Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
linux
Commits
c21bd0a8
Commit
c21bd0a8
authored
Apr 10, 2018
by
Vinod Koul
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'topic/mtek' into for-linus
parents
ab2528c1
e10734e5
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1115 additions
and
0 deletions
+1115
-0
Documentation/devicetree/bindings/dma/mtk-hsdma.txt
Documentation/devicetree/bindings/dma/mtk-hsdma.txt
+33
-0
MAINTAINERS
MAINTAINERS
+9
-0
drivers/dma/Kconfig
drivers/dma/Kconfig
+2
-0
drivers/dma/Makefile
drivers/dma/Makefile
+1
-0
drivers/dma/mediatek/Kconfig
drivers/dma/mediatek/Kconfig
+13
-0
drivers/dma/mediatek/Makefile
drivers/dma/mediatek/Makefile
+1
-0
drivers/dma/mediatek/mtk-hsdma.c
drivers/dma/mediatek/mtk-hsdma.c
+1056
-0
No files found.
Documentation/devicetree/bindings/dma/mtk-hsdma.txt
0 → 100644
View file @
c21bd0a8
MediaTek High-Speed DMA Controller
==================================
This device follows the generic DMA bindings defined in dma/dma.txt.
Required properties:
- compatible: Must be one of
"mediatek,mt7622-hsdma": for MT7622 SoC
"mediatek,mt7623-hsdma": for MT7623 SoC
- reg: Should contain the register's base address and length.
- interrupts: Should contain a reference to the interrupt used by this
device.
- clocks: Should be the clock specifiers corresponding to the entry in
clock-names property.
- clock-names: Should contain "hsdma" entries.
- power-domains: Phandle to the power domain that the device is part of
- #dma-cells: The length of the DMA specifier, must be <1>. This one cell
in dmas property of a client device represents the channel
number.
Example:
hsdma: dma-controller@1b007000 {
compatible = "mediatek,mt7623-hsdma";
reg = <0 0x1b007000 0 0x1000>;
interrupts = <GIC_SPI 98 IRQ_TYPE_LEVEL_LOW>;
clocks = <ðsys CLK_ETHSYS_HSDMA>;
clock-names = "hsdma";
power-domains = <&scpsys MT2701_POWER_DOMAIN_ETH>;
#dma-cells = <1>;
};
DMA clients must use the format described in dma/dma.txt file.
MAINTAINERS
View file @
c21bd0a8
...
...
@@ -8785,6 +8785,15 @@ M: Sean Wang <sean.wang@mediatek.com>
S: Maintained
F: drivers/media/rc/mtk-cir.c
MEDIATEK DMA DRIVER
M: Sean Wang <sean.wang@mediatek.com>
L: dmaengine@vger.kernel.org
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: linux-mediatek@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: Documentation/devicetree/bindings/dma/mtk-*
F: drivers/dma/mediatek/
MEDIATEK PMIC LED DRIVER
M: Sean Wang <sean.wang@mediatek.com>
S: Maintained
...
...
drivers/dma/Kconfig
View file @
c21bd0a8
...
...
@@ -643,6 +643,8 @@ config ZX_DMA
# driver files
source "drivers/dma/bestcomm/Kconfig"
source "drivers/dma/mediatek/Kconfig"
source "drivers/dma/qcom/Kconfig"
source "drivers/dma/dw/Kconfig"
...
...
drivers/dma/Makefile
View file @
c21bd0a8
...
...
@@ -76,5 +76,6 @@ obj-$(CONFIG_XGENE_DMA) += xgene-dma.o
obj-$(CONFIG_ZX_DMA)
+=
zx_dma.o
obj-$(CONFIG_ST_FDMA)
+=
st_fdma.o
obj-y
+=
mediatek/
obj-y
+=
qcom/
obj-y
+=
xilinx/
drivers/dma/mediatek/Kconfig
0 → 100644
View file @
c21bd0a8
config MTK_HSDMA
tristate "MediaTek High-Speed DMA controller support"
depends on ARCH_MEDIATEK || COMPILE_TEST
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
---help---
Enable support for High-Speed DMA controller on MediaTek
SoCs.
This controller provides the channels which is dedicated to
memory-to-memory transfer to offload from CPU through ring-
based descriptor management.
drivers/dma/mediatek/Makefile
0 → 100644
View file @
c21bd0a8
obj-$(CONFIG_MTK_HSDMA)
+=
mtk-hsdma.o
drivers/dma/mediatek/mtk-hsdma.c
0 → 100644
View file @
c21bd0a8
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018 MediaTek Inc.
/*
* Driver for MediaTek High-Speed DMA Controller
*
* Author: Sean Wang <sean.wang@mediatek.com>
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include "../virt-dma.h"
#define MTK_HSDMA_USEC_POLL 20
#define MTK_HSDMA_TIMEOUT_POLL 200000
#define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
/* The default number of virtual channel */
#define MTK_HSDMA_NR_VCHANS 3
/* Only one physical channel supported */
#define MTK_HSDMA_NR_MAX_PCHANS 1
/* Macro for physical descriptor (PD) manipulation */
/* The number of PD which must be 2 of power */
#define MTK_DMA_SIZE 64
#define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1))
#define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1))
#define MTK_HSDMA_MAX_LEN 0x3f80
#define MTK_HSDMA_ALIGN_SIZE 4
#define MTK_HSDMA_PLEN_MASK 0x3fff
#define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16)
#define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK)
/* Registers for underlying ring manipulation */
#define MTK_HSDMA_TX_BASE 0x0
#define MTK_HSDMA_TX_CNT 0x4
#define MTK_HSDMA_TX_CPU 0x8
#define MTK_HSDMA_TX_DMA 0xc
#define MTK_HSDMA_RX_BASE 0x100
#define MTK_HSDMA_RX_CNT 0x104
#define MTK_HSDMA_RX_CPU 0x108
#define MTK_HSDMA_RX_DMA 0x10c
/* Registers for global setup */
#define MTK_HSDMA_GLO 0x204
#define MTK_HSDMA_GLO_MULTI_DMA BIT(10)
#define MTK_HSDMA_TX_WB_DDONE BIT(6)
#define MTK_HSDMA_BURST_64BYTES (0x2 << 4)
#define MTK_HSDMA_GLO_RX_BUSY BIT(3)
#define MTK_HSDMA_GLO_RX_DMA BIT(2)
#define MTK_HSDMA_GLO_TX_BUSY BIT(1)
#define MTK_HSDMA_GLO_TX_DMA BIT(0)
#define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \
MTK_HSDMA_GLO_RX_DMA)
#define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \
MTK_HSDMA_GLO_TX_BUSY)
#define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \
MTK_HSDMA_GLO_RX_DMA | \
MTK_HSDMA_TX_WB_DDONE | \
MTK_HSDMA_BURST_64BYTES | \
MTK_HSDMA_GLO_MULTI_DMA)
/* Registers for reset */
#define MTK_HSDMA_RESET 0x208
#define MTK_HSDMA_RST_TX BIT(0)
#define MTK_HSDMA_RST_RX BIT(16)
/* Registers for interrupt control */
#define MTK_HSDMA_DLYINT 0x20c
#define MTK_HSDMA_RXDLY_INT_EN BIT(15)
/* Interrupt fires when the pending number's more than the specified */
#define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8)
/* Interrupt fires when the pending time's more than the specified in 20 us */
#define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f)
#define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \
MTK_HSDMA_RXMAX_PINT(20) | \
MTK_HSDMA_RXMAX_PTIME(20))
#define MTK_HSDMA_INT_STATUS 0x220
#define MTK_HSDMA_INT_ENABLE 0x228
#define MTK_HSDMA_INT_RXDONE BIT(16)
enum
mtk_hsdma_vdesc_flag
{
MTK_HSDMA_VDESC_FINISHED
=
0x01
,
};
#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
/**
* struct mtk_hsdma_pdesc - This is the struct holding info describing physical
* descriptor (PD) and its placement must be kept at
* 4-bytes alignment in little endian order.
* @desc[1-4]: The control pad used to indicate hardware how to
* deal with the descriptor such as source and
* destination address and data length. The maximum
* data length each pdesc can handle is 0x3f80 bytes
*/
struct
mtk_hsdma_pdesc
{
__le32
desc1
;
__le32
desc2
;
__le32
desc3
;
__le32
desc4
;
}
__packed
__aligned
(
4
);
/**
* struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
* descriptor (VD)
* @vd: An instance for struct virt_dma_desc
* @len: The total data size device wants to move
* @residue: The remaining data size device will move
* @dest: The destination address device wants to move to
* @src: The source address device wants to move from
*/
struct
mtk_hsdma_vdesc
{
struct
virt_dma_desc
vd
;
size_t
len
;
size_t
residue
;
dma_addr_t
dest
;
dma_addr_t
src
;
};
/**
* struct mtk_hsdma_cb - This is the struct holding extra info required for RX
* ring to know what relevant VD the the PD is being
* mapped to.
* @vd: Pointer to the relevant VD.
* @flag: Flag indicating what action should be taken when VD
* is completed.
*/
struct
mtk_hsdma_cb
{
struct
virt_dma_desc
*
vd
;
enum
mtk_hsdma_vdesc_flag
flag
;
};
/**
* struct mtk_hsdma_ring - This struct holds info describing underlying ring
* space
* @txd: The descriptor TX ring which describes DMA source
* information
* @rxd: The descriptor RX ring which describes DMA
* destination information
* @cb: The extra information pointed at by RX ring
* @tphys: The physical addr of TX ring
* @rphys: The physical addr of RX ring
* @cur_tptr: Pointer to the next free descriptor used by the host
* @cur_rptr: Pointer to the last done descriptor by the device
*/
struct
mtk_hsdma_ring
{
struct
mtk_hsdma_pdesc
*
txd
;
struct
mtk_hsdma_pdesc
*
rxd
;
struct
mtk_hsdma_cb
*
cb
;
dma_addr_t
tphys
;
dma_addr_t
rphys
;
u16
cur_tptr
;
u16
cur_rptr
;
};
/**
* struct mtk_hsdma_pchan - This is the struct holding info describing physical
* channel (PC)
* @ring: An instance for the underlying ring
* @sz_ring: Total size allocated for the ring
* @nr_free: Total number of free rooms in the ring. It would
* be accessed and updated frequently between IRQ
* context and user context to reflect whether ring
* can accept requests from VD.
*/
struct
mtk_hsdma_pchan
{
struct
mtk_hsdma_ring
ring
;
size_t
sz_ring
;
atomic_t
nr_free
;
};
/**
* struct mtk_hsdma_vchan - This is the struct holding info describing virtual
* channel (VC)
* @vc: An instance for struct virt_dma_chan
* @issue_completion: The wait for all issued descriptors completited
* @issue_synchronize: Bool indicating channel synchronization starts
* @desc_hw_processing: List those descriptors the hardware is processing,
* which is protected by vc.lock
*/
struct
mtk_hsdma_vchan
{
struct
virt_dma_chan
vc
;
struct
completion
issue_completion
;
bool
issue_synchronize
;
struct
list_head
desc_hw_processing
;
};
/**
* struct mtk_hsdma_soc - This is the struct holding differences among SoCs
* @ddone: Bit mask for DDONE
* @ls0: Bit mask for LS0
*/
struct
mtk_hsdma_soc
{
__le32
ddone
;
__le32
ls0
;
};
/**
* struct mtk_hsdma_device - This is the struct holding info describing HSDMA
* device
* @ddev: An instance for struct dma_device
* @base: The mapped register I/O base
* @clk: The clock that device internal is using
* @irq: The IRQ that device are using
* @dma_requests: The number of VCs the device supports to
* @vc: The pointer to all available VCs
* @pc: The pointer to the underlying PC
* @pc_refcnt: Track how many VCs are using the PC
* @lock: Lock protect agaisting multiple VCs access PC
* @soc: The pointer to area holding differences among
* vaious platform
*/
struct
mtk_hsdma_device
{
struct
dma_device
ddev
;
void
__iomem
*
base
;
struct
clk
*
clk
;
u32
irq
;
u32
dma_requests
;
struct
mtk_hsdma_vchan
*
vc
;
struct
mtk_hsdma_pchan
*
pc
;
refcount_t
pc_refcnt
;
/* Lock used to protect against multiple VCs access PC */
spinlock_t
lock
;
const
struct
mtk_hsdma_soc
*
soc
;
};
static
struct
mtk_hsdma_device
*
to_hsdma_dev
(
struct
dma_chan
*
chan
)
{
return
container_of
(
chan
->
device
,
struct
mtk_hsdma_device
,
ddev
);
}
static
inline
struct
mtk_hsdma_vchan
*
to_hsdma_vchan
(
struct
dma_chan
*
chan
)
{
return
container_of
(
chan
,
struct
mtk_hsdma_vchan
,
vc
.
chan
);
}
static
struct
mtk_hsdma_vdesc
*
to_hsdma_vdesc
(
struct
virt_dma_desc
*
vd
)
{
return
container_of
(
vd
,
struct
mtk_hsdma_vdesc
,
vd
);
}
static
struct
device
*
hsdma2dev
(
struct
mtk_hsdma_device
*
hsdma
)
{
return
hsdma
->
ddev
.
dev
;
}
static
u32
mtk_dma_read
(
struct
mtk_hsdma_device
*
hsdma
,
u32
reg
)
{
return
readl
(
hsdma
->
base
+
reg
);
}
static
void
mtk_dma_write
(
struct
mtk_hsdma_device
*
hsdma
,
u32
reg
,
u32
val
)
{
writel
(
val
,
hsdma
->
base
+
reg
);
}
static
void
mtk_dma_rmw
(
struct
mtk_hsdma_device
*
hsdma
,
u32
reg
,
u32
mask
,
u32
set
)
{
u32
val
;
val
=
mtk_dma_read
(
hsdma
,
reg
);
val
&=
~
mask
;
val
|=
set
;
mtk_dma_write
(
hsdma
,
reg
,
val
);
}
static
void
mtk_dma_set
(
struct
mtk_hsdma_device
*
hsdma
,
u32
reg
,
u32
val
)
{
mtk_dma_rmw
(
hsdma
,
reg
,
0
,
val
);
}
static
void
mtk_dma_clr
(
struct
mtk_hsdma_device
*
hsdma
,
u32
reg
,
u32
val
)
{
mtk_dma_rmw
(
hsdma
,
reg
,
val
,
0
);
}
static
void
mtk_hsdma_vdesc_free
(
struct
virt_dma_desc
*
vd
)
{
kfree
(
container_of
(
vd
,
struct
mtk_hsdma_vdesc
,
vd
));
}
static
int
mtk_hsdma_busy_wait
(
struct
mtk_hsdma_device
*
hsdma
)
{
u32
status
=
0
;
return
readl_poll_timeout
(
hsdma
->
base
+
MTK_HSDMA_GLO
,
status
,
!
(
status
&
MTK_HSDMA_GLO_BUSY
),
MTK_HSDMA_USEC_POLL
,
MTK_HSDMA_TIMEOUT_POLL
);
}
static
int
mtk_hsdma_alloc_pchan
(
struct
mtk_hsdma_device
*
hsdma
,
struct
mtk_hsdma_pchan
*
pc
)
{
struct
mtk_hsdma_ring
*
ring
=
&
pc
->
ring
;
int
err
;
memset
(
pc
,
0
,
sizeof
(
*
pc
));
/*
* Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
* and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
*/
pc
->
sz_ring
=
2
*
MTK_DMA_SIZE
*
sizeof
(
*
ring
->
txd
);
ring
->
txd
=
dma_zalloc_coherent
(
hsdma2dev
(
hsdma
),
pc
->
sz_ring
,
&
ring
->
tphys
,
GFP_NOWAIT
);
if
(
!
ring
->
txd
)
return
-
ENOMEM
;
ring
->
rxd
=
&
ring
->
txd
[
MTK_DMA_SIZE
];
ring
->
rphys
=
ring
->
tphys
+
MTK_DMA_SIZE
*
sizeof
(
*
ring
->
txd
);
ring
->
cur_tptr
=
0
;
ring
->
cur_rptr
=
MTK_DMA_SIZE
-
1
;
ring
->
cb
=
kcalloc
(
MTK_DMA_SIZE
,
sizeof
(
*
ring
->
cb
),
GFP_NOWAIT
);
if
(
!
ring
->
cb
)
{
err
=
-
ENOMEM
;
goto
err_free_dma
;
}
atomic_set
(
&
pc
->
nr_free
,
MTK_DMA_SIZE
-
1
);
/* Disable HSDMA and wait for the completion */
mtk_dma_clr
(
hsdma
,
MTK_HSDMA_GLO
,
MTK_HSDMA_GLO_DMA
);
err
=
mtk_hsdma_busy_wait
(
hsdma
);
if
(
err
)
goto
err_free_cb
;
/* Reset */
mtk_dma_set
(
hsdma
,
MTK_HSDMA_RESET
,
MTK_HSDMA_RST_TX
|
MTK_HSDMA_RST_RX
);
mtk_dma_clr
(
hsdma
,
MTK_HSDMA_RESET
,
MTK_HSDMA_RST_TX
|
MTK_HSDMA_RST_RX
);
/* Setup HSDMA initial pointer in the ring */
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_BASE
,
ring
->
tphys
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_CNT
,
MTK_DMA_SIZE
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_CPU
,
ring
->
cur_tptr
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_DMA
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_BASE
,
ring
->
rphys
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_CNT
,
MTK_DMA_SIZE
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_CPU
,
ring
->
cur_rptr
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_DMA
,
0
);
/* Enable HSDMA */
mtk_dma_set
(
hsdma
,
MTK_HSDMA_GLO
,
MTK_HSDMA_GLO_DMA
);
/* Setup delayed interrupt */
mtk_dma_write
(
hsdma
,
MTK_HSDMA_DLYINT
,
MTK_HSDMA_DLYINT_DEFAULT
);
/* Enable interrupt */
mtk_dma_set
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
MTK_HSDMA_INT_RXDONE
);
return
0
;
err_free_cb:
kfree
(
ring
->
cb
);
err_free_dma:
dma_free_coherent
(
hsdma2dev
(
hsdma
),
pc
->
sz_ring
,
ring
->
txd
,
ring
->
tphys
);
return
err
;
}
static
void
mtk_hsdma_free_pchan
(
struct
mtk_hsdma_device
*
hsdma
,
struct
mtk_hsdma_pchan
*
pc
)
{
struct
mtk_hsdma_ring
*
ring
=
&
pc
->
ring
;
/* Disable HSDMA and then wait for the completion */
mtk_dma_clr
(
hsdma
,
MTK_HSDMA_GLO
,
MTK_HSDMA_GLO_DMA
);
mtk_hsdma_busy_wait
(
hsdma
);
/* Reset pointer in the ring */
mtk_dma_clr
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
MTK_HSDMA_INT_RXDONE
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_BASE
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_CNT
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_CPU
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_BASE
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_CNT
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_CPU
,
MTK_DMA_SIZE
-
1
);
kfree
(
ring
->
cb
);
dma_free_coherent
(
hsdma2dev
(
hsdma
),
pc
->
sz_ring
,
ring
->
txd
,
ring
->
tphys
);
}
static
int
mtk_hsdma_issue_pending_vdesc
(
struct
mtk_hsdma_device
*
hsdma
,
struct
mtk_hsdma_pchan
*
pc
,
struct
mtk_hsdma_vdesc
*
hvd
)
{
struct
mtk_hsdma_ring
*
ring
=
&
pc
->
ring
;
struct
mtk_hsdma_pdesc
*
txd
,
*
rxd
;
u16
reserved
,
prev
,
tlen
,
num_sgs
;
unsigned
long
flags
;
/* Protect against PC is accessed by multiple VCs simultaneously */
spin_lock_irqsave
(
&
hsdma
->
lock
,
flags
);
/*
* Reserve rooms, where pc->nr_free is used to track how many free
* rooms in the ring being updated in user and IRQ context.
*/
num_sgs
=
DIV_ROUND_UP
(
hvd
->
len
,
MTK_HSDMA_MAX_LEN
);
reserved
=
min_t
(
u16
,
num_sgs
,
atomic_read
(
&
pc
->
nr_free
));
if
(
!
reserved
)
{
spin_unlock_irqrestore
(
&
hsdma
->
lock
,
flags
);
return
-
ENOSPC
;
}
atomic_sub
(
reserved
,
&
pc
->
nr_free
);
while
(
reserved
--
)
{
/* Limit size by PD capability for valid data moving */
tlen
=
(
hvd
->
len
>
MTK_HSDMA_MAX_LEN
)
?
MTK_HSDMA_MAX_LEN
:
hvd
->
len
;
/*
* Setup PDs using the remaining VD info mapped on those
* reserved rooms. And since RXD is shared memory between the
* host and the device allocated by dma_alloc_coherent call,
* the helper macro WRITE_ONCE can ensure the data written to
* RAM would really happens.
*/
txd
=
&
ring
->
txd
[
ring
->
cur_tptr
];
WRITE_ONCE
(
txd
->
desc1
,
hvd
->
src
);
WRITE_ONCE
(
txd
->
desc2
,
hsdma
->
soc
->
ls0
|
MTK_HSDMA_DESC_PLEN
(
tlen
));
rxd
=
&
ring
->
rxd
[
ring
->
cur_tptr
];
WRITE_ONCE
(
rxd
->
desc1
,
hvd
->
dest
);
WRITE_ONCE
(
rxd
->
desc2
,
MTK_HSDMA_DESC_PLEN
(
tlen
));
/* Associate VD, the PD belonged to */
ring
->
cb
[
ring
->
cur_tptr
].
vd
=
&
hvd
->
vd
;
/* Move forward the pointer of TX ring */
ring
->
cur_tptr
=
MTK_HSDMA_NEXT_DESP_IDX
(
ring
->
cur_tptr
,
MTK_DMA_SIZE
);
/* Update VD with remaining data */
hvd
->
src
+=
tlen
;
hvd
->
dest
+=
tlen
;
hvd
->
len
-=
tlen
;
}
/*
* Tagging flag for the last PD for VD will be responsible for
* completing VD.
*/
if
(
!
hvd
->
len
)
{
prev
=
MTK_HSDMA_LAST_DESP_IDX
(
ring
->
cur_tptr
,
MTK_DMA_SIZE
);
ring
->
cb
[
prev
].
flag
=
MTK_HSDMA_VDESC_FINISHED
;
}
/* Ensure all changes indeed done before we're going on */
wmb
();
/*
* Updating into hardware the pointer of TX ring lets HSDMA to take
* action for those pending PDs.
*/
mtk_dma_write
(
hsdma
,
MTK_HSDMA_TX_CPU
,
ring
->
cur_tptr
);
spin_unlock_irqrestore
(
&
hsdma
->
lock
,
flags
);
return
0
;
}
static
void
mtk_hsdma_issue_vchan_pending
(
struct
mtk_hsdma_device
*
hsdma
,
struct
mtk_hsdma_vchan
*
hvc
)
{
struct
virt_dma_desc
*
vd
,
*
vd2
;
int
err
;
lockdep_assert_held
(
&
hvc
->
vc
.
lock
);
list_for_each_entry_safe
(
vd
,
vd2
,
&
hvc
->
vc
.
desc_issued
,
node
)
{
struct
mtk_hsdma_vdesc
*
hvd
;
hvd
=
to_hsdma_vdesc
(
vd
);
/* Map VD into PC and all VCs shares a single PC */
err
=
mtk_hsdma_issue_pending_vdesc
(
hsdma
,
hsdma
->
pc
,
hvd
);
/*
* Move VD from desc_issued to desc_hw_processing when entire
* VD is fit into available PDs. Otherwise, the uncompleted
* VDs would stay in list desc_issued and then restart the
* processing as soon as possible once underlying ring space
* got freed.
*/
if
(
err
==
-
ENOSPC
||
hvd
->
len
>
0
)
break
;
/*
* The extra list desc_hw_processing is used because
* hardware can't provide sufficient information allowing us
* to know what VDs are still working on the underlying ring.
* Through the additional list, it can help us to implement
* terminate_all, residue calculation and such thing needed
* to know detail descriptor status on the hardware.
*/
list_move_tail
(
&
vd
->
node
,
&
hvc
->
desc_hw_processing
);
}
}
static
void
mtk_hsdma_free_rooms_in_ring
(
struct
mtk_hsdma_device
*
hsdma
)
{
struct
mtk_hsdma_vchan
*
hvc
;
struct
mtk_hsdma_pdesc
*
rxd
;
struct
mtk_hsdma_vdesc
*
hvd
;
struct
mtk_hsdma_pchan
*
pc
;
struct
mtk_hsdma_cb
*
cb
;
int
i
=
MTK_DMA_SIZE
;
__le32
desc2
;
u32
status
;
u16
next
;
/* Read IRQ status */
status
=
mtk_dma_read
(
hsdma
,
MTK_HSDMA_INT_STATUS
);
if
(
unlikely
(
!
(
status
&
MTK_HSDMA_INT_RXDONE
)))
goto
rx_done
;
pc
=
hsdma
->
pc
;
/*
* Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
* reclaim these finished descriptors: The most number of PDs the ISR
* can handle at one time shouldn't be more than MTK_DMA_SIZE so we
* take it as limited count instead of just using a dangerous infinite
* poll.
*/
while
(
i
--
)
{
next
=
MTK_HSDMA_NEXT_DESP_IDX
(
pc
->
ring
.
cur_rptr
,
MTK_DMA_SIZE
);
rxd
=
&
pc
->
ring
.
rxd
[
next
];
/*
* If MTK_HSDMA_DESC_DDONE is no specified, that means data
* moving for the PD is still under going.
*/
desc2
=
READ_ONCE
(
rxd
->
desc2
);
if
(
!
(
desc2
&
hsdma
->
soc
->
ddone
))
break
;
cb
=
&
pc
->
ring
.
cb
[
next
];
if
(
unlikely
(
!
cb
->
vd
))
{
dev_err
(
hsdma2dev
(
hsdma
),
"cb->vd cannot be null
\n
"
);
break
;
}
/* Update residue of VD the associated PD belonged to */
hvd
=
to_hsdma_vdesc
(
cb
->
vd
);
hvd
->
residue
-=
MTK_HSDMA_DESC_PLEN_GET
(
rxd
->
desc2
);
/* Complete VD until the relevant last PD is finished */
if
(
IS_MTK_HSDMA_VDESC_FINISHED
(
cb
->
flag
))
{
hvc
=
to_hsdma_vchan
(
cb
->
vd
->
tx
.
chan
);
spin_lock
(
&
hvc
->
vc
.
lock
);
/* Remove VD from list desc_hw_processing */
list_del
(
&
cb
->
vd
->
node
);
/* Add VD into list desc_completed */
vchan_cookie_complete
(
cb
->
vd
);
if
(
hvc
->
issue_synchronize
&&
list_empty
(
&
hvc
->
desc_hw_processing
))
{
complete
(
&
hvc
->
issue_completion
);
hvc
->
issue_synchronize
=
false
;
}
spin_unlock
(
&
hvc
->
vc
.
lock
);
cb
->
flag
=
0
;
}
cb
->
vd
=
0
;
/*
* Recycle the RXD with the helper WRITE_ONCE that can ensure
* data written into RAM would really happens.
*/
WRITE_ONCE
(
rxd
->
desc1
,
0
);
WRITE_ONCE
(
rxd
->
desc2
,
0
);
pc
->
ring
.
cur_rptr
=
next
;
/* Release rooms */
atomic_inc
(
&
pc
->
nr_free
);
}
/* Ensure all changes indeed done before we're going on */
wmb
();
/* Update CPU pointer for those completed PDs */
mtk_dma_write
(
hsdma
,
MTK_HSDMA_RX_CPU
,
pc
->
ring
.
cur_rptr
);
/*
* Acking the pending IRQ allows hardware no longer to keep the used
* IRQ line in certain trigger state when software has completed all
* the finished physical descriptors.
*/
if
(
atomic_read
(
&
pc
->
nr_free
)
>=
MTK_DMA_SIZE
-
1
)
mtk_dma_write
(
hsdma
,
MTK_HSDMA_INT_STATUS
,
status
);
/* ASAP handles pending VDs in all VCs after freeing some rooms */
for
(
i
=
0
;
i
<
hsdma
->
dma_requests
;
i
++
)
{
hvc
=
&
hsdma
->
vc
[
i
];
spin_lock
(
&
hvc
->
vc
.
lock
);
mtk_hsdma_issue_vchan_pending
(
hsdma
,
hvc
);
spin_unlock
(
&
hvc
->
vc
.
lock
);
}
rx_done:
/* All completed PDs are cleaned up, so enable interrupt again */
mtk_dma_set
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
MTK_HSDMA_INT_RXDONE
);
}
static
irqreturn_t
mtk_hsdma_irq
(
int
irq
,
void
*
devid
)
{
struct
mtk_hsdma_device
*
hsdma
=
devid
;
/*
* Disable interrupt until all completed PDs are cleaned up in
* mtk_hsdma_free_rooms call.
*/
mtk_dma_clr
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
MTK_HSDMA_INT_RXDONE
);
mtk_hsdma_free_rooms_in_ring
(
hsdma
);
return
IRQ_HANDLED
;
}
static
struct
virt_dma_desc
*
mtk_hsdma_find_active_desc
(
struct
dma_chan
*
c
,
dma_cookie_t
cookie
)
{
struct
mtk_hsdma_vchan
*
hvc
=
to_hsdma_vchan
(
c
);
struct
virt_dma_desc
*
vd
;
list_for_each_entry
(
vd
,
&
hvc
->
desc_hw_processing
,
node
)
if
(
vd
->
tx
.
cookie
==
cookie
)
return
vd
;
list_for_each_entry
(
vd
,
&
hvc
->
vc
.
desc_issued
,
node
)
if
(
vd
->
tx
.
cookie
==
cookie
)
return
vd
;
return
NULL
;
}
static
enum
dma_status
mtk_hsdma_tx_status
(
struct
dma_chan
*
c
,
dma_cookie_t
cookie
,
struct
dma_tx_state
*
txstate
)
{
struct
mtk_hsdma_vchan
*
hvc
=
to_hsdma_vchan
(
c
);
struct
mtk_hsdma_vdesc
*
hvd
;
struct
virt_dma_desc
*
vd
;
enum
dma_status
ret
;
unsigned
long
flags
;
size_t
bytes
=
0
;
ret
=
dma_cookie_status
(
c
,
cookie
,
txstate
);
if
(
ret
==
DMA_COMPLETE
||
!
txstate
)
return
ret
;
spin_lock_irqsave
(
&
hvc
->
vc
.
lock
,
flags
);
vd
=
mtk_hsdma_find_active_desc
(
c
,
cookie
);
spin_unlock_irqrestore
(
&
hvc
->
vc
.
lock
,
flags
);
if
(
vd
)
{
hvd
=
to_hsdma_vdesc
(
vd
);
bytes
=
hvd
->
residue
;
}
dma_set_residue
(
txstate
,
bytes
);
return
ret
;
}
static
void
mtk_hsdma_issue_pending
(
struct
dma_chan
*
c
)
{
struct
mtk_hsdma_device
*
hsdma
=
to_hsdma_dev
(
c
);
struct
mtk_hsdma_vchan
*
hvc
=
to_hsdma_vchan
(
c
);
unsigned
long
flags
;
spin_lock_irqsave
(
&
hvc
->
vc
.
lock
,
flags
);
if
(
vchan_issue_pending
(
&
hvc
->
vc
))
mtk_hsdma_issue_vchan_pending
(
hsdma
,
hvc
);
spin_unlock_irqrestore
(
&
hvc
->
vc
.
lock
,
flags
);
}
static
struct
dma_async_tx_descriptor
*
mtk_hsdma_prep_dma_memcpy
(
struct
dma_chan
*
c
,
dma_addr_t
dest
,
dma_addr_t
src
,
size_t
len
,
unsigned
long
flags
)
{
struct
mtk_hsdma_vdesc
*
hvd
;
hvd
=
kzalloc
(
sizeof
(
*
hvd
),
GFP_NOWAIT
);
if
(
!
hvd
)
return
NULL
;
hvd
->
len
=
len
;
hvd
->
residue
=
len
;
hvd
->
src
=
src
;
hvd
->
dest
=
dest
;
return
vchan_tx_prep
(
to_virt_chan
(
c
),
&
hvd
->
vd
,
flags
);
}
static
int
mtk_hsdma_free_inactive_desc
(
struct
dma_chan
*
c
)
{
struct
virt_dma_chan
*
vc
=
to_virt_chan
(
c
);
unsigned
long
flags
;
LIST_HEAD
(
head
);
spin_lock_irqsave
(
&
vc
->
lock
,
flags
);
list_splice_tail_init
(
&
vc
->
desc_allocated
,
&
head
);
list_splice_tail_init
(
&
vc
->
desc_submitted
,
&
head
);
list_splice_tail_init
(
&
vc
->
desc_issued
,
&
head
);
spin_unlock_irqrestore
(
&
vc
->
lock
,
flags
);
/* At the point, we don't expect users put descriptor into VC again */
vchan_dma_desc_free_list
(
vc
,
&
head
);
return
0
;
}
static
void
mtk_hsdma_free_active_desc
(
struct
dma_chan
*
c
)
{
struct
mtk_hsdma_vchan
*
hvc
=
to_hsdma_vchan
(
c
);
bool
sync_needed
=
false
;
/*
* Once issue_synchronize is being set, which means once the hardware
* consumes all descriptors for the channel in the ring, the
* synchronization must be be notified immediately it is completed.
*/
spin_lock
(
&
hvc
->
vc
.
lock
);
if
(
!
list_empty
(
&
hvc
->
desc_hw_processing
))
{
hvc
->
issue_synchronize
=
true
;
sync_needed
=
true
;
}
spin_unlock
(
&
hvc
->
vc
.
lock
);
if
(
sync_needed
)
wait_for_completion
(
&
hvc
->
issue_completion
);
/*
* At the point, we expect that all remaining descriptors in the ring
* for the channel should be all processing done.
*/
WARN_ONCE
(
!
list_empty
(
&
hvc
->
desc_hw_processing
),
"Desc pending still in list desc_hw_processing
\n
"
);
/* Free all descriptors in list desc_completed */
vchan_synchronize
(
&
hvc
->
vc
);
WARN_ONCE
(
!
list_empty
(
&
hvc
->
vc
.
desc_completed
),
"Desc pending still in list desc_completed
\n
"
);
}
static
int
mtk_hsdma_terminate_all
(
struct
dma_chan
*
c
)
{
/*
* Free pending descriptors not processed yet by hardware that have
* previously been submitted to the channel.
*/
mtk_hsdma_free_inactive_desc
(
c
);
/*
* However, the DMA engine doesn't provide any way to stop these
* descriptors being processed currently by hardware. The only way is
* to just waiting until these descriptors are all processed completely
* through mtk_hsdma_free_active_desc call.
*/
mtk_hsdma_free_active_desc
(
c
);
return
0
;
}
static
int
mtk_hsdma_alloc_chan_resources
(
struct
dma_chan
*
c
)
{
struct
mtk_hsdma_device
*
hsdma
=
to_hsdma_dev
(
c
);
int
err
;
/*
* Since HSDMA has only one PC, the resource for PC is being allocated
* when the first VC is being created and the other VCs would run on
* the same PC.
*/
if
(
!
refcount_read
(
&
hsdma
->
pc_refcnt
))
{
err
=
mtk_hsdma_alloc_pchan
(
hsdma
,
hsdma
->
pc
);
if
(
err
)
return
err
;
/*
* refcount_inc would complain increment on 0; use-after-free.
* Thus, we need to explicitly set it as 1 initially.
*/
refcount_set
(
&
hsdma
->
pc_refcnt
,
1
);
}
else
{
refcount_inc
(
&
hsdma
->
pc_refcnt
);
}
return
0
;
}
static
void
mtk_hsdma_free_chan_resources
(
struct
dma_chan
*
c
)
{
struct
mtk_hsdma_device
*
hsdma
=
to_hsdma_dev
(
c
);
/* Free all descriptors in all lists on the VC */
mtk_hsdma_terminate_all
(
c
);
/* The resource for PC is not freed until all the VCs are destroyed */
if
(
!
refcount_dec_and_test
(
&
hsdma
->
pc_refcnt
))
return
;
mtk_hsdma_free_pchan
(
hsdma
,
hsdma
->
pc
);
}
static
int
mtk_hsdma_hw_init
(
struct
mtk_hsdma_device
*
hsdma
)
{
int
err
;
pm_runtime_enable
(
hsdma2dev
(
hsdma
));
pm_runtime_get_sync
(
hsdma2dev
(
hsdma
));
err
=
clk_prepare_enable
(
hsdma
->
clk
);
if
(
err
)
return
err
;
mtk_dma_write
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
0
);
mtk_dma_write
(
hsdma
,
MTK_HSDMA_GLO
,
MTK_HSDMA_GLO_DEFAULT
);
return
0
;
}
static
int
mtk_hsdma_hw_deinit
(
struct
mtk_hsdma_device
*
hsdma
)
{
mtk_dma_write
(
hsdma
,
MTK_HSDMA_GLO
,
0
);
clk_disable_unprepare
(
hsdma
->
clk
);
pm_runtime_put_sync
(
hsdma2dev
(
hsdma
));
pm_runtime_disable
(
hsdma2dev
(
hsdma
));
return
0
;
}
static
const
struct
mtk_hsdma_soc
mt7623_soc
=
{
.
ddone
=
BIT
(
31
),
.
ls0
=
BIT
(
30
),
};
static
const
struct
mtk_hsdma_soc
mt7622_soc
=
{
.
ddone
=
BIT
(
15
),
.
ls0
=
BIT
(
14
),
};
static
const
struct
of_device_id
mtk_hsdma_match
[]
=
{
{
.
compatible
=
"mediatek,mt7623-hsdma"
,
.
data
=
&
mt7623_soc
},
{
.
compatible
=
"mediatek,mt7622-hsdma"
,
.
data
=
&
mt7622_soc
},
{
/* sentinel */
}
};
MODULE_DEVICE_TABLE
(
of
,
mtk_hsdma_match
);
static
int
mtk_hsdma_probe
(
struct
platform_device
*
pdev
)
{
struct
mtk_hsdma_device
*
hsdma
;
struct
mtk_hsdma_vchan
*
vc
;
struct
dma_device
*
dd
;
struct
resource
*
res
;
int
i
,
err
;
hsdma
=
devm_kzalloc
(
&
pdev
->
dev
,
sizeof
(
*
hsdma
),
GFP_KERNEL
);
if
(
!
hsdma
)
return
-
ENOMEM
;
dd
=
&
hsdma
->
ddev
;
res
=
platform_get_resource
(
pdev
,
IORESOURCE_MEM
,
0
);
hsdma
->
base
=
devm_ioremap_resource
(
&
pdev
->
dev
,
res
);
if
(
IS_ERR
(
hsdma
->
base
))
return
PTR_ERR
(
hsdma
->
base
);
hsdma
->
soc
=
of_device_get_match_data
(
&
pdev
->
dev
);
if
(
!
hsdma
->
soc
)
{
dev_err
(
&
pdev
->
dev
,
"No device match found
\n
"
);
return
-
ENODEV
;
}
hsdma
->
clk
=
devm_clk_get
(
&
pdev
->
dev
,
"hsdma"
);
if
(
IS_ERR
(
hsdma
->
clk
))
{
dev_err
(
&
pdev
->
dev
,
"No clock for %s
\n
"
,
dev_name
(
&
pdev
->
dev
));
return
PTR_ERR
(
hsdma
->
clk
);
}
res
=
platform_get_resource
(
pdev
,
IORESOURCE_IRQ
,
0
);
if
(
!
res
)
{
dev_err
(
&
pdev
->
dev
,
"No irq resource for %s
\n
"
,
dev_name
(
&
pdev
->
dev
));
return
-
EINVAL
;
}
hsdma
->
irq
=
res
->
start
;
refcount_set
(
&
hsdma
->
pc_refcnt
,
0
);
spin_lock_init
(
&
hsdma
->
lock
);
dma_cap_set
(
DMA_MEMCPY
,
dd
->
cap_mask
);
dd
->
copy_align
=
MTK_HSDMA_ALIGN_SIZE
;
dd
->
device_alloc_chan_resources
=
mtk_hsdma_alloc_chan_resources
;
dd
->
device_free_chan_resources
=
mtk_hsdma_free_chan_resources
;
dd
->
device_tx_status
=
mtk_hsdma_tx_status
;
dd
->
device_issue_pending
=
mtk_hsdma_issue_pending
;
dd
->
device_prep_dma_memcpy
=
mtk_hsdma_prep_dma_memcpy
;
dd
->
device_terminate_all
=
mtk_hsdma_terminate_all
;
dd
->
src_addr_widths
=
MTK_HSDMA_DMA_BUSWIDTHS
;
dd
->
dst_addr_widths
=
MTK_HSDMA_DMA_BUSWIDTHS
;
dd
->
directions
=
BIT
(
DMA_MEM_TO_MEM
);
dd
->
residue_granularity
=
DMA_RESIDUE_GRANULARITY_SEGMENT
;
dd
->
dev
=
&
pdev
->
dev
;
INIT_LIST_HEAD
(
&
dd
->
channels
);
hsdma
->
dma_requests
=
MTK_HSDMA_NR_VCHANS
;
if
(
pdev
->
dev
.
of_node
&&
of_property_read_u32
(
pdev
->
dev
.
of_node
,
"dma-requests"
,
&
hsdma
->
dma_requests
))
{
dev_info
(
&
pdev
->
dev
,
"Using %u as missing dma-requests property
\n
"
,
MTK_HSDMA_NR_VCHANS
);
}
hsdma
->
pc
=
devm_kcalloc
(
&
pdev
->
dev
,
MTK_HSDMA_NR_MAX_PCHANS
,
sizeof
(
*
hsdma
->
pc
),
GFP_KERNEL
);
if
(
!
hsdma
->
pc
)
return
-
ENOMEM
;
hsdma
->
vc
=
devm_kcalloc
(
&
pdev
->
dev
,
hsdma
->
dma_requests
,
sizeof
(
*
hsdma
->
vc
),
GFP_KERNEL
);
if
(
!
hsdma
->
vc
)
return
-
ENOMEM
;
for
(
i
=
0
;
i
<
hsdma
->
dma_requests
;
i
++
)
{
vc
=
&
hsdma
->
vc
[
i
];
vc
->
vc
.
desc_free
=
mtk_hsdma_vdesc_free
;
vchan_init
(
&
vc
->
vc
,
dd
);
init_completion
(
&
vc
->
issue_completion
);
INIT_LIST_HEAD
(
&
vc
->
desc_hw_processing
);
}
err
=
dma_async_device_register
(
dd
);
if
(
err
)
return
err
;
err
=
of_dma_controller_register
(
pdev
->
dev
.
of_node
,
of_dma_xlate_by_chan_id
,
hsdma
);
if
(
err
)
{
dev_err
(
&
pdev
->
dev
,
"MediaTek HSDMA OF registration failed %d
\n
"
,
err
);
goto
err_unregister
;
}
mtk_hsdma_hw_init
(
hsdma
);
err
=
devm_request_irq
(
&
pdev
->
dev
,
hsdma
->
irq
,
mtk_hsdma_irq
,
0
,
dev_name
(
&
pdev
->
dev
),
hsdma
);
if
(
err
)
{
dev_err
(
&
pdev
->
dev
,
"request_irq failed with err %d
\n
"
,
err
);
goto
err_unregister
;
}
platform_set_drvdata
(
pdev
,
hsdma
);
dev_info
(
&
pdev
->
dev
,
"MediaTek HSDMA driver registered
\n
"
);
return
0
;
err_unregister:
dma_async_device_unregister
(
dd
);
return
err
;
}
static
int
mtk_hsdma_remove
(
struct
platform_device
*
pdev
)
{
struct
mtk_hsdma_device
*
hsdma
=
platform_get_drvdata
(
pdev
);
struct
mtk_hsdma_vchan
*
vc
;
int
i
;
/* Kill VC task */
for
(
i
=
0
;
i
<
hsdma
->
dma_requests
;
i
++
)
{
vc
=
&
hsdma
->
vc
[
i
];
list_del
(
&
vc
->
vc
.
chan
.
device_node
);
tasklet_kill
(
&
vc
->
vc
.
task
);
}
/* Disable DMA interrupt */
mtk_dma_write
(
hsdma
,
MTK_HSDMA_INT_ENABLE
,
0
);
/* Waits for any pending IRQ handlers to complete */
synchronize_irq
(
hsdma
->
irq
);
/* Disable hardware */
mtk_hsdma_hw_deinit
(
hsdma
);
dma_async_device_unregister
(
&
hsdma
->
ddev
);
of_dma_controller_free
(
pdev
->
dev
.
of_node
);
return
0
;
}
static
struct
platform_driver
mtk_hsdma_driver
=
{
.
probe
=
mtk_hsdma_probe
,
.
remove
=
mtk_hsdma_remove
,
.
driver
=
{
.
name
=
KBUILD_MODNAME
,
.
of_match_table
=
mtk_hsdma_match
,
},
};
module_platform_driver
(
mtk_hsdma_driver
);
MODULE_DESCRIPTION
(
"MediaTek High-Speed DMA Controller Driver"
);
MODULE_AUTHOR
(
"Sean Wang <sean.wang@mediatek.com>"
);
MODULE_LICENSE
(
"GPL v2"
);
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment