ept->pid;
hdr.src_cid = ept->cid;
hdr.confirm_rx = 0;
hdr.size = count + sizeof(uint32_t);
for (;;) {
prepare_to_wait(&r_ept->quota_wait, &__wait,
TASK_INTERRUPTIBLE);
spin_lock_irqsave(&r_ept->quota_lock, flags);
if (r_ept->tx_quota_cntr < RPCROUTER_DEFAULT_RX_QUOTA)
break;
if (signal_pending(current) &&
(!(ept->flags & MSM_RPC_UNINTERRUPTIBLE)))
break;
spin_unlock_irqrestore(&r_ept->quota_lock, flags);
schedule();
}
finish_wait(&r_ept->quota_wait, &__wait);
if (signal_pending(current) &&
(!(ept->flags & MSM_RPC_UNINTERRUPTIBLE))) {
spin_unlock_irqrestore(&r_ept->quota_lock, flags);
return -ERESTARTSYS;
}
r_ept->tx_quota_cntr++;
if (r_ept->tx_quota_cntr == RPCROUTER_DEFAULT_RX_QUOTA)
hdr.confirm_rx = 1;
/* bump pacmark while interrupts disabled to avoid race
* probably should be atomic op instead
*/
pacmark = PACMARK(count, ++next_pacmarkid, 0, 1);
spin_unlock_irqrestore(&r_ept->quota_lock, flags);
spin_lock_irqsave(&smd_lock, flags);
needed = sizeof(hdr) + hdr.size;
while (smd_write_avail(smd_channel) < needed) {
spin_unlock_irqrestore(&smd_lock, flags);
msleep(250);
spin_lock_irqsave(&smd_lock, flags);
}
/* TODO: deal with full fifo */
smd_write(smd_channel, &hdr, sizeof(hdr));
smd_write(smd_channel, &pacmark, sizeof(pacmark));
smd_write(smd_channel, buffer, count);
spin_unlock_irqrestore(&smd_lock, flags);
return count;
}
EXPORT_SYMBOL(msm_rpc_write);
/*
* NOTE: It is the responsibility of the caller to kfree buffer
*/
int msm_rpc_read(struct msm_rpc_endpoint *ept, void **buffer,
unsigned user_len, long timeout)
{
struct rr_fragment *frag, *next;
char *buf;
int rc;
rc = __msm_rpc_read(ept, &frag, user_len, timeout);
if (rc <= 0)
return rc;
/* single-fragment messages conveniently can be
* returned as-is (the buffer is at the front)
*/
if (frag->next == 0) {
*buffer = (void*) frag;
return rc;
}
/* multi-fragment messages, we have to do it the
* hard way, which is rather disgusting right now
*/
buf = rr_malloc(rc);
*buffer = buf;
while (frag != NULL) {
memcpy(buf, frag->data, frag->length);
next = frag->next;
buf += frag->length;
kfree(frag);
frag = next;
}
return rc;
}
int msm_rpc_call(struct msm_rpc_endpoint *ept, uint32_t proc,
void *_request, int request_size,
long timeout)
{
return msm_rpc_call_reply(ept, proc,
_request, request_size,
NULL, 0, timeout);
}
EXPORT_SYMBOL(msm_rpc_call);
int msm_rpc_call_reply(struct msm_rpc_endpoint *ept, uint32_t proc,
void *_request, int request_size,
void *_reply, int reply_size,
long timeout)
{
struct rpc_request_hdr *req = _request;
struct rpc_reply_hdr *reply;
int rc;
if (request_size < sizeof(*req))
return -ETOOSMALL;
if (ept->dst_pid == 0xffffffff)
return -ENOTCONN;
/* We can't use msm_rpc_setup_req() here, because dst_prog and
* dst_vers here are already in BE.
*/
memset(req, 0, sizeof(*req));
req->xid = cpu_to_be32(atomic_add_return(1, &next_xid));
req->rpc_vers = cpu_to_be32(2);
req->prog = ept->dst_prog;
req->vers = ept->dst_vers;
req->procedure = cpu_to_be32(proc);
rc = msm_rpc_write(ept, req, request_size);
if (rc < 0)
return rc;
for (;;) {
rc = msm_rpc_read(ept, (void*) &reply, -1, timeout);
if (rc < 0)
return rc;
if (rc < (3 * sizeof(uint32_t))) {
rc = -EIO;
break;
}
/* we should not get CALL packets -- ignore them */
if (reply->type == 0) {
kfree(reply);
continue;
}
/* If an earlier call timed out, we could get the (no
* longer wanted) reply for it. Ignore replies that
* we don't expect.
*/
if (reply->xid != req->xid) {
kfree(reply);
continue;
}
if (reply->reply_stat != 0) {
rc = -EPERM;
break;
}
if (reply->data.acc_hdr.accept_stat != 0) {
rc = -EINVAL;
break;
}
if (_reply == NULL) {
rc = 0;
break;
}
if (rc > reply_size) {
rc = -ENOMEM;
} else {
memcpy(_reply, reply, rc);
}
break;
}
kfree(reply);
return rc;
}
EXPORT_SYMBOL(msm_rpc_call_reply);
static inline int ept_packet_available(struct msm_rpc_endpoint *ept)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&ept->read_q_lock, flags);
ret = !list_empty(&ept->read_q);
spin_unlock_irqrestore(&ept->read_q_lock, flags);
return ret;
}
int __msm_rpc_read(struct msm_rpc_endpoint *ept,
struct rr_fragment **frag_ret,
unsigned len, long timeout)
{
struct rr_packet *pkt;
struct rpc_request_hdr *rq;
DEFINE_WAIT(__wait);
unsigned long flags;
int rc;
IO("READ on ept %p\n", ept);
if (ept->flags & MSM_RPC_UNINTERRUPTIBLE) {
if (timeout < 0) {
wait_event(ept->wait_q, ept_packet_available(ept));
} else {
rc = wait_event_timeout(
ept->wait_q, ept_packet_available(ept),
timeout);
if (rc == 0)
return -ETIMEDOUT;
}
} else {
if (timeout < 0) {
rc = wait_event_interruptible(
ept->wait_q, ept_packet_available(ept));
if (rc < 0)
return rc;
} else {
rc = wait_event_interruptible_timeout(
ept->wait_q, ept_packet_available(ept),
timeout);
if (rc == 0)
return -ETIMEDOUT;
}
}
spin_lock_irqsave(&ept->read_q_lock, flags);
if (list_empty(&ept->read_q)) {
spin_unlock_irqrestore(&ept->read_q_lock, flags);
return -EAGAIN;
}
pkt = list_first_entry(&ept->read_q, struct rr_packet, list);
if (pkt->length > len) {
spin_unlock_irqrestore(&ept->read_q_lock, flags);
return -ETOOSMALL;
}
list_del(&pkt->list);
spin_unlock_irqrestore(&ept->read_q_lock, flags);
rc = pkt->length;
*frag_ret = pkt->first;
rq = (void*) pkt->first->data;
if ((rc >= (sizeof(uint32_t) * 3)) && (rq->type == 0)) {
IO("READ on ept %p is a CALL on %08x:%08x proc %d xid %d\n",
ept, be32_to_cpu(rq->prog), be32_to_cpu(rq->vers),
be32_to_cpu(rq->procedure),
be32_to_cpu(rq->xid));
/* RPC CALL */
if (ept->reply_pid != 0xffffffff) {
printk(KERN_WARNING
"rr_read: lost previous reply xid...\n");
}
/* TODO: locking? */
ept->reply_pid = pkt->hdr.src_pid;
ept->reply_cid = pkt->hdr.src_cid;
ept->reply_xid = rq->xid;
}
#if TRACE_RPC_MSG
else if ((rc >= (sizeof(uint32_t) * 3)) && (rq->type == 1))
IO("READ on ept %p is a REPLY\n", ept);
else IO("READ on ept %p (%d bytes)\n", ept, rc);
#endif
kfree(pkt);
return rc;
}
#if CONFIG_MSM_AMSS_VERSION >= 6350
int msm_rpc_is_compatible_version(uint32_t server_version,
uint32_t client_version)
{
if ((server_version & RPC_VERSION_MODE_MASK) !=
(client_version & RPC_VERSION_MODE_MASK))
return 0;
if (server_version & RPC_VERSION_MODE_MASK)
return server_version == client_version;
return ((server_version & RPC_VERSION_MAJOR_MASK) ==
(client_version & RPC_VERSION_MAJOR_MASK)) &&
((server_version & RPC_VERSION_MINOR_MASK) >=
(client_version & RPC_VERSION_MINOR_MASK));
}
EXPORT_SYMBOL(msm_rpc_is_compatible_version);
static int msm_rpc_get_compatible_server(uint32_t prog,
uint32_t ver,
uint32_t *found_vers)
{
struct rr_server *server;
unsigned long flags;
if (found_vers == NULL)
return 0;
spin_lock_irqsave(&server_list_lock, flags);
list_for_each_entry(server, &server_list, list) {
if ((server->prog == prog) &&
msm_rpc_is_compatible_version(server->vers, ver)) {
*found_vers = server->vers;
spin_unlock_irqrestore(&server_list_lock, flags);
return 0;
}
}
spin_unlock_irqrestore(&server_list_lock, flags);
return -1;
}
#endif
struct msm_rpc_endpoint *msm_rpc_connect(uint32_t prog, uint32_t vers, unsigned flags)
{
struct msm_rpc_endpoint *ept;
struct rr_server *server;
#if CONFIG_MSM_AMSS_VERSION >= 6350
if (!(vers & RPC_VERSION_MODE_MASK)) {
uint32_t found_vers;
if (msm_rpc_get_compatible_server(prog, vers, &found_vers) < 0)
return ERR_PTR(-EHOSTUNREACH);
if (found_vers != vers) {
D("RPC using new version %08x:{%08x --> %08x}\n",
prog, vers, found_vers);
vers = found_vers;
}
}
#endif
server = rpcrouter_lookup_server(prog, vers);
if (!server)
return ERR_PTR(-EHOSTUNREACH);
ept = msm_rpc_open();
if (IS_ERR(ept))
return ept;
ept->flags = flags;
ept->dst_pid = server->pid;
ept->dst_cid = server->cid;
ept->dst_prog = cpu_to_be32(prog);
ept->dst_vers = cpu_to_be32(vers);
return ept;
}
EXPORT_SYMBOL(msm_rpc_connect);
uint32_t msm_rpc_get_vers(struct msm_rpc_endpoint *ept)
{
return be32_to_cpu(ept->dst_vers);
}
EXPORT_SYMBOL(msm_rpc_get_vers);
/* TODO: permission check? */
int msm_rpc_register_server(struct msm_rpc_endpoint *ept,
uint32_t prog, uint32_t vers)
{
int rc;
union rr_control_msg msg;
struct rr_server *server;
server = rpcrouter_create_server(ept->pid, ept->cid,
prog, vers);
if (!server)
return -ENODEV;
msg.srv.cmd = RPCROUTER_CTRL_CMD_NEW_SERVER;
msg.srv.pid = ept->pid;
msg.srv.cid = ept->cid;
msg.srv.prog = prog;
msg.srv.vers = vers;
RR("x NEW_SERVER id=%d:%08x prog=%08x:%08x\n",
ept->pid, ept->cid, prog, vers);
rc = rpcrouter_send_control_msg(&msg);
if (rc < 0)
return rc;
return 0;
}
/* TODO: permission check -- disallow unreg of somebody else's server */
int msm_rpc_unregister_server(struct msm_rpc_endpoint *ept,
uint32_t prog, uint32_t vers)
{
struct rr_server *server;
server = rpcrouter_lookup_server(prog, vers);
if (!server)
return -ENOENT;
rpcrouter_destroy_server(server);
return 0;
}
static int msm_rpcrouter_probe(struct platform_device *pdev)
{
int rc;
/* Initialize what we need to start processing */
INIT_LIST_HEAD(&local_endpoints);
INIT_LIST_HEAD(&remote_endpoints);
init_waitqueue_head(&newserver_wait);
init_waitqueue_head(&smd_wait);
rpcrouter_workqueue = create_singlethread_workqueue("rpcrouter");
if (!rpcrouter_workqueue)
return -ENOMEM;
rc = msm_rpcrouter_init_devices();
if (rc < 0)
goto fail_destroy_workqueue;
/* Open up SMD channel 2 */
initialized = 0;
rc = smd_open("SMD_RPCCALL", &smd_channel, NULL, rpcrouter_smdnotify);
if (rc < 0)
goto fail_remove_devices;
queue_work(rpcrouter_workqueue, &work_read_data);
return 0;
fail_remove_devices:
msm_rpcrouter_exit_devices();
fail_destroy_workqueue:
destroy_workqueue(rpcrouter_workqueue);
return rc;
}
static struct platform_driver msm_smd_channel2_driver = {
.probe = msm_rpcrouter_probe,
.driver = {
.name = "SMD_RPCCALL",
.owner = THIS_MODULE,
},
};
static int __init rpcrouter_init(void)
{
return platform_driver_register(&msm_smd_channel2_driver);
}
module_init(rpcrouter_init);
MODULE_DESCRIPTION("MSM RPC Router");
MODULE_AUTHOR("San Mehat <san@android.com>");
MODULE_LICENSE("GPL");
/** arch/arm/mach-msm/smd_rpcrouter.h
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2008 QUALCOMM Incorporated.
* Author: San Mehat <san@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ARCH_ARM_MACH_MSM_SMD_RPCROUTER_H
#define _ARCH_ARM_MACH_MSM_SMD_RPCROUTER_H
#include <linux/types.h>
#include <linux/list.h>
#include <linux/cdev.h>
#include <linux/platform_device.h>
#include <mach/msm_smd.h>
#include <mach/msm_rpcrouter.h>
/* definitions for the R2R wire protcol */
#define RPCROUTER_VERSION 1
#define RPCROUTER_PROCESSORS_MAX 4
#define RPCROUTER_MSGSIZE_MAX 512
#define RPCROUTER_CLIENT_BCAST_ID 0xffffffff
#define RPCROUTER_ROUTER_ADDRESS 0xfffffffe
#define RPCROUTER_PID_LOCAL 1
#define RPCROUTER_PID_REMOTE 0
#define RPCROUTER_CTRL_CMD_DATA 1
#define RPCROUTER_CTRL_CMD_HELLO 2
#define RPCROUTER_CTRL_CMD_BYE 3
#define RPCROUTER_CTRL_CMD_NEW_SERVER 4
#define RPCROUTER_CTRL_CMD_REMOVE_SERVER 5
#define RPCROUTER_CTRL_CMD_REMOVE_CLIENT 6
#define RPCROUTER_CTRL_CMD_RESUME_TX 7
#define RPCROUTER_CTRL_CMD_EXIT 8
#define RPCROUTER_DEFAULT_RX_QUOTA 5
union rr_control_msg {
uint32_t cmd;
struct {
uint32_t cmd;
uint32_t prog;
uint32_t vers;
uint32_t pid;
uint32_t cid;
} srv;
struct {
uint32_t cmd;
uint32_t pid;
uint32_t cid;
} cli;
};
struct rr_header {
uint32_t version;
uint32_t type;
uint32_t src_pid;
uint32_t src_cid;
uint32_t confirm_rx;
uint32_t size;
uint32_t dst_pid;
uint32_t dst_cid;
};
/* internals */
#define RPCROUTER_MAX_REMOTE_SERVERS 100
struct rr_fragment {
unsigned char data[RPCROUTER_MSGSIZE_MAX];
uint32_t length;
struct rr_fragment *next;
};
struct rr_packet {
struct list_head list;
struct rr_fragment *first;
struct rr_fragment *last;
struct rr_header hdr;
uint32_t mid;
uint32_t length;
};
#define PACMARK_LAST(n) ((n) & 0x80000000)
#define PACMARK_MID(n) (((n) >> 16) & 0xFF)
#define PACMARK_LEN(n) ((n) & 0xFFFF)
static inline uint32_t PACMARK(uint32_t len, uint32_t mid, uint32_t first,
uint32_t last)
{
return (len & 0xFFFF) |
((mid & 0xFF) << 16) |
((!!first) << 30) |
((!!last) << 31);
}
struct rr_server {
struct list_head list;
uint32_t pid;
uint32_t cid;
uint32_t prog;
uint32_t vers;
dev_t device_number;
struct cdev cdev;
struct device *device;
struct rpcsvr_platform_device p_device;
char pdev_name[32];
};
struct rr_remote_endpoint {
uint32_t pid;
uint32_t cid;
int tx_quota_cntr;
spinlock_t quota_lock;
wait_queue_head_t quota_wait;
struct list_head list;
};
struct msm_rpc_endpoint {
struct list_head list;
/* incomplete packets waiting for assembly */
struct list_head incomplete;
/* complete packets waiting to be read */
struct list_head read_q;
spinlock_t read_q_lock;
wait_queue_head_t wait_q;
unsigned flags;
/* endpoint address */
uint32_t pid;
uint32_t cid;
/* bound remote address
* if not connected (dst_pid == 0xffffffff) RPC_CALL writes fail
* RPC_CALLs must be to the prog/vers below or they will fail
*/
uint32_t dst_pid;
uint32_t dst_cid;
uint32_t dst_prog; /* be32 */
uint32_t dst_vers; /* be32 */
/* reply remote address
* if reply_pid == 0xffffffff, none available
* RPC_REPLY writes may only go to the pid/cid/xid of the
* last RPC_CALL we received.
*/
uint32_t reply_pid;
uint32_t reply_cid;
uint32_t reply_xid; /* be32 */
uint32_t next_pm; /* Pacmark sequence */
/* device node if this endpoint is accessed via userspace */
dev_t dev;
};
/* shared between smd_rpcrouter*.c */
int __msm_rpc_read(struct msm_rpc_endpoint *ept,
struct rr_fragment **frag,
unsigned len, long timeout);
struct msm_rpc_endpoint *msm_rpcrouter_create_local_endpoint(dev_t dev);
int msm_rpcrouter_destroy_local_endpoint(struct msm_rpc_endpoint *ept);
int msm_rpcrouter_create_server_cdev(struct rr_server *server);
int msm_rpcrouter_create_server_pdev(struct rr_server *server);
int msm_rpcrouter_init_devices(void);
void msm_rpcrouter_exit_devices(void);
extern dev_t msm_rpcrouter_devno;
extern struct class *msm_rpcrouter_class;
#endif
/* arch/arm/mach-msm/smd_rpcrouter_device.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2007-2009 QUALCOMM Incorporated.
* Author: San Mehat <san@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/cdev.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/platform_device.h>
#include <linux/msm_rpcrouter.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include "smd_rpcrouter.h"
#define SAFETY_MEM_SIZE 65536
/* Next minor # available for a remote server */
static int next_minor = 1;
struct class *msm_rpcrouter_class;
dev_t msm_rpcrouter_devno;
static struct cdev rpcrouter_cdev;
static struct device *rpcrouter_device;
static int rpcrouter_open(struct inode *inode, struct file *filp)
{
int rc;
struct msm_rpc_endpoint *ept;
rc = nonseekable_open(inode, filp);
if (rc < 0)
return rc;
ept = msm_rpcrouter_create_local_endpoint(inode->i_rdev);
if (!ept)
return -ENOMEM;
filp->private_data = ept;
return 0;
}
static int rpcrouter_release(struct inode *inode, struct file *filp)
{
struct msm_rpc_endpoint *ept;
ept = (struct msm_rpc_endpoint *) filp->private_data;
return msm_rpcrouter_destroy_local_endpoint(ept);
}
static ssize_t rpcrouter_read(struct file *filp, char __user *buf,
size_t count, loff_t *ppos)
{
struct msm_rpc_endpoint *ept;
struct rr_fragment *frag, *next;
int rc;
ept = (struct msm_rpc_endpoint *) filp->private_data;
rc = __msm_rpc_read(ept, &frag, count, -1);
if (rc < 0)
return rc;
count = rc;
while (frag != NULL) {
if (copy_to_user(buf, frag->data, frag->length)) {
printk(KERN_ERR
"rpcrouter: could not copy all read data to user!\n");
rc = -EFAULT;
}
buf += frag->length;
next = frag->next;
kfree(frag);
frag = next;
}
return rc;
}
static ssize_t rpcrouter_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
struct msm_rpc_endpoint *ept;
int rc = 0;
void *k_buffer;
ept = (struct msm_rpc_endpoint *) filp->private_data;
/* A check for safety, this seems non-standard */
if (count > SAFETY_MEM_SIZE)
return -EINVAL;
k_buffer = kmalloc(count, GFP_KERNEL);
if (!k_buffer)
return -ENOMEM;
if (copy_from_user(k_buffer, buf, count)) {
rc = -EFAULT;
goto write_out_free;
}
rc = msm_rpc_write(ept, k_buffer, count);
if (rc < 0)
goto write_out_free;
rc = count;
write_out_free:
kfree(k_buffer);
return rc;
}
static unsigned int rpcrouter_poll(struct file *filp,
struct poll_table_struct *wait)
{
struct msm_rpc_endpoint *ept;
unsigned mask = 0;
ept = (struct msm_rpc_endpoint *) filp->private_data;
/* If there's data already in the read queue, return POLLIN.
* Else, wait for the requested amount of time, and check again.
*/
if (!list_empty(&ept->read_q))
mask |= POLLIN;
if (!mask) {
poll_wait(filp, &ept->wait_q, wait);
if (!list_empty(&ept->read_q))
mask |= POLLIN;
}
return mask;
}
static long rpcrouter_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct msm_rpc_endpoint *ept;
struct rpcrouter_ioctl_server_args server_args;
int rc = 0;
uint32_t n;
ept = (struct msm_rpc_endpoint *) filp->private_data;
switch (cmd) {
case RPC_ROUTER_IOCTL_GET_VERSION:
n = RPC_ROUTER_VERSION_V1;
rc = put_user(n, (unsigned int *) arg);
break;
case RPC_ROUTER_IOCTL_GET_MTU:
/* the pacmark word reduces the actual payload
* possible per message
*/
n = RPCROUTER_MSGSIZE_MAX - sizeof(uint32_t);
rc = put_user(n, (unsigned int *) arg);
break;
case RPC_ROUTER_IOCTL_REGISTER_SERVER:
rc = copy_from_user(&server_args, (void *) arg,
sizeof(server_args));
if (rc < 0)
break;
msm_rpc_register_server(ept,
server_args.prog,
server_args.vers);
break;
case RPC_ROUTER_IOCTL_UNREGISTER_SERVER:
rc = copy_from_user(&server_args, (void *) arg,
sizeof(server_args));
if (rc < 0)
break;
msm_rpc_unregister_server(ept,
server_args.prog,
server_args.vers);
break;
case RPC_ROUTER_IOCTL_GET_MINOR_VERSION:
n = MSM_RPC_GET_MINOR(msm_rpc_get_vers(ept));
rc = put_user(n, (unsigned int *)arg);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
static struct file_operations rpcrouter_server_fops = {
.owner = THIS_MODULE,
.open = rpcrouter_open,
.release = rpcrouter_release,
.read = rpcrouter_read,
.write = rpcrouter_write,
.poll = rpcrouter_poll,
.unlocked_ioctl = rpcrouter_ioctl,
};
static struct file_operations rpcrouter_router_fops = {
.owner = THIS_MODULE,
.open = rpcrouter_open,
.release = rpcrouter_release,
.read = rpcrouter_read,
.write = rpcrouter_write,
.poll = rpcrouter_poll,
.unlocked_ioctl = rpcrouter_ioctl,
};
int msm_rpcrouter_create_server_cdev(struct rr_server *server)
{
int rc;
uint32_t dev_vers;
if (next_minor == RPCROUTER_MAX_REMOTE_SERVERS) {
printk(KERN_ERR
"rpcrouter: Minor numbers exhausted - Increase "
"RPCROUTER_MAX_REMOTE_SERVERS\n");
return -ENOBUFS;
}
#if CONFIG_MSM_AMSS_VERSION >= 6350
/* Servers with bit 31 set are remote msm servers with hashkey version.
* Servers with bit 31 not set are remote msm servers with
* backwards compatible version type in which case the minor number
* (lower 16 bits) is set to zero.
*
*/
if ((server->vers & RPC_VERSION_MODE_MASK))
dev_vers = server->vers;
else
dev_vers = server->vers & RPC_VERSION_MAJOR_MASK;
#else
dev_vers = server->vers;
#endif
server->device_number =
MKDEV(MAJOR(msm_rpcrouter_devno), next_minor++);
server->device =
device_create(msm_rpcrouter_class, rpcrouter_device,
server->device_number, NULL, "%.8x:%.8x",
server->prog, dev_vers);
if (IS_ERR(server->device)) {
printk(KERN_ERR
"rpcrouter: Unable to create device (%ld)\n",
PTR_ERR(server->device));
return PTR_ERR(server->device);;
}
cdev_init(&server->cdev, &rpcrouter_server_fops);
server->cdev.owner = THIS_MODULE;
rc = cdev_add(&server->cdev, server->device_number, 1);
if (rc < 0) {
printk(KERN_ERR
"rpcrouter: Unable to add chrdev (%d)\n", rc);
device_destroy(msm_rpcrouter_class, server->device_number);
return rc;
}
return 0;
}
/* for backward compatible version type (31st bit cleared)
* clearing minor number (lower 16 bits) in device name
* is neccessary for driver binding
*/
int msm_rpcrouter_create_server_pdev(struct rr_server *server)
{
sprintf(server->pdev_name, "rs%.8x:%.8x",
server->prog,
#if CONFIG_MSM_AMSS_VERSION >= 6350
(server->vers & RPC_VERSION_MODE_MASK) ? server->vers :
(server->vers & RPC_VERSION_MAJOR_MASK));
#else
server->vers);
#endif
server->p_device.base.id = -1;
server->p_device.base.name = server->pdev_name;
server->p_device.prog = server->prog;
server->p_device.vers = server->vers;
platform_device_register(&server->p_device.base);
return 0;
}
int msm_rpcrouter_init_devices(void)
{
int rc;
int major;
/* Create the device nodes */
msm_rpcrouter_class = class_create(THIS_MODULE, "oncrpc");
if (IS_ERR(msm_rpcrouter_class)) {
rc = -ENOMEM;
printk(KERN_ERR
"rpcrouter: failed to create oncrpc class\n");
goto fail;
}
rc = alloc_chrdev_region(&msm_rpcrouter_devno, 0,
RPCROUTER_MAX_REMOTE_SERVERS + 1,
"oncrpc");
if (rc < 0) {
printk(KERN_ERR
"rpcrouter: Failed to alloc chardev region (%d)\n", rc);
goto fail_destroy_class;
}
major = MAJOR(msm_rpcrouter_devno);
rpcrouter_device = device_create(msm_rpcrouter_class, NULL,
msm_rpcrouter_devno, NULL, "%.8x:%d",
0, 0);
if (IS_ERR(rpcrouter_device)) {
rc = -ENOMEM;
goto fail_unregister_cdev_region;
}
cdev_init(&rpcrouter_cdev, &rpcrouter_router_fops);
rpcrouter_cdev.owner = THIS_MODULE;
rc = cdev_add(&rpcrouter_cdev, msm_rpcrouter_devno, 1);
if (rc < 0)
goto fail_destroy_device;
return 0;
fail_destroy_device:
device_destroy(msm_rpcrouter_class, msm_rpcrouter_devno);
fail_unregister_cdev_region:
unregister_chrdev_region(msm_rpcrouter_devno,
RPCROUTER_MAX_REMOTE_SERVERS + 1);
fail_destroy_class:
class_destroy(msm_rpcrouter_class);
fail:
return rc;
}
void msm_rpcrouter_exit_devices(void)
{
cdev_del(&rpcrouter_cdev);
device_destroy(msm_rpcrouter_class, msm_rpcrouter_devno);
unregister_chrdev_region(msm_rpcrouter_devno,
RPCROUTER_MAX_REMOTE_SERVERS + 1);
class_destroy(msm_rpcrouter_class);
}
/* arch/arm/mach-msm/rpc_servers.c
*
* Copyright (C) 2007 Google, Inc.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/cdev.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/wakelock.h>
#include <linux/slab.h>
#include <linux/msm_rpcrouter.h>
#include <linux/uaccess.h>
#include <mach/msm_rpcrouter.h>
#include "smd_rpcrouter.h"
static struct msm_rpc_endpoint *endpoint;
#define FLAG_REGISTERED 0x0001
static LIST_HEAD(rpc_server_list);
static DEFINE_MUTEX(rpc_server_list_lock);
static int rpc_servers_active;
static void rpc_server_register(struct msm_rpc_server *server)
{
int rc;
rc = msm_rpc_register_server(endpoint, server->prog, server->vers);
if (rc < 0)
printk(KERN_ERR "[rpcserver] error registering %p @ %08x:%d\n",
server, server->prog, server->vers);
}
static struct msm_rpc_server *rpc_server_find(uint32_t prog, uint32_t vers)
{
struct msm_rpc_server *server;
mutex_lock(&rpc_server_list_lock);
list_for_each_entry(server, &rpc_server_list, list) {
if ((server->prog == prog) &&
#if CONFIG_MSM_AMSS_VERSION >= 6350
msm_rpc_is_compatible_version(server->vers, vers)) {
#else
server->vers == vers) {
#endif
mutex_unlock(&rpc_server_list_lock);
return server;
}
}
mutex_unlock(&rpc_server_list_lock);
return NULL;
}
static void rpc_server_register_all(void)
{
struct msm_rpc_server *server;
mutex_lock(&rpc_server_list_lock);
list_for_each_entry(server, &rpc_server_list, list) {
if (!(server->flags & FLAG_REGISTERED)) {
rpc_server_register(server);
server->flags |= FLAG_REGISTERED;
}
}
mutex_unlock(&rpc_server_list_lock);
}
int msm_rpc_create_server(struct msm_rpc_server *server)
{
/* make sure we're in a sane state first */
server->flags = 0;
INIT_LIST_HEAD(&server->list);
mutex_lock(&rpc_server_list_lock);
list_add(&server->list, &rpc_server_list);
if (rpc_servers_active) {
rpc_server_register(server);
server->flags |= FLAG_REGISTERED;
}
mutex_unlock(&rpc_server_list_lock);
return 0;
}
static int rpc_send_accepted_void_reply(struct msm_rpc_endpoint *client,
uint32_t xid, uint32_t accept_status)
{
int rc = 0;
uint8_t reply_buf[sizeof(struct rpc_reply_hdr)];
struct rpc_reply_hdr *reply = (struct rpc_reply_hdr *)reply_buf;
reply->xid = cpu_to_be32(xid);
reply->type = cpu_to_be32(1); /* reply */
reply->reply_stat = cpu_to_be32(RPCMSG_REPLYSTAT_ACCEPTED);
reply->data.acc_hdr.accept_stat = cpu_to_be32(accept_status);
reply->data.acc_hdr.verf_flavor = 0;
reply->data.acc_hdr.verf_length = 0;
rc = msm_rpc_write(client, reply_buf, sizeof(reply_buf));
if (rc < 0)
printk(KERN_ERR
"%s: could not write response: %d\n",
__FUNCTION__, rc);
return rc;
}
static int rpc_servers_thread(void *data)
{
void *buffer;
struct rpc_request_hdr *req;
struct msm_rpc_server *server;
int rc;
for (;;) {
rc = wait_event_interruptible(endpoint->wait_q,
!list_empty(&endpoint->read_q));
rc = msm_rpc_read(endpoint, &buffer, -1, -1);
if (rc < 0) {
printk(KERN_ERR "%s: could not read: %d\n",
__FUNCTION__, rc);
break;
}
req = (struct rpc_request_hdr *)buffer;
req->type = be32_to_cpu(req->type);
req->xid = be32_to_cpu(req->xid);
req->rpc_vers = be32_to_cpu(req->rpc_vers);
req->prog = be32_to_cpu(req->prog);
req->vers = be32_to_cpu(req->vers);
req->procedure = be32_to_cpu(req->procedure);
server = rpc_server_find(req->prog, req->vers);
if (req->rpc_vers != 2)
continue;
if (req->type != 0)
continue;
if (!server) {
rpc_send_accepted_void_reply(
endpoint, req->xid,
RPC_ACCEPTSTAT_PROG_UNAVAIL);
continue;
}
rc = server->rpc_call(server, req, rc);
switch (rc) {
case 0:
rpc_send_accepted_void_reply(
endpoint, req->xid,
RPC_ACCEPTSTAT_SUCCESS);
break;
default:
rpc_send_accepted_void_reply(
endpoint, req->xid,
RPC_ACCEPTSTAT_PROG_UNAVAIL);
break;
}
kfree(buffer);
}
do_exit(0);
}
static int rpcservers_probe(struct platform_device *pdev)
{
struct task_struct *server_thread;
endpoint = msm_rpc_open();
if (IS_ERR(endpoint))
return PTR_ERR(endpoint);
/* we're online -- register any servers installed beforehand */
rpc_servers_active = 1;
rpc_server_register_all();
/* start the kernel thread */
server_thread = kthread_run(rpc_servers_thread, NULL, "krpcserversd");
if (IS_ERR(server_thread))
return PTR_ERR(server_thread);
return 0;
}
static struct platform_driver rpcservers_driver = {
.probe = rpcservers_probe,
.driver = {
.name = "oncrpc_router",
.owner = THIS_MODULE,
},
};
static int __init rpc_servers_init(void)
{
return platform_driver_register(&rpcservers_driver);
}
module_init(rpc_servers_init);
MODULE_DESCRIPTION("MSM RPC Servers");
MODULE_AUTHOR("Iliyan Malchev <ibm@android.com>");
MODULE_LICENSE("GPL");
/* arch/arm/mach-msm/smd_tty.c
*
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <mach/msm_smd.h>
#define MAX_SMD_TTYS 32
static DEFINE_MUTEX(smd_tty_lock);
struct smd_tty_info {
smd_channel_t *ch;
struct tty_struct *tty;
int open_count;
};
static struct smd_tty_info smd_tty[MAX_SMD_TTYS];
static void smd_tty_notify(void *priv, unsigned event)
{
unsigned char *ptr;
int avail;
struct smd_tty_info *info = priv;
struct tty_struct *tty = info->tty;
if (!tty)
return;
if (event != SMD_EVENT_DATA)
return;
for (;;) {
if (test_bit(TTY_THROTTLED, &tty->flags)) break;
avail = smd_read_avail(info->ch);
if (avail == 0) break;
avail = tty_prepare_flip_string(tty, &ptr, avail);
if (smd_read(info->ch, ptr, avail) != avail) {
/* shouldn't be possible since we're in interrupt
** context here and nobody else could 'steal' our
** characters.
*/
printk(KERN_ERR "OOPS - smd_tty_buffer mismatch?!");
}
tty_flip_buffer_push(tty);
}
/* XXX only when writable and necessary */
tty_wakeup(tty);
}
static int smd_tty_open(struct tty_struct *tty, struct file *f)
{
int res = 0;
int n = tty->index;
struct smd_tty_info *info;
const char *name;
if (n == 0) {
name = "SMD_DS";
} else if (n == 27) {
name = "SMD_GPSNMEA";
} else {
return -ENODEV;
}
info = smd_tty + n;
mutex_lock(&smd_tty_lock);
tty->driver_data = info;
if (info->open_count++ == 0) {
info->tty = tty;
if (info->ch) {
smd_kick(info->ch);
} else {
res = smd_open(name, &info->ch, info, smd_tty_notify);
}
}
mutex_unlock(&smd_tty_lock);
return res;
}
static void smd_tty_close(struct tty_struct *tty, struct file *f)
{
struct smd_tty_info *info = tty->driver_data;
if (info == 0)
return;
mutex_lock(&smd_tty_lock);
if (--info->open_count == 0) {
info->tty = 0;
tty->driver_data = 0;
if (info->ch) {
smd_close(info->ch);
info->ch = 0;
}
}
mutex_unlock(&smd_tty_lock);
}
static int smd_tty_write(struct tty_struct *tty, const unsigned char *buf, int len)
{
struct smd_tty_info *info = tty->driver_data;
int avail;
/* if we're writing to a packet channel we will
** never be able to write more data than there
** is currently space for
*/
avail = smd_write_avail(info->ch);
if (len > avail)
len = avail;
return smd_write(info->ch, buf, len);
}
static int smd_tty_write_room(struct tty_struct *tty)
{
struct smd_tty_info *info = tty->driver_data;
return smd_write_avail(info->ch);
}
static int smd_tty_chars_in_buffer(struct tty_struct *tty)
{
struct smd_tty_info *info = tty->driver_data;
return smd_read_avail(info->ch);
}
static void smd_tty_unthrottle(struct tty_struct *tty)
{
struct smd_tty_info *info = tty->driver_data;
smd_kick(info->ch);
}
static struct tty_operations smd_tty_ops = {
.open = smd_tty_open,
.close = smd_tty_close,
.write = smd_tty_write,
.write_room = smd_tty_write_room,
.chars_in_buffer = smd_tty_chars_in_buffer,
.unthrottle = smd_tty_unthrottle,
};
static struct tty_driver *smd_tty_driver;
static int __init smd_tty_init(void)
{
int ret;
smd_tty_driver = alloc_tty_driver(MAX_SMD_TTYS);
if (smd_tty_driver == 0)
return -ENOMEM;
smd_tty_driver->owner = THIS_MODULE;
smd_tty_driver->driver_name = "smd_tty_driver";
smd_tty_driver->name = "smd";
smd_tty_driver->major = 0;
smd_tty_driver->minor_start = 0;
smd_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
smd_tty_driver->subtype = SERIAL_TYPE_NORMAL;
smd_tty_driver->init_termios = tty_std_termios;
smd_tty_driver->init_termios.c_iflag = 0;
smd_tty_driver->init_termios.c_oflag = 0;
smd_tty_driver->init_termios.c_cflag = B38400 | CS8 | CREAD;
smd_tty_driver->init_termios.c_lflag = 0;
smd_tty_driver->flags = TTY_DRIVER_RESET_TERMIOS |
TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_set_operations(smd_tty_driver, &smd_tty_ops);
ret = tty_register_driver(smd_tty_driver);
if (ret) return ret;
/* this should be dynamic */
tty_register_device(smd_tty_driver, 0, 0);
tty_register_device(smd_tty_driver, 27, 0);
return 0;
}
module_init(smd_tty_init);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment